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a b s t r a c t 

Brain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the prop- 

agation of spontaneous activity through brain networks. In the current work, we describe a method to improve 

the estimation of task-evoked brain activity by first “filtering-out the intrinsic propagation of pre-event activity 

from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; Singh et al. 2020b) 

models built from individualized resting-state data to subtract the propagation of spontaneous activity from the 

task-fMRI signal (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques. 

Results demonstrate that this simple operation significantly improves the statistical power and temporal preci- 

sion of estimated group-level effects. Moreover, use of MINDy-based filtering increased the similarity of neural 

activation profiles and prediction accuracy of individual differences in behavior across tasks measuring the same 

construct (cognitive control). Thus, by subtracting the propagation of previous activity, we obtain better estimates 

of task-related neural effects. 

1. Introduction 

Task-related analyses in fMRI typically involve statistical general lin- 

ear models (GLMs) which seek to identify the amplitude and/or mean 

timecourse of (BOLD) evoked-responses after removing nuisance covari- 

ates. These approaches have proven statistically powerful and charac- 

terize much of the current literature regarding task-induced activation 

in group-level fMRI analyses. However, over the past two decades, im- 

provements in fMRI data acquisition and the rise of resting-state connec- 

tomics ( Biswal et al., 1995 ) have given rise to a new literature concern- 

ing variability within brain activation across trials, individuals, and/or 

contexts. Understanding such variability is key to precision neuroscience 

initiatives, as these studies have the potential to uncover new neural 

mechanisms and generate stronger brain-behavior linkages at the level 

of individuals ( Ashley, 2015; Psaty et al., 2018; Satterthwaite et al., 

2018 ). 

Previous studies in this domain have generated two key findings rele- 

vant to the current study: (1) individual differences in intrinsic brain net- 

works predict corresponding differences in BOLD responses ( Cole et al., 

2016; Gordon et al., 2017; Mennes et al., 2010; Tavor et al., 2016 ) and 

(2) the BOLD signal elicited by a stimulus is dependent upon the previ- 
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ous pattern of brain activity ( He, 2013 ), including spontaneous fluctu- 

ations ( Fox et al., 2006 ). We use the term “brain activity ” in the latter 

case to indicate that this history dependence is thought to be neural, 

rather than solely reflecting potential nonlinearity in the hemodynamic 

coupling. The first set of findings indicate that inter-subject variabil- 

ity in brain responses may be due to the “flow ” ( Cole et al., 2016 ) of 

evoked activity through subject-specific connectomes. The second set of 

findings suggest that evoked responses are history-dependent (i.e. reflect 

underlying dynamics). Thus, the neural activity associated with BOLD is 

increasingly considered as a nonlinear dynamical system —one in which 

the spatiotemporal response to an input depends upon its current state, 

and further, is determined by a set of rules that dictate its temporal 

evolution ( Ponce-Alvarez et al., 2015 ). These dynamical “rules ” are a 

function of subject-specific connectivity and the specific properties lo- 

cal to each brain region ( Demirta et al., 2019; Wang et al., 2019 ). The 

manifestation of these dynamics (i.e. trial-to-trial variability in BOLD) 

are thought to be neural and cognitively-relevant as they predict within- 

subject behavioral variation ( He and Zempel, 2013 ). 

This framework contrasts both with current statistical approaches, 

which treat the neural activity as a noisy autoregressive signal (most 

GLMs), and with Dynamic Causal Modeling (DCM) approaches, which 
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Fig. 1. Filtering and control pipelines. (A) MINDy-based Filtering procedure. (1) Latent neural activity is estimated from the BOLD signal. (2) One-step predictions 

for latent neural activity are made with MINDy and (3) convolved into one-step BOLD predictions. (4) Filtered “input ”/residual timeseries are the difference of 

measured and predicted BOLD (we abbreviate ℎ ∗ 𝐼 as 𝐼 ). For this panel, we denote the true BOLD signal as 𝑦 𝑡 +1 ( 𝐵𝑂𝐿𝐷 𝑡 +1 in Eq. (20) ) and �̂� for the predicted BOLD 

signal ( 𝐵𝑂𝐿𝐷 𝑃𝑟𝑒𝑑 in Eq. (20) ). (B) Analysis pipelines. Modeling pipelines require data to be pre-processed (nuissance regressed) before model-based filtering. The 

preReg pipeline controls for this step by performing identical pre-processing before GLM analyses. Parameters for MINDy and autoregressive models are estimated 

from resting-state data. Autoregressive models (AR) are used to test whether effects are due to local signal-processing features (i.e. MINDy similar to AR) vs. exploit 

brain connectivity (MINDy better than AR). Although we chose AFNI to perform GLM analyses, MINDy-based Filtering is compatible with any analysis software as 

filtered timeseries are analyzed in the conventional manner. 

treat the brain as a linear system (although see Stephan et al., 2008 ). 

In the current work, we propose a new technique for modeling intrinsic 

brain dynamics and their contribution to task-evoked activation pat- 

terns. This approach leverages MINDy models ( Singh et al., 2020b ) fit 

to resting-state data for each subject. These models are akin to an ab- 

stracted neural mass model containing hundreds of different regions 

(parcels) spanning the whole brain. Regions interact nonlinearly via a 

signed, directed connectivity matrix and integrate inputs over time (i.e. 

form a nonlinear dynamical system). The BOLD signal is modeled via 

region-specific hemodynamic models, and all parameters (neural and 

hemodynamic) are directly estimated from each subject’s resting-state 

scans (a process which takes 1–3 min). In prior work ( Singh et al., 2020a; 

2020b ), we have established that MINDy models/parameters are robust, 

reliable, and predictive ( Singh et al., 2020b ). In the current work, we use 

these models to estimate intrinsic brain dynamics (i.e. predictions based 

upon resting-state MINDy models) and subtract them from the observed 

BOLD, a process which we term MINDy-based Filtering. This procedure 

more sensitively identifies individual differences, and enhances the tem- 

poral precision and statistical power through which task events are iden- 

tified. We also obtain stronger brain-behavior linkages and greater sim- 

ilarity across the activation profiles of different tasks that index a com- 

mon cognitive construct (cognitive control demand). 

1.1. Filtering intrinsic dynamics 

The current approach rests upon the ability to model the flow of neu- 

ral activity between brain areas, as identified via models fit to resting- 

state brain activity. However, rather than seeking to describe the flow 

of task-related neural activity (e.g. Cole et al., 2016 ), our approach acts 

to censor, or computationally estimate and remove, the flow of task- 

unrelated (pre-event) activity. To be clear, we perform this operation 

at every time point and use the whole timeseries for analyses. No in- 

formation regarding task timing is used in our filter ( Fig. 1 A). However 

we use the notion of “events ” to provide an intuitive motivation for our 

approach (conversely each timepoint could be considered an “event ”). 

Likewise, our approach does not require an event-related design (see SI 

Section 7.5 for block-related analyses). At each time point, the measured 

neural activity is considered a combination of task-evoked effects man- 

ifest over fast time scales and the propagation of brain activity emerg- 

ing at previous time points. By subtracting the modeled propagation of 

previously-triggered (e.g. pre-event) activity, we aim to better isolate 

the influence of each event (time-point). 

Our approach is conceptually-similar to a previous study by Fox and 

colleagues ( Fox et al., 2007; 2006 ) which suggested that estimated task- 

effects could be improved by subtracting spontaneous activity. They 

demonstrated this possibility in a motor task by subtracting the recorded 

BOLD in contralateral motor cortex from the task-implicated motor 

hemisphere. However, the Fox et al. approach ( Fox et al., 2007; 2006 ) 

has not been applied more broadly, since it requires identifying region 

pairs which are strongly correlated at rest, but only one of which is 

recruited during task. This dissociation is key as it enabled Fox and col- 

leagues ( Fox et al., 2006 ) to measure intrinsic brain activity (via the con- 

tralateral cortex) separately from task-evoked activity in the other hemi- 

sphere. However, the current literature overwhelmingly suggests that, 

for most brain regions and networks, coactivation during resting-state 

fMRI predicts coactivation during task (e.g. Cole et al., 2016; Mennes 

et al., 2010; Tavor et al., 2016 ). 

By contrast, we propose to filter out the intrinsic component of brain 

activity using model-based predictions. We predict brain activation at 

each time-point by applying MINDy models derived from resting-state 

activity ( Singh et al., 2020a; 2020b ) to the previous time-step (i.e. 1-step 

forward predictions) and subtract these predictions to better identify 

task-evoked changes. Thus, we better isolate event-related brain changes 

by filtering out the propagation of pre-event activity. As mentioned pre- 

viously, we use the notion of task “events ” to provide an intuitive under- 

standing of why our approach improves fMRI analyses. Our filter does 

not utilize any prior information regarding task structure (events) and 

is compatible with any task design (not just event-related designs; see 

Fig. 1 B). 

1.2. Previous approaches using DCM 

Dynamic Causal Modeling (DCM) also incorporates the temporal 

evolution of brain activity and thus can consider the propagation of 

neural activity through brain networks. Each DCM contains an effective 

connectivity matrix and a set of extrinsic inputs that describe how task 

events impinge upon each node of the network ( Friston et al., 2003 ). 

Many implementations also contain region-specific hemodynamic mod- 
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els and/or an interaction between task events and effective connectiv- 

ity (i.e., the effective connectivity is parameterized by task events). Al- 

though the original DCM models were strongly limited in size, mod- 

ern implementations ( Frässle et al., 2017; Razi et al., 2017 ) can con- 

sider a much larger number of brain regions (although the computation 

cost still remains considerable; Razi et al., 2017; Singh et al., 2020b ). 

However, the DCM methodology also presents several constraints which 

limit its application. Estimating a DCM model requires pre-specifying 

the time-series of task effects. This assumption precludes analyses which 

explore the temporal dynamics of task effects such as Finite Impulse 

Response (FIR) modeling or nuanced task GLMs, such as those featur- 

ing nuisance regressors (e.g. motion). In addition, all DCM implemen- 

tations that support whole-brain models (i.e., more than a few regions; 

Razi et al., 2017 ) are dependent upon the assumption of stationary lin- 

ear dynamics ( Singh et al., 2020b ). 

1.3. Filtering instead of parameterizing 

In the current work, we aim to strike a balance between the mech- 

anistic inferences made by DCM and the flexibility of standard anal- 

ysis techniques. To do so, we generate dynamical systems models of 

the brain and neurovasculature (as is done in DCM). However, our ap- 

proach differs substantially from DCM in how we build and utilize these 

models. Instead of fitting models of the brain and tasks, we propose to 

fit dynamic models to independent resting-state data for each subject. 

We then use these models to generate a mathematical filter for each 

subject that removes, or “partials out ” the effects of intrinsic dynamics 

from BOLD timeseries. The approach uses no information regarding task 

events and thus functions as a preprocessing step, as opposed to explic- 

itly modeling task events. This feature is advantageous, as the proposed 

techniques can be inserted into any data preprocessing pipeline with 

minimal effort, provided that a sufficient amount of resting state data 

(e.g. > 15 min Singh et al., 2020b ) has been collected to build MINDy 

models. 

2. Approach 

In our approach we predict future BOLD measurements, while mod- 

eling biological activity at the neural (i.e., deconvolved) level. Gen- 

erative models are parameterized according to resting-state data. The 

MINDy-Filtered data is defined by the difference between measured and 

model-predicted BOLD. Our procedure thus contains two stages: (1) pa- 

rameterizing resting-state MINDy models; and (2) using these models to 

perform MINDy-based Filtering. We begin by reviewing the resting-state 

MINDy model. 

2.1. Resting ‐state MINDy modeling 

The MINDy model ( Singh et al., 2020a; 2020b ) is a phenomenolog- 

ical extension of neural-mass type models which operates at timescales 

commensurate with fMRI. Like neural-mass models, MINDy models 

contain three components: a signed, directed weight matrix of esti- 

mated effective connectivities ( 𝑊 ), a sigmoidal transfer function ( 𝜓) 

which relates local activation to the strength of outward signaling, and 

the region-specific decay rate (time-constant) 𝐷 which describes how 

quickly a stimulated region will return to baseline levels of activity. 

MINDy models operate at two time-frames: the time-frame of neural 

activity (denoted 𝜏) and the time-frame of BOLD measurements (de- 

noted 𝑡 ) which we assume are linked by a region-specific hemodynamic- 

response-function ℎ 𝛽 . The resting-state neural activity ( 𝑥 𝜏 ) evolves ac- 

cording to the discrete-time dynamical system: 

𝑥 𝜏+1 = 𝑓 ( 𝑥 𝜏 ) + 𝜉𝜏 (1) 

𝑓 ( 𝑥 𝜏 ) ∶= 𝑊 𝜓 𝛼( 𝑥 𝜏 ) + (1 − 𝐷) 𝑥 𝜏 (2) 

with process noise 𝜉𝜏 assumed uncorrelated between parcels. The trans- 

fer function 𝜓 is parameterized by the curvature vector 𝛼 which dictates 

regional-differences in the shape of 𝜓 : 

𝜓 𝛼( 𝑥 𝜏 ) ∶= 

√ 

𝛼2 + ( 𝑏𝑥 𝜏 + . 5) 2 − 

√ 

𝛼2 + ( 𝑏𝑥 𝜏 − . 5) 2 (3) 

with 𝑏 = 20∕3 a fixed, global hyperparameter. These neural equations 

are linked to the observed BOLD measurements via the convolutional 

HRF model. We model HRFs using a parameterized version of the canon- 

ical double-gamma model with vector-valued parameters 𝛽1 , 𝛽2 : 

ℎ 𝛽 ( 𝑡 ) ∶= 

𝑡 𝛽1 −1 𝑒 − 𝛽2 𝑡 𝛽
𝛽1 
2 

Γ( 𝛽1 ) 
− 

𝑡 15 𝑒 − 𝑡 

6(16!) 
(4) 

𝐵𝑂𝐿𝐷 𝑡 = [ ℎ 𝛽 ∗ 𝑥 ] 𝑡 + 𝜈𝑡 (5) 

MINDy quickly and simultaneously solves for 𝑊 , 𝛼, 𝐷, and 𝛽 using a 

unique, regularized optimization method ( Singh et al., 2020a; 2020b ). 

Neural states are inverted from BOLD using the Wiener deconvolution 

( Weiner, 1949 ). Gaussian noise at the level of BOLD measurements is 

denoted 𝜈𝑡 which is assumed independent in time and between parcels. 

Denoting complex-conjugation by 𝑧 ∗ , the Fourier-transform by  and 

the Wiener NSR parameter 𝜀 = 0 . 002 (see SI Section 7.4 ), we define the 

Wiener HRF-deconvolution (  

+ ) as: 

 

+ 
𝛽
[ 𝑌 ] ∶=  

−1 
[ 
 [ ℎ 𝛽 ] ∗  [ 𝑌 ] 
‖ [ ℎ 𝛽 ] ‖2 + 𝜀 

] 
(6) 

All multiplications/divisions in the above equation are understood to 

be element-wise. We similarly implement convolution using the Fourier 

transform (by the Convolution Theorem:  [ 𝑥 ∗ 𝑦 ] =  [ 𝑥 ]  [ 𝑦 ]) : 

ℎ 𝛽 ∗ 𝑥 =  

−1 [
 [ ℎ 𝛽 ]  [ 𝑥 ] 

]
(7) 

Thus, the combined MINDy model for resting-state (excluding noise) 

is: 

𝐵𝑂𝐿𝐷 𝑡 +1 = ℎ 𝛽 ∗ 
[ 
𝑊 𝜓 𝛼

(
 

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

)
+ (1 − 𝐷)  

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

] 
(8) 

Since the exact convolution and deconvolution operators cancel for the 

decay-term (as opposed to our numerical methods), we ignore these 

steps for the linear decay component to reduce bias (less spectral fil- 

tering). Our final model is thus: 

𝐵𝑂𝐿𝐷 𝑡 +1 = ℎ 𝛽 ∗ 
[ 
𝑊 𝜓 𝛼

(
 

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

)] 
+ (1 − 𝐷) 𝐵𝑂𝐿𝐷 𝑡 (9) 

2.2. Task model derivation 

Our approach leverages individualized resting-state models in order 

to estimate task-evoked brain effects, while making minimal modeling 

assumptions about the underlying task mechanisms. We model brain 

activity in task ( 𝑥 𝜏 ) as a dynamical system containing two components: 

an intrinsic dynamical component 𝑓 ( 𝑥 ) which is estimated from resting- 

state models (see previous section), and an exogenous input component 

𝐼 𝜏 . 

𝑥 𝜏+1 = 𝑓 ( 𝑥 𝜏 ) + 𝐼 𝜏 . (10) 

The latter component is exogenous with respect to the resting-state 

model and should not be interpreted as “exogenous to the brain ” Rather, 

𝐼 𝜏 represents additional input to each brain region beyond that which 

is generated via intrinsic (resting state) dynamics embedded in 𝑓 ( 𝑥 ) . 
In principle, this technique is compatible with any resting-state model 

( 𝑓 ( 𝑥 𝜏 ) ). For the current work, we chose MINDy ( Singh et al., 2020a; 

2020b ) as it is highly scalable, nonlinear, and robust to many nuisance 

factors. The aim of the current work is to estimate the exogenous in- 

put ( 𝐼 𝜏 ) for task data and to investigate this input as a marker for cog- 

nitive states. We do not assume a specific mechanism underlying this 

input (e.g. recurrent input, inter-regional signaling, neuronal “noise ”, 

or sensory afferents are all possible sources) or any spatial/temporal 

properties of 𝐼 𝜏 . Thus, we treat 𝐼 𝜏 as a latent signal to be estimated 
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(i.e., by filtering 𝐼 𝜏 from BOLD). By contrast, other methods, such as 

DCM ( Friston et al., 2003; 2019 ) assume a time course of 𝐼 𝜏 (the tempo- 

ral aspects of 𝐼 𝜏 ) based upon task design and only estimate its relative 

contribution to each brain area. For this reason, we term our objective 

MINDy-based Filtering. Although the mechanisms of interest ( 𝐼 𝜏 ) are 

modeled as neural, fMRI measures the hemodynamic BOLD contrast. 

For this reason, we use MINDy to simultaneously model neural dynamics 

and the hemodynamics which link neural events to fMRI measurements. 

We assume that BOLD signal recorded in task reflects the convolution 

(denoted “∗ ”) of latent neural activity ( 𝑥 𝜏 ) with a region-specific Hemo- 

dynamic Response Function (HRF; denoted ℎ ) estimated from resting 

state data ( Singh et al., 2020a ). Thus, for each brain region (parcel “i ”) 

our model of task BOLD is: 

𝐵𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 

= [ ℎ 𝑖 ∗ ( 𝑥 ( 𝑖 ) 𝜏
+ 𝜂( 𝑖 ) 

𝜏
))] 𝑡 + 𝜈𝑡 (11) 

We consider noise at the level of the neurovascular coupling 𝜂𝑡 and at the 

level of BOLD measurements ( 𝜈𝑡 ). These terms are modeled as normal 

random variables which are independently and identically distributed 

(iid) between brain regions and time points. Process noise (physiological 

stochasticity) is not explicitly modeled at the neural level in Eq. (10) , 

as it is absorbed in the unknown inputs 𝐼 𝜏 . Substituting for 𝑥 𝜏 (from 

Eq. (10) ) and rearranging yields: 

𝐵𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 +1 − [ ℎ 𝑖 ∗ 𝑓 ( 𝑖 ) ( 𝑥 )] 𝑡 = [ ℎ 𝑖 ∗ 𝐼 ( 𝑖 ) 𝜏

] 𝑡 + [ ℎ 𝑖 ∗ 𝜂( 𝑖 ) 𝜏
] 𝑡 + 𝜈

( 𝑖 ) 
𝑡 
. (12) 

Thus, the HRF-convolved input [ ℎ ∗ 𝐼] 𝑡 is equal to the difference be- 

tween measured and predicted BOLD plus additional autocorrelated 

noise terms. For all current analyses we consider brain states estimated 

with HRF-convolved estimates of input ( [ ℎ ∗ 𝐼] 𝑡 ) as opposed to the es- 

timates of 𝐼 𝜏 alone. This step enables the same statistical pipelines 

(i.e. GLM structure) to analyze original fMRI BOLD data and the HRF- 

convolved input. As a result, the estimation of [ ℎ ∗ 𝐼] 𝑡 serves as an ad- 

ditional “preprocessing ” (filtering) step that can be added to any fMRI 

pipeline with minimal effort. No information regarding task events is 

used in estimating 𝐼 𝜏 , so the same statistical frameworks are applied to 

model-filtered and original data. 

2.3. MINDy ‐based filtering 

In the current approach, we do not explicitly model different forms 

of noise. The only noise factor we consider is the measurement noise 

power in inverting BOLD onto neural activity. Since neurovasculature 

noise is removed ( 𝜂𝑡 = 0 ), Wiener deconvolution ( Weiner, 1949 ) gener- 

ates the least-mean-square estimate for 𝑥 𝑡 . The resultant approximation 

for BOLD-convolved input ( [ ℎ ∗ 𝐼] 𝑡 ) is: 

[ ℎ ∗ 𝐼 𝜏 ] 𝑡 ≈ 𝐵𝑂𝐿𝐷 𝑡 +1 − [ ℎ ∗ 𝑓 (  

+ [ 𝐵𝑂𝐿𝐷] 𝜏 )] 𝑡 (13) 

With  

+ 
𝛽
[ 𝐵𝑂𝐿𝐷] denoting the Wiener deconvolution of each region’s 

BOLD signal with respect to the corresponding HRF model. Thus, we 

estimate neural activity by deconvolving BOLD with the region-specific 

HRF’s identified at rest. Predictions are made in terms of neural activity 

and then re-convolved to produce predictions in terms of BOLD. The dif- 

ference between measured and predicted BOLD approximates the HRF- 

convolved input. All operations are performed over the whole timeseries 

simultaneously. 

The full procedure is thus: 

1. Resting-state data is used to estimate MINDy model parameters: con- 

nectivity ( 𝑊 ), transfer-function curvature ( 𝛼) and decay-rate ( 𝐷) as 

well as the HRF shape ( 𝛽). 𝜔 ∶= { 𝑊 , 𝛼, 𝐷, 𝛽} according to the dual 

model: 

𝑆𝑜𝑙𝑣𝑒 ∶ 𝑊 , 𝛼, 𝐷, 𝛽 𝑠.𝑡. (14) 

𝑋 

𝑅𝑒𝑠𝑡 
𝜏+1 = 𝑓 𝜔 ( 𝑋 

𝑅𝑒𝑠𝑡 
𝜏

) ∶= 𝑊 𝜓 𝛼( 𝑋 

𝑅𝑒𝑠𝑡 
𝜏

) + (1 − 𝐷) 𝑋 

𝑅𝑒𝑠𝑡 
𝜏

(15) 

𝐵𝑂𝐿𝐷 

𝑅𝑒𝑠𝑡 
𝑡 +1 = ℎ 𝛽 ∗ 𝑋 

𝑅𝑒𝑠𝑡 
𝜏+1 = ℎ 𝛽 ∗ 𝑓 𝜔 (  

+ 
𝛽
𝐵𝑂𝐿𝐷 

𝑅𝑒𝑠𝑡 
𝑡 

) (16) 

2. Using HRFs estimated from rest, measured BOLD-level task data is 

deconvolved to neural-level. 

𝑋 

𝑇 𝑎𝑠𝑘 
𝜏

=  

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑡 

] (17) 

3. The parameterized MINDy models use deconvolved observations to 

predict task neural activity 1TR into the future. 

𝑋 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

= 𝑓 𝜔 ( 𝑋 

𝑇 𝑎𝑠𝑘 
𝜏

) ≈ 𝑋 

𝑇 𝑎𝑠𝑘 
𝜏+1 (18) 

4. Predicted neural activity is convolved into predicted BOLD measure- 

ments. 

𝐵𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

= ℎ 𝛽 ∗ 𝑋 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

(19) 

5. “Filtered ” timeseries are calculated by subtracting the predicted fu- 

ture BOLD from measurements. 

[ ℎ ∗ 𝐼] 𝑡 = 𝐵 𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑡 +1 − 𝐵 𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

(20) 

For the univariate-linear (decay) terms, analytic convolution and de- 

convolution cancel so we only performed these steps on the nonlinear 

terms to minimize bias (numerical implementations do not fully cancel). 

This choice also enabled direct comparison of brain-wide MINDy models 

with local auto-regressive models (see Section 3.10 ). Model predictions 

are thus: 

𝐵𝑂𝐿𝐷 𝑃 𝑟𝑒𝑑 ∶= ℎ 𝛽 ∗ 
[ 
𝑊 𝜓 𝛼

(
 

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

)] 
+ (1 − 𝐷) 𝐵𝑂𝐿𝐷 𝑡 . (21) 

3. Methods 

3.1. Subjects 

Data consisted of fMRI task and resting-state scans for 71 healthy 

young-adult subjects collected as part of the Dual Mechanisms of Cogni- 

tive Control (DMCC) study ( Braver et al., 2021 ). We note that the DMCC 

participant pool contains a large number of monozygotic and dizygotic 

twin pairs although this feature was not relevant for our analysis. 

3.2. Scanning protocol 

Each participant took part in three separate scanning sessions which 

occurred on different days, but all had the same general procedure. Each 

day, participants provided two resting-state scans of 5 min each as well 

as two scans each for four cognitive tasks: the AX-Continuous Perfor- 

mance Task (AX-CPT), Sternberg Task, Stroop Task, and Cued Task- 

Switching (Cued-TS). The two scans per task were performed sequen- 

tially for each task whereas the two resting-state scans were separated 

in time (one at the session start and one at the session midpoint). Each 

of the task scans (2 per task per day) contained three task-blocks sep- 

arated by inter-block intervals and lasted approximately 12 min. For 

resting state and task, the two scans per day were split between anterior- 

posterior and posterior-anterior phase-encoding directions. Scans were 

performed at 3T with 1.2 s TR (multi-band ×4 ; see Braver et al., 2021; 

Etzel et al., 2021 for additional details). 

3.3. Task descriptions 

We briefly describe the general structure of each of the four cognitive 

tasks in the “baseline ” format which was administered on the first scan- 

ning day (see Braver et al., 2021; Etzel et al., 2021 for more details on 

task design and rationale). Subtle changes to task structure were made 

on the two following days (subsequent section) but were not relevant to 

our analyses. The AX-CPT task ( Cohen et al., 1999 ) involves repeated 

sequences of cue-probe pairs, in which the response to the probe item 

is constrained by the preceding contextual cue. Thus, the A-X cue-probe 

pairing requires a target response and is frequent, leading to strong as- 

sociations between the cue and probe. However, both the B-X pairing 

(where “B ” refers to any non-X cue) and A-Y pairing (where “Y ” refers 

to any non-X probe) require non target responses. In the Sternberg task 
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( Sternberg, 1966 ), participants are sequentially presented with a short 

list of words to memorize for that trial (called the memory set; appearing 

across two encoding screens). After a short retention delay, they are pre- 

sented with a probe word and must determine if the probe was present 

in that trial’s memory set. On some trials, the probe item is termed a 

“recent negative ” in that it was not present in the current trial memory 

set but was present in the memory set from the preceding trial. In the 

current implementation of the Stroop task , subjects are asked to ver- 

bally report the font color in which probes are displayed ( Stroop, 1935 ). 

Each probe is itself a color-word, and can either be congruent (font color 

is the same as the color word, e.g., BLUE in blue font) or incongruent 

(font color is different from the color-word name; e.g., BLUE in red font). 

Lastly, during Cued Task-Switching (Cued-TS, Bugg and Braver, 2016 ) 

participants are pre-cued to attend to either the number or letter com- 

ponent of a subsequent probe (combined letter + digit). In “attend- 

number ” trials, participants indicate whether the digital component of 

a probe is even vs. odd. In “attend-letter ” trials, participants indicate 

whether the letter component is a consonant vs. vowel. The probe can 

be either congruent (both letter and digit are associated with the same 

response) or incongruent (the letter and digit are associated with differ- 

ent responses). With the exception of the Stroop task, participants report 

responses using button presses. 

3.4. Cognitive control demand 

The current set of trial-based analyses center upon the ability to iden- 

tify neural signatures of cognitive control. Although cognitive control is 

a heterogeneous construct, we specifically studied the conflict resolu- 

tion aspects of cognitive control, so we use the terms control-demand 

and conflict interchangeably when referring to these tasks, and contrasts 

between trial types. In particular, we operationally identify cognitive 

control demand as the difference in neural activity measures during 

high and low-conflict trials for each task. In the AX-CPT, we contrast 

BX trials (high conflict) vs. BY (low conflict). The BX trials are high 

conflict because of the target-association with the X-probe, which re- 

quires contextual cue information to override. For the Sternberg task, we 

contrast trials with recent negative probes (high conflict) and trials con- 

taining novel negative probes (low-conflict). Thus, recent negative trials 

are high conflict because the familiarity of the probe, requires informa- 

tion actively maintained in memory to override. In the Stroop task, we 

contrast incongruent (high conflict) and congruent (low conflict) trials. 

The incongruent trials are high conflict because the task goals (name the 

font color) are required to override the dominant tendency to read the 

color-name. Lastly, in the Cued-TS we also contrast incongruent (high 

conflict) and congruent (low conflict) trials. The incongruent trials are 

high conflict because it is critical to process the task cue, in order to 

know what response to make (for congruent trials, the same response 

would be made regardless of the task being performed). 

3.5. Task manipulations 

The four tasks (AX-CPT, Sternberg, Stroop, and Cued-TS) were cho- 

sen to measure/engage cognitive control. On the first scanning day, 

participants performed a “baseline ” version of each task. On the subse- 

quent days, however, participants performed modified version of each 

task, meant to promote either proactive or reactive cognitive control 

strategies. On the two subsequent scans participants performed all the 

reactive-mode conditions of the tasks on one day and all the proactive- 

mode conditions of the tasks on another, with the order of proactive 

vs. reactive days counter-balanced across subjects. In the current work 

we do not consider the influence of cognitive-control mode and combine 

data for each task across scanning sessions, to increase statistical power. 

3.6. Behavioral measures 

In each task we recorded two behavioral measures: reaction time 

(RT) and accuracy. Reaction times for button presses were recorded dig- 

itally, whereas reaction time for the Stroop task was defined by the du- 

ration of silence (time until participant begins a verbal response; see 

Braver et al., 2021 ). For the current work, we focused upon the dif- 

ference in performance measures between trial-types with high cogni- 

tive control demand and those with low cognitive control demand (see 

below). As in previous work with these tasks, we observed lower per- 

formance (higher RTs and lower accuracy) on the high demand trials 

indicative of a cognitive control effect ( Braver et al., 2021 ). For the RT 

data, we defined cognitive control effects as the difference in normalized 

RTs between high and low-control trials: 

𝑅𝑇 𝐻𝐿 = 𝑧 ( 𝑅𝑇 𝐻𝑖𝑔ℎ ) − 𝑧 ( 𝑅𝑇 𝐿𝑜𝑤 ) (22) 

with 𝑧 denoting z -score normalization. We separately normalized the 

high and low RT conditions to account for potential heterogeneity of 

variance between conditions. However, we could not separately nor- 

malize accuracy by condition as some of the low-control distributions 

were near-degenerate (e.g. in one Stroop session over 90% of subjects 

had 100% accuracy for low-control trials). Similarly, we obtained near- 

identical results using either the high vs. low contrast for accuracy 

and using just high-control trials (since low-control accuracy was near- 

ceiling). For parsimony, we chose to use the high-control data for plots 

as opposed to the near-identical high vs. low contrast. 

As with neural data, we averaged the normalized response times be- 

tween sessions for each task. Interestingly we found that, unlike RTs, 

neural data using conventional techniques only predicted accuracy in 

the baseline session. Therefore, we only used the baseline accuracy for 

benchmarking (averaged over tasks) and similarly for neural data. 

3.7. Pre ‐processing and parcellation 

Raw resting-state and task data were preprocessed using the same 

pipeline, implemented with fMRI-prep software ( Esteban et al., 2020; 

2019 ). The whole-brain surface data were then parcellated into 400 cor- 

tical parcels defined by the 400 parcel Schaefer atlas ( Schaefer et al., 

2017 ; 7-network version). Subcortical volumetric data was divided into 

19 regions derived from FreeSurfer ( Fischl, 2012 ). Motion time-series 

consisted of the 3-dimensional coordinate changes for rigid-body (brain) 

rotation and translation (6 total). Motion and linear drift were regressed 

out of pre-processed resting-state data before MINDy model fitting and 

from task data prior to filtering. Since motion time-series are also co- 

variates within our task GLMs (as is common), this step does not bias 

results, as motion is implicitly removed from the unmodeled data during 

GLM estimation (see below). However, we also implemented controls 

(see Section 3.10 ) which used this same data (i.e. motion pre-regressed) 

with conventional analyses. 

3.8. Task GLM analyses 

Statistical models of task fMRI were estimated using general linear 

models (GLM) as implemented in AFNI. The same analyses were per- 

formed for all data pipelines (e.g. original and MINDy-Filtered). Two 

classes of GLM were used for each task: one designed to estimate event- 

triggered effects and another to estimate sustained activity. These mod- 

els only differed in the following respect: the event-related GLM models 

contained separate terms (FIR models) for each trial-type whereas the 

sustained GLM did not distinguish between trial-types, which enabled 

better estimation of the sustained effects (block regressor). 

The GLM design consisted of a mixed block/event-related design in 

which trial-type effects were modeled using a modified Finite-Impulse- 

Response (FIR, Glover, 1999; Goutte et al., 2000; Ollinger et al., 2001 ) 

framework (AFNI TENT; Cox, 1996 ), whereas block effects (task vs. 

inter-block interval) were modeled using a canonical HRF convolved 
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with the block regressors. The TENT bases ( “knots ” in AFNI terminol- 

ogy) generated an FIR design with each basis representing one TR (rela- 

tive task start). The GLM design also included block onset/offset (mod- 

eled with a canonical HRF) and the six motion regressors corresponding 

to rigid body translation and rotation (3 each). Timepoints containing 

excessive motion (Framewise Displacement > 0 . 9 mm) were censored 

from task GLMs. Estimation was performed using the built-in AFNI func- 

tion “3dREMLfit ” and polynomial-detrending ( “polort 5 ”). 

3.9. MINDy modeling 

Mesoscale Individualized NeuroDynamic (MINDy, Singh et al., 

2020a; Singh et al., 2020b ) models were generated from each subject 

using the parcellated, pre-processed resting-state data for each subject, 

combined across scanning sessions. Thus, a single MINDy model was 

estimated for each subject and was used in analyzing task-data across 

scanning sessions. We simultaneously estimated the neurovascular cou- 

pling/HRF and latent brain networks by combining the original MINDy 

model with Surrogate Deconvolution as in Singh et al. (2020a) . This 

combination simultaneously estimates HRF kernel parameters for each 

brain region as well as the connectivity matrix, region-specific trans- 

fer function shape, and local decay parameter (time-constant). Previous 

work indicated that the inclusion of Surrogate Deconvolution renders 

MINDy estimates robust to spatial variation in the HRF. Moreover, the 

spatial distribution of estimated HRF properties such as time-to-peak 

are consistent with empirical literature at the group level and are also 

reliable at the level of individual differences ( Singh et al., 2020a ). Hy- 

perparameters used in MINDy model fitting were identical to previous 

studies ( Singh et al., 2020b ), but with batch sizes decreased to 150 TRs 

each in order to accommodate the shorter scan lengths of this dataset. 

3.10. Control pipelines 

In addition to comparing the proposed pipeline with conventional 

analyses, we also repeated all task analyses for several control pipelines 

( Fig. 1 B). These control pipelines considered two factors that might 

explain results: (1) pre-processing and (2) mechanistic components of 

the model (SI Section 7.7 ). The MINDy modeling framework assumes 

that nuisance covariates such as motion and drift have already been 

removed from time-series prior to model fitting. Therefore, to address 

#1, we implemented a control in which standard GLM analyses were 

computed directly upon the fMRI BOLD task timeseries, with motion co- 

variates already regressed out first. The same regressors also appear in 

the task GLM model (which is shared across all pipelines), but regress- 

ing these factors out first will rescale estimated beta-coefficients due 

to the input normalization performed by many fMRI processing pack- 

ages (e.g. AFNI). This control ensured that improvements in group-level 

sensitivity were due to increased similarity of estimated spatiotempo- 

ral patterns rather than theoretically uninteresting factors due to pre- 

processing pipelines. We refer to this control as “pre-regressed ” (pre- 

Reg). Estimates using this pipeline were nearly identical to the original 

pipeline and event-related coefficients were highly correlated (average 

over tasks: 𝑟 = 0 . 97 ), collapsing over subject, parcel, and TR during the 

probe period. 

In the SI ( Section 7.7 ), we address #2 by considering the influence of 

anatomically local dynamics vs. interactions between brain regions. This 

distinction is significant for three reasons. First, it is theoretically sig- 

nificant to distinguish between purely local neural dynamics and inter- 

regional brain dynamics. Secondly, long distance interactions between 

brain regions cannot be explained solely in terms of neurovasculature 

since the regions involved may share anatomically distinct blood supply 

(i.e. different cerebral arteries). As a result, improvements identified in 

whole-brain models, but not purely local models, cannot be explained 

solely as a benefit of hemodynamic modeling (although other contami- 

nants such as motion could still be a factor). Lastly, analyses using the 

purely local models are equivalent to region-specific frequency-domain 

filtering. Although this equivalence does not imply that neural dynam- 

ics are insignificant, the signal-processing interpretation is simpler and 

could render the proposed neural modeling framework unnecessary (i.e. 

less parsimonious). Thus, the local dynamics control serves to ensure 

that our guiding neural modeling framework provides additional value 

above its (partial) relationship to existing signal-processing techniques. 

This control was implemented in two distinct variants: either heteroge- 

neous (region-specific) or homogeneous (region-invariant) autoregres- 

sive models fit to each subject. 

The homogeneous model consists of an autoregressive model that is 

specific to subject, but not parcel: 

𝐵 𝑂𝐿𝐷 𝑡 +1 = 𝑐 0 𝐵 𝑂𝐿𝐷 𝑡 + 𝜈𝑡 (23) 

We assumed that the noise-component was independent and identi- 

cally distributed between parcels and solved for 𝑐 0 using linear regres- 

sion (collapsing BOLD across parcels). The “input ” estimates from this 

model consist of the residuals ( 𝜈𝑡 ). We fit the heterogenous model analo- 

gously to the homogeneous model, but with region-specific autoregres- 

sive terms: 

𝐵 𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 +1 = 𝑐 𝑖 𝐵 𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 

+ 𝜈
( 𝑖 ) 
𝑡 

(24) 

for parcel “i ”. We use these two cases to determine whether regional 

heterogeneity is a significant factor in any improvements due to local 

modeling. We refer to the homogeneous and heterogeneous models as 

global ( “glob ”) and local ( “loc ”) autoregressive (AR) models, respec- 

tively. Results were generally similar for the two AR models (high-low 

coefficients correlated 𝑟 = 0 . 99 ) 

4. Validation and comparison criteria 

In order to assess potential advantages of MINDy-based Filtering, we 

considered two types of comparisons: benchmarking (is method “a ” bet- 

ter than “b ”?), and sensitivity/robustness (how does factor “x ” influence 

method “a ” vs. “b ”?). The first case establishes whether MINDy-based 

Filtering offers additional statistical power in detecting task effects. The 

second case establishes whether MINDy-Based Filtering enhances statis- 

tical power for detecting task effects in a selective (i.e., to the regions 

showing significant task effects to begin with) or more global manner. 

4.1. Benchmarking event ‐related effects 

Trial-types were defined by high cognitive control demand vs. 

low cognitive control demand across the four tasks (see Section 3.4 ). 

Trial-specific activity was modeled using a Finite Impulse Response 

(FIR) model with 1TR resolution (1.2 s) and task-specific length (see 

Section 3.8 ). Group-level statistics were compared for the peak effect 

(parcel × method specific) over a task-specific 2TR interval. This interval 

was chosen during study piloting using the peak times in conventional 

analyses (starting from 1: AX-CPT:TR 7 and 8, Cued-TS: TR 8 and 9, 

Stern: TR 11 and 12, Stroop: TR 3 and 4). Thus, the analysis targets are 

statistically biased against the proposed technique since they were cho- 

sen to maximize conventional analyses. These times qualitatively cor- 

respond with a typical HRF time-to-peak after the probe-events which 

define high vs. low control trials (see Section 3.4 ). Previous literature 

and present results suggest that these effects are primarily one-sided, 

with activity increased in the high-conflict (control demand) trials rela- 

tive to low-conflict (low control demand) in relevant brain regions (e.g. 

Fig. 2 A). Conversely, task-negative effects (significant decreases) have 

largely been associated with sustained signals as opposed to high vs. 

low control events. For these reasons, we only considered significant 

increases in activity for trial-type analyses. Group-level t -tests (within 

parcel) were compared for all parcels with significant increases (either 

method; Fig. 2 B), or for a set of 34 parcels which were pre-defined from 

independent conventional analyses which showed consistent control- 

demand effects across all tasks, ( Fig. 2 A, SI Table 1 , Braver et al., 2021 ). 
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Fig. 2. Statistical frameworks for comparing methods. (A) The DMCC34 set of parcels was defined by all parcels which displayed an effect of cognitive-control 

demand in every task based upon separate pilot data using conventional analyses. Hence, the DMCC34 set of parcels is pre-specified and used across all tasks. (B) 

Candidate regions for task-specific comparisons (parcels-of-interest) are identified for each pairing of task × pipeline by combining parcels with group-T meeting 

𝑝 < 0 . 001 for at least one pipeline in a comparison (one-tailed for events, two-tailed for sustained effects). (C) Data is analyzed either using resampling statistics for 

global measures (e.g. for brain-behavior correlations, generalizability) or in terms of paired-differences between methods over each parcel-of-interest. 

Since these parcels were pre-selected based upon conventional analy- 

ses, they are statistically biased against the proposed method (i.e. in fa- 

vor of conventional methods). We note that in Braver et al. (2021) , the 

published version instead refers to a set of 35 parcels meeting criteria 

for consistent control-demand effects. The current manuscript used 34 

parcels drawn from an earlier stage analysis that were highly overlap- 

ping with the later set of 35 parcels. 

4.2. Benchmarking sustained effects 

In addition to event-related analyses, we also considered the iden- 

tification of sustained effects (block-related changes). Results of these 

analyses are primarily presented in the SI ( Section 7.5 ). Sustained ef- 

fects in a mixed block/event design refer to “background ” activity that 

is present during a task-block, regardless of whether participants are per- 

forming a task event ( Petersen and Dubis, 2012; Visscher et al., 2003 ). 

Since we used FIR models to span each trial type, sustained effects in 

our analysis only reflect activity during inter-trial periods (non-trial pe- 

riods of task-blocks) since effects during other periods are absorbed in 

the trial FIR vs. rest-block contrasts ( Petersen and Dubis, 2012; Visscher 

et al., 2003 ). We compared the group-level effect size of each technique 

(MINDy-based Filtering and several controls) in detecting sustained ef- 

fects. Methods were compared pairwise, and benchmarking analyses 

were only conducted on parcels which had a significant effect for either 

method in a pair. Sustained analyses considered both signal increases 

and decreases, so the target metric was absolute t -value (1-sample group 

test) for the GLM sustained betas (see Section 3.8 ). 

4.3. Testing selective vs. global improvements 

We further analyzed benchmarking results by testing how MINDy- 

based Filtering changed the distribution of activity across parcels. The 

primary question was whether MINDy-based Filtering: (a) uniformly 

changed statistical power across the brain (by shift or scale); (b) pri- 

marily identified previously insignificant regions or (c) primarily al- 

tered the activity profile in previously identified regions. This analysis 

is important for determining whether the MINDy-based Filtering tech- 

nique globally improves statistical power or, instead, better differen- 

tiates task-relevant regions from the rest of the brain. We tested for 

these effects using multilevel linear models to compare MINDy-based 

Filtering to the different control models. These multilevel models (pre- 

sented in more detail later) contain task-specific main effects of method 

(anatomically global) and additional terms for task-implicated (statisti- 

cally significant) parcels. We use these models to test the significance of 

model improvements (increased effect sizes) after discounting anatom- 

ically global changes. 

4.4. Sensitivity to cognitive states 

Sensitivity analyses were performed to assess the impacts of cogni- 

tive states, individual differences, and motion. In the current case, cog- 

nitive states differ between tasks and trials. Although, each of the four 

tasks are commonly used to index cognitive control, the cognitive tasks 

are not construct-pure. For instance, tasks featuring delays (AX-CPT, 

Cued Task Switching, and Sternberg) are thought to be more dependent 

upon working memory than those without delays (i.e. the Stroop task). 

However, many task-specific factors are the same between high and low 

control trials of the same task (i.e. all events prior to the probe). Thus, 

we controlled for cognitive similarity across tasks by comparing results 

across increasing levels of cognitive similarity: low-control trials, high- 

control trials, and the contrast high vs. low control trials. These levels 

progressively isolate the cognitive control construct by increasing con- 

trol demand (high-control trials) and controlling for other task events 

(high vs. low contrast). Methods which are sensitive to cognitive states 
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will produce more similar results between task contexts when the mea- 

sured cognitive states measured are also similar. Put simply, we studied 

between-task similarity in the whole-brain activation profile, under the 

premise that more similar task conditions should lead to more similar ac- 

tivation profiles. We quantified similarity in the activation profile using 

the Intraclass Correlation (ICC; Shrout and Fleiss, 1979 ) which general- 

izes the concept of correlation to multiple groups (i.e., four tasks as op- 

posed to pairs). Tasks differed in effect magnitude and there was no the- 

oretical basis for assuming this factor should be identical between tasks 

(i.e. we don’t assume each task equally taxes cognitive control), so we 

normalized the group-average data (divided by the standard-deviation 

over parcels) for each task × method before using ICC to test similarity 

in activation. 

4.5. Significance testing for construct identification 

We used permutation statistics to compare the significance of gener- 

alizability tests between methods. When testing the generalizability of 

group-level patterns, we treated brain regions as the object of measure- 

ment in intraclass correlations (ICC, Shrout and Fleiss, 1979 ) over task 

classes. Larger ICC values imply more similar whole-brain activation 

profiles between tasks. We estimated confidence intervals with boot- 

strap sampling over the set of brain parcels. 

4.6. Robustness to motion 

In an SI analysis ( Section 7.8 ), we compared methods in their robust- 

ness to motion artifacts. While previous work has established that the 

MINDy model-fitting technique is robust to motion ( Singh et al., 2020b ) 

it remains unknown whether the MINDy-based Filtering technique also 

exhibits similar motion robustness. Therefore, we compared methods in 

terms of sensitivity to motion artifact. We considered three motion met- 

rics for task data including the number of frames censored based upon 

framewise-displacement (FD) criteria ( > 0 . 9 mm), the median frame- 

wise displacement, and the median-absolute-deviation (MAD) of DVARS 

( Power et al., 2012 ). We analyzed sensitivity by comparing the similarity 

(ICC) of results between high-motion and low-motion groups of subjects 

(median split for each motion measure). 

5. Results 

5.1. Structure and presentation of results 

We designed analyses to answer four questions: (1) do resting-state 

MINDy models (partially) generalize to task? (2) does the proposed 

technique improve power in answering cognitive-neuroscience ques- 

tions? (3) can these methods test hypotheses which were previously 

impractical? and (4) do improvements reflect theoretically interest- 

ing concepts (e.g. signal propagation) or do they stem from signal- 

processing/filtering side-effects? The first question resolves whether the 

intrinsic dynamics modeled at rest meaningfully generalizes to task (al- 

though not perfectly, as we are interested in the task versus rest differ- 

ences). The second and third questions identify methodological contri- 

butions, whereas the last question addresses whether these techniques 

also offer additional theoretical insight (i.e. their success reflects some 

principle of brain function). This question is important for determining 

whether the results reflect brain network dynamics or can be more par- 

simoniously explained in terms of (non-neural) signal processing effects. 

In the main text, we emphasize comparing methods in event-related 

analyses due to the popularity of event-related designs. However, we 

also compared methods for the analysis of sustained-effects in a mixed 

block/event design. These results are presented in SI Sections 7.5 and 

7.6 . We also tested the specific contribution of modeling connectivity by 

comparing MINDy-based Filtering with analogous filters using reduced 

(autoregressive) models (SI Section 7.7 ). 

5.2. Identification of task ‐relevant parcels 

In order to compare methodologies ( “third-level ” analysis) we first 

identified task-relevant parcels over which to gauge improvements. We 

performed this step in two ways: either using a set of parcels consis- 

tently engaged across tasks ( “DMCC34 ”) or separately identifying rele- 

vant parcels for each analysis (i.e., for the different tasks; Fig. 2 A and 

B). In the first case, we used pilot data and conventional analyses to 

identify a set of 34 brain regions which displayed significant increases 

( 𝑝 < 0 . 05 , Bonferoni-corrected) in activity due to cognitive-control de- 

mand across all four tasks ( Fig. 2 A). This set is referred to as “DMCC34 ”

and constitutes a “pre-specified ” comparison set as it was developed us- 

ing a separate set of pilot subjects. It is also biased away from finding 

MINDy-based Filtering improvements, since, by definition, the parcels 

were identified as maximizing conventional univariate statistical con- 

trasts. 

In addition, we identified “parcels-of-interest ” specific to each third- 

level comparison (i.e., task + methods; Fig. 2 B). We defined “parcels- 

of-interest ” as reaching an uncorrected significance of 𝑝 < 0 . 001 for at 

least one of the methods being compared ( Fig. 2 B). We used a slightly 

more liberal criteria for identifying these parcels as several of our “third- 

level ” analyses compare second-level analyses over parcels-of-interest 

( Fig. 2 C), although we later demonstrate that general improvements in 

detection power hold across significance thresholds ( Section 5.5 ). These 

“parcels-of-interest ” are also specific to a given second-level contrast 

(separate sets for events and for sustained/block-related effects). Thus, 

for each pair of methods (e.g. MINDy vs. original) we identified one 

sustained and one event-related set of parcels for each of the four tasks. 

5.3. Resting ‐state model predictions generalize to task 

The key premise of our approach is that task effects are marked by 

systematic deviation from intrinsic brain dynamics, reflecting extrinsic 

influences ( “input ”). As such we seek to estimate these influences by 

filtering out intrinsic dynamics to recover task “input ” (we stress that 

“input ” should not be taken literally; see Sections 2.2 and 6.3.2 ). In prac- 

tice, this operation corresponds to computing the difference between 

model-predicted and observed changes in brain activity at each time- 

step. The validity of our framework thus rests upon three claims: (1) that 

task events are marked by (slight) deviations from intrinsic-dynamics, 

(2) that these deviations are systematic and can be modeled as additive 

“input ” to the otherwise preserved dynamics, and (3) estimated inputs 

are a more consistent marker of task effects than the original BOLD sig- 

nal. 

Our first claim, that task events deviate (slightly) from intrinsic dy- 

namics is observed by comparing MINDy prediction accuracy over task 

and “rest ” blocks (3 task blocks and four rest blocks per run). During 

“rest ” periods, prediction accuracy is nearly as high as for the train- 

ing resting-state data. Overall, the range of model prediction accuracies 

for resting-state scans ( 𝑅 

2 = 0 . 58 ± 0 . 06 ) was roughly similar to that ob- 

served during task ( 𝑅 

2 = 0 . 56 ± 0 . 08 , 0 . 54 ± 0 . 07 , 0 . 56 ± 0 . 08 , 0 . 50 ± 0 . 09 , 
for AX-CPT, Cued-TS, Stern, and Stroop, respectively; Fig. 3 A). How- 

ever, prediction accuracy differed between periods in-between task 

blocks ( “rest ” blocks) and when subjects were actively engaged in 

task. During “rest ” blocks, MINDy predictions were no worse than for 

resting-state scans. In AX-CPT and Stroop accuracy during “rest ” blocks 

was significantly greater than for resting-state scans ( 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) = 

3 . 5 , 𝑝 = 0 . 0008; 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) = −4 . 5 , 𝑝 = 2 . 4 𝐸 − 5 ) and for the other two 

tasks (Cued-TS and Sternberg), the MINDy modeling of resting-state 

scans and rest-blocks within task scans was equally accurate ( 𝑡 (70) = 

−1 . 1 , 𝑡 (70) = 1 . 2 , 𝑛.𝑠. ). By contrast, model accuracy decreased when sub- 

jects were actively performing each task ( 𝑝 ′𝑠 ≤ 𝐸 − 8 ), while remaining 

well above chance ( 𝑅 

2 = 0 . 54 ± 0 . 08 , 0 . 52 ± 0 . 08 , 0 . 54 ± 0 . 08 , 0 . 45 ± 0 . 10 , 
same task order; Fig. 3 A and B). An illustration of the pattern is shown 

for a representative task (Cued-TS), showing the amount of variance 

( 𝑅 

2 ) explained by MINDy at each TR across the whole-scan timeseries 
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Fig. 3. Validation of MINDy-based Filtering 

Framework. Task effects are defined by de- 

viation from intrinsic dynamics. (A) Intrin- 

sic dynamics modeled by MINDy with resting- 

state data, remain valid (but less accurate, see 

Section 5.3 ) in task. (B) Deviation from intrinsic 

dynamics (i.e., estimated “input ”) mark periods 

of active task engagement over long timescales 

(task blocks) and (C) short-timescales (task 

events; pre-GLM). There is a peak in unex- 

plained event-related variance (SSE MINDy; 

pre-GLM) timed to the onset of probe effects. 

However, this variance is well-explained by 

task GLMs (post-GLM) indicating that event- 

related deviations from MINDy (fit to rest) 

are well-described as additive “input ” to the 

model. (D–F) Timeseries post-MINDy based fil- 

tering (red) have a greater proportion vari- 

ance attributed to task events. Statistics are 

averaged over a set of pre-specified parcels- 

of-interest (DMCC34). (D) Average timecourse 

of BX (high-control) trials in AX-CPT demon- 

strates clear increases in task-explained vari- 

ance during the probe-response period (7 and 

8 TR). (E) MINDy-based Filtering significantly 

increased signal variance attributed to any task event in four tasks. (F) Improvements in high-control trials were significant in 3 of 4 tasks (all but Sternberg). Shading 

indicates standard error over subjects. “post-GLM ” indicates that both the numerator and denominator SSE are taken after performing GLM (MINDy = MINDy-Filtered), 

whereas “pre-GLM ” indicates the relative sum-of-squares after MINDy-based Filtering but before fitting task GLM models. Both (C) and (D) are taken from AX-CPT 

(averaged over scans). Time-courses in (C) and (D) are event-locked to the start of “high-control ” trials. Vertical line indicates TR7 which marks probe-related effects 

in AX-CPT (TR 7 and 8). “MINDy ” denotes results using MINDy-based Filtering, while “pre-Reg ” denotes the pre-regressed control (conventional analyses, but with 

additional motion-regression performed pre-GLM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

( Fig. 3 B). Deviations from model predictions (unexplained variance) are 

also greatest during the probe/response period ( Fig. 3 C), indicating that 

these deviations are a strong marker of task events. Thus, intrinsic dy- 

namics observed at rest still predict task dynamics, but the degree of 

accuracy is tightly coupled to task events. 

Our second claim is that these deviations are systematic and can be 

well-approximated as an exogeneous “input ” to the existing dynamics. 

Statistically, this assumption corresponds to the residuals (MINDy pre- 

diction minus observed) being shifted (event-locked change in mean) 

during task events, as opposed to primarily changing variance, which 

could reflect a breakdown of the underlying dynamics. For this analysis 

we only considered parcels known to be task-related: the DMCC34 set, 

as the subsequent analyses assume that the signal is task-related. Us- 

ing Finite-Impulse-Response GLM designs we compared residual sum- 

of-squares before and after removing the effect of trial-period. Squared 

errors were averaged over the DMCC34 parcel-set for each subject. Anal- 

yses demonstrate that the probe-related increase in error (task-average: 

𝑡 (70) = 7 . 2 , 𝑝 < 4 𝐸 − 9 ) is captured by an additive main effect of trial- 

period as the post-GLM unexplained sum-of-squares was not greater for 

the probe period than other trial periods in any task (n.s. 1-tailed, e.g. 

Fig. 3 C) and actually decreased overall (task average: 𝑡 (70) = −4 . 5 , 𝑝 = 

2 . 6 𝐸 − 5 ). Thus, task-induced deviations from intrinsic dynamics are sys- 

tematic and well-described by additive “input ” to the system. 

Lastly, we assume that removing ( “filtering ”) intrinsic dynamics will 

accentuate task effects in the data by removing variance due to in- 

trinsic dynamics. At present, we only consider spatially univariate ef- 

fects (unlike e.g., MVPA), hence we tested the relative variance ex- 

plained by task with and without MINDy-based Filtering. As in the pre- 

vious analysis, we used the mean over DMCC34 parcels, as this anal- 

ysis assumes that there is a true task effect to accentuate. Results in- 

dicate that MINDy-based Filtering generally increased the variance as- 

sociated with task events (e.g. Fig. 3 D for AX-CPT). This result held 

for all tasks when combining across trial-types ( 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) = 15 . 3 , 𝑝 ≈
0; 𝑡 = 5 . 0 , 𝑝 = 4 . 7 𝐸 − 6; 𝑡 = 6 . 7 , 𝑝 = 4 . 5 𝐸 − 9; 𝑡 = 12 . 1 , 𝑝 = 8 . 2 𝐸 − 19 for 

AX-CPT, Cued-TS, Sternberg, and Stroop, respectively; Fig. 3 E) 

and for three-of-four tasks (all but Sternberg) when restricted to 

high-control trials ( 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) = 13 . 7 , 𝑝 ≈ 0; 𝑡 = 6 . 4 , 𝑝 = 1 . 4 𝐸 − 8; 𝑡 = 

1 . 9 , 𝑝 = 0 . 06; 𝑡 = 11 . 1 , 𝑝 = 5 . 2 𝐸 − 17 ; Fig. 3 F). Thus, MINDy-based Filter- 

ing has the potential to improve the variance associated with task effects 

in human BOLD. We note that some inter-trial variability in brain activ- 

ity can be related to behavior, so future study is needed to understand 

how MINDy-based Filtering affects veridical trial-to-trial variation (in 

a later section we find improvements in inter-subject behavioral pre- 

diction). However, these results demonstrate that our approach is well- 

justified and statistically powerful in identifying the types of simple (uni- 

variate) models of brain activity that are most common in neuroimaging. 

5.4. MINDy ‐based filtering accounts for intra and inter ‐subject variability 

We also tested whether these intrinsic dynamics explain unique 

variability above the task GLM. This test is important for determin- 

ing whether MINDy serves to predict the mean brain-response for each 

trial-type or whether it also predicts trial-to-trial variability. We quan- 

tified these properties through sum-of-squares partitioning (ANOVA). 

Across all tasks, we found that the proportion of unique variance ex- 

plained by MINDy was significant (41.2% on average, Fig. 4 A). How- 

ever, MINDy predictions and the task effects do have some overlap (a 

non-zero MINDy × task sum-of-squares, Fig. 4 A), thus MINDy predic- 

tions account for some of the variation in both the trial-to-trial variabil- 

ity (variation unique to MINDy) and the typical response across trials 

(MINDy × task interaction). We also tested how MINDy-based Filter- 

ing impacts variability in the evoked-response between subjects. We re- 

stricted these analyses to the pre-defined set of regions (the DMCC34 

parcels, Braver et al., 2021 ) which were previously identified as having 

a significant control-demand effect across tasks. Results demonstrated 

that MINDy filtering decreased inter-subject variability in both main ef- 

fects of trial-type (e.g. Fig. 4 D) and the contrast between trial-types (e.g. 

Fig. 4 E). In particular, these analyses and associated event-related time- 

course visualizations reveal that the peak task-related effects become 

sharper (more well-defined), as well as more temporally-precise, after 
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Fig. 4. MINDy-based Filtering reduces variability within and between subjects. (A) MINDy-based Filtering accounts for a significant portion of unique variability 

within each subject’s data. This effect holds across tasks (results averaged over all parcels, subjects). Variance partitioning was performed after removing variation 

due to nuisance factors (motion and drift). (B) Difference in the relative group-explained variability between MINDy and the original data. Note that MINDy-based 

filtering actually decreases the proportion of group variance in some regions, but increases for task-implicated regions (e.g. lPFC). (C) Group-explained variability 

particularly increased in parcels which already had a strong effect under original analyses (putative task-relevant parcels). (D) MINDy-based Filtering reduces the 

between-subject variability of task-evoked signals. Example shown is the mean signal over the DMCC34 parcels for the Cued-TS high control-demand condition 

(incongruent trials). (E) Variability also decreases for contrasts between conditions. Example shown is for the AX-CPT (BX-BY contrast). “MINDy ” denotes results 

using MINDy-based Filtering before performing GLM, while “Orig ” denotes the conventional pipeline (no MINDy). 

MINDy-based filtering. We used ANOVA to partition variance in the cog- 

nitive control effect into group-level variance and individual variance 

over the relevent (probe) trial periods. 

We then tested whether MINDy increased the proportion of cognitive 

control effects attributed to a common group factor (sum-of-squares ex- 

plained for the group model divided by the full/subject-specific models). 

As expected, regions implicated in cognitive control, such as the lateral 

and medial prefrontal cortex, anterior insulae, posterior cingulate, and 

posterior parietal cortex, had larger proportions of variability explained 

by the common group factor ( Fig. 4 B and C). MINDy-based Filtering 

increased the proportion variance explained by group-level models (rel- 

ative full models) for the DMCC34 parcels ( Δ𝜇 = 0 . 034 ± 0 . 023 , 𝑝𝑎𝑖𝑟𝑒𝑑 − 

𝑡 (33) = 8 . 56 , 𝑝 = 6 . 9 𝐸 − 10 ). Brain-wide, parcels in which MINDy in- 

creased group-explained variance, also had larger group-explained vari- 

ance in the original analysis ( 𝑡 (417) = 4 . 92 , 𝑝 = 1 . 2 𝐸 − 6 ; Fig. 4 C) and 

the increase in group variance-explained (MINDy-Orig) was corre- 

lated with the original variance explained ( 𝑟 (417) = 0 . 40 , 𝑝 = 7 . 5 𝐸 − 17 ). 
Thus, MINDy-based Filtering only increased group-level effects in task- 

implicated brain regions (those that already had a group-effect). Con- 

versely, the relative variance attributed to subject decreased correspond- 

ingly (same statistics, but sign-flipped since 𝑆 𝑆 𝐼𝑛𝑑𝑖𝑣 ∖ 𝐺𝑟𝑜𝑢𝑝 ∕ 𝑆 𝑆 𝐹𝑢𝑙𝑙 = 1 − 

𝑆 𝑆 𝐺𝑟𝑜𝑢𝑝 ∕ 𝑆 𝑆 𝐹𝑢𝑙𝑙 ). Thus, by removing intrinsic brain dynamics, MINDy- 

based Filtering reveals more similar task-effects between subjects. 

5.5. Improved group ‐level detection power 

We tested whether MINDy-based Filtering improved statistical power 

in detecting group-level neural effects for each task, and in an omnibus 

test across tasks ( Fig. 5 A and B). For each event-related pairwise compar- 

ison of methods, we calculated group-level statistics from the GLM beta 

estimates of each task-relevant parcel (see Section 5.2 ). Results indicate 

that MINDy-based Filtering significantly increased statistical detection 

power on all tasks (four of four) for the event-related contrast relative 

to both the traditional pipeline and the pre-regressed control pipeline 

(all 𝑝 ’s ≤ 1.2E-4; Fig. 5 C). For omnibus analyses, we collapsed observa- 

tions across tasks ( Fig. 5 A and B). Results indicated that MINDy-based 

Filtering generally increases statistical power for event-related analyses 

(vs. original: paired- 𝑡 (495) = 27 . 5 , 𝑝 ≈ 0 , vs. pre-regressed: 𝑡 (492) = 27 . 9 , 
𝑝 ≈ 0 ). 

We also tested whether improvements depended upon the criteria 

used to select task-relevant parcels, since methods were only compared 

on these parcels. Whereas the previous analysis used a fixed selec- 

tion criteria (see Section 5.2 ), this analysis compared methods over a 

range of statistical thresholds for identifying task-relevant parcels to en- 

sure results generalize across dietection criteria. Thresholds were de- 

fined by uncorrected within-method (second-level) significances rang- 

ing from 𝑝 = 0 . 1 to 𝑝 = 𝐸 − 10 , one-tailed. We compared methods on 

all parcels that met a given threshold for at least one pipeline (origi- 

nal, pre-regressed, or MINDy). We imposed a minimum of 5 parcels for 

comparison which restricted the range of Cued Task Switching (mini- 

mum threshold: 𝑝 = 𝐸 − 5 ), while all other tasks had a sufficient number 

of parcels (AX-CPT: 𝑛 = 10 , Stern: 𝑛 = 7 , Stroop: 𝑛 = 58 ) meeting even 

the most stringent criteria ( 𝑝 ≤ 𝐸 − 10 ). Results indicated that MINDy- 

based Filtering improved statistical power (effect size) relative to con- 

ventional analyses on all tasks for all detection levels considered. Our 

approach also increased statistical power relative the pre-regressed con- 

trol for all but one case (when only five parcels were compared for Cued- 

TS; 𝑡 (4) = 2 . 5 , 𝑝 = 0 . 065 , 2 − 𝑡𝑎𝑖𝑙𝑒𝑑). We conclude that the proposed tech- 

nique improves statistical power in task-related parcels, regardless of 

how strictly “task-related ” is defined. 

One limitation of the previous tests, however, concerns the deter- 

mination of which parcels are included in analysis: we compared effect 

sizes in parcels that met a significance criteria (i.e., already had large 

effect sizes). This approach is anatomically parsimonious in that the 

comparison regions are informed by data rather than prior assumptions. 

However, this dependency could produce biases. Therefore, we repeated 

the previous analyses over the fixed set of DMCC34 parcels, which had 

been independently identified through pre-specified contrasts. Analy- 

ses over this restricted, pre-specified group of parcels agreed with the 

previous results: the omnibus (all task) statistical detection power and 

the task-specific effect sizes all improved relative to both the original 

pipeline and the pre-regressed controls (maximum 𝑝 = 1 . 8 𝐸 − 4 ). Thus, 
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Fig. 5. MINDy-based Filtering improves statis- 

tical power in identifying task effects. (A) Av- 

erage group-level 𝑇 -statistic for MINDy-based 

Filtering across tasks in which the parcel had 

a significant cognitive control effect for at 

least one method. Uncolored parcels did not 

meet significance averaged across tasks. (B) 

Analogous results for conventional analyses. 

(C) Effect-size (Cohen’s D) for parcels meet- 

ing significance for at least one method by 

task and across significance thresholds (uncor- 

rected). Magenta indicates the corresponding 

thresholds in terms of effect size (one-tailed) 

and shading indicates standard errors. “MINDy ”

denotes MINDy-based Filtering and “Orig ” de- 

notes the original pipeline. We only plotted 

the original pipeline for comparison due to vi- 

sual overlap with results from the pre-regressed 

pipeline (i.e. original and pre-regressed were indistinguishable). 

results indicated that MINDy-based Filtering improved statistical detec- 

tion even when analyses were restricted to this group of 34 pre-specified 

parcels. 

5.6. MINDy ‐based filtering selectively enhances task ‐related neural signals 

Results in the previous section indicate that MINDy-based Filter- 

ing increases the statistical detection power of task effects ( Fig. 5 C). 

Statistical power and effect sizes are useful benchmarking criteria as 

they are easy to interpret and relate to potential applications. However, 

these markers are also limited in that they indicate the ability to re- 

ject a generic null hypothesis of no task effects. Yet this generic null is 

not always a useful benchmark from which to provide additional sci- 

entific insight. For instance, approaches which magnify anatomically 

global effects may provide little benefit to functional “brain-mapping ”

studies, which are most meaningful when they differentiate between 

brain regions. Therefore, we tested whether the improvements found 

with MINDy-based Filtering are anatomically global or serve to further 

differentiate regions (i.e., are anatomically selective). 

We consider two sorts of global effects: additive “shifts ” in the global 

signal and global “scaling ” of task effects. In statistical modeling termi- 

nology, the former reflects a main-effect (intercept) of method, whereas 

the latter reflects the method-specific slope. We modeled the differenti- 

ation between brain regions as either a main effect of regional signifi- 

cance (i.e., whether a region has a significant effect) or as an interaction 

with regional significance reflecting either a shift or rescaling of effect 

sizes of significant regions due to MINDy-based filtering, relative to the 

control models. We use the logical-valued variable 𝑆𝑖𝑔 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 to denote 

whether a parcel exhibited a significant effect for either method in a 

given second-level task analysis. We denote the MINDy-filtered second- 

level estimate (group-T) for each as 𝑌 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 which is modeled as a func- 

tion of matched control analyses (e.g. the original GLM or pre-regressed) 

which are denoted 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 : 

𝑌 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 = 𝛽𝑡𝑎𝑠𝑘 + 𝛽0 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 + 𝑆𝑖𝑔 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ( 𝛽1 + 𝛽2 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ) + 𝜖𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 . 

(25) 

We assume that 𝜖 is independently and identically distributed across 

tasks and parcels (iid.). The coefficient 𝛽1 represents the main effect 

of parcel significance, while 𝛽2 represents the interaction with parcel 

effect size in control methods. Conceptually, these two components rep- 

resent the degree to which MINDy-based Filtering further separates task- 

implicated and non-implicated parcels and the degree to which dif- 

ferences among task-implicated regions are further magnified, respec- 

tively. 

Results indicate that the MINDy-based Filtering technique demon- 

strates differential sensitivity, in that improvements are greater in 

task-implicated regions ( Fig. 6 A). The main effect of event-related 

regional significance was significant relative both the original ( 𝛽1 = 

0 . 97 ± . 09; 𝑡 (1669) = 10 . 8 , 𝑝 ≈ 0 ) and pre-regressed pipelines ( 𝛽1 = 1 . 05 ± 

0 . 09; 𝑡 (1669) = 12 . 2 , 𝑝 ≈ 0 ). This result indicates that MINDy-based Fil- 

tering further separates event-implicated and non-implicated regions 

rather than simply increasing global statistical features. This feature 

also held at the single-task level in which linear models revealed a main 

effect of regional significance in all four tasks for both original (max 

𝑝 = 0 . 0007 ; Fig. 6 B) and pre-regressed controls (max 𝑝 = 0 . 0025 ). MINDy- 

based Filtering also differentially magnified effect sizes relative the orig- 

inal analysis ( 𝛽2 = 0 . 075 ± 0 . 023; 𝑡 (1669) = 3 . 3 , 𝑝 = 0 . 001 ), but this effect 

was small and did not reach significance for the pre-regressed control 

( 𝛽2 = 0 . 034 ± 0 . 022; 𝑡 = 1 . 53 , 𝑝 = 0 . 13 , 2-tailed). Thus, task-implicated re- 

gions experienced the greatest improvements due to MINDy-based Fil- 

tering. For the current dataset, this approach primarily functioned to 

further highlight task-implicated brain regions (a main effect of re- 

gional significance) rather than magnifying the differences between 

task-implicated regions. These results imply that MINDy-based Filter- 

ing is sensitive to task-implicated brain regions rather than inducing 

anatomically global effects. 

5.7. Identifying a latent cognitive construct 

The previous analyses indicate that MINDy-based Filtering enhances 

the identification of neural activity associated with a set of contrasts 

between trial-types (theoretical high control-demand trials minus low 

control-demand trials). However, many cognitive neuroscience studies 

seek to understand cognitive constructs, as opposed to unitary tasks. In 

the current section, we explore how well each method identifies the neu- 

ral correlates of one such construct: cognitive control. The four tasks we 

studied have all been previously used to index cognitive control (typ- 

ically via the difference between high-control and low-control trials). 

However, because the tasks themselves are not construct-pure (i.e., they 

tap multiple cognitive constructs) the neural activity associated with 

tasks is also expected to be non-identical. To control for this fact, we 

used the different trial types to generate levels of “construct-purity ” in 

terms of cognitive control: low-control trials (low purity) and the high- 

vs.-low contrast (high purity). We consider the high-vs.-low contrast to 

be more “construct-pure ” in terms of cognitive control since it controls 

for many of the other cognitive processes that differentiate tasks. For 

instance, speech production (unique to the Stroop task), is identical be- 

tween high and low-conflict trials (the same set of words are produced). 

Likewise, working memory maintenance during delays (Sternberg, AX- 

CPT, and Cued-Task Switching) does not differ between high and low 

control-demand trials since these trial-types are identical through the 

delay period (up until the probe). The “construct-purity ” of a condition 

thus indicates the degree of psychological similarity across tasks. 

11 



M.F. Singh, A. Wang, M. Cole et al. NeuroImage 247 (2022) 118836 

Fig. 6. MINDy-based Filtering enhances task- 

related signals relative to controls. (A) Com- 

parison of parcel significance before and af- 

ter MINDy-based Filtering collapsed across tasks. 

The multi-level model fit (averaged across the 

main effect of task) is plotted in red and 

the threshold-nonlinearity indicates sensitivity to 

parcel-significance. (B) Task-specific comparisons 

relative the original analyses. Improvements can 

be seen in the number of parcels exhibiting higher 

t -values after MINDy-based Filtering relative to 

conventional analyses (i.e., above the identity 

line). Yellow dots indicate significant parcels (in 

terms of the control-demand effect) which also had 

increased effect sizes from MINDy-based Filtering, 

while blue dots denote significant parcels whose 

effect sizes were larger with conventional analy- 

ses. Teal dots denote parcels which did not ex- 

hibit a significant control-demand effect for either 

method. “MINDy ” denotes MINDy-based Filtering and “Orig ” denotes the original pipeline. Results with the pre-Regressed pipeline were indistinguishable from those 

with the original pipeline. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. MINDy-based Filtering enhances cross- 

task similarity and behavioral prediction of 

cognitive control. (A) MINDy increases the 

similarity of brain activation profiles (Gener- 

alizability Coefficient/ICC) across task condi- 

tions that engage similar psychological mech- 

anisms (high-low cognitive control contrast) 

across tasks, but not when conditions do not 

isolate a common construct (low control trials). 

(B) MINDy-based Filtering enhances correla- 

tions between event-related responses (average 

over DMCC34) and RTs in each task (collapsed 

across the 3 scanning sessions). (C) MINDy- 

based Filtering also enhances the correlation 

between sustained responses in DMCC34 and 

error-rates (baseline session). Analogous results for the pre-regressed pipeline are displayed in SI (SI Fig. 11 C and D). “MINDy ” denotes MINDy-based Filtering, 

pre-Reg denotes the control pipeline with motion regression performed before GLM fitting, and “Original ” denotes the conventional pipeline. 

We tested whether increasingly similar psychological contexts (con- 

ditions) across tasks are associated with more-similar neural effects 

using the Generalizability coefficient (a form of inter-class correla- 

tion/ICC; Shrout and Fleiss, 1979 ). We compared measures in terms of 

their generalizability in tasks conditions which tapped a common con- 

struct (cognitive control demand) as well as conditions in which tasks 

were less psychologically similar. We predicted that MINDy-based Fil- 

tering would identify greater neural similarity between psychologically 

similar task conditions (higher generalizability/ICC) relative to psy- 

chologically dissimilar conditions, reflecting construct-selectivity. Con- 

versely, we expect the ICC for psychologically disimilar task conditions 

( “low purity ”) to be lower, reflecting disimilar neural activity patterns. 

The ICC “units of observation ” consisted of the group-mean beta for 

each brain parcel (all 419 brain regions) and “classes ” consisted of the 

different tasks. Results indicated that the proposed technique was sen- 

sitive to the cognitive control construct at group level ( Fig. 7 A). In the 

“low purity ” condition, MINDy-based Filtering reported lower similar- 

ity between tasks ( 𝐼𝐶𝐶 = 0 . 50 ± 0 . 02 ) than the original and pre-regresed 

pipelines ( 𝑝 ′𝑠 < 0 . 001 , 5000 bootstraps). Thus, MINDy-based Filtering 

does not generically increase the similarity of task results irrespective of 

cognitive construct. By contrast, for the “high purity ” condition, MINDy- 

based Filtering generated significantly more similar results across tasks 

( 𝐼𝐶𝐶 = 0 . 60 ± . 03 ) than the original and pre-regressed pipelines ( 𝑝 ′𝑠 < 

0 . 001 , 5000 paired bootstraps). We conclude that MINDy-based Filter- 

ing improves sensitivity to the cognitive control construct at group-level. 

Based on the nature of how these ICC’s were calculated, this finding can 

also be interpreted as indicating that the anatomical profile of effects 

(i.e., the gradient of effect sizes across the brain) becomes more similar 

or consistent across tasks after MINDy-based filtering. 

5.8. MINDy ‐based filtering enhances brain ‐behavior relationships 

The previous section demonstrated that neural effects identified with 

MINDy-based Filtering better generalized across task conditions tapping 

a common construct (cognitive control) than conventional techniques. 

In this section we demonstrate that this relationship also holds for be- 

havior by using individual differences in task effects to predict the cor- 

responding variation in behavioral cognitive control effects. 

To isolate the effect of cognitive control demand we contrasted high- 

control and low-control trials for both the neural and behavioral data. 

This approach, comparing trial types, is common in neuroscience includ- 

ing the neuroscience of individual differences. Interestingly, we found 

that across methods, individual differences in RT were positively corre- 

lated with the conflict-related (event) brain response but had a weaker 

relationship to sustained activity (SI Fig. 11 A and B). By contrast, indi- 

vidual differences in accuracy were positively correlated with sustained 

activity, but unrelated to event-related activity (SI Fig. 11 A and C). 

Therefore, we compared methods in predicting RT using event-related 

estimates and in predicting accuracy using estimates of sustained ac- 

tivity. We also found, using conventional analysis, that brain-behavior 

relationships were greater for the contrast between trial-types than for 

trial types in isolation. Averaged over tasks, the original pipeline had a 

mean correlation with RT of 𝜌 = 0 . 21 for high-low vs. 𝜌 = − . 15 for high 

alone. The analogous correlations for MINDy were 𝜌 = 0 . 36 (high-low) 

and 𝜌 = −0 . 08 (high only). For this reason, we employed the high-vs.- 

low control contrast in comparing methods. 

For each subject × task × session, we summarized event-related ef- 

fects in each task × method via the difference of normalized ( z -scored 

over subjects) high and low control trial coefficients averaged over the 
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DMCC34 set of parcels and similarly for sustained effects. Behavioral 

measures were similarly defined by the difference in normalized RT be- 

tween high and low control trials and the accuracy in high control trials 

(nearly identical results are derived using high-low since low-trial ac- 

curacy is near ceiling). We found that MINDy-based Filtering increased 

the recorded correlations with RT for each task ( Fig. 7 B) and the aver- 

age change in correlation across tasks was statistically significant (vs. 

original and vs. pre-regressed: 𝑝 < 0 . 05 , 5000 bootstraps). Similarly, our 

approach increased correlations with accuracy ( 𝑝 < 0 . 05 , 5000 boot- 

straps, Fig. 7 C). Results using the pre-regressed pipeline are depicted 

in SI Fig. 11 C, D. We conclude that after MINDy-based Filtering, indi- 

vidual differences in brain responses better predict behavioral measures 

associated with cognitive control. 

6. Discussion 

We demonstrated that MINDy-based Filtering increases the ability 

to detect both event-related (cognitive control-demand) and sustained 

brain responses in task fMRI ( Section 5.5 , SI Section 7.5 ). These ef- 

fects are strongest in task-implicated brain regions ( Section 5.6 ) and 

generate higher temporal precision than the original BOLD timeseries. 

By modeling and then partialing-out intrinsic dynamics, MINDy-based 

Filtering reduces both trial-to-trial variability within subjects, and vari- 

ability between subjects ( Section 5.4 ). However, while the absolute 

magnitude of subject-to-subject variability decreased, individual differ- 

ences (and group —level activity) in a latent cognitive construct (control- 

demand) generalized better between tasks after MINDy-based Filtering 

( Section 5.7 ). MINDy-estimated task effects were also more predictive 

of individual differences in behavior ( Section 5.8 ). Together, these re- 

sults suggest that MINDy-based Filtering can enhance the detection of 

task-evoked brain activity. We discuss further implications of the results 

below. 

6.1. Relationship with frequency ‐based filtering 

Frequency-based (spectral) filtering has been applied to fMRI signals 

in many previous studies ( Biswal et al., 1996; Friman et al., 2004 ). High- 

pass filtering is commonly applied to both resting-state and task data to 

remove signal drift which is thought to largely reflect changes in non- 

neuronal variables. Low-pass filtering is also sometimes applied, primar- 

ily for resting-state data. Although these approaches were common in 

early fMRI experiments, the changing nature of fMRI acquisitions (e.g. 

TR length) and analyses (e.g. functional connectivity) has led to renewed 

debate over these techniques ( Davey et al., 2013 ), as well as the devel- 

opment of more sophisticated methodologies (e.g. Särkkä et al., 2012; 

Satterthwaite et al., 2013 ). In the current work, we did not perform spec- 

tral filtering (instead using AFNI’s “polort ” function for polynomial ba- 

sis de-drifting). Likewise, MINDy-based Filtering is not a direct replace- 

ment for spectral filtering, which can be applied before our technique, 

afterwards, or not at all. However, as previously mentioned, when the 

connectivity parameters of the model are zero, the proposed technique 

reduces to a form of spectral filtering based purely upon autoregressive 

models. Empirically we have demonstrated that MINDy-based Filtering 

outperforms filters based upon autoregressive models (SI Section 7.7 , SI 

Fig. 10 ), so effects cannot be attributed solely to the removal of partic- 

ular frequency components within each region. 

Notably, MINDy-based Filtering improves detection in both sus- 

tained and event-related analyses over both conventional methods and 

autoregressive filters. By contrast, filters based upon autoregressive 

models are expected to underperform in the identification of (low- 

frequency) sustained effects, as we confirmed in supplemental analy- 

ses (SI Section 7.5 ). At a statistical-level, dynamical systems models 

(including MINDy) capture the multivariate partial autocovariance be- 

tween successive time-points (i.e. how 𝑥 𝑡 +1 is related to 𝑥 𝑡 ). As a re- 

sult, removing these predictions from the data inherently yields a time- 

series with lower autocovariance. The improved detection of sustained 

effects is therefore significant as it indicates that MINDy-based Filtering 

reveals systematic differences between the resting-state and task dynam- 

ics rather than simply acting as a high-pass filter. These effects are also 

more pronounced in task-implicated parcels ( Section 5.6, Fig. 6 ) indi- 

cating that these features are also context-related. 

6.2. Relationship with other approaches 

The current approach is conceptually related to several current ini- 

tiatives for linking resting-state and task-state brain activity. Our ap- 

proach uses resting-state brain dynamics to extrapolate patterns of in- 

trinsic dynamics that also factor into brain activity during task states. 

Frameworks such as Activity Flow ( Cole et al., 2016 ) have demon- 

strated similarity between the spatial aspects of evoked responses and 

resting-state network structure. Likewise, functional connectivity pat- 

terns have been found to be roughly similar between resting-state and 

task ( Cole et al., 2014 ). However, whereas these frameworks are largely 

employed to discover similarities between spontaneous and evoked ac- 

tivity, we analyze the manner in which the task-state subtly deviates 

from resting-state activity over short time-scales (how activity changes 

over short time-steps or TRs). 

Other approaches have also investigated the difference between 

brain dynamics in task-state and resting-state. Previous work ( Fox et al., 

2006; He, 2013 ) has demonstrated that intrinsic dynamics shape task- 

evoked activity on a trial-by-trial basis and modeling studies have re- 

produced the statistical differences between task and resting-state ac- 

tivity ( Ponce-Alvarez et al., 2015 ). Our approach furthers these ef- 

forts by leveraging these underlying concepts into an empirical mod- 

eling/analysis framework. 

Dynamic Causal Modeling (DCM, Friston et al., 2003 ) frameworks 

have also used empirical dynamical systems models to improve esti- 

mates of task effects. As previously mentioned ( Section 1.2 ), DCM tech- 

niques allow task effects to manifest changes in the exogeneous drive to 

brain regions and (for small-scale DCMs) the effective coupling between 

brain regions. By contrast, the current MINDy-based Filtering technique 

only models a single factor: changes in the input to each brain region, 

which collapses both of these mechanisms into a single term, as is also 

common in larger-scale DCM models (e.g. Frässle et al., 2017 ). Our ap- 

proach differs from all DCMs, however, in that we produce a timeseries 

of latent state estimates (task-related “input ” to each region) which does 

not require any preconceived model of task effects (i.e., that they fol- 

low a certain temporal pattern). In the current work, we used statisti- 

cal GLMs to analyze the MINDy-filtered data with Finite Impulse Re- 

sponse models fit for each trial type, with and additional components 

to model task blocks (mixed block/event-related designs). However, the 

end-product of our technique (a timeseries) could, in principle, be ana- 

lyzed with a wide variety of methods, including parcel-level multivariate 

techniques (e.g., multivariate pattern analysis; MVPA). 

6.3. Limitations 

The proposed work rests upon three related claims: (1) intrinsic dy- 

namics are roughly conserved between task periods and rest, (2) that by 

subtracting intrinsic dynamics we identify changes in “input ” to each 

brain area and (3) that the signal generated by this calculation is a better 

marker of task effects (ostensibly task-related cognition). The first two 

claims are interdependent. We have mathematically defined changes in 

“input ” as the signal components which are not explained by intrinsic 

dynamics (the residual after subtracting the modeled intrinsic compo- 

nent). The accuracy of estimated changes in “input ” thus hinges upon 

whether the modeled intrinsic dynamics meaningfully generalize. We at- 

tempted to address this question empirically (see Section 5.3 ), and the 

results suggest that this assumption does hold. Specifically, we found 

that MINDy models estimate variation in the timeseries better during 

rest-blocks than task-blocks, which makes sense as the short rest blocks 

during task scans are more akin to resting-state scans. Moreover, even 
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within task blocks, the accuracy of predicted activation is well above 

chance, and the timepoints that are not well-explained by MINDy mod- 

els (derived from resting-state) are precisely those during peak task ef- 

fects (probe periods during each trial). Conversely, after MINDy-based 

Filtering these periods were well explained by task-based GLMs (with 

more variance explained than if MINDy-based Filtering were not ap- 

plied) which indicates that the deviation from models is well explained 

by systematic, additive “input ” to the model, as opposed to a break- 

down in model-assumptions, which would increase trial-to-trial vari- 

ability. We also note that the generalizability assumption is “soft ” in 

the sense that small changes in effective connectivity do not violate our 

assumptions. Since each connection describes the strength of input to 

the “post-synaptic ” region, changes in connection strength are absorbed 

in the input estimate (summing over “pre-synaptic ” sources). However, 

our assumption that MINDy-based Filtering removes mostly “nuisance 

variance ” could be violated by some forms of large, systematic changes 

in effective connectivity. Fortunately, this assumption is easy to check 

(e.g., see Section 5.3 ) and we have not found evidence of its violation. 

6.3.1. Methodological considerations 

The bulk of our results concern the last claim (improved detection 

power) and the demonstration that observed statistical improvements 

are related to task-specific neural processes. We performed these tests 

using several controlled comparisons and lines of inquiry. However, our 

efforts in this domain are limited by using a specific subset of cognitive 

tasks: those used to index cognitive control. As the set of potential cogni- 

tive constructs remains vast, further testing in other cognitive domains 

may be useful. 

Another limitation concerns how MINDy models are parameterized. 

Since we parameterize models based upon resting-state data, we re- 

quire the collection of both resting-state and task data for each subject, 

which increases data requirements. Moreover, this dependency could 

prove problematic for low-quality resting-state data, as mis-specified 

resting-state models could corrupt task estimates. We found that indi- 

vidual differences in goodness-of-fit were consistent across tasks (see SI 

Section 7.2 ), so this possibility cannot be ruled out. However, previous 

analyses of MINDy modeling indicated that the goodness-of-fit is not 

related to individual differences in motion ( Singh et al., 2020b ) and, 

similarly, MINDy-based Filtering was not impacted by individual differ- 

ences in motion (SI Section 7.8 ). The results also do not support model 

overfitting, as goodness-of-fit did not decrease when applied to inter- 

block task periods ( “rest ” blocks) relative to training (resting-state) data 

( Fig. 3 A). In supplementary analyses, we also observed that using the 

group-average MINDy-Filter improved results relative to conventional 

analyses (but less than individualized models; SI Section 7.3 ), so using a 

common MINDy Filter may ammeliorate short/low-quality resting-state 

data. Further study may therefore be beneficial in determining which 

factors (neural or nuisance) influence individual differences in goodness 

of fit, as these factors could influence estimated individual differences 

in task variables. 

6.3.2. Mechanistic considerations 

Future study is also necessary to disambiguate which biological 

mechanisms contribute to the calculated “input ” signal. For decades, 

computational neuroscience models have largely formalized task con- 

text as an exogeneous forcing ( “input ” or “bias ”) term in neural networks 

and connectionist models (e.g. Logan and Cowan, 1984; Rogers and Mc- 

Clelland, 2014; Rougier et al., 2005; Usher and McClelland, 2001; Ver- 

bruggen and Logan, 2009 ). This formulation is appealing for its simplic- 

ity; however, external contexts serve only as “inputs ” during sensory 

transduction, since brain activity is known to modulate even sensory 

neurons (e.g. Fields and Anderson, 1978; London et al., 2013 ). Even 

when these effects are neglected, many modeling studies assume that 

brain regions receive task “inputs ”, even if these regions are not directly 

enervated by sensory afferents (e.g. Rougier et al., 2005 ). As a result, 

these “inputs ” should not be interpreted as literal inputs to the brain (i.e. 

signals from sensory nerves). Rather, these “inputs ” include the initial 

propagation of such signals over the fMRI sampling rate (1 TR), so our 

approach is limited by the temporal resolution of fMRI BOLD. 

The nature of these “inputs ” is also somewhat underspecified. In the 

current approach, we use MINDy to model the propagation of brain sig- 

nals during resting-state. The model predicts task-fMRI activation based 

upon the effective connectivity parameters estimated from resting-state. 

However, these parameters are limited to describing the relationship of 

bulk activity between brain regions. Many brain regions contain diffuse 

sets of neurons with heterogeneous axonal connectivity profiles. Several 

lines of evidence suggest that task-contexts can modulate the effective 

connectivity between brain regions via selective recruitment of neurons 

in synchronous ensembles ( Akam and Kullmann, 2014; Buschman et al., 

2012; Smith et al., 2019 ). Our approach is therefore limited, in that it 

does not explicate how changes in “input ” relate to changes in the effec- 

tive coupling between brain regions. Future studies may improve upon 

the current approach by further modeling how task events modulate 

effective connectivity between brain regions. Such studies could either 

directly parameterize connectivity × task interactions (as in DCM), or ex- 

tend the filtering approach to estimate time-varying (or state-varying) 

connectivity. 

6.4. Task dynamics could potentially influence statistical improvements 

The current approach serves to estimate latent changes in input to 

each brain area. In the present study we found that MINDy-based Filter- 

ing consistently improved statistical detection power across tasks. How- 

ever, there may be contexts in which brain activity ( 𝑥 ( 𝑡 ) ) is a more con- 

sistent marker of task context than input ( 𝐼( 𝑡 ) ). Such cases occur when 

different input patterns (i.e., inter-trial variability in input) lead to sim- 

ilar outcomes in terms of activity. In these cases, MINDy-based Filtering 

might actually decrease detection power, since the “input ” on each trial 

is less consistent than the temporally-delayed consequences of the input. 

Future studies might identify such cases using a wider variety of tasks. 

One area in which our approach could also be limited is in detecting 

slow neural events in which task-related activity evolves over multiple 

TRs. Since our approach acts as a pre-processing filter (i.e., doesn’t use 

task information) it is possible that it could filter out the propagation 

of very slow task-related activity in addition to task-unrelated activity. 

However, this cancellation is only expected when task-related activity 

propagates in an identical manner (has the same dynamics) as sponta- 

neous brain activity. In practice, we have found that MINDy-based Fil- 

tering improves the detection of sustained brain activity and strengthens 

brain-behavior linkages ( Section 5.8 , SI Section 7.5 ). 

6.5. Extension to other modalities 

In the current work we have leveraged recently developed models 

of human brain activity as reflected in fMRI (MINDy). In this context, 

we demonstrated that our filtering procedure significantly improved the 

statistical power and behavioral correlates of task-evoked activity. How- 

ever, we have refrained from speculating on the source of additional 

“input ” to each brain area as the fMRI timescales do not allow tracing 

the series of events (e.g., order of signaling) that led to this input. We 

have recently proposed a new framework to enable high-dimensional 

model estimation of M/EEG data ( Singh et al., 2021 ). These modalities 

have the potential to detect the sequence of neural events underlying 

a given computation. Future work may benefit from using the filtering 

technique with M/EEG models ( Singh et al., 2021 ) to further explicate 

neural mechanisms underlying cognition. 

6.6. Conclusion 

In the current work, we proposed a new technique to estimate the 

influence of external contexts (task conditions) on brain activity (in 
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Fig. 8. Comparison of signal decomposition via background-activity vs. MINDy-based Filtering. (A) Toy model of a two node network with separate inputs to each 

node. (B) Simulated timeseries. MINDy-based filtering decomposes the timeseries into the filtered “input ” (C) and the model-predicted activity based upon intrinsic 

dynamics (D). By contrast, task-regression decomposes activity into a main-effect of task estimated by GLM (E) and “background activity ” (F). 

our case fMRI). This technique forms a mathematical filter and there- 

fore functions as a preprocessing step, rather than as a direct tool for 

hypothesis testing. This property is advantageous as it allows this ap- 

proach to be used in conjunction with a variety of existing methods. 

We have demonstrated that using MINDy-based Filtering improves sta- 

tistical power ( Fig. 5 C), increases sensitivity to task-implicated regions 

( Section 5.6; Fig. 6 ), and better identifies the neural signatures of a la- 

tent cognitive construct (cognitive conflict) ( Fig. 7 A). Moreover, MINDy- 

based Filtering enhances the strength of brain-behavior reslationships 

that differentiate subjects ( Fig. 7 B and C). These improvements are not 

sensitive to motion within a reasonable range (SI Section 7.8 ). Our tech- 

nique can be easily inserted into most fMRI processing pipelines. We 

have made code available via the primary author’s GitHub to facilitate 

this process. 

7. Supplemental information 

7.1. Relationship with background-activity 

Our framework is conceptually related to that of background activ- 

ity ( Cole et al., 2021; 2019; Fair et al., 2007; Norman-Haignere et al., 

2011 ) in which brain activity during task is modeled as the superposition 

of a canonical task-evoked response and trial-to-trial variability ( “back- 

ground activity ”). In that approach, background activity is isolated by 

subtracting the task-related component as estimated during statistical 

GLM analyses, then used to estimate Functional Connectivity during 

task ( Cole et al., 2021; 2019; Fair et al., 2007; Norman-Haignere et al., 

2011 ). However, despite both approaches dividing brain activity into 

two components, our approach fundamentally differs in terms of what 

signals are considered task-related vs. intrinsic. Nondynamic approaches 

divide the observed signal into systematic task effects and zero-mean 

“noise ” (in the GLM sense) whereas dynamic frameworks consider both 

extrinsic and intrinsic contributions to how the brain evolves moment- 

to-moment. Passive downstream propagation of brain activity is pre- 

dicted by intrinsic dynamics so these indirect effects are attributable to 

intrinsic factors despite being systematic (nonzero mean). As a result, 

these features remain in conventional GLMs but are removed during 

MINDy-based Filtering. We illustrate this point in a toy-model simula- 

tion featuring two linear nodes with a single directed connection and 

time-varying input to each node ( Fig. 8 A and B). As the simulation in- 

dicates, MINDy-based Filtering extracts the timeseries of input to the 

system ( Fig. 8 C) whereas downstream effects (i.e., the activation of 𝑛 2 

due to 𝑛 1 ) are predicted based upon intrinsic dynamics (following the 

initial input; Fig. 8 D). By contrast, conventional GLM analyses do not 

separate direct and indirect processes and ascribe both features to the 

task-effect ( Fig. 8 F and G). For this reason, the background activity and 

model predictions are not equivalent. Of course, unlike this toy simula- 

tion, neural processes occur over multiple timescales, many below fMRI 

resolution. As such, the estimated “input ” actually reflects early process- 

ing and later active processing (as opposed to direct input from sensory 

nerves) and model-predictions reflect passive propagation of these sig- 

nals over longer timescales. In our data, model predictions are more 

similar to the original timeseries than to the estimated “background ac- 

tivity ”. Thus, although our approach has some conceptual relationships 

with the task-regression approaches to estimating background activity, 

these approaches are not equivalent and the intrinsic dynamics are not 

synonymous with background activity. 

7.2. Sensitivity and influences of MINDy goodness ‐of ‐fit 

We found that model prediction accuracy was consistently lower 

for some subjects across all scan-types, including the resting-state data 

to which the model was trained. This observation could reflect either 

model mis-estimation at rest or a general inability to predict that sub- 

ject’s data even with a properly optimized MINDy model (due to poor 

signal quality or deviations from the MINDy framework). To distinguish 

between these possibilities, we compared cross-subject prediction accu- 

racy: the degree to which models trained to one subject’s resting-state 

predict another subject’s brain activity (rest or task). While cross-subject 

predictions were less accurate than within-subject (as expected), we 

found that the variation due to training-subject was far less than that 

due to testing-subject. Moreover, many subjects with poor model fits 

predicted other subject’s data better than their own. These results indi- 

cate that differences in model accuracy are primarily due to properties 

of the poor-fitting subject’s data rather than the model-fitting procedure 

per se. 

We also tested whether our filtering approach is sensitive to model 

goodness-of-fit. To test this influence, we divided subjects into groups 

based upon median goodness-of-fit (either whole-brain or DMCC34 

parcels) as measured during rest and during task (separately for each 

task). Analyses compared the mean T -value across parcels-of-interest 

for the two groups with pairwise parcels-of-interest defined as previ- 

ously (at least one group passes 𝑝 < 0 . 001 threshold). Null-distributions 

(10,000) were generated by randomly assigning subjects to two equal- 
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Table 1 

Attributes of the DMCC34 parcels. Indices are for the Schaefer 400-region, 7-network parcella- 

tion Schaefer et al. (2017) . Coordinates (X,Y,Z) refer to MNI centroids. 

Parcel number Hemisphere Network ROI X Y Z 

22 Left Visual 22 − 19 − 65 7 

77 Left Dorsal Attention Post_9 − 33 − 46 41 

78 Left Dorsal Attention Post_10 − 29 − 58 50 

86 Left Dorsal Attention FEF_1 − 40 − 3 51 

87 Left Dorsal Attention FEF_2 − 25 − 1 55 

91 Left Dorsal Attention PrCv_2 − 50 3 38 

93 Left Salience/Ventral Attention ParOper_2 − 58 − 44 27 

99 Left Salience/Ventral Attention FrOperIns_3 − 33 25 − 1 
101 Left Salience/Ventral Attention FrOperIns_5 − 33 19 8 

103 Left Salience/Ventral Attention FrOperIns_7 − 43 12 2 

105 Left Salience/Ventral Attention FrOperIns_9 − 52 9 13 

107 Left Salience/Ventral Attention Med_1 − 6 22 31 

110 Left Salience/Ventral Attention Med_4 − 5 9 48 

127 Left Control Par_1 − 29 − 74 42 

130 Left Control Par_4 − 35 − 62 48 

139 Left Control PFCl_5 − 42 38 22 

140 Left Control PFCl_6 − 45 20 27 

144 Left Control pCun_1 − 9 − 77 45 

148 Left Control PFCmp_1 − 4 28 47 

172 Left Default PFC_7 − 48 28 0 

185 Left Default PFC_10 − 53 19 11 

185 Left Default PFC_20 − 42 7 48 

189 Left Default PFC_24 − 6 10 65 

219 Right Visual 19 9 − 74 9 

301 Right Salience/Ventral Attention PrC_1 51 3 41 

303 Right Salience/Ventral Attention FrOperIns_2 41 8 − 3 
306 Right Salience/Ventral Attention FrOperIns_5 37 23 5 

314 Right Salience/Ventral Attention Med_4 6 11 58 

340 Right Control PFCv_1 34 21 − 8 
346 Right Control PFCl_6 50 30 18 

347 Right Control PFCl_7 48 18 23 

349 Right Control PFCl_9 47 29 28 

350 Right Control PFCl_10 39 11 34 

353 Right Control PFCl_13 43 7 51 

sized groups without replacement. We did not find a significant differ- 

ence in detection power for either task-combined data or any individual 

tasks using either resting-state or task goodness-of-fit ( 2 × 5 design). We 

conclude that improvements due to MINDy-based Filtering are not de- 

pendent upon goodness-of-fit within a reasonable range. 

7.3. Influence of individualized brain modeling 

The primary restriction in applying our approach is the use of in- 

dividualized brain models built from resting-state data. Acquiring suf- 

ficient data (we recommend ≥ 15 min) is time-consuming and may be 

particularly burdensome in special populations, such as children. There- 

fore, an important question for practical application is whether individ- 

ualized brain models, as opposed to a single model, are necessary. This 

question is also theoretically interesting as it pertains to how individ- 

ual differences emerge: via slow propagation along intrinsic dynamics 

or via the fast task “input ” (dynamics below the fMRI TR). We address 

these questions in two sets of analyses. 

In the first set of analyses, we tested whether using a common 

MINDy filter, shared among subjects, is at least as powerful as indi- 

vidualized brain models. We defined a common MINDy filter by av- 

eraging the predictions of each subject’s MINDy model. We note that 

this procedure is not the same as using a common brain model as the 

parameters interact nonlinearly and covary. Hence the “average fil- 

ter ” cannot necessarily be inverted onto a single, representative MINDy 

brain model. Detection power using a common filter only slightly var- 

ied from using individualized models. For three tasks, the group-level 

filter performed significantly worse in detecting task events over the 

DMCC34 parcels (all but Cued-TS; max 𝑝 = 0 . 01 ) and for two tasks 

using the whole-brain (AX-CPT: 𝑡 (175) = 8 . 39 , 𝑝 = 1 . 6 𝐸 − 14 ; Stroop: 

𝑡 (244) = 5 . 49 , 𝑝 = 1 . 0 𝐸 − 7 ) with differences in Cued-TS and Sternberg 

insignificant. The combined detection power across tasks was significant 

for events (whole-brain: 𝑡 (493) = 9 . 15 , 𝑝 = 1 . 6 𝐸 − 18 ; DMCC34: 𝑡 (135) = 

2 . 6 , 𝑝 = 0 . 01 ). However, individualized models only improved sustained 

effects over the DMCC34 parcel-set ( 𝑡 (135) = 3 . 52 , 𝑝 = 0 . 006 ) and not for 

the whole-brain analysis ( 𝑡 (293) = −1 . 1 , 𝑝 = 0 . 28 ). Interestingly, we also 

found little qualitative difference in terms of brain-behavior correlations 

(n.s.), suggesting that improvements reported in the main text are not 

dependent upon individual differences in resting-state. 

We also repeated these analyses using random permutations of rest- 

subject and task-subject without replacement to test whether arbitrary 

assignments perform as well. Since our primary analyses concern group- 

level effects, using a group-average filter decreases noise and adds a 

further linkage between subjects. Using random pairings, as opposed to 

group-averages, thus provides a fairer comparison for identifying the 

influence of individual differences. Significance testing was performed 

using permutation tests (50,000 pairings of training/testing subject). 

As expected, random pairings performed worse than the group-average 

filter. We again found significantly worse detection power in event- 

related analyses compared to individualized models (average across 

tasks: 𝑝 < 0 . 001 ; Cohen’s D = 6.5; 50,000 permutations), but the abso- 

lute difference due to subject pairing was small ( Δ𝑡 = 0 . 22 ± . 03 ) and the 

benefits over conventional analyses remained. We conclude that while 

individualized models do benefit power in detecting events, this effect 

is small relative the overall benefits of MINDy-based Filtering. We quan- 

tified the proportion of improvements due to individualized modeling 

as: 

𝔼 [ 𝑇 𝐼𝑛𝑑𝑖𝑣 − 𝑇 𝑃𝑒𝑟𝑚 ] 
𝔼 [ 𝑇 𝑃𝑒𝑟𝑚 − 𝑇 𝑂𝑟𝑖𝑔 ] 

(26) 

with 𝑇 𝐼𝑛𝑑𝑖𝑣 indicating the group- T of significant parcels for individual- 

ized MINDy and 𝑇 𝑝𝑒𝑟𝑚 indicating the corresponding values for random 

pairings of training (rest) and testing (task) subjects. Expectations are 
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Fig. 9. MINDy-based Filtering generally improves the detection of sustained effects. Unlike event-related effects, we permitted bidirectional sustained effects, hence 

we compared the absolute magnitude of group- T statistics. The definition of significance was likewise 2-tailed. (A) Pair-wise difference in detection power (group 

T ) for the original pipeline and MINDy-based Filtering. (B) Omnibus (task-collapsed) scatterplot of parcel significance using the original pipeline vs. MINDy-based 

Filtering for each task. Yellow dots indicate significant parcels (in terms of absolute sustained effect) which also had increased effect sizes from MINDy-based Filtering, 

while blue dots denote significant parcels whose effect sizes were larger with conventional analyses. Teal dots denote parcels which did not exhibit a significant 

control-demand effect for either method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

taken over task-relevent parcels (separately defined as in Section 5.2 for 

each permutation) and rest-task subject pairings. Results indicate that 

individualized models increased benefits in the cognitive-control effect 

by 32%, − 1.1%, 16.5%, and 13.2% for AX-CPT, Cued-TS, Sternberg, and 

Stroop, respectively. The omnibus change (collapsed across tasks) was 

a 25.7% increase in benefits due to individualized models (i.e., most of 

the benefits for MINDy vs. orig remained). Thus, from a practial perspec- 

tive, we believe that MINDy-based Filters constructed without individ- 

ualized models can still significantly improve analyses above conven- 

tional methods, although further study is needed. Resultantly, the use 

of a single MINDy model (e.g., built from all subjects), as opposed to in- 

dividualized models, may ease the requirements of quality resting-state 

data for each subject. 

7.4. Influence of deconvolution parameter 

We tested whether choice of the NSR (noise-signal-ratio) hyperpa- 

rameter in Wiener deconvolution impacts results. This parameter dic- 

tates the degree of temporal filtering during deconvolution by regular- 

izing the frequency-domain contributions. Larger NSR values lead to 

more filtering. We tested the influence of this parameter by repeating 

analyses with NSR chosen as 0.02, 0.005, 0.002 (main-text), or 0.0005. 

Thus, we tested NSR values ranging over a factor of 40. Results were 

highly similar for different values of the NSR parameters. Collapsing 

over subjects, parcels, and probe TRs, the high-low coefficient estimates 

correlated, on average, 𝑟 = 0 . 99 across tasks and NSR combinations. Co- 

efficients for the most dissimilar NSR parameters (0.02 and 0.0005) cor- 

related between 𝑟 = 0 . 96 to 𝑟 = 0 . 97 depending upon task. For compar- 

ison, the average correlation over tasks for MINDy vs. the original or 

pre-regressed pipelines was 𝑟 = 0 . 73 and 𝑟 = 0 . 71 , respectively. All cases 

also preserved the benefits of MINDy-based Filtering. We conclude that, 

within a reasonable range, variations in choosing the Wiener NSR pa- 

rameter do not strongly influence results. 

7.5. Detection of sustained effects 

MINDy also improved detection of sustained effects for the Stern- 

berg and Stroop tasks relative to the original and pre-regressed pipelines 

(max 𝑝 = 0 . 0004 ; SI Fig. 9 A). Trend-level improvements were observed 

in Cued-TS relative the pre-regressed pipeline ( 𝑡 (51) = 2 . 1 , 𝑝 = 0 . 04 ), but 

not relative the original pipeline ( 𝑡 (55) = 1 . 7 , 𝑝 = 0 . 10 ). However, sus- 

tained effects detected by MINDy did not differ relative the original or 

pre-regressed pipelines for the AX-CPT ( 𝑡 (103) = −1 . 1 , 𝑝 = 0 . 29 , 𝑡 (105) = 

−1 . 5 , 𝑝 = 0 . 14 , respectively). Combined across tasks, MINDy increased 

detection of sustained events relative to both the original ( 𝑡 (355) = 

5 . 7 , 𝑝 = 2 𝐸 − 8 ; SI Fig. 9 B) and pre-regressed pipelines ( 𝑡 (353) = 6 . 2 , 𝑝 = 

1 . 3 𝐸 − 9 ) as well as the autoregressive models ( 𝑡 (300) = 14 . 9 , 𝑝 ≈
0 , 𝑡 (292) = 17 . 3 , 𝑝 ≈ 0 for global and local AR models, respectively; SI 

Fig. 10 B). Thus, the proposed technique generally increased statisti- 

cal power in detecting sustained effects. MINDy-based Filtering also in- 

creased the cross-task generalizability of group-average sustained effects 

(MINDy 𝐼𝐶𝐶 = 0 . 74 ± 0 . 04 , all other pipelines < 0 . 65 , 𝑝 < 0 . 001 , 5000 

bootstraps). However, it’s important to note that sustained effects are 

not “construct-pure ” and their distribution was highly skewed (strong 

visual component) so we urge caution in interpreting cross-task gener- 

alizability of sustained responses (although see Section 5.8 for its rele- 

vance to construct-specific behavior). 

7.6. Sensitivity of sustained effects 

As with event-related analyses, we examined whether improvements 

in the detection of sustained effects were limited to task-implicated re- 

gions. As before, we considered bidirectional effects for sustained anal- 

yses (i.e. parcels with significant increases or decreases in sustained 

activity). For this reason, we slightly modified Eq. (25) to model im- 

provements in terms of magnitude rather than a linear main effect 

( 𝑌 again represents MINDy group- T , while 𝑋 represents comparison 

pipeline group- T ): 

𝑌 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 = 𝛽𝑡𝑎𝑠𝑘 + 𝛽0 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 + 𝑆𝑖𝑔 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ( 𝛽1 𝑠𝑖𝑔𝑛 ( 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ) 

+ 𝛽2 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ) + 𝜖𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 . (27) 

Note that the coefficient 𝛽1 is now multiplied sign ( 𝑋 task , Parc ) . Re- 

sults for sustained analysis mirrored those of the event-related analy- 

sis. As with event-related analyses, the MINDy-based Filtering differ- 

entially increased effect sizes over task-implicated parcels when com- 

pared to the original, task-regressed, and global/local AR pipelines ( 𝛽1 = 

0 . 54 , 0 . 68 , 1 . 00 , 1 . 03 , respectively; max 𝑝 = 1 . 6 𝐸 − 8 ). As with event- 

related analysis, there was a slight trend of differential magnification vs. 

the original analysis ( 𝛽2 = 0 . 05 , 𝑡 (1669) = 2 . 0 , 𝑝 = 0 . 048 ) but not vs. pre- 

regressed ( 𝛽2 = 0 . 005 , 𝑡 (1669) = 0 . 22 ). We also observed a negative slope 

of 𝛽2 , indicating diminishing returns (the opposite of differential magni- 

fication) relative to the global ( 𝛽2 = −0 . 13 , 𝑡 (1669) = −5 . 4 , 𝑝 = 7 . 5 𝐸 − 8 ) 
and local ( 𝛽2 = −0 . 077 , 𝑡 (1669) = −2 . 89 , 𝑝 = 0 . 0039 ) AR models. Thus, as 

with events, improvements under MINDy largely manifest a main-effect 
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Fig. 10. MINDy-based Filtering provides greater detection power using the full model over autoregressive (AR) reduced models which do not model connectivity. 

(A) Omnibus (task-collapsed) scatterplot of parcel-wise event-related effects (high-low cognitive control demand contrast). Note that the improvements are smaller 

than those relative the original pipeline, indicating that some benefits in event-related detection are due to autoregressive filtering. (B) Scatterplots of parcel-wise 

sustained effects when filtering with the local AR model vs. full MINDy model for each task. Note that AR pipelines perform worse than the original pipeline (larger 

MINDy improvement) for sustained effects. Yellow dots indicate significant parcels (in terms of the control-demand effect) which also had increased effect sizes from 

MINDy-based Filtering, while blue dots denote significant parcels whose effect sizes were larger with conventional analyses. Teal dots denote parcels which did not 

exhibit a significant control-demand effect for either method. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 11. Predicting individual differences in behavior using brain activity (averaged over DMCC34). All measures are z-scored within task ×session. In the baseline 

session, individual differences in RT (averaged over task) are correlated with event-related brain activity, but not sustained activity for original and MINDy pipelines 

(A,B). By contrast, accuracy is predicted by sustained activity (B) but not by event-related activity (A,B). (C) Individual differences in event-related activity better 

predict task RT (averaged over session) after MINDy-based Filtering relative the original and pre-regressed pipelines. (D) Likewise, predictions of baseline-session 

accuracy using sustained activity (averaged over task) also increased. Panels C, D differ from the main text Fig. 7 B,C by additionally including results for the 

pre-regressed pipeline. 

of parcel significance (i.e. increased categorical distinction between 

task-implicated and non-implicated parcels) as opposed to further dif- 

ferentiating among task-implicated parcels. 

7.7. Comparison with reduced models 

We compared estimation of inputs using MINDy models to analogous 

estimates with autoregressive forms which were either subject-specific 

(but not parcel-specific) or which were specific to subject and parcel 

(see Methods Section 3.10 ). Since the MINDy model also features an 

autoregressive term (the “Decay ”), these alternative models serve as re- 

duced special cases which don’t include the effects of inter-regional sig- 

naling (connectivity). As such, improvements of the full MINDy model 

over these alternative (autoregressive) models indicate the contribution 

of modeling connectivity, as opposed to simply accounting for purely 

local dynamics. Results indicated that group-level detection power for 

MINDy-based Filtering was greater than both the homogeneous/global 

and heterogeneous/local autoregressive comparison models. MINDy in- 

creased detection power over both autoregressive models in terms of 

event-related effects over the DMCC34 parcels (max 𝑝 = 0 . 0003 ), and 

for (whole brain) sustained effects (max 𝑝 = 2 𝐸 − 6 ; Fig. 9 A). Whole 

brain analyses also indicated improved detection power for events in all 

tasks relative the global model (max 𝑝 = 0 . 02 ) while all tasks other than 

Stroop (Stroop 𝑡 (253) = 1 . 22 , 𝑝 = 0 . 22 ; other tasks: max 𝑝 = 7 . 2 𝐸 − 6 ) 
were improved relative the local model (SI Fig. 10 A and B). There 

was a main effect of regional significance during multilevel modeling 

(i.e., improvement selectivity; see Section 5.6 ) for MINDy-based Filter- 

ing relative autoregressive comparison models (local: 𝑡 (1669) = 3 . 87 , 𝑝 = 

1 . 1 𝐸 − 4 , global: 𝑡 (1669) = 4 . 15 , 𝑝 = 3 . 5 𝐸 − 5 ). However, MINDy-based 

Filtering did not significantly magnify effect sizes over AR pipelines 

( 𝑝 = 0 . 16 , 𝑝 = 0 . 21 for global and local, respectively). Thus, the model- 

ing of connectivity in MINDy primarily serves to further differentiate 

between task-implicated and non-implicated parcels as opposed to exac- 

erbating differences among task-implicated parcels. MINDy-based filter- 

ing also improved the cross-task generalizability of cognitive-control ef- 

fects relative autoregressive controls at both the group-level (local ICC = 

0 . 50 ± 0 . 03 , global ICC = 0 . 52 ± 0 . 03 vs. MINDy-based ICC = 0 . 60 ± 0 . 03 , 
𝑝 < 0 . 001 , 5000 bootstraps). 
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7.8. Sensitivity to motion 

Lastly, we compared the sensitivity of approaches to motion artifact. 

For each task and scanning session we computed three motion statistics: 

the number of frames censored due to passing a critical value of frame- 

wise displacement, the median framewise displacement and the median 

DVARS statistic ( Power et al., 2012 ) for each task run and averaged over 

runs. We then used resampling to test the relationship between each 

motion variable and the group effect-size of the high-vs.-low conflict 

contrast and sustained effect for each task. In brief, we randomly drew 

5000 samples of 30 subjects each without replacement. We computed 

group-level statistics for motion and the cognitive control contrast and 

then tested whether the average motion or variability of motion (inter- 

subject) of a sample predicted the sample’s group-effect (one-sample 

t-scores averaged over the 34 parcels). We also used the same technique 

for predicting the difference between methods (i.e. do improvements 

under our approach require low motion?). Results did not indicate a 

significant effect of motion for the current dataset and subject pool. The 

association (correlation) between motion and the difference between 

methods (MINDy versus original averaged over tasks) was insignificant 

for event-related analyses and did not display a consistent sign (propor- 

tion of frames censored: 𝑟 = 0 . 033 , FD: 𝑟 = −0 . 078 , DVARS: 𝑟 = −0 . 066 ). 
Likewise, we did not observe differential sensitivity to motion in the 

sustained effects (frames censored: 𝑟 = 0 . 008 , FD: 𝑟 = −0 . 011 , DVARS: 

𝑟 = 0 . 01 ). Thus, the degree to which MINDy-based Filtering improves 

upon conventional methods is not influenced by motion within reason- 

able bounds. 
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