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In the past 20 years, white matter (WM) microstructure has been studied 
predominantly using diffusion tensor imaging (DTI). Decreases in fractional 
anisotropy (FA) and increases in mean (MD) and radial diffusivity (RD) have been 
consistently reported in healthy aging and neurodegenerative diseases. To date, 
DTI parameters have been studied individually (e.g., only FA) and separately (i.e., 
without using the joint information across them). This approach gives limited 
insights into WM pathology, increases the number of multiple comparisons, 
and yields inconsistent correlations with cognition. To take full advantage of 
the information in a DTI dataset, we present the first application of symmetric 
fusion to study healthy aging WM. This data-driven approach allows simultaneous 
examination of age differences in all four DTI parameters. We  used multiset 
canonical correlation analysis with joint independent component analysis 
(mCCA + jICA) in cognitively healthy adults (age 20–33, n = 51 and age 60–79, 
n = 170). Four-way mCCA + jICA yielded one high-stability modality-shared 
component with co-variant patterns of age differences in RD and AD in the corpus 
callosum, internal capsule, and prefrontal WM. The mixing coefficients (or loading 
parameters) showed correlations with processing speed and fluid abilities that 
were not detected by unimodal analyses. In sum, mCCA + jICA allows data-driven 
identification of cognitively relevant multimodal components within the WM. The 
presented method should be further extended to clinical samples and other MR 
techniques (e.g., myelin water imaging) to test the potential of mCCA+jICA to 
discriminate between different WM disease etiologies and improve the diagnostic 
classification of WM diseases.
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Introduction

Degradation in myelin and axonal structure in the white matter 
(WM) is one of the fundamental mechanisms contributing to 
cognitive decline in normative aging and Alzheimer’s Disease and 
Related Dementias (1). However, in vivo age differences in WM 
microstructure mechanisms are only partially understood. This is 
because almost all neuroimaging studies on the WM microstructure 
in aging in the past 20 years have used diffusion MRI and, 
predominantly, diffusion tensor imaging (DTI) (2).

Fractional anisotropy (FA) is a measure of the directional 
dependence of diffusion (3) and is influenced by the fiber orientational 
coherence, fiber diameter, integrity, and density (4). Mean diffusivity 
(MD) reflects the total magnitude of diffusion within a voxel, which 
is inversely proportional to the density of physical obstructions, such 
as myelin and cellular membranes (4, 5). Radial diffusivity (RD) 
measures the magnitude of diffusion perpendicular to the primary 
orientation of WM tracts, which in WM is restricted by axonal and 
myelin membranes. Axial diffusivity (AD) is a measure of diffusion 
along the length of an axon and is thought to reflect chronic axonal 
injury. RD and AD have been linked to axonal damage and loss in 
myelin membrane integrity (6, 7). Notably, AD and RD are orthogonal, 
and FA and MD are mathematical combinations of AD and 
RD. However, it is important to remember that DTI measures are only 
proxies for WM microstructural integrity and are not specific to any 
underlying neurobiological mechanism (8). Decreased FA and 
increased MD, RD, and bidirectional differences in AD have been 
consistently reported in healthy aging and Alzheimer’s Disease and 
related dementias (9).

Importantly, most DTI studies on aging and dementia have used 
only a fraction of information available in a diffusion dataset. 
Typically, age differences have been reported either selectively (e.g., 
only FA), in arbitrarily selected regions (e.g., the corpus callosum), 
and separately (i.e., without using the joint information across them, 
for example, shared versus unique information across FA and RD). 
Therefore, the aim of this study was to evaluate the use of the joint 
information across all four DTI parameters to revisit age differences 
in the entire WM using a data-driven symmetric fusion analysis.

There are different types of multimodal analysis (10). At one end 
of the spectrum is the visual inspection of different data types. For 
example, the analysis of the spatial overlap of unimodal analyses. 
We  have used this approach in our earlier work, attempting to 
delineate different microstructural mechanisms of WM aging from 
overlapping patterns of age differences in FA, MD, RD, and AD (11). 
However, the overlap of voxels showing significant differences in each 
parameter map does not measure the interaction among them. As a 
result, our interpretation of the patterns of WM aging 
remained inconclusive.

In the current study, we use data fusion on the opposite side of the 
spectrum, namely, symmetric data fusion, which treats multiple image 
types (or modalities) equally to take full advantage of their joint 
information (10, 12). We chose to use data-driven multiset canonical 
correlation analysis with joint independent component analysis 
(mCCA + jICA) (10, 13, 14). This method combines the flexibility of 
mCCA in maximizing covariations between the modalities (15) with 
superior source separation with jICA (14).

mCCA + jICA outputs modality-shared and modality-unique 
independent components (IC). These ICs represent sources of the 

signal, which—we hypothesize, based on unimodal analyses of DTI 
data—should be  congruent with age-related processes in WM 
microstructure known from histological studies. For example, a 
modality-shared IC composed of decreased FA and increased MD, 
RD, and AD in older adults would likely reflect demyelination or 
chronic tissue loss (7, 11, 16). The retrogenesis hypothesis of brain 
aging (17) posits that WM regions that are last to myelinate during 
development are also most vulnerable to aging. Thus, we hypothesized 
that an IC reflecting demyelination or tissue loss would be localized 
predominantly to late-myelinating WM regions, such as the prefrontal 
WM, anterior corpus callosum, fornix, and the external capsule 
(18–20).

Next, with this data-driven, exploratory approach, we expected to 
obtain new insights into age differences in WM microstructure that 
cannot be identified with a single parameter map or image modality 
or by using traditional inferential statistics. Multimodal analyses using 
partial least squares (21) or linked ICA (22) showed great promise in 
identifying patterns of correlated group differences across diffusion 
MRI features to improve diagnostic classification between healthy 
controls and people at different stages of Alzheimer’s disease.

Finally, to date, unimodal analyses yielded mixed associations 
with cognition, with marked inconsistencies between WM regions or 
tracts, DTI parameters, and cognitive constructs, possibly hampered 
by the number of multiple comparisons (2, 23, 24). Therefore, 
we aimed to test whether multimodal fusion can identify components 
relevant to cognition. Specifically, we hypothesized that covariant DTI 
differences between young and old would be associated with executive 
functions and processing speed, the cognitive functions most affected 
by aging and possibly most sensitive to changes in brain’s structural 
connectivity via WM (25).

Methods

Participants

The MRI data used in this study were obtained from three studies 
conducted between 2011 and 2014 on neurologically and cognitively 
healthy adults. We acquired the data using the 3 T Siemens TIM Trio 
system with 45 mT/m gradients and 200 T/m/s slew rates (Siemens, 
Erlangen, Germany) at the Beckman Institute for Advanced Science 
and Technology at the University of Illinois, United States. All studies 
were approved by the University of Illinois at Urbana-Champaign 
Institutional Review Board, with written informed consent obtained 
from all participants.

Older adults
Data for older adults were obtained from the baseline MRI data of 

community-dwelling participants (n = 170), aged 60–79 years, in the 
Fit and Active Senior clinical trial (ID: NCT01472744). For more 
information, refer to Baniqued et al., Burzynska et al., Ehlers et al., 
Fanning et al., Mendez Colmenares et al., and Voss et al. (26–32).

Young adults
Data for young adults were collected in two separate studies. The 

first study included n = 37 female dancers (aged 18–33) and education-
matched peers with no professional dance training, recruited from the 
student population at the University of Illinois (33). The second study 
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comprised n = 14 college-age young adults, collected as a reference 
sample for the FAST clinical trial.

Our final sample consisted of 221 participants (n = 51 young and 
n = 170 older adults; see Supplementary material 1 for participant flow).

Diffusion tensor imaging

Diffusion tensor imaging images were obtained with no interslice 
gap, with a twice-refocused spin echo single-shot Echo Planar Imaging 
sequence (34) to minimize eddy current-induced image distortions. 
The protocol consisted of a set of 30 non-collinear diffusion-weighted 
acquisitions with b-value = 1,000 s/mm2 and two T2-weighted 
b-value = 0 s/mm2 acquisitions, repeated two times, with 128 × 128 
matrix, GRAPPA acceleration factor 2, flip angle = 90, and a bandwidth 
of 1,698 Hz/Px. The DTI acquisition for the young dancer sample 
differed slightly on voxel dimensions and field of view (TR/
TE = 10,000/98 ms, 1.9 × 1.9 mm2 in-plane resolution, and 72 2-mm-
thick slices for full brain coverage), from the other young and older 
samples (TR/TE = 5,500/98 ms, 1.7 × 1.7 mm2 in-plane resolution, and 
40 3-mm-thick slices). DTI data were processed using the FSL 
Diffusion Toolbox v.3.0 (FDT: http://www.fmrib.ox.ac.uk/fsl) (31). 
We used the Tract-Based Spatial Statistics (TBSS) workflow (35) to 
align diffusion images into a 1 mm× 1 mm× 1 mm standard Montreal 
Neurological Institute (MNI152) space via the FMRIB58_FA template 
and project the center-of-tract values onto the WM skeleton. Our final 
sample consisted of 221 participants (n = 51 young and n = 170 
older adults).

Symmetric data fusion (mCCA + jICA)

Multimodal age comparative analyses were carried out using a 
4-way (FA, MD, RD, and AD) two-sample t-test mCCA + jICA (10, 
13, 14, 36) using the Fusion ICA MATLAB Toolbox1 as described in 
Figure 1. We restricted our analyses to the WM skeleton thresholded 
at the default FA > 0.2.

Model order

There are several ways of selecting the optimal model order (i.e., 
the number of resulting ICs), ranging from a priori to data-driven 
methods. Currently, there is no gold standard for selecting the model 
order for mCCA + jICA for exploring specifically skeletonized WM 
space. Therefore, to select our model order, we used a priori knowledge 
from postmortem histological examinations in humans and primates 
(37–43) as well as from spatial patterns of overlap in age differences in 
FA, MD, RD, and AD identified in earlier cross-sectional DTI studies 
(e.g., (11, 44)). The known histological age differences in WM include: 
(1) loss or thinning of myelin, (2) decrease in average axonal diameter, 
(3) loss of whole myelinated axons that may be associated with (4) 
decrease in tissue density and increase in extracellular (free) water or 
(5) increase in cellular density due to gliosis. Other histological 

1 http://trendscenter.org/software/fit/

changes in the aging WM include changes in axonal orientational 
alignment in a voxel due to (6) loss or rarefaction of fibers in a specific 
direction or (7) realignment due to macrostructural changes, as well 
as (8) changes in the microvasculature. Thus, we decided that a model 
with eight ICs would provide enough flexibility to accommodate a 
broad of possible microstructural processes yet be  low enough to 
accommodate the restricted space of the WM skeleton (~8% of the 
total brain volume).

IC quality assessment

We used 500 random iterations of ICA using the entropy-based 
minimization ICA (EBM ICA) algorithm (45). We used ICASSO to 
select the best single-run estimate to ensure the replicability of our 
results (46). ICASSO runs the ICA algorithm repeatedly and compares 
each result based on the correlation between squared source estimates 
(47). Next, ICASSO estimates the stability of the ICA using clustering 
analysis to compute a cluster quality index, Iq. We defined the Iq as 
{I = avg.[S(i)int]−avg[s(i)ext]}, where S is the spatial similarity between 
two ICs and i is the source matrix. Therefore, the Iq value represents 
the difference between intra- and inter-cluster component similarity. 
We used the quality index to assess the stability and reliability of the 
resulting ICs. Most studies use a quality index threshold between 80 
and 90% (48–51); thus, we chose to examine only the ICs with an 
Iq > 0.90.

mCCA + jICA

When applying the mCCA+jICA model, the 3D data were first 
reshaped to a one-dimensional vector by subject. Then, the data were 
normalized separately for each data type, ensuring that each data 
type has the same average sum of squares, which is computed across 
all subjects and voxels. This normalization process ensures that all 
features have the same ranges and contribute equally to the fusion 
model (52) (Figure 1). After running ICASSO, mCCA+jICA outputs 
a source matrix (loadings for each voxel) and a mixing matrix 
(loading coefficients for each component for each subject) (48). The 
mixing matrix allows for analyzing the inter-correlation between 
modalities and the differences between the groups (young vs. old). 
Therefore, modality-shared ICs (with significant mixing coefficients 
in at least two modalities) share variance across at least two feature 
maps, while modality-unique ICs represent unique variance. The 
mixing coefficients (also called loading parameters) reflect the 
degree to which a given component is expressed in each subject for 
a given feature. We  used the GIFT Toolbox2 to plot the mixing 
coefficients in MATLAB. To visualize each independent component, 
each source matrix was reshaped to a 3D space, standardized 
(z-scored), and thresholded at z > 2.5 (p < 0.01, two-tailed). We tested 
the hypotheses by analyzing the composition, spatial location, and 
direction of age differences in the ICs. The composition of each IC is 
determined by the mixing coefficients and p values associated with 
its feature maps.

2 https://trendscenter.org/software/gift/
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Cognitive assessment

Cognitive assessment included the Virginia Cognitive Aging 
(VCAP) battery (53) administered as described in (32). Two cognitive 
composites were used in the analyses due to their reliance on WM 
integrity (2): executive function (matrix reasoning, Shipley 
abstraction, letter sets, spatial relations, paper folding, and form 
boards) and perceptual speed construct (digit symbol substitution, 
letter comparison, and pattern comparison). We  calculated the 
composites as a sum of the z-score values across the respective tasks. 
Two subjects were missing data from all cognitive scores; these two 
subjects were included in the fusion analyses but not in the regression 
analyses with cognition. An additional five subjects were missing data 
for the “Letter Sets task” and two had missing data for the “Form 
Boards task” due to technical issues. For these seven subjects with 
missing data from one task, we replaced the missing score with the 
sample mean when calculating the composite scores, resulting in 
n = 219 for the final cognitive analyses.

Statistics

The regression analysis between the mixing coefficients and 
cognition was corrected for family-wise error using the false discovery 
rate (FDR) method as implemented by p.adjust in R. We  created 
figures using the ggplot function in the ggplot2 package (54). 
We  performed statistical analyses in R version 4.2.1. Lastly, to 
minimize the effects of the outliers but to avoid removing data points, 
for both the mixing coefficients and the cognitive composites 
we  identified outliers as <1st percentile or > 99th percentile of 

distribution (i.e., winsorized) by replacing them with the nearest value 
in the 1st or 99th percentile.

Results

Sample characteristics

The older and younger adults in our sample showed the expected age 
difference in speed and fluid abilities, as well as whole-skeleton DTI 
values, but did not differ in education. Additionally, the young adult group 
had a higher proportion of females than the older adult group (Table 1).

mCCA + ICA output

Among the eight ICs, only one (IC2) had a qualifying Iq = 0.923. 
IC2 was a multimodal component with RD and AD showing 
significant age-discriminatory contributions. As shown in Figure 2, 
RD showed an increase in older adults in the right anterior and 
posterior internal capsule, body, and splenium of the corpus callosum, 
in the occipital WM, prefrontal WM, and frontal WM (anterior 
corona radiata and anterior cingulate; voxels in red). RD was 
decreased in older adults in fewer regions, which included the left 
anterior and posterior capsule, genu, and splenium corpus callosum 
(voxels in blue). AD was mostly decreased in older adults, which 
included the corpus callosum genu and splenium, right internal 
capsule, and prefrontal WM (blue). AD was increased in the older 
adults in a cluster of the left internal capsule and scattered voxels in 
the forceps minor and major (red).

FIGURE 1

Four-way two-sample t-test mCCA + jICA. mCCA projects the data in a space so that the correlations among mixing profiles (Dk, k = 1…n) of the four 
parameter maps are jointly maximized, resulting in canonical variates. Analyses were restricted to the WM using a TBSS-derived skeleton WM mask. Dk 
is then sorted by correlation to provide a closer initial match and make the further application of joint ICA more reliable. Joint ICA is then applied on 
the concatenated maps (Cn) to obtain the final independent sources Sk.

https://doi.org/10.3389/fneur.2023.1094313
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Mixing coefficients and cognition

To test whether the age differences in RD and AD depicted by IC2 
were relevant for cognition, we  conducted regression analyses to 
examine the relationship between the mixing coefficients for RD and 
AD and the executive function and processing speed composites. 
Because both DTI values and cognition show strong associations with 
age, which may drive their correlation (11, 55), we residualized the 
executive function and processing speed controlling for age. Note that 
the mixing coefficients for RD and AD already contain age information, 
so they were not residualized. The scatterplots in Figure 3 display the 
relationship between the mixing coefficients and cognitive scores, 
while controlling for sex and education. The regression lines represent 
the results of the linear models fitted to the data. After controlling for 
these covariates and correcting for multiple comparisons, we found 
that higher mixing coefficients for RD and AD were associated with 
better executive functioning and processing speed.

To test whether the IC2-cognition association was present in both 
younger and older groups, we performed regression analyses by age 
group, adjusting for sex and education (Table 2). We found that the 
mixing coefficients for RD and AD were significant predictors of 
executive function and processing speed only among older adults but 
not among younger adults. In the older group, in addition to the 
mixing coefficients, education was a significant positive predictor of 
executive function and processing speed.

Table 2 displays the results of regression analyses examining the 
relationship between mixing coefficients for radial diffusivity (RD) 
and axial diffusivity (AD) and executive function and processing 
speed among young and old adults.

The fundamental question we were interested in answering is 
whether the multimodal fusion of DTI parameters using mCCA + ICA 
would provide more relevant information on age differences in WM 
concerning cognition than conventional, unimodal analysis. To 
investigate this, we conducted regression analyses between mean FA, 
MD, AD, and RD across the whole WM skeleton with executive 
function and perceptual speed scores, controlling for age, sex, and 
education. No association was significant after FDR correction. See 
Supplementary material 2 for more details.

Discussion

We presented the first application of symmetric multimodal fusion 
analysis, mCCA + jICA, to characterize joint age differences in four DTI 
feature maps: FA, MD, AD, and RD, in only WM space. Our analyses 
revealed one high-stability modality-shared IC with co-variate patterns 
of RD and AD that differentiated between young and older adults. The 
joint information across RD and AD showed a superior association 
with cognitive performance compared to unimodal analyses.

Joint differences in DTI parameters 
between young and older adults

In the context of our study, we can interpret the mixing coefficients 
as the strength of the covariance between the DTI features in 
expressing age differences in the WM microstructure for each IC. In 
other words, a higher mixing coefficient for RD and AD indicated 
stronger age differences in RD and AD in the regions indicated in 
IC-2. There are a couple of observations that we would like to highlight 
when interpreting mixing coefficients.

First, the variance in the mixing coefficients was greater in the old 
group than in the young group, consistent with age-related increases in 
heterogeneity, as previously described for other structural and functional 
brain features (56, 57). Second, we found more negative values of mixing 
coefficients in older participants, suggesting weaker associations between 
RD and AD within the IC2. It is possible that the negative mixing 
coefficients observed in older adults reflect a decrease in the spatial 
specificity of WM microstructures with age, in line with the 
dedifferentiation hypothesis, which posits that certain neural processes 
become less distinct and spatially specific with age (57). In this context, 
this could reflect an increased variability in the extent and localization of 
myelin loss or other histological processes. However, this possibility needs 
to be investigated by fusing features generated with MRI methods specific 
to myelin and axonal components such as myelin water fraction, neurite 
density orientation, and quantitative magnetization transfer (58–60). 
Additionally, it is worth noting that the results observed in the young 
group might be influenced by a restriction of range in the data, which 
could potentially affect the interpretation of the linear regression model 
results. Further investigation is needed to confirm and understand the 
implications of this limitation.

Overall, the results from the mCCA + jICA approach 
demonstrate a unique pattern of joint age differences in RD and 
AD. Modality-shared IC2 was localized to the splenium of the 
corpus callosum, internal capsule, and prefrontal WM. The genu of 
the corpus callosum is the primary late-myelinating WM region, 
achieving peak myelination ~70–109 weeks after birth (19). Related 
to this, it is characterized by small axon diameter, thin myelin 

TABLE 1 Sample characteristics.

Variables Young Old p value

n = 51 n = 170

Age 21.6 ± 3.2 65.4 ± 4.4 0.001

Women, n (%) 47 (91) 117 (68) 0.001

Education, years 15.4 ± 2.2 15.8 ± 2.9 0.409

DTI parameters

  FA 0.479 ± 0.02 0.454 ± 0.01 0.001

  MD 0.753 ± 0.01 0.767 ± 0.03 0.001

  RD 0.586 ± 0.09 0.507 ± 0.16 0.001

  AD 0.661 ± 0.21 1.126 ± 0.09 0.001

Cognitive scores

  Digit symbol 82.96 ± 26.96 65.39 ± 13.79 0.001

  Pattern comparison 19.05 ± 4.31 14.82 ± 2.57 0.001

  Letter comparison 12.45 ± 2.94 9.53 ± 1.82 0.001

  Letter sets 12.54 ± 2.09 11.05 ± 2.69 0.001

  Spatial relations 12.05 ± 4.92 8.08 ± 4.73 0.001

  Paper folding 8.57 ± 3.29 5.42 ± 2.57 0.001

  Form boards 9.88 ± 4.41 5.60 ± 3.69 0.001

  Shipley abstract 15.20 ± 2.58 12.36 ± 3.55 0.001

  Matrix reasoning 11.49 ± 3.23 8.12 ± 3.03 0.001

MD, RD, and AD are expressed in μm2.ms−1. Values are presented as mean ± SD unless 
otherwise stated.
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sheaths, and a low oligodendrocyte-to-axon ratio, which makes its 
myelin sheaths metabolically challenged and more vulnerable to 
age-related deterioration (61). The splenium of the corpus callosum 
is also considered late-myelinating, with peak myelination achieved 
~68 weeks after birth. The anterior internal capsule also has peak 
myelination achieved ~109 weeks after birth. In contrast, the 
posterior internal capsule is considered early-myelinating and 
begins myelinating <68 weeks before birth. Thus, our results support 
the retrogenesis pattern of WM degeneration, except for the voxels 
in the posterior internal capsule.

As known from unimodal analyses, age differences are typically 
characterized by decreased FA, increased MD and RD, and 
bidirectional differences in AD (11, 44, 62). In contrast, the 
mCCA+jICA showed no age differences in FA or MD, but rather a 
covariation of age bidirectional differences in RD and AD. However, 
the increases in RD were mostly localized to the genus of the corpus 
callosum, prefrontal WM, and anterior limb of the internal capsule, 
consistent with the retrogenesis hypothesis and vulnerability of myelin 
in late-myelinating regions.

We observed that increases in RD in the splenium of the corpus 
callosum and prefrontal/frontal WM were accompanied by lowered 

AD in the same regions. Studies using DTI-post-free water 
elimination have revealed that increases in RD accompany a 
decrease in AD with age, for example, in the frontal WM and parts 
of the corticospinal tracts (e.g., superior corona radiata) (63). Our 
earlier work also showed that increases in RD were accompanied 
by a decrease in AD in the superior corona radiata and prefrontal 
WM regions, but this effect was accompanied by decreased FA 
(11). Our study suggests that mCCA + jICA allows the detection of 
unique age differences driven by RD and AD independently of 
FA and MD.

In summary, mCCA+jICA is sensitive to the cross-information 
among all DTI features, which captures how DTI features interact 
and creates independent sources that explain unique mechanisms of 
WM aging (10). This multimodal fusion approach allowed us to 
revisit age differences in the entire WM using a data-driven 
approach. As hypothesized, this IC showed co-variant age differences 
in RD and AD in late-myelinating regions that may reflect 
demyelination, unrestricted diffusion of water–or chronic axonal 
loss (64, 65). Future studies should extend these results and test the 
utility of multimodal fusion using quantitative MR features with 
greater specificity for WM microstructure.

A

B

FIGURE 2

A modality-shared independent component (IC2) differentiating younger and older adults via independent samples t-test on mixing coefficients. 
(A) Spatial maps for RD. (B) Spatial maps for AD. When z scores (red voxels) are positive and mixing coefficients are positive, the component is showing 
increased RD/AD in older adults. Conversely, when z-scores are negative (blue voxels) and mixing coefficients are positive, the component is showing 
increased RD/AD in young adults. Density plots show the loading parameters (or mixing coefficients) of IC2 for both RD and AD feature maps. Higher 
mixing coefficients for both RD and AD in older adults means that IC2 was expressed more in older adults. All the two-sample t-tests between young 
and older adults had p < 0.01. IC, independent component.
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FIGURE 3

Mixing coefficients for IC2-RD and IC2-AD and association with executive function and speed composites. Lines of fit are adjusted by sex and 
education. Cognitive scores are residualized for age.

TABLE 2 Regression analyses of mixing coefficients for RD and AD as predictors of executive function and processing speed.

Executive function Processing speed

Young Old Young Old

β p q β p q β p q β p q

Model 1

IC2-RD 0.110 0.442 0.530 0.186 0.010 0.004 0.009 0.921 0.980 0.321 0.001 0.003

Education 0.155 0.328 0.437 0.350 0.001 0.006 −0.271 0.013 0.026 0.272 0.001 0.003

Sex 0.760 0.202 0.404 −0.027 0.818 0.884 −0.010 0.980 0.980 0.154 0.091 0.156

Model 2

IC2-AD 0.142 0.319 0.437 0.173 0.017 0.051 0.014 0.880 0.980 0.291 0.001 0.003

Education 0.155 0.139 0.333 0.363 0.001 0.006 −0.272 0.013 0.026 0.292 0.001 0.003

Sex 0.663 0.254 0.435 0.023 0.884 0.884 −0.010 0.972 0.980 −0.172 0.272 0.408

Sex is coded as 0 = female, 1 = male. β are standardized coefficients. Model 1 includes RD mixing coefficients, education (years), and sex. Model 2 includes AD mixing coefficients, education 
(years), and sex. p values (p) were corrected for multiple comparisons using the FDR method, denoted as “q”. 
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Ability to detect age differences relevant to 
cognition

Associations of DTI with cognition (2) have been inconsistent, 
possibly due to multiple factors such as selective DTI parameter use, 
selective ROI, or type II error caused by multiple comparisons. 
We showed that mCCA + jICA could detect co-varying patterns of RD 
and AD that show a superior correlation with cognition than 
unimodal analyses, emphasizing the importance of studying WM 
MRI modalities together.

This first application of mCCA + jICA to study age differences in 
healthy aging WM identified multimodal patterns linked to executive 
function and processing speed composite scores. Specifically, RD-AD 
IC2 positively correlated with processing speed and executive function 
among the older adults, suggesting that RD and AD shared co-variance 
may capture a more nuanced pattern of age-related WM differences 
that correlates with cognition more robustly than any DTI 
feature alone.

The regression analyses indicated that education also had a 
positive effect on cognition among the older adults, which is 
consistent with the cognitive reserve theory (66). The fact that this 
positive effect was observed only in the older group may reflect a 
cumulative effect of past educational experiences, subsequent 
socioeconomic status, and environmental enrichment among older 
adults. In younger adults, this association may be more obscured 
given that the highest level of education determines peak cognitive 
performance and the age of maximal cognitive functioning (67), and 
that many of our younger participants were still continuing 
their education.

While our results showed a superior correlation with cognition 
compared to unimodal analyses, our multimodal fusion approach 
does not maximize both the inter-modality associations and the 
correlations with cognition. An extension of mCCA + jICA, 
mCCA + jICA with reference uses a supervised multimodal approach 
to maximize the correlation between cognitive scores and mixing 
coefficients (68). This supervised fusion approach can extract IC 
associated with a specific prior reference (e.g., cognitive scores) to 
optimize the decomposition of components and maximize the 
correlations with cognition. Future multimodal fusion studies should 
integrate mCCA + jICA and mCCA + jICA with reference to further 
study the patterns of WM aging, as well as the role of WM in key 
models of neurocognitive aging such as compensation (69), neural 
efficiency (70, 71), or dedifferentiation (57).

Technical considerations and limitations

We need to consider several strengths and limitations in 
interpreting our results. First, we used the ICASSO algorithm to 
run multiple iterations of ICA and select the best single-run 
estimate to ensure the replicability of our results (46). This 
approach generates more reliable estimates for an IC than an 
estimate from a single run of the ICA algorithm (47). Since ICA 
algorithms (indeed most machine learning algorithms) are often 
stochastic in nature, replication requires addressing this aspect 
(72). Here we  wanted to quantify the reliability of our ICA 
estimates to acquire more stable results. Currently, there are 
different strategies to evaluate the reliability of ICs using distinct 

clustering algorithms, including ICASSO. However, there are no 
current studies to establish the use of other measures of 
replicability/reliability of ICA results in DTI datasets, as most 
fusion models involve fMRI and EEG datasets (49, 73). 
Consequently, we chose a stricter quality index threshold from 
ICASSO to assess component stability. Future studies should 
explore using ICASSO and other clustering algorithms to estimate 
the stability of ICA components in DTI datasets.

Second, the four DTI parameters are based on the same diffusion 
tensor. These parameters can provide some unique information about 
tissue diffusivity; however, some microstructural processes in the WM 
present distinct patterns and combinations of increased/decreased FA, 
MD, RD, and AD (11). Thus, by fusing all four DTI parameter maps 
and maximizing the information from each DTI feature, we aimed to 
overcome—at least to some extent—the lack of specificity and mitigate 
the potential collinearity across the parameters. The mCCA + jICA 
model assumes some degree of correlation across modalities but 
allows accurate source separation based on the initial correlation 
between mixing profiles. In addition, mCCA + jICA has shown high 
accuracy in estimating independent sources, especially among sources 
derived from mixing profiles with distinct canonical correlation 
coefficients (74).

Another limitation is that DTI parameters reflect biological 
processes that depend on tissue architecture (e.g., in regions with 
crossing fibers). Because DTI confounds integrity, density, the 
diameter of myelin and axons, fiber orientational coherence, and the 
volume fraction of extracellular water (8, 75, 76), DTI alone may not 
be enough to study the aging WM. Future studies should attempt 
fusing modalities with greater sensitivity and specificity to myelin or 
axons, such as myelin water fraction, neurite density orientation, and 
quantitative magnetization transfer (58–60).

In addition, we used a model order of eight ICs, which is lower 
than the order of 12–15, typically used in mCCA + jICA analyses 
that include whole-brain data (48, 77). However, given that the 
WM skeleton occupies only ~8% of the total brain volume (137.832 
skeleton voxels divided by 1.827.095 voxels of full-brain FA map in 
MNI space) in a sheath-like-structure and that structural data 
should exhibit fewer patterns that functional data, we concluded 
that eight ICs should provide enough flexibility in modeling age 
differences in WM. Although using the TBSS skeleton minimizes 
the effects of partial volume on DTI parameter values (78) in 
samples with a broad age span, it results in the data having a 
sheath-like structure, which may affect the component structure. 
We  chose the TBSS approach for our study as it allows for 
representing local WM voxels and restricts the analyses to the 
center of WM tracts, reducing contribution from partial volume 
and white matter hyperintensities. Using skeletonized data at a 0.2 
threshold also reduces the multiple comparisons problem and 
increases statistical power. While an ROI approach is typically 
preferred for confirmatory analyses, it would not be  suited for 
mCCA + jICA which requires one continuous set of voxels for 
identifying patterns.

Lastly, because methods to estimate the number of components 
in data fusion have been developed using fMRI and EEG datasets (79), 
we estimated the number of components based on a priori knowledge 
of mechanisms of WM aging. As a result, we included the ICASSO 
algorithm in the mCCA + jICA framework to evaluate our 
components’ robustness and reliability carefully.
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Conclusion

Together, symmetric multimodal fusion (a) can provide new 
and potentially more rigorous information about brain aging, (b) 
can identify age differences in WM that bear more relevance to 
cognition than those obtained with traditional, region-based 
unimodal approaches. However, the DTI model, especially with a 
unimodal approach, provides limited information about the 
underlying neurobiological mechanisms of aging and dementia. 
Future multimodal fusion analyses should include more advanced 
MRI techniques sensitive to the WM’s microstructural tissue 
components and water-tissue interactions (80). Multimodal 
approaches allow leveraging the complementary information 
among different MRI modalities, representing an opportunity to 
characterize the role of WM connectivity in cognitive dysfunction 
and dementia.
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