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SUMMARY

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics
to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755
H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models
effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC =
0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally
performed fromH&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predic-
tive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and pro-
teomics identifies pathway-level signatures and cellular processes driving predictive histology features.
Model generalizability and interpretability is confirmed using TCGA. We propose a classification system
for these tasks, and suggest potential clinical applications for this integrated human and machine learning
approach. A publicly available web-based platform implements these models.

INTRODUCTION

Recent advances in machine learning inform precision medicine

and translational research. Computational pathology applies

computer vision methods to clinical and pathological images,

and has benefited greatly from neural-network-based deep

learning technologies.1,2 Convolutional neural network (CNN)

models can robustly predict commonly mutated genes in

Cell Reports Medicine 4, 101173, September 19, 2023 ª 2023 The Author(s). 1
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specific cancer types, such as non-small cell lung cancer, where

CNNs are able to predict six of the ten most commonly mutated

genes with AUROCs ranging from 0.733 to 0.856.3,4 We recently

introduced a multi-resolution CNN architecture, Panoptes, to

classify endometrial cancer images.5 These techniques can be

applied to cancer types from diverse organ systems, which

can express similar molecular signatures despite their various

origins.6 Weakly supervised CNNs can also identify actionable

driver mutations across multiple cancer types7 and predict mo-

lecular features, including somatic mutation status such as

TP53 and PTEN, microsatellite instability, and molecular sub-

types.3,7,8 However, to our knowledge, there have been no

prior attempts to correlate rich proteomic data with histologic

features.

A major limitation of the field is that few weakly supervised

deep learning studies have integrated pathology expertise into

study design and interpretation, resulting in models that may

lack human interpretability or clear relevance to tumor biology.

Moreover, existingmodels rely heavily on genomic and transcrip-

tomic data only, which do not always translate into biologically

significant alterations in tumor proteome. Without validation of

model transparency and identification of human-intuitive fea-

tures correlating to model predictions, or validation of transcrip-

tomic data at the protein level, real-world adoption of machine

learning as an ancillary technique by clinical and translational re-

searchers is severely limited.9 Indeed, most studies attempting

to correlate multidimensional datasets examine only one or two

variables (e.g., mutation status and histology), and do not assess

the impact of multi-omics data on human interpretability and

relevance; nor do they define avenues to complement traditional

histopathologic evaluation. To provide a conceptual framework

addressing these problems, and provide a roadmap to increase

uptake of the technology in clinical and research settings, we first

introduce a classification scheme for computational tasks rela-

tive to the ability of humans to perform them. Class 1 tasks

emulate what pathologists already perform, such as are seen

with supervised training models, and class 2 tasks are those

that CNNs are trained to perform that fall outside of pathologists’

routine intuition. We then evaluate proteomic models to comple-

ment and validate transcriptomic correlations.

We utilized the Clinical Proteomic Tumor Analysis Consortium

(CPTAC), which has comprehensively characterized tumor

omics, ranging from genomics to proteomics andmetabolomics,

in hundreds of patients well-annotated with matching histopa-

thology images and clinical outcomes.10–17 This cohort has not

yet been extensively mined for pan-cancer image analysis. The

plethora of molecular and clinical data enables the construction

of integrative and systematic molecular signatures, which can

provide insight into mechanisms underlying a variety of cancers,

as well as the workings of the CNN (Figure 1A). Critically, all im-

age data from CPTAC represent mirror-image tissue sections

immediately adjacent to the tissue subjected to omic analysis,

allowing direct cognate correlation between molecular and im-

aging features. We further use canonical correlation analysis

(CCA) to identify joint multivariate relationships between histol-

ogy and omics data18 and identify subsets of proteogenomic

and imaging features that are biologically related.19 This

approach has been validated for other multi-omics datasets,

including data from The Cancer Genome Atlas (TCGA),20,21 to

facilitate pathway-level knowledge discovery without leveraging

prior biological understanding.

Our CNN models were trained with histopathological images

from six different cancer types (clear cell renal cell carcinoma

[CCRCC]11, head and neck squamous cell carcinoma

[HNSCC]16, lung squamous cell carcinoma [LSCC]15, lung

adenocarcinoma [LUAD]14, pancreatic ductal adenocarcinoma

[PDA]17, and uterine corpus endometrial carcinoma [UCEC]13),

and were able to perform proof-of-concept class 1 tasks, such

as distinguishing tumor from normal and tissue-of-origin, and

more difficult class 2 tasks, such as identifying both tissue-spe-

cificmorphological features related to clinical and biomarker fea-

tures as well as pan-cancer tissue-level and cellular properties.

For both task classes, we relate predictive morphologies to

transcriptional and translational expression data to identify mo-

lecular signatures driving phenotype differences. Based on sub-

sequent pathologist input, class 2 tasks were further subclassi-

fied. In class 2a, humans could intuit potential common

histologic features within predicted groups, enabling them to

learn potentially novel ways of viewing tumor classification For

class 2b, histologic features separating predicted groups were

not readily discernible to human pathologists. The integration

and iteration of machine and human learning in class 2a tasks

suggests new roles for synergistic machine learning tools in clin-

ically relevant pathology evaluation.

Finally, we introduce a cloud-based graphical user interface

for clinicians to apply our machine learning models to their

own histological images. This workflow envisions a pathology-

centered design where a single whole slide image (WSI) can be

uploaded and computationally scored in the cloud. Generated

heatmaps highlight regions of interest based on the selected

predictive model.

RESULTS

Our image bank consisted of 2,755 H&E-stained slides

sectioned from formalin-fixed paraffin-embedded (FFPE) tissue

blocks obtained from the CPTAC including six cancer types:

CCRCC, HNSCC, LSCC, LUAD, PDA, and UCEC, representing

2,217 total tumor tissue slides and 538 normal adjacent tissue

(NAT) slides from 657 patients (Figure S1A). A total of 5,374

WSIs from TCGA was utilized for independent validation of

model generalizability. Each WSI was divided into smaller tiles

sharing the same label as the whole slide, and individual tile-level

evaluations were then aggregated at whole-image level. Clinical

attributes, histopathological features, gene mutations, and pro-

teogenomic expressions for these samples were obtained from

CPTAC22 (Figures S1B and S1C) and TCGA as applicable. Pan-

optes-based multi-resolution CNN models were trained, vali-

dated, and tested on the tiles following the same data prepara-

tion protocol as in our previous publications.5

To better understand model decision-making, we catego-

rized four tasks as class 1 or 2. Class 1 tasks were utilized

as a proof-of-concept of the model and included (1) identifying

tumor tissue-of-origin and (2) discriminating tumor from

normal tissue. Class 2 tasks included prediction of (3) clinical

features and (4) biomarkers from histologic image features.
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Insights into underlying biological mechanisms driving predic-

tive morphology alterations were investigated through sparse

CCA, which extracts subgroups of genes, proteins, and imag-

ing features whose expression values maximally correlate

with one another. Pathology review was then performed for

high- and low-scoring cases for different canonical variants to

assess the pathologic and biological relevance of model-

derived features.

A

B

Figure 1. Workflow, data split, and model performance

(A) Overall workflow. Multi-resolution Panoptes models were trained on H&E slide images from six cancer types. Multi-CCA correlated proteomics, tran-

scriptomics, and extracted imaging features from CNN models to reveal significant pathways and molecular signatures.

(B) Per-slide level AUROCs of imaging-based prediction tasks with 95% confidence intervals.
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Summarized comparison of model performance for all trained

tasks is reported at the per-slide (Figure 1B) level.

Tissue-of-origin
Despite having molecularly targeted therapy for many malig-

nancies, tumor lineage remains an important determinant for

treatment selection, and prognostication based on tumor grade

and stage. We trained models to predict tumor tissue-of-origin

(lineage) and established a baseline for the global variation

among cancers stemming fromdifferent organ systems. Amodel

trained with combined NAT and tumor samples performs excep-

tionally well, with AUROCs ranging from 0.949 to 0.995 at the

per-slide level (Figure 2A) and from 0.905 to 0.963 at per-tile level

(Figure 2B). We visualized the tSNE separation of the learned

latent features from the final convolutional layer to infer the

extent of separation between different tissue types (Figures 2C

and 2D). As expected, CCRCC, with its distinctive clear cell

morphology, clusters separately, while samples from LSCC,

LUAD, and HNSCC form a ‘‘rainbow’’-like arc spanning the sec-

ond tSNE component. PDA samples largely cluster together, but

in the center of the two components. The low information

captured by our imaging model may be due to sample heteroge-

neity within this cancer type. While not explicitly trained to do so,

our models also discriminated between NAT and tumor images.

NAT and tumor samples from LSCC were divided by LUAD sam-

ples, for which the latter clustered more tightly. Endometrial

samples clustered the most distantly, with the UCEC tumor

group dividing the two lung tumor groups along the first

tSNE component. The normal endometrial samples clustered

compactly but distinctly near pancreatic samples.

The tissue-of-origin model was validated on TCGA samples

including both FFPE and fresh frozen section images (Fig-

ure S1D). The model generalized better on FFPE sections

(AUROC: CCRCC 0.99, HNSCC 0.96, LSCC 0.85, LUAD 0.88,

and PDA 0.97) than on fresh frozen tissues (AUROC: CCRCC

0.89, HNSCC 0.84, LSCC 0.73, LUAD 0.76, and PDA 0.92).

This is consistent with known artifactual degradation of histolog-

ic features by frozen section sample preparation. tSNE clustering

of latent output from TCGA samples recapitulates our CPTAC re-

sults; LUAD and LSCC cluster closely together, HNSCC samples

reside near LSCC, and UCEC samples cluster near LUAD sam-

ples (Figure S2A). Taken together, external TCGA validation sug-

gests that the tissue-of-origin model has learned generalizable

morphologies that separate samples originating from different

organ systems.

To investigate transcriptomic and the more directly tissue-

relevant proteomic mechanisms driving predictive morphology

alterations, we applied sparse CCA, a statistical method to

extract high-dimensional rotations in the gene/protein/image

space (canonical variates) whose projected values maximally

correlate with one another.18 When applied to pairs of high-

dimensional data, CCA can project each dataset into a ranked

series of paired new spaces, in which the projected values maxi-

mally correlate. Signals in histopathology images associated

with molecular features can thus be identified despite potentially

confounding complexity. For each canonical variate, the loading

weights represent a directional rotation. Projected values, repre-

senting the coordinate location of each input along that particular

direction are calculated with the dot product of the load weights

and inputmatrices. Sampleswhose input features strongly asso-

ciate with the loading weights will have more extreme projected

values. This process is iterated to identify multiple canonical var-

iates. For each canonical variate, genes and proteins with non-

zero loading weights (responsible for that variate’s directional

rotation) are interpreted with gene ontology (GO) term enrich-

ment. Our pathology team thenmanually annotated enriched tis-

sue patterns present in the images with the largest and smallest

projected values to discern histomorphologic correlations.

In a plot of canonical variate (no. 1) with the strongest correla-

tion among all three data modalities (image features, RNA, and

proteome), CCRCC tumor and non-neoplastic (NAT) samples

separated from all others. GO term enrichment for fatty acid

oxidation and amino acid catabolic processes were consistently

found at both the transcriptomic and proteomic levels (Fig-

ure S2B), consistent with the increased role of fatty acid and

amino acid catabolism in both normal kidney and CCRCC rela-

tive to other tissues in this study. HNSCC were found at the

lowest portion of this canonical variant; GO terms enriched for

low projected values include chromosomal segregation and

cell-cycle DNA replication, cornification, and hair follicular devel-

opment. A separate canonical variate (no. 5) reiterated the clus-

tering of UCEC with LSCC and LUAD, grouping samples from

these in the variate’s highest projected values (Figure 2E). Pro-

tein data confirmed transcriptomic findings that these samples

were enriched for cilium movement and microtubule bundle for-

mation. Tiles with the highest projected values were enriched for

cells with cytoplasmic projections and terminal bars, which were

uniformly present in both endometrial and lung samples (Fig-

ure 2F), and reflect biological processes unique to mucus-

secreting tissue. Bronchial cilia provide mucociliary clearance

in the lung to maintain a healthy epithelium, and endometrial cilia

help provide a suitable environment for embryonic development

in the uterus. Conversely, HNSCC is enriched in the bottom

portion of this canonical variate. Processes responsible for kera-

tinization, establishment of skin barrier, and flavonoid glucuroni-

dation can be extracted only at the transcriptomic level. These

Figure 2. Tissue-of-origin model performance and omics-integration

(A) AUROC for each cancer type at per-slide level.

(B) AUROC at per-tile level.

(C) Features extracted from penultimate layer are separated with tSNE; each dot represents a tumor tile colored by tissue origin.

(D) Feature extraction where each dot represents NAT tiles colored by tissue origin.

(E) CCA canonical variate highlighting similarities between UCEC and LUAD samples. Line graphs represent standardized coefficients for subsets of imaging,

gene, and proteome features. Each dot represents an image-proteogenomic paired sample. GO term enrichment assessed on subset of genes and proteome

features with non-zero values in loading matrix.

(F and G) Top and bottom images represent tiles with highest and lowest scores, respectively. Histopathology annotations reflect enriched GO terms.
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pathways match the physiology inherent to squamous cells

comprising HNSCC. As expected, correlated tiles predominantly

displayed extensive keratinization (Figure 2G), well beyond that

noted in LSCC. Finally, PDA samples dominated the upper

portion in canonical variate no. 7, with enrichment for collagen

metabolism, chondrocyte development, and extracellular matrix

disassembly at the transcriptomic level, and epithelial cell

apoptotic processes and wound response at the proteomic level

(Figure S2C). Visualization confirms regions comprising sparse

malignant infiltrates (small, irregular nests of tumor cells) within

desmoplastic (fibroblastic) stroma with abundant collagenous

and myxoid extracellular matrix similar to what is seen in wound

healing (scar formation), and other regions of normal pancreatic

exocrine lobular and ductal tissue, involved in the secretion and

transport of digestive enzymes (Figure S2D).

Tumorigenesis
We next assessed howCNNmodels of histologic features differ-

entiate tumors from NAT (another class 1 task) and compared

the model’s decision-making process with standard pathologic

examination. We trained a single pan-cancer imaging model to

identify conserved architectures differentiating tumors from

NAT samples. We then trained individual models for each cancer

type to isolate tumorigenic signatures unique to individual organ

systems. The pan-cancer model achieved AUROC of 0.995

(95% CI, 0.990–1) at the per-slide level and 0.972 (95% CI,

0.971–0.973) at per-tile level in classifying tumor and NAT (Fig-

ure 1B). On the external TCGA test set, AUROC was 0.94

(Figure S1D).

To identify histologic features heavily weighted in the model,

we evaluated the spatial distribution of the prediction by the

model at the per-slide level, and aggregated the per-tile level

prediction scores and mapped them back to the original slide di-

mensions in the form of heatmaps (an example is shown in

Figures 3A and 3B). The prediction was accurate with close to

1.00 prediction probability for all tumor tiles. Within each slide,

we adopted class activation mapping (CAM) to demonstrate

the attention of the deep learning model, and observed that

when tile-level CAM was aggregated at the per-slide level, the

model generally gave more attention to tumor regions than to

normal areas (Figure 3C).

We then extracted the activation maps of the test set samples

at the penultimate layer. Dimensional reductionswere performed

to display two-dimensional tSNE plots. We observed that tumor

samples clustered on the topwhile the normal samples clustered

at the bottom (Figure 3D), and that predicted and true labels

correlatedwell (Figure 3E). Therewere no obvious clusters by tis-

sue-of-origin except two small clusters relating to CCRCC sam-

ples (Figures 3F and S3A). Upon review of H&E tiles correspond-

ing to dots on the tSNE plot, we confirmed that tumor tissue

clusters accurately captured common tumorigenic features,

while NAT areas showed large regions composed mainly of

well-differentiated tissue organization. The small isolated cluster

of samples was identified as mostly artifacts or corrupted tiles

(Figure S3A). Per-tile level saliency maps focused on nuclei

and cellular density, especially regions with high tumor-infil-

trating lymphocytes (Figure 3G), suggesting that high nuclei den-

sity and nuclear shape/size aremajor features used by themodel

to distinguish tumor tissue from NAT.

Individual models trained on each of the six cancer types

separately achieved per-slide level AUROC ranging from 0.95

(UCEC) to 1 (CCRCC, HNSCC, and LUAD). To determine if indi-

vidual models used similar features or had utility outside of their

site of origin, we applied each model to test sets of non-trained

tissues (Figures 3H and S3B). The LUAD model had a per-slide

AUROC of 0.907 when applied to UCEC samples, likely due to

their histologic similarity. LUAD, LSCC, and HNSCC models

generally transferred to one another with per-slide AUROC usu-

ally exceeding 0.9, which is also in line with our observation from

tissue-of-origin models. Surprisingly, the LSCC model per-

formed well on CCRCC samples (AUROC = 0.929), but our

expert pathology review did not note distinctly generalizable fea-

tures that could be articulated between the two cancer types,

suggesting that this solution may represent a class 2b problem.

The PDA model also performed well on LSCC, LUAD, and

HNSCC, which may be explained by the morphology similarities

between large pink cells and squamous tissue. Overall, our deep

learning models appear to have captured tumor/NAT morpho-

logical differences that generalized across different cancer types

to reveal morphological similarities in distinct tissue types.

Effective cancer therapy requires identification of pathway de-

pendencies distinguishing tumor and normal tissues that can

then be selectively targeted to affect tumor cell death. We there-

fore evaluated our pan-cancer model for molecular features dis-

tinguishing tumors from NAT. In the first canonical variate, the

plots of projected values between imaging and transcriptomic

or proteomic features show clear delineations between normal

and tumor samples (Figure 4A). Evaluation of top transcriptomic

and proteomic pathways and top tiles identified subsets of

genes and proteins enriched for cell-cycle DNA replication and

double-strand break repair (Figures 4B and 4C). Here, transla-

tional evidence validated transcriptomic findings. Manual review

of the tiles with the highest projected values revealed tumor re-

gions with scattered mitotic figures and pyknotic nuclei, and

confirm that the imaging model has learned a subset of features

correlating with these tumorigenesis pathways.

Figure 3. Feature visualization and cross-testing of tumorigenesis models

(A) Example UCEC slide with tumor tissue on left and normal tissue on right.

(B) Prediction heatmap of example slide with hotter areas (red) highlighting tiles more likely to be tumor tissue.

(C) CAM of example slide by tiles with hotter areas emphasizing the tumor tissue.

(D–F) Feature extraction from tumorigenesis imaging model by tSNE; each dot represents a tile colored by prediction score, true label, and cancer type,

respectively.

(G) Example tiles of integrated saliency results highlighting accumulation of nuclei, with densest regions largely composed of stromal lymphoplasmacytic in-

filtrates.

(H) Heatmap showing per-slide AUROCs of applying single cancer type trained models to the other cancer types.
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Another canonical variate (no. 2) showed pronounced sepa-

ration of LSCC and LUAD from NAT, and moderate separation

of HNSCC tumors from NAT (Figures 4D and 4E). Within these

cancer types, negative transcriptomic and proteomic features

correlated with venous blood vessel development and smooth

muscle cell differentiation (blue tiles), while positive features

correlated with canonical glycolysis (red tiles). Upon visualiza-

tion, blue regions visibly isolate regions with discrete venous

blood (Figure 4F). When zoomed out, we observe the contrast

where red regions correlating with increased metabolic activity

highlight tiles with tumor cells, blue regions segment out areas

of normal lung with smooth muscle tissue, and middle white

tiles correlate with fibrotic or desmoplastic regions (Figure 4E).

The imaging model has learned features that combine to

represent interpretable biological signals and correspond to

recognizable H&E features, and are not the results of random

noise.

Clinical and histopathological features
Grade and stage are key clinical prognostic indices, and may

correlate with underlying molecular changes driving aggressive

tumor behavior. We trained models to predict pathologic grade

(a class 1 task) and stage (a class 2 task) (Figure 5A). For predic-

tion of grade, the best per-slide AUROC was 0.883 (95% CI,

0.882–0.84) and the best per-tile AUROC was 0.799 (95% CI,

0.799–0.800). For stage, the best per-slide AUROC was 0.783

(95% CI, 0.779–0.783) and the best per-tile AUROC was 0.727

(95% CI, 0.727–0.727). TCGA grade data were not available to

test generalizability. The stage model was not generalizable to

the external TCGA stage data (Figure S1D). This may be due in

A

B

D

E

C

F

Figure 4. Major canonical variates associated with tumorigenesis

(A) Canonical variate with strongest correlation separating NAT/tumor samples across all six cancer types.

(B) Tiles from highest-scoring regions show mitotic morphologies consistent with enriched transcriptomic and proteomic enrichment.

(C) Tiles from lowest-scoring region.

(D) Second canonical variate distinguishing NAT/tumor samples.

(E and F) Tile scoring parallels enriched biological processes. Tile borders indicate scores; top-scoring regions (red) match tumorigenic areas with increased

glycolytic activity, and bottom-scoring (blue) areas correspond with smooth muscle and blood vessel architectures.
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part to heterogeneity in the use of the AJCC 7th or 8th edition

staging systems between TCGA and CPTAC data collection.

Given that tumor stage consists of information about the pri-

mary tumor, regional nodal metastasis, and distant disease

(TNM criteria describing disease distribution), we queried if the

model represented a human-interpretable task (class 2a) on

the basis of available clinicopathologic data or image features.

We found that grade and stage were not correlated (Figure S4A).

Cross-evaluation of the stage model to predict grade, and also

the grade model to predict stage, showed that these do not

generalize (Figure S4B). We then performed blinded pathology

review (E.G.D. and A.J.L.) on eight to nine WSIs of predicted

stage 0 (NAT), 1, 2, and 3 cases, and four stage 4 cases to sub-

jectively evaluate architectural and cytologic features (Fig-

ure S4C). While there were few pathologic clues to distinguish

stage 1 from 2, stage 3 tumors showed a more microscopically

aggressive appearance. Whereas stage 1 and 2 tumors tended

to show large, cohesive rounded nested or glandular tumor ar-

chitecture with a circumscribed pushing boundary with normal

tissues, and sharp, well-defined basal laminae, stage 3 tumors

were more likely to comprise small, irregular nests, cords, or sin-

gle cells, which more diffusely infiltrated surrounding stroma.

The basal aspect of stage 3 tumor nests showed a feathery or

jagged appearance where malignant cells budded off and

invaded adjacent stroma. Stage 4 was similar, with angulated tu-

mor nests and single-cell infiltration noted in the majority of

cases. Although these features are components of high-grade

tumors, they are not the sole feature contributing to grade, which

may explain why grade and stage did not correlate. Lymphatic or

vascular invasionwas not identified in the sections reviewed. Our

exploratory findings define this model as a class 2A task—one in

which the model was able to perform an unexpected task not

normally performed by humans, yet yielded divisions with bio-

logically relevant, human-interpretable differences that might

prove interesting for further study.

We conducted sparse CCA to identify biologic correlates. The

strongest signals were observed between chromosomal segre-

gation and meiotic signaling with higher grade and stage at

both the transcriptomic and proteomic levels. Linear separation

was significantly present within five of six cancer types. PDAwas

the outlier without correlation, possibly due to the lower tumor

purity of PDA specimens, which may dilute malignant proteoge-

nomic signatures. Tiles with highest projected values showed

densely packed apoptotic bodies and necrosis, while tiles with

bottom scores showed well-differentiated tissue architecture.

To distinguish characteristics responsible for local tumor growth

and metastasis, we searched for canonical variates with signa-

tures uniquely present in either grade or stage analyses. A

canonical variate (no. 15) enriched for planar cell polarity was

identified among high-grade HNSCC, LSCC, LUAD, and UCEC

samples. Dysregulation of planar cell polarity is known to be

associated with increased cell migration and proliferation, char-

acteristic features of high-grade tumors. The canonical variate

selected only three genes (VANGL2, WNT5A, and RYK) with

non-zero weights, and could only be associated with a subset

of imaging features at the transcriptomic level. Visualization of

regions with highest projected values (Figure 5B) captured re-

gions of disorganized tumor cells without lumen formation and

with extensive necrosis, and areas where malignant glands

showed loss of basal nuclear polarity with nuclei appearing

pseudostratified across adjacent cells instead of neatly aligned

near the basement membrane, consistent with dysregulation of

polarity. Tiles with lowest projected values were dominated by

NAT samples, with normal non-neoplastic morphologies or cells

with apparent polarity.

Biomarkers
H&E slides are effective for visualizing morphological features.

Additional molecular information can be acquired by immunohis-

tochemistry (IHC) staining or nucleotide sequencing. However,

the utility of IHC is limited by the requirement for antibodies

both sensitive and specific to each marker of interest. Apart

from limited panels targeting frequent cancer mutations,

sequencing is often cost-prohibitive and time-consuming,

limiting clinical accessibility. A tool to infer molecular signatures

directly from H&E-stained histopathology images would harness

the power of omics research to more accessible diagnostic

pathology images, augment traditional diagnostic pathology

techniques, and expand retrospective molecular analysis via

inference of biospecimens lacking genomic sequencing. Such

tools could be used in clinical practice to predict existence not

only of specific mutations but also of targetable pathway depen-

dencies at the protein level. As proof-of-concept, we tested the

capacity of our model to accurately predict common genomic

biomarkers directly from histopathology images, and then eval-

uated if these predictions represented class 2a or 2b tasks.

Promising results were obtained for prediction of specific mu-

tations, including EGFR, TP53, KRAS, STK11, and PTEN (per-

slide AUROC = 0.939, 0.859, 0.834, 0.821, 0.809, respectively)

(Figure 1B). All mutation prediction tasks showed significant dif-

ferences, except BRCA2, JAK1, and MTOR, suggesting that

these models could be used for distinguishing tumors harboring

common mutations (Figure 6A).

tSNE dimensional reduction was then conducted for mutation

prediction tasks. Tiles with high-grade tumor features were

observed in the predicted TP53 mutant cluster. The upper left

subcluster contained mostly small cells with spindled (sarcoma-

toid) morphology. The upper right subcluster depicted mostly

small cells with hyperchromatic nuclei and regions of necrosis.

A small subcluster with gland formation was found on the middle

left (Figure 6B). In the predicted KRAS mutant cluster, larger

nuclei, open chromatin, and glandular features were observed.

However, tiles were not as high grade and densely cellular as

the predicted TP53 mutant tiles. Infiltration of single cells and

Figure 5. Model performance and multi-omics assessment of grade and stage

(A) Per-slide performance of models trained on tumor grade and disease stage. Numeric predictions represent expected value from softmax layer (
P4

x = 0pðxÞðxÞ)
where x represents grade or stage outcome). AUROC for each outcome denoted.

(B) CCA canonical variate uniquely observed in grade analysis. Tiles with highest projected values (shown by more intense red borders) reflect regions with

disorganized tumor nests lacking lumen formation and glandular regions with loss of basal nuclear polarity. Paler tile borders reflect lower projected values.
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glands as well as mucin deposition and pooling were observed,

which likely belonged to lung and GI tract tissues. A false-posi-

tive subcluster on the middle right consisted of adenosquamous

carcinomas. Abundant neutrophils, large cells, and glandular

architecture were found in predicted STK11 mutants, and

malignant cells showed clumped chromatin; these tiles were

less cellular, more inflamed, and more necrotic compared

with predicted TP53 mutants. Similar patterns were observed

in the EGFR mutant cluster. The predicted PTEN mutant

cluster showed elongated dense glands, typical of endometrial

carcinoma.

Validation on TCGA FFPE (Figure S1D) confirmed generaliz-

ability of TP53 and PTEN (AUROC on CPTAC: 0.86, 0.81 and

TCGA: 0.77, 0.80, respectively), although only PTEN generalized

when images of frozen tissue were utilized (AUROC = 0.84).

KRAS, EGFR, and STK11 models did not generalize.

To determine if models were based on tumor-type indepen-

dent, pathologically identifiable, and biologically relevant infor-

mation, blinded pathology review was performed on subsets of

CPTAC and TCGA cases with and without TP53, PTEN, or

STK11 mutations. Within both CPTAC (Figure S5A) and TCGA

(Figure S5B) cases, we observed that, regardless of tissue-of-

origin, TP53 mutated samples were densely cellular, and

frequently showed dense lymphocytic infiltrates within tumor

stroma, as well as high mitotic rate, increased nuclear/cyto-

plasmic (N/C) ratio and, in many cases, scattered ‘‘monster

cells’’ with enlarged, hyperchromatic, multilobulated nuclei that

weremuch larger than themajority ofmalignant cells. In contrast,

TP53 wild-type samples typically consisted of malignant cells

with lower N/C ratios, smaller, more uniform nuclei, and moder-

ate-to-abundant cytoplasm. We therefore defined TP53 muta-

tion calling as potentially a class 2a task that pathologists may

be able to learn to perform.

Review of cases predicted as PTEN mutated consistently

showed tissue-specific histology in both CPTAC and TCGA im-

ages. Sections were characterized by complex villoglandular

and tubulo-papillary structures with gaping lumens free of secre-

tions or mucus—all features specific to endometrioid adenocar-

cinoma from the included cancers. We concluded that the PTEN

model identified endometrioid adenocarcinoma, where PTEN

mutations are very common (79% in CPTAC, 62% in TCGA),

as a surrogate for mutation status, and was not tissue indepen-

dent. Pathologic correlates were not identified to discriminate

between STK11 wild-type and mutated tumors.

Subsequently, correlation between proteogenomic signatures

and imaging features was only explored for TP53. Multi-modal

integration revealed relevant biological associations for mutated

status. Because TP53 mutation is uncommon in CCRCC, a

separate model excluding CCRCC samples was trained for

TP53 mutation and used for multi-omics integration to improve

the ability of sparse CCA to detect genuine biological signals

correlating with TP53 mutation. The strongest canonical variate

(no. 1) separated mutated and wild-type tumor tiles by the de-

gree of cell division and chromosomal segregation (Figure 6C),

consistent with known cell-cycle dysregulation resulting from

mutant TP53 and the histologically visualized increased mitotic

activity. Regions with highest projected values (Figure 6D) repre-

sented mutated samples. Histologic review revealed densely

cellular, poorly differentiated areas. Conversely, regions with

lowest projected values (Figure 6E) corresponded with wild-

type samples, and were dominated by well-differentiated archi-

tecture and expression of proteins associated with maintenance

of cell shape and cell-matrix interactions. We also extracted an

inflammatory canonical variate (no. 3) that was enriched for IL-

1-mediated signaling and other immune-related processes

within mutated samples (Figure 6F). TP53-mutated samples

clustered with low projected values and visualization highlighted

areas with dense lymphoplasmacytic infiltration that was not

observed in tiles within the highest projected values (Figures

6G and 6H). Taken together with the blinded whole-slide patho-

logic evaluation of TP53 wild-type vs. mutated samples, these

findings show that our model consistently reproduces typical

histologic features of TP53 mutant cancers, specifically

increased inflammation and mitotic activity, together with their

proteomic and transcriptomic signatures.

For previous tasks, genes selected as correlated at RNA and

proteome level generally shared similar GO enrichments, sug-

gesting congruence at multiple levels of the central dogma.

However, TP53 canonical variate no. 3 (Figures 6F–6H) under-

scores the significance of proteomics as a complementary

perspective into cellular processes that transcriptomics alone

may overlook. Although both RNA and proteomics were en-

riched for inflammatory signaling in TP53 mutated tumors, the

selected genes (Figure S6A) point to distinct cell types (lympho-

cytes vs. myeloid, respectively). To investigate further, we uti-

lized results from BayesDeBulk to jointly model the transcrip-

tomic and proteomic data and estimate cell fractions present

in TP53 mutated and wild-type samples.23 Our analysis revealed

substantial increases in neutrophil and macrophage populations

in TP53 mutated cases (Figure S6B), aligning with findings from

proteome GO enrichment. These cell types correspond to tissue

response from tumor necrosis, a prevalent characteristic in TP53

mutated tumors. Thus, proteomics provides a distinct vantage

point into additional cellular pathways not discernible from

Figure 6. Performance, visualization, and feature extraction of biomarkers

(A) One-tail Wilcoxon tests on prediction scores between positively and negatively labeled samples at per-tile level with significance levels.

(B) Extraction and visualization of features learned by pan-cancer TP53 mutation model with tSNE. Reference plots of prediction scores and true labels on the

right.

(C) Canonical variate with strongest association between image and proteogenomic features.

(D) Top tiles demonstrate highly cellular disordered regions correlating with TP53 mutated samples.

(E) Bottom tiles (wild-type) highlight organized and well-differentiated regions.

(F) Canonical variate correlating increased IL-1 activity with TP53 mutated samples.

(G) Wild-type samples in canonical variate no. 3 highlight densely packed but relatively preserved tissue architectures.

(H) Conversely, mutated samples reside in the bottom portion and show areas of increased immune infiltrate activity.
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transcriptomics alone. In the case of TP53mutated samples, this

complementary information provided by proteomics offers a

more comprehensive perspective on the immune cell types pre-

sent and their potential contributions to the tumor

microenvironment.

Panoptes Web
To facilitate integration into clinical and translational research

workflows, we developed Panoptes Web, an intuitive visualiza-

tion tool (http://panoptes.fenyo.cloud) for clinicians, scientists,

and readers to assess our models’ performances with stand-

alone H&E images and visualize the predictions tile-by-tile us-

ing a simple workflow (Figure 7A). Results are plotted in an intu-

itive boxplot of probability scores and class outcomes along

with a web-based viewer detailing tile-by-tile predictions

(Figure 7B).

DISCUSSION

Previous efforts have utilized H&E histopathological images to

predict clinical and genomic or transcriptomic outcomes in

various cancer tissues, generally using one of two approaches.

In a two-stage approach, image features were extracted by

predefined rules using tools such as CellProfiler, and then sub-

mitted to machine learning classifiers that predict outcome.24

Alternatively, CNNs were trained to infer sample labels directly

from images.25,26 Multi-resolutional models have been built to

predict mutation burden in lung cancer.27 Here, we built end-

to-end, multi-resolution neural networks on pan-cancer data

comprising six disease types to predict a wide range of histo-

logic, clinical, and molecular outcomes. Importantly our

modeling includes proteomics as well as genomics and tran-

scriptomics. Proteomic features have been included as a

Figure 7. Panoptes Web

(A) App workflow.

(B) Boxplot assessment of probability scores and class outcomes, and individual tile probability visualization.
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modality both validating and expanding upon gene expression

profiling.

We sought to determine which complex models of large-scale

multi-omics datasets could be rendered human-interpretable

using human intuition in the absence of attention maps to

enhance uptake of this technology in translational research

and clinical practice. As part of our pathology-centric focus,

we proposed a classification scheme for AI modeling tasks,

based on the ability of human pathologists to produce similar re-

sults, either a priori (class 1), or after review of the model group-

ings (class 2). We performed exploratory blinded pathologic

annotations of WSIs for cases that had been correctly assigned

to mutation categories by our models to assess model general-

izability and potential histologic correlates improving model

explainability. While other groups have focused pathologic eval-

uation more exclusively to attention maps, we took an innovative

approach, asking our expert pathologists to blindly evaluate AI-

designated groups of CPTAC and TCGA cases and report on

overall architectural and cytomorphologic features that they

felt tied tumors in these groups together. These ‘‘gestalt’’ im-

pressions were then used to generate a list of potential histologic

features that pathologists could use to replicate the model clas-

sifier. This analysis led us to further subclassify class 2 tasks as

those that might be amenable to pathologic intuition (class 2a) or

those based on features that expert surgical pathologists cannot

independently intuit (class 2b). While this approach requires

formal validation on a larger scale, we believe that our initial re-

sults show promise as a framing concept for the application of

proteogenomic modeling of histopathologic image data.

Latent image features extracted by the neural networks were

correlated with proteogenomic data using multiple sparse CCA

to directly correlate pathway level perturbations in protein

expression with observed and interpreted pathologic images,

and identify molecular signatures driving phenotype differences.

Proteomics may yield better diagnostic and therapeutic insights

compared with transcriptomics as it more directly tracks cellular

states and responses.28,29 Indeed, in most cases, our proteomic

data complemented transcriptomic features. However, in some

cases, such as the assessment of TP53 canonical variant no.

3, proteomics identified different immune drivers than was re-

vealed by transcriptomic data alone. Incorporation of these

pathway level features in tumor histopathologic modeling may

allow clinical assessment of therapeutic cancer dependencies

based on histologic features, including, for instance, metabolic

pathways differentially regulated in tumors, which may be sus-

ceptible to targeted reprogramming.

Our models performed class 1 tasks (tumor vs. normal and tis-

sue-of-origin) exceptionally well, comparable with human pa-

thology review and models in the existing literature,7,30 as ex-

pected in these proof-of-concept challenges. This technology

could potentially be extended to non-trivial classification tasks

such as identifying tissue-of-origin in metastatic carcinomas of

unknown primary, for which proper therapy requires clarification

of primary site. Similarly, while performance was somewhat

degraded in frozen tissues, it is conceivable that the tumor vs.

normal and tissue of origin classifiers could aid pathologists in

performing rapid intraoperative consultations for margins or

identification and classification of metastatic disease.

Compared with other publications, we have achieved superior

performance at the pan-cancer level for some biomarker predic-

tions such as TP53 (AUROC = 0.86), which notably generalized

to an external TCGA test set (AUROC = 0.77). We determined

that TP53mutation calling, aswell as pathologic stage prediction,

might be class 2a human-reproducible tasks. Of note, while hu-

mans could identify features potentially discriminating TP53

wild-type and mutant tumors, and stage 2 and 3 tumors, we

werenot able toevaluate if thesewere the same featuresweighted

in the model; we plan in future to perform more detailed attention

mapping from the penultimate layer of themodels to better inves-

tigate the relation between pathology-identified features and

model-weighted features. Further rigorous validation of the class

2a tasks discussed above, or identification of other clinically rele-

vant molecular features that could be predicted from histomor-

phology and replicated as a class 2a task by human pathologists

could result in the development of new human-performable pa-

thology morphometrics to clinically aid in the prediction of tumor

behavior or prognostic or therapeutic biomarkers in situations

where molecular testing or access to slide scanning technology

is not readily available, such as in developing countries.

Increasingly, data suggest that human experts working in

conjunction with machine learning tools can in fact outperform

both the human andmachine separately. Notably, a team training

computational system for automated detection of metastatic

breast cancers found that the AUC performance of an indepen-

dent human pathologist’s diagnoses increased from 0.966 to

0.995 when guided by feedback from a trained model that other-

wise performed at 0.925 alone.31 Similarly, the sensitivity of our

TP53 models is exceptionally high at 0.96 (0.98 if excluding

CCRCC), and could be conceivably used as a fast and inexpen-

sive preliminary screen to guide clinical genomic testing. A two-

tiered testing system, in which the first is highly sensitive and

the second is highly specific, is routinely used in medicine.

Indeed, we forecast that biomedical machine learning efforts

will produce decision support tools that supplement the perfor-

mance of a pathologist-centered diagnostic medical system.32

A unique and major strength of our study is the integration of

expert pathology review together with machine learning to

assess the relevance of our models. Our classification of compu-

tational tasks as they relate to clinical pathologists’ intuitions

provides a conceptual framework in which to utilize and under-

stand computational pathology, and may discover insights into

disease biology in the research setting, particularly when com-

bined with omics data. As further proof of this concept, our visu-

alized tSNE distribution of morphology features, overlaid with

heatmap, CAM, and integrated-saliency maps, ensures that

the models align with medical intuition. In addition, the applica-

tion of multiple sparse CCA to associate morphologies with

expression perturbations at the transcriptional and translational

levels deepens our understanding of molecular mechanisms un-

derpinning tumor biology and specific histologic features.

This depth of integration between machine learning and clinical

expertise is rarely performed in existing published studies, leading

to difficulties in relating findings to the clinic or to translational

medical research. These efforts to confirm that recognizable and

biologically relevant features are incorporated into the model’s

predictions are essential to gain the trust of physicians and
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patients and overcome the primary hindrance tomass adoption of

machine learning-based clinical tools in medicine and research.

We also demonstrate that potentially novel histopathologic pre-

dictors may be revealed by human review of model groupings,

which may propel additional research into underlying biologic

pathways. Moreover, such methods may also be capable of

discovering and revealing clinically relevant histopathologic fea-

tures beyond those currently assessed in routine clinical practice.

Asanexampleof this, our suppositionbasedonblindedpathology

reviews was that our model predicting pathologic stage was

potentially predicated on the presence of microscopic evidence

of decreased tumor cell cohesion and increased invasiveness.

Finally, we have also developed a GUI interface for trained cli-

nicians to explore our models with their own clinical images. A

built-in slide viewer is included to allow for visual comparisons

between our predictions and users’ medical decisions.

Limitations of the study
In our study, we have identified several limitations that need to be

acknowledged to provide a comprehensive interpretation of our

findings. Due to resource limits, all histological annotations and

molecular characterizations were obtained only at per-slide or

per-patient levels. Therefore, the presented image models were

not able to capture the possible intra-slide morphological hetero-

geneity, nor could they associate it with molecular variations due

tosubclonesorheterogeneous tissueoforiginwithineachsample.

However, our results demonstrate the robustness of the underly-

ing biological associationsbetweenmorphology features andmo-

lecular expressions, as demonstrated by significant differences in

correlations when the data are randomly permuted (Figure S6).

Futureendeavors incorporatingspatial transcriptomicsareneces-

sary to directly associate individual imaging tiles with local molec-

ular features, leading to a more refined and precise analysis.

The inclusion of benign samples adjacent to cancer tissues in

our tissue-of-origin analysis may introduce some influence from

the cancer microenvironment, potentially affecting the tissue-of-

origin prediction models. Consequently, the application of these

models to infer the biology of normal healthy tissues may not be

reflected. While our "gestalt approach" for interpreting predic-

tions has shown interesting insights, we also acknowledge the

value of using interpretable machine learning methods to gain

a deeper understanding of our models’ inner workings. More-

over, we are aware of potential batch effects in publicly available

datasets used for training and validation. Although our models

demonstrate excellent generalization across datasets, suggest-

ing that they can detect a non-random signal that surpasses the

noise introduced by batch effects, any clinical application of

these models will require rigorous further validation.

In conclusion, our study provides valuable insights into the

complex relationships between histopathology and molecular

features across various cancer types, laying a strong foundation

for further understanding cancer mechanisms and supporting

the development of personalized medicine.
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4. Hong, R., Liu, W., and Fenyö, D. (2021). Predicting and Visualizing STK11

Mutation in Lung Adenocarcinoma Histopathology Slides Using Deep

Learning. BioMedInformatics 2, 101–105. https://doi.org/10.3390/bio-

medinformatics2010006.

5. Hong, R., Liu, W., DeLair, D., Razavian, N., and Fenyö, D. (2021). Predict-
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Yates, L.R., Jimenez-Linan, M., Moore, L., and Gerstung, M. (2020). Pan-

cancer computational histopathology reveals mutations, tumor composi-

tion and prognosis. Nat. Can. 1, 800–810. https://doi.org/10.1038/

s43018-020-0085-8.

31. Wang, D., Khosla, A., Gargeya, R., Irshad, H., and Beck, A.H. (2016). Deep

Learning for Identifying Metastatic Breast Cancer. Preprint at arXiv.

https://doi.org/10.48550/arXiv.1606.05718.

32. Cui, M., and Zhang, D.Y. (2021). Artificial intelligence and computational

pathology. Lab. Invest. 101, 412–422. https://doi.org/10.1038/S41374-

020-00514-0.

33. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore,

S., Phillips, S., Maffitt, D., Pringle, M., et al. (2013). The Cancer Imaging

Archive (TCIA): maintaining and operating a public information repository.

J. Digit. Imag. 26, 1045–1057. https://doi.org/10.1007/S10278-013-

9622-7.

34. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga,

R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., War-

den, P., Wicke, M., Yu, Y., and Zheng, X. (2016). TensorFlow: a system

for large-scale machine learning. in Proceedings of the 12th USENIX con-

ference onOperating Systems Design and Implementation (USENIX Asso-

ciation), pp. 265–283.

35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015).

Rethinking the Inception Architecture for Computer Vision. Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016-December,

2818–2826. https://doi.org/10.1109/CVPR.2016.308.

36. Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A.A. (2016). Inception-v4,

Inception-ResNet and the Impact of Residual Connections on Learning.

31st AAAI Conf. Artif. Intell. AAAI 2017, 4278–4284. https://doi.org/10.

1609/aaai.v31i1.11231.

37. Chollet, F., and others (2015). Keras. Github. https://github.com/fchollet/

keras.

38. Vahadane, A., Peng, T., Sethi, A., Albarqouni, S., Wang, L., Baust, M.,

Steiger, K., Schlitter, A.M., Esposito, I., and Navab, N. (2016). Structure-

Preserving Color Normalization and Sparse Stain Separation for Histolog-

ical Images. IEEE Trans. Med. Imag. 35, 1962–1971. https://doi.org/10.

1109/TMI.2016.2529665.

39. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016).

Learning Deep Features for Discriminative Localization. In 2016 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR) (IEEE),

pp. 2921–2929. https://doi.org/10.1109/CVPR.2016.319.

40. Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic Attribution for

Deep Networks. In 34th Int. Conf. Mach. Learn., 7 (ICML), pp. 5109–5118.

Cell Reports Medicine 4, 101173, September 19, 2023 17

Article
ll

OPEN ACCESS

https://doi.org/10.1016/j.cell.2017.10.049
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref42
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref42
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref42
https://doi.org/10.1101/2021.06.25.449763
https://doi.org/10.1002/CAM4.3965
https://doi.org/10.3390/jcm8101535
https://doi.org/10.3390/jcm8101535
https://doi.org/10.1038/S41598-019-46718-3
https://doi.org/10.1038/S41598-019-46718-3
https://doi.org/10.1038/s42256-020-0190-5
https://doi.org/10.1038/s42256-020-0190-5
https://doi.org/10.1016/S1672-0229(07)60018-7
https://doi.org/10.1038/S41597-021-01008-4
https://doi.org/10.1038/S41597-021-01008-4
https://doi.org/10.1038/s43018-020-0085-8
https://doi.org/10.1038/s43018-020-0085-8
https://doi.org/10.48550/arXiv.1606.05718
https://doi.org/10.1038/S41374-020-00514-0
https://doi.org/10.1038/S41374-020-00514-0
https://doi.org/10.1007/S10278-013-9622-7
https://doi.org/10.1007/S10278-013-9622-7
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref35
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref35
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref35
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref35
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref35
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref35
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref35
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1609/aaai.v31i1.11231
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1109/TMI.2016.2529665
https://doi.org/10.1109/TMI.2016.2529665
https://doi.org/10.1109/CVPR.2016.319
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref34
http://refhub.elsevier.com/S2666-3791(23)00326-9/sref34


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, David Fenyö (David@

FenyoLab.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Digitized H&E slides from CPTAC are publicly available at The Cancer Imaging Archive (TCIA).33 Clinical data, demographics

and other clinical features of these patients were extracted from tissue-specific CPTAC studies, and harmonized by the CPTAC

Pan-Cancer Proteogenomics consortium. Full details appear in the Companion Pan-Cancer Resource manuscript.22 We

focused on the CPTAC samples with genomic, transcriptomic, and proteomic data available to investigate the pan-cancer pro-

teogenomic impacts on histopathology.

d Raw and processed proteomics as well as open access genomic data can be obtained via Proteomic Data Commons (PDC) at

https://pdc.cancer.gov/pdc/cptac-pancancer. Raw genomic and transcriptomic data files can be accessed via the Genomic

Data Commons (GDC) Data Portal at https://portal.gdc.cancer.gov with dbGaP Study Accession: phs001287.v16.p6. Com-

plete CPTAC pan-cancer controlled and processed data can be accessed via the Cancer Data Service (CDS, https://

dataservice.datacommons.cancer.gov/). The CPTAC pan-cancer data hosted in CDS is controlled data and can be accessed

through the NCI DAC approved, dbGaP compiled whitelists. Users can access the data for analysis through the Seven Bridges

Cancer Genomics Cloud (SB-CGC) which is one of the NCI-funded Cloud Resource/platform for compute intensive analysis.

Instructions to access data.

1. Create an account on CGC, Seven Bridges (https://cgc-accounts.sbgenomics.com/auth/register)

2. Get approval from dbGaP to access the controlled study (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001287.v16.p6)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Panoptes implemented with TensorFlow v2 https://github.com/Wenke-Liu/panoptes

Panoptes implemented with TensorFlow v1 Hong et al.5 https://github.com/rhong3/CPTAC-UCEC

Genomic Data Commons Data Portal National Cancer Institute https://portal.gdc.cancer.gov

TCIA33 The Cancer Imaging Archive33 https://www.cancerimagingarchive.

net/collections

IDC Imaging Data Commons https://portal.imaging.datacommons.

cancer.gov/explore/

CPTAC Pan-Cancer Proteogenomics Data Li et al.22 https://www.cell.com/cancer-cell/fulltext/

S1535-6108(23)00219-2

Software and algorithms

Panoptes Python3 package Hong et al.5 https://pypi.org/project/panoptes-he/

TensorFlow Abadi et al.34 https://www.tensorflow.org

Inception Szegedy et al.35 https://github.com/google/inception

InceptionResNet Szegedy et al.36 https://github.com/tensorflow/models/

tree/master/research/slim/nets

Keras Chollet et al.37 https://keras.io

Other

NVIDIA Tesla V100 GPU NYU Langone Health

BigPurple HPC Cluster

http://bigpurple-ws.nyumc.org/wiki/

index.php/BigPurple_HPC_Cluster

NVIDIA Tesla P40 GPU NYU HPC Cluster https://wikis.nyu.edu/display/NYUHPC/

High+Performance+Computing+at+NYU
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3. Log into CGC to access Cancer Data Service (CDS) File Explore

4. Copy data into your own space and start analysis and exploration

5. Visit the CDS page on CGC to see what studies are available and instructions and guides to use the resources. (https://docs.

cancergenomicscloud.org/page/cds-data)

d All original code has been deposited at GitHub and is publicly available as of the date of publication. Links are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study was entirely computational and did not involve human subjects as it obtained neither data through intervention or interac-

tion with living individuals nor identifiable private information.

METHOD DETAILS

Image and data acquisition
Images consisted of control diagnostic H&E-stained slides sectioned from formalin-fixed paraffin-embedded (FFPE) tissue blocks

obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC), representing mirror-image sections matched to the

cognate OCT embedded tissue samples used for molecular analyses. These samples covered six cancer types: Clear Cell Renal

Cell Carcinoma (CCRCC), Head and Neck Squamous Cell Carcinoma (HNSCC), Lung Squamous Cell Carcinoma (LSCC), Lung

Adenocarcinoma (LUAD), Pancreatic Ductal Adenocarcinoma (PDA), and Uterine Corpus Endometrial Carcinoma (UCEC) with

2217 total tumor tissue slides and 538 normal adjacent tissue (NAT) slides from 657 patients (Figure S1A). Clinical features, histopath-

ological features, and gene mutation information for these samples were obtained from CPTAC (Figures S1B and S1C). Expression

data for RNA-Seq and proteomics was processed and provided from the CPTACPan-Cancer proteogenomic dataset.22 In summary,

RNA and proteome expression was collected individually from each of the respective flagship manuscripts corresponding to each

disease tissue, and harmonized with tissue-level batch correction. Each whole slide image is divided into smaller ‘‘tiles’’ sharing the

same label assigned to that slide. Panoptes-basedmulti-resolution CNNmodels were then trained, validated, and tested on the tiles.

Tile-level probabilities and latent features are mean-aggregated for slide-level evaluation. To ensure that the models captured pan-

cancer level features rather than tumor type-specific ones, each sample weight was inversely proportional to both its cancer type

prevalence and frequency of its class label. This approach encourages models to more heavily penalize incorrect predictions of im-

ages from under-represented groups and ‘‘pay more attention’’ to those images. Cancer type-specific models were also trained and

cross-tested by comparing features and performance with that of the pan-cancer models.

H&E slide processing and sample preparation
Each histopathology image was scanned at a maximum depth of 20x resolution. Digital histopathologic images were in SVS or SCN

format, which were tuples of the same images at multiple different resolutions. They were segmented into smaller tiles of 299 by 299

pixels with an overlapping area of 49 pixels between each tile. Tiles were grouped at the 10x, 5x, and 2.5x resolutions and geograph-

ically linked such that the model always viewed tiles in the same spatial region. Tiles that contained artifacts due to poor scanning,

previous annotations marked by pathologists, and excess white space (>60%) were removed prior to training. To account for differ-

ences in staining procedures by different institutions, Vahadane’s color normalization was applied.38 Imageswere split at the patient-

level into training, validation, and test sets with a 70:15:15 ratio using stratified sampling. Images from the same patient were always

confined to the same set.

Computational method of deep learning models
Panoptes1 architecture, which is a multiresolutional architecture based on InceptionResnet1, was trained into deep learning imaging

models for this study. All the models were trained with randomly initialized network parameters with auxiliary classifiers opened on

each branch. Tiles of 10x, 5x, and 2.5x resolutions of the same region on the H&E slide with label were paired and considered as 1

sample as only 1 prediction score was associated with amulti-resolution matrix. Softmax cross entropy loss was weighed by training

data composition and tumor types, and Adam optimization algorithm was applied in the training workflow. Batch size was set to 24,

which was the largest number that could fit in the memory of our GPUs, and the initial learning rate was set to 0.0001 with a drop-out

rate of 0.5.100 batches of validation were carried out every 1000 iterations of training and when the training loss achieved a newmin-

imum value after 30000 iterations of training. If the mean of these 100-batch validation loss achieved minimum, the model was saved

as the temporary best performing model. The training process stopped when the validation loss did not decrease for at least 10000

iterations. This stopping criterion was only initiated after 100000 iterations of training.
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Feature extraction and visualization
The feature maps before the last fully connected layer in the model of the test set samples were exported, in which each sample is

represented as a 1-dimensional vector, together with their prediction scores and true labels. We then used tSNE with initial dimen-

sions of 100 to reduce these vectors into 2-dimensional space where each point represents a sample. Generally, points clustered

according to their predicted class. By replacing the points on tSNE plots with the original tiles, the features learned by the model

for each of the specific classes can be observed. We asked experienced pathologists to summarize the typical histological features

in each of these clusters. We also applied the vanilla class activation mapping (CAM)39 to project the classification weights back onto

the activations of the test set samples and rescaled them to 2993 299 pixel images, which were then aggregated back to intact slide

size. The slide level CAM visualizations were then overlaid to the original slides to demonstrate the potential focuses of themodels. In

addition, we applied saliency maps technique using the Saliency package40 in Python3. Here, the gradients were back-propagated

to the input layer, which was then overlaid to the original tiles. Similar to CAM, they were aggregated to the slide-level to illustrate the

potential feature importance used by the models. We also used the prediction scores of tiles directly to build slide-level prediction

heatmaps, which showed the heterogeneity of prediction results of tumor slides.

Omics integration with sparse multiCCA
Traditional CCA only works with two dataset inputs (X, Y) and seeks to find two canonical variates (a, b) such thatCor(Xai,Ybi) is maxi-

mized for each i-th component. In the case of high-dimensional data (as is common for omics), the covariancematrix is invertible, and

so a CCA solution cannot be calculated. This high-dimensionality problem was addressed with a sparse CCA method35 by incorpo-

rating penalty parameters such that the objective function changes to maximizing Cor(Xai, Ybi) - P1(a) - P2(b) where P1(a) and P2(b)

represent penalty functions on the two canonical variates. Multiple sparse CCA expands this approach to incorporate a third dataset

input (X, Y, Z) to calculate three canonical variates (a, b, g) where Cor(Xai, Ybi, Zgi) - P1(a) - P2(b) - P3(g) is maximized. Columns of

image features (X), transcriptomic (Y) and proteomic (Z) matrices will be standardized to mean zero and unit variance prior to compu-

tation. The objective function is iterated to identify i components, where i = 100.

To reduce overfitting, we applied sparse multiCCA using the R package PMA for latent imaging features (X), RNA-Seq expression

(Y) and proteome expression (Z) only with samples designated in the testing set. Genes with no expression in 60%ormore of all sam-

ples were filtered out. Three penalty parameters for each matrix were established through 10-fold cross validation and a heatmap of

the grid search illustrates the average pairwise correlations (X and Y, X and Z, Y and Z) from each of the first components within each

task. Only models with satisfactory AUC performance (0.75) were assessed. In addition, we determined the correlation from

randomly shuffling the rows of X, Y, and Z such that the pairwise association between samples is removed but the biological signal

within each sample is retained. Each of these permutations was randomized in a consistent manner across different penalty param-

eters and tasks with a seed. In combination, these permutations validate the extent to which signals are captured by sparse mul-

tiCCA. Consistently across tasks, the test correlation significantly exceeds the permuted correlations.

To identify the subset of genomic networks regulating morphology phenotypes, we aim to select sparsity parameters that maxi-

mize the correlation from cross-fold validation, and also produce small numbers of genes and protein features within each compo-

nent. With this objective, the penalty parameter for X that nets the highest average correlation is first fixed, followed by parameters for

Y and Z. Using these parameters, we re-assessed the extent to which random associations may be extracted by sparse multiCCA

with the random permutations technique described previously. The average correlation of the first 50 components from both the non-

permuted and permuted sets show significant differences (Figure S4), suggesting that sparsemultiCCA has captured genuine signals

of potential biological interest. Gene and protein sets were tested for enriched gene ontology (GO) terms using clusterProfiler and

org.Hs.eg.db R packages. Within each component, images and tiles with the highest and lowest scores were selected for

visualization.

Minimizing effects of tissue of origin on pan-cancer mutation prediction
We used weighted loss inversely proportional to the cancer types in order to minimize the effects of tissue origin as confounding fac-

tors and ensure that the models learned features related to mutation status independent of cancer type. One-tail Wilcoxon tests on

the prediction scores between mutated and wild-type samples (labeled positive and negative respectively) were conducted at the

per-tile level.
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