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a b s t r a c t 

The importance of motion correction when processing resting state functional magnetic resonance imaging (rs- 
fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude 
subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration arti- 
fact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data 
retained after frame censoring (e.g., “scrubbing ”) and more reliable correlation values. Due to the unique phys- 
iological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods 
to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect 
true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude 
head movements than adults; thus, the presence and significance of comparable respiratory artifact and the 
subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the 
consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers 
across two independent cohorts (aged 8–24 months) analyzed using different pipelines. We further demonstrate 
how removing this artifact using an age-specific notch filter allows for both improved data quality and data 
retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory- 
driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as 
a mechanism to optimize the accuracy of measured results in this population. 

1. Introduction 

Over the last decade, utilization of resting-state functional mag- 
netic resonance imaging (rs-fMRI) to study infant and toddler co- 
horts has shown increasing promise for understanding trajectories 
of typical and aberrant functional brain development ( Azhari et al., 
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2020 ; Graham et al., 2015 ; Zhang et al., 2019 ; Eyre et al., 2021 ; 
Lin et al., 2008 .). In this population, measures of spontaneous, infra- 
slow ( < 0.1 Hz) fluctuations in the blood oxygen level-dependent (BOLD) 
signal have been analyzed to investigate the earliest forms of resting- 
state networks (RSNs) and provide insight into the functional architec- 
ture of the developing brain ( Eyre et al., 2021 ; Eggebrecht et al., 2017 ; 
Smyser et al., 2016 ; Smyser 2016 ; Toulmin et al., 2015 ; Doria et al., 
2010 ; Smyser et al., 2010 ; Gao et al., 2009 ; Fransson et al., 2007 ). 
Understanding relationships within and across these networks holds 
great promise for characterizing typical functional brain development 

https://doi.org/10.1016/j.neuroimage.2021.118838 . 
Received 15 June 2021; Received in revised form 30 November 2021; Accepted 18 December 2021 
Available online 20 December 2021. 
1053-8119/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2021.118838
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.118838&domain=pdf
mailto:sydney.kaplan@wustl.edu
https://doi.org/10.1016/j.neuroimage.2021.118838
http://creativecommons.org/licenses/by/4.0/


S. Kaplan, D. Meyer, O. Miranda-Dominguez et al. NeuroImage 247 (2022) 118838 

( Grayson and Fair, 2017 ), as well as the deleterious effects of neurolog- 
ical and neurodevelopmental disorders, including epilepsy ( Liu et al., 
2009 ), autism ( Redcay et al., 2013 ; Feczko et al., 2018 ; Ray et al., 
2014 ), and attention deficit hyperactivity disorder ( Posner et al., 2014 ; 
Mills et al., 2018 ; Cary et al., 2017 ). 

Beginning with Biswal’s seminal report ( Biswal et al., 1995 ), adult 
rs-fMRI processing pipelines have undergone substantive methodologi- 
cal development focused on refinement and optimization ( Biswal et al., 
2010 ; Lee et al., 2013 ; Luna et al., 2010 ; Mather et al., 2013 ; 
Matthews et al., 2006 ; Uddin et al., 2010 ), resulting in highly sophis- 
ticated modeling techniques and analysis methods. Across these ap- 
proaches, basic preprocessing involves steps including correction for 
slice-acquisition time delays and intensity differences, regression of 
head motion and tissue nuisance regressors, spatial smoothing, low-pass 
filtering to remove non-neuronal signal, and atlas registration ( Lee et al., 
2013 ). Of these elements, approaches for accurately and effectively 
identifying and correcting for the effects of subject motion remain an 
area of ongoing investigation, and its importance for rs-fMRI analyses 
has now been well-established ( Power et al., 2012 ; Satterthwaite et al., 
2012 ; Van Dijk et al., 2012 ). Critically, subject motion negatively im- 
pacts functional connectivity measurements, both by decreasing the 
signal-to-noise ratio (SNR) and by biasing connection strength relative 
to the physical distance of connections ( Ciric et al., 2017 ). The associ- 
ated downstream effects can result in inaccurate interpretations of rs- 
fMRI results and brain-behavior relationships. 

Recent advances in MRI scanning acquisition methods, namely si- 
multaneous multi-slice (SMS) imaging have revealed respiration as an- 
other source of problematic motion in both multiband (MB) and single- 
band adult and adolescent datasets ( Fair et al., 2020 ; Gratton et al., 
2020 ; Feinberg and Yacoub, 2012 ; Moeller et al., 2010 ; U ğurbil et al., 
2013 ; Xu et al., 2013 ). While current motion correction techniques tar- 
get the removal of all motion artifact, they fail to distinguish pertur- 
bations due to respiration that, unlike spontaneous isolated head move- 
ments, do not result in BOLD signal disruption. Consequently, frame mo- 
tion estimates targeted for removal may include a residual respiratory 
component that should be considered independently, often resulting in 
unnecessarily reduced data retention ( Power et al., 2013 ). In recent 
studies, Fair et al., and Gratton et al., developed a technique to iden- 
tify and correct for respiratory motion in BOLD data using a band-stop 
filter which adequately corrects for respiratory-induced magnetic field 
perturbations. In adults and adolescents, analyzing the framewise dis- 
placement (FD; a metric measuring head motion distance from frame-to- 
frame) trace of MB data reveals a high-intensity frequency component in 
the phase encoding direction of data collection indicative of respiratory 
artifact. Once identified, this spurious head motion can be removed by 
applying a notch filter selected based upon the frequency of respiration. 
This method yields a more representative motion trace, allowing for 
increased frame retention by targeting only perturbations driven by iso- 
lated, spontaneous head movements for final frame removal ( Fair et al., 
2020 ). As a result, the remaining BOLD data contain less noise and are 
of higher quality. 

Infant and toddler rs-fMRI processing pipelines provide unique 
challenges and must effectively account for several technical factors 
due to the rapidly changing environment of the developing brain 
( Turesky et al., 2021 ; Raschle et al., 2012 ). Key differences include vari- 
ations in the size, shape, and hemodynamic response of the brain, as well 
as unique motion and sleep patterns ( Cusack et al., 2018 ). Movement is 
of particular interest because, unlike in adult studies, it is typically im- 
practical to regulate the movement of young children during data collec- 
tion, especially during natural sleep. Motion patterns in sleeping infants 
and toddlers differ from those observed in alert adults, often limiting 
the ability to acquire large quantities of low motion rs-fMRI data. Thus, 
it is important to understand and develop motion correction pipelines 

that address these unique motion patterns inherent to this population. 
It was previously uncommon to correct for respiratory motion in in- 
fant and toddler processing pipelines. This was in part due to the fact 
that younger individuals (from 6 months to 11 years) breathe at faster 
rates than adults (20–30 bpm versus 12–18 bpm) ( Kliegman and Nel- 
son, 2011 ), and until the arrival of SMS imaging, these high frequency 
changes were aliased to a lower frequency making them indiscernible 
in head motion estimates ( Fair et al., 2020 ). Further, due to differences 
in body size and habitus, these subjects’ head movements are charac- 
terized by lower amplitude head and trunk displacement during respi- 
ration, which were assumed to have little to no effect on the B0 field 
of the scanner. For these reasons, the necessity and utility of a filter- 
ing approach for respiratory artifact similar to that employed by Fair 
and colleagues in adults and adolescents remains unexplored in this age 
range. 

In this report, we demonstrate the effects of respiratory-driven move- 
ment artifact in infant and toddler rs-fMRI data across two independent 
cohorts analyzed using independent analysis pipelines. We first confirm 

the presence of respiratory artifact in both cohorts, illustrating its com- 
parable effects as an important source of colored noise in data from both 
groups. We then demonstrate respiratory artifact-driven filtering of the 
FD trace as a critical mechanism to improve rs-fMRI data retention and 
quality. Finally, we test the utility of customizing filters by age group to 
achieve optimal data quality across toddler rs-fMRI studies. 

2. Materials and methods 

2.1. Data Collection 

2.1.1. Baby Connectome project (BCP) 

MRI data from 141 scanning sessions collected from 96 infants 
and toddlers aged 8–24 months (age = 14.3 ± 4.2 months, female 
N = 46, white N = 75) as part of the Baby Connectome Project (BCP; 
Howell et al., 2019 ) were used in these analyses. The BCP study was ap- 
proved by the University of Minnesota and University of North Carolina 
Institutional Review Boards and informed consent was acquired from 

the parents of all participants. This project aims to understand brain 
development through structural and functional connectivity during the 
first 5 years of life. 

Participants were scanned on a Siemens 3T Prisma scanner with 
a 32-channel head coil. T1-weighted (TR = 2400 ms, TE = 2.22 ms, 
0.8 mm isotropic), T2-weighted (TR = 3200 ms, TE = 563 ms, 0.8 mm 

isotropic), spin echo fieldmaps (SEFM) (TR = 8000 ms, TE = 66 ms, 
2 mm isotropic, MB = 1), and rs-fMRI data were collected. rs-fMRI data 
(TR = 800 ms, TE = 37 ms, 2 mm isotropic, MB = 8) were collected in 
both anterior →posterior (AP) and posterior →anterior (PA) phase encod- 
ing directions. Each BOLD run consisted of 420 frames (5.6 min) with a 
maximum of 4 runs (22.4 min) collected per scanning session. A subset 
of early scans ( N = 60) were collected with a TR = 720 ms; all analy- 
ses were performed with TRs separated and combined. All scans were 
performed during natural sleep without the use of sedating medications. 

2.1.2. Early life adversity, biological embedding (eLABE) 

A total of 36 24-month-old toddlers (age = 25.9 ± 2.8, female 
N = 15, white N = 7) from the Early Life Adversity, Biological Embed- 
ding (eLABE) study were used in this analysis. This study was approved 
by the Washington University Institutional Review Board. Informed con- 
sent was obtained from the parents of all participants. This project ex- 
plores the relationship between maternal experiences during pregnancy 
and brain and neurodevelopment outcomes during early childhood. Par- 
ticipants were scanned on a Siemens 3T Prisma with a 64-channel head 
coil using an identical acquisition protocol to the BCP cohort (including 
BOLD TR = 800 ms). BOLD runs were collected in the AP direction with 
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a maximum of 8 runs (44.8 min) per scanning session. As in the BCP 
cohort, all scans were performed during natural sleep without the use 
of sedating medications. 

2.2. Data analysis 

2.2.1. fMRI analysis 

2.2.1.1. Functional data pre-processing - BCP. Data processing steps from 

the BCP cohort resembled that of the Adolescent Brain Cognitive Devel- 
opment (ABCD) cohort as described in Feczko et al., 2021 . The struc- 
tural T1-weighted image is processed through FreeSurfer (version 6.0; 
Fischl, 2012 ), providing a brainmask. Additionally, the T2-weighted im- 
age was used to better inform FreeSurfer segmentations. This refined 
brainmask was registered to an MNI template using the ANTs com- 
pressible fluid deformation algorithm ( Fonov et al., 2011 ). Using this 
transformation, the rs-fMRI timecourses were also registered to the MNI 
template. Standard preprocessing steps were first performed beginning 
with demeaning/detrending across time. Next, denoising is performed 
using a general linear model. Denoising regressors include signal and 
motion variables. Signal regressors include mean timeseries, white mat- 
ter, cerebrospinal fluid (CSF), and global signal based off FreeSurfer seg- 
mentations. Motion regressors include volume-based translational and 
rotational components and their 24P Volterra expansion (Friston et al., 
1996). Bandpass filtering was then performed using a second order But- 
terworth filter in the range of 0.008 to 0.09 Hz. 

Motion correction then was performed for both standard preprocess- 
ing and for downstream construction of the parcellated timeseries. FD 

was defined as the sum of absolute values of the differences in motion 
estimates between each frame. Frames were censored during demean- 
ing/detrending if their FD value exceeded 0.2 mm. Consequently, the 
denoised beta values only included the remaining low motion frames. To 
avoid aliasing caused by missing timepoints during the bandpass filter- 
ing step of preprocessing, interpolation is used to replace missing frames 
and residuals are pulled from the denoising general linear model. Fur- 
ther, when extracting timeseries data for analysis, only data with FD 

less than 0.2 mm was used. T1 -weighted, T2 -weighted, and BOLD im- 
ages were visually inspected for quality by experienced raters (at least 2 
independent raters per image). Sessions with less than 75% aggregated 
passing rate on either anatomical or functional images were excluded. 

2.2.2. Functional data pre-processing - eLABE 

Data were processed through a standard toddler EPI 
(BOLD) preprocessing pipeline using the 4dfp tool suite 
(ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/; Shulman et al., 
2010 ) to remove non-neuronal variance. Functional data were first 
slice timing corrected and debanded to correct for asynchronous slice 
time shifts and systemic interleaved intensity differences between 
even and odd slice acquisitions according to the methods described in 
Power et al., 2012 . Inter-volume motion was corrected using 4dfp’s 
cross_realiagn3d_4dfp, and bias field correction was performed using 
FSL tools ( Jenkinson et al., 2012 ). Additionally, readout distortion 
correction was estimated using FSL’s topup on each participant’s 
individual SEFM, and applied to the BOLD data using applytopup. 
Movement analysis was performed using rigid body motion correction 
to correct the timeseries for head motion within runs. T1 -weighted MRI 
images were registered and resampled to an age-specific atlas target. 
This volumetric timeseries was then registered to a representative adult 
atlas target in Talairach space (711–2B). The first frame of the rs-fMRI 
timeseries was registered to this corrected T1 -weighted image through 
affine transformation and combined with the transformation to atlas 
space to result in a timeseries of 3 mm isotropic voxels. Normalization 
was performed to scale the whole brain mode intensity to 1000 using 
one constant for each rs-fMRI run ( Smyser et al., 2010 ). The regis- 
tration of the T1 -weighted image, atlas target, and rs-fMRI timeseries 
were manually inspected by experienced raters to ensure accuracy of 
individual processing result. 

Additional standard functional processing steps were performed. 
Frame censoring was performed, where only data with FD less than 
0.2 mm were used. Nuisance waveforms were regressed out of the time- 
series including retrospective motion correction from the 24-Friston pa- 
rameters, gray matter global signal, and regions of non-interest and their 
first derivative (white matter, ventricular, and extra-axial CSF). The data 
were then bandpass filtered in the range of 0.005 to 0.1 Hz to eliminate 
non-BOLD frequencies, and spatially smoothed. 

2.2.3. Calculation of framewise displacement (FD) trace 

Movement analysis performed during rigid body motion correction 
allowed for tracking of head position and motion across all volumes 
across both data sets. This involved a 6-parameter transformation, track- 
ing translational displacements along the X, Y, and Z axes, and rotational 
displacements across these three planes (pitch, yaw, and roll). Instanta- 
neous frame displacement was defined as the sum of absolute values of 
the differences between frame-to-frame changes of these 6 parameters. 

2.2.4. Power Spectra of head motion estimates 

In order to determine if the respiratory-driven head motion artifact 
was present in this age group, we used the approach described in Fair, 
et al., to visualize the time traces of the movement parameters in the 
frequency domain to reveal high intensity frequency artifacts indicative 
of respiration rate. The individual subject frequency spectra were an- 
alyzed to inform the central peak and notch size for band-stop filters 
under consideration. Specifically, the median high intensity component 
for each subject was used to inform the group cutoff frequencies. For 
the BCP data, this analysis was completed for sessions with TR = 800 ms 
and TR = 720 ms separately (see Supplemental Information (SI) “BCP TR 

Replication ” SI Fig. 1 ). Filtering was applied in Matlab using the iirnotch 
(BCP) and butter (eLABE) functions based on institutional availability. 

2.2.5. Determining Filter cutoffs 

To determine the appropriate notch filter cutoffs for each cohort, 
first the individual median high intensity components were identified. 
From this, the median value across participants determined the central 
cutoff frequency and the second and third quartiles set the bandwidth 
for each cohort independently. Given the stability of respiratory rate 
from 1 to 11 years ( Kliegman and Nelson, 2011 ), frequency cutoffs for 
the BCP cohort were calculated by combining all ages. 

2.2.6. Evaluating functional connectivity (FC) estimates 

To obtain the fc values for regions throughout the brain, a pairwise 
correlation between the average BOLD timeseries within a standard- 
ized set of 333 cortical parcels ( Gordon et al., 2016 ) was performed. 
These values were arranged into a connectivity matrix based upon age- 
specific RSN assignments that were determined using previously pub- 
lished methods ( Wheelock et al., 2019 ; Eggebrecht et al., 2017 ). Briefly, 
the pairwise fc data from the 94 BCP subjects were averaged, produc- 
ing a single 333 ×333 correlation matrix. The averaged connectome 
across BCP subjects was thresholded and binarized across a range of 
edge density thresholds (1% to 10% sparsity) and ROIs were assigned to 
functional modules using the Infomap community detection algorithm 

( Rosvall and Bergstrom, 2008 ). To obtain a general measure of RSN 

connectivity, the average correlation value of all parcels within and/or 
between networks was calculated. A connectivity matrix was created for 
each RSN using timeseries data from both before and after application 
of the respiratory notch filter. A paired t -test was performed for both 
the full connectivity matrix at the parcel level, as well as for each net- 
work average cell in the matrix to quantify improvement of fc estimate 
magnitude after application of the respiratory filter. 

To further assess the effect of filtered FD on functional connectiv- 
ity, a split-half protocol was implemented. Here, the BOLD runs for an 
individual subject were split into the first and second half of the total 
usable data defined at each FD threshold, thus each matrix consisted of 
equal amounts of data. For the BCP data, each half was made up of one 
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AP and one PA run. Connectivity matrices were calculated for each half, 
and spatially correlated with one another across various FD thresholds. 
This approach was repeated for data with and without application of the 
respiratory FD filter to demonstrate how filtering increases or decreases 
split-half reliability across BOLD runs. 

3. Results 

3.1. Presence of respiratory artifact in infants and toddlers 

Power spectra plots demonstrating the frequency representation of 
the head motion estimates are presented in Fig. 1 for both cohorts. In 
these results, a spike in power at the respiratory rate of toddlers (be- 
tween 0.2 and 0.6 Hz) would indicate that the artifact is present in the 
data. The red band at this rate in both the BCP ( Fig. 1 a) and eLABE 
( Fig. 1 b) data with TR = 800 ms, indicated by the black arrow in the y 
direction plot, shows that the artifact is consistently present in data col- 
lected in this population. Note, the power also spikes in the non-phase 
encoding directions at this frequency, indicated by a red arrow in the z 
direction, which is likely respiratory motion leak (see Discussion). 

3.2. Filtering FD trace to remove respiratory artifact 

Conventional motion censoring techniques remove high motion 
frames above a given threshold in an effort to mitigate BOLD signal 

Fig. 1. Frequency domain representations of multiband rs-fMRI timeseries 

data. (A) Power spectra for scans with TR = 800 ms ( N = 81 sessions) from the 
BCP cohort and (B) 36 subjects from the eLABE cohort. Subjects are ordered 
by mean FD, with the lowest motion subjects organized at the top. Frequency 
transforms are computed across all directions for motion analysis, namely trans- 
lation (X, Y and Z) and rotation (pitch, yaw, and roll). The red elevated power 
band between 0.3 and 0.5 Hz (indicated by the black arrow) in the phase en- 
coding direction (Y) is evidence of respiratory artifact. The power spike in the 
non-phase encoding direction at this frequency (indicated by the red arrow) 
is likely a combination of true head motion and respiratory motion leak. High 
power motion artifact is suppressed in higher motion subjects, indicated by the 
gradual decline in the red high power band moving vertically down this plot. 

disruptions induced by motion. BOLD signal disruptions can be visual- 
ized as vertical lines in ‘gray plots’ such as Fig. 2 ( Power et al., 2014 ). 
Plotted along with the motion trace, these signal disruptions align with 
high motion frames as described in Power et al. (2014) . However, in 
Fig. 2 a, there are also many frames that cross the typical FD thresh- 
old of 0.2 mm that do not result in a BOLD signal disruption. This is 
where the factitious respiratory artifact described in Fair et al., is evi- 
dent. As previously reported by Fair and colleagues, the artifact can be 
removed by applying a notch filter at the frequency of respiration to 
the movement trace ( Fair et al., 2020 ). Filtered head movement data 
shown in Fig. 2 b demonstrates that frames with high FD due to spon- 
taneous head motion continue to be censored using a typical threshold 
of 0.2 mm ( Power et al., 2013 ), whereas frames with motion due to 
respiration alone are now retained. See SI “Motion Artifact Reduction 
Analyses ” and SI Fig. 2 for additional validation of spontaneous head 
motion artifact reduction. 

3.3. Filtering Increases data retention and improves fc estimates 

Shown in Fig. 3 , implementing filtered FD resulted in a substantial 
increase in the amount of usable (i.e., ‘low motion’, < 0.2 mm FD) data 
retained (from 1.8 ± 2.5 to 13.9 ± 5.2 min in the BCP cohort and from 

9.6 ± 5.3 to 19.4 ± 5.2 min in the eLABE cohort). 
Further, for each individual participant, increasing the number of 

usable frames results in higher magnitude fc measurements, and the 
parcels that make up a given RSN have more uniform connectivity struc- 
ture within and between RSNs. This is depicted in Fig. 4 , where we see 
stronger, less noisy within and between RSN connectivity when going 
from unfiltered ( Fig. 4 a) to filtered FD ( Fig. 4 b). The differences in fc 
estimates that occur and their directionality are represented by the t- 
statistic in the regions identified in Fig. 4 c when using the conventional 
FD cutoff of 0.2 mm. Stronger red cells indicate higher magnitude fc 
estimates when filtering data. 

In addition to stronger connectivity values, Fig. 5 shows that filter- 
ing the FD trace increases the reliability of estimated fc values. The plot 
depicts the mean correlation between split-half connectivity matrices 
generated with both filtered and unfiltered FD. In these results, filtered 
FD data converges to higher correlation values for lower FD thresholds 
indicating increased reliability. The reliability curve for the eLABE co- 
hort likely converges to a higher correlation value than the BCP cohort 
since the eLABE cohort contains more usable data in each matrix. 

3.4. Notch filter cutoffs differ by age 

Initially, the ABCD notch filter cutoffs from Fair et al., were ap- 
plied to the toddler data. However, after examining the power spectra 
in Fig. 6 , it was noted that the ABCD cutoffs did not fully encapsulate 
the spike in signal power caused by respiration in the toddlers. This is 
because there are higher, more variable respiratory rates at this age, and 
thus different filtering parameters would better suit this cohort. 

Subsequently, data-driven cutoffs, defined as the second and third 
quartile frequency peaks of the BCP power spectra, were determined 
to be 0.28 and 0.48 Hz, and were applied to data from both cohorts. 
Shown in Fig. 6 b, there were several subjects in the eLABE dataset that 
had lower respiratory rates, and as a result these participants would lose 
a significant number of frames due to respiratory motion when apply- 
ing the more narrow BCP filter. In order to fully capture the variability 
in respiratory rates of this age range, the optimal filter cutoffs for the 
entire age group were marginally extended to 0.25 and 0.50 Hz. When 
the slightly wider filter is applied, the respiratory artifact is removed, 
thereby increasing the number of frames retained. Further still, choosing 
a wider than necessary filter results in power loss in the overall trace, 
as seen in Fig. 7 , where the overall signal is shifted to lower FD values 
as the width of the notch filter increases. 
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Fig. 2. Grayordinate intensity plot for an individual subject. (A) Data are shown before and (B) after the application of a notch filter in the range of respiration. 
Grayordinate representation for a single subject tracking the spatial root mean square of the derivative of the timeseries (DVARS), the whole brain signal, the FD 

value and finally the grayordinate plot across the duration of the acquisition. With an FD threshold of 0.2 mm, indicated by the horizontal orange line, any frames that 
surpass this minimum motion level across the subject timeseries are targeted for removal. Real motion should correspond with an interruption in the grayordinate 
plot (indicated by red arrow), which is not the case before the application of a respiratory notch filter for many identified frames (marked by black arrows). After 
the filter is applied, many frames show a decrease in FD and are no longer targeted for frame removal. However, high motion frames caused by spontaneous subject 
motion and that correspond to an interruption in the grayordinate plot are still targeted for frame removal. 

Fig. 3. Linked line representation of data 

retention by cohort. Minutes of usable data 
before and after application of a notch filter ap- 
plied in the range of respiration in the (A) BCP 
and (B) eLABE cohorts. In both cohorts, appli- 
cation of the filter greatly increases the aver- 
age usable minutes of data (from 1.8 ± 2.5 to 
13.9 ± 5.2 in the BCP cohort and from 9.6 ± 5.3 
to 19.4 ± 5.2 in the eLABE cohort). 

4. Discussion 

In this work, we have shown that respiratory-driven motion artifact 
is present in MB BOLD data of populations as young as 8 months of 
age and must be appropriately addressed when processing fMRI data in 
this age range. Critically, we have shown that filtering of FD traces to 
remove this artificial head motion can be successfully and effectively im- 
plemented in infants and toddlers. Further, we have demonstrated these 
efforts are most successful when using an age-specific filter design that 
appropriately captures differences in respiratory rate. Successful appli- 
cation of this filtering approach results in both increased data retention 
and improved data quality including higher magnitude fc measures, il- 
lustrating its critical importance in investigations utilizing this modality 
in this age group. 

4.1. Motion in adult and toddler rs-fMRI data 

In adult rs-fMRI investigations, spontaneous motion during data col- 
lection has been shown to bias connection strength based upon physical 
distance, introducing colored noise into measured results ( Power et al., 
2012 ; Satterthwaite et al., 2012 ; Van Dijk et al., 2012 ). One common 
way to address this has been by implementing frame censoring (i.e., 
“scrubbing ”) in rs-fMRI post-processing. In scrubbing, head motion es- 
timates are used to identify frames with spontaneous motion greater 
than a designated FD threshold (typically ∼0.2 mm), which are then 
removed from the dataset. However, important recent work using both 
adult and adolescent data has additionally shown head motion caused 
by respiratory efforts manifests in the tracings used to identify motion- 
corrupted frames in MB BOLD data. However, unlike spontaneous head 
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Fig. 4. Functional connectivity within and between brain networks. (A) Functional connectivity strength across defined cortical parcellations (top row) and 
their network averages (bottom row) is demonstrated in the BCP cohort for unfiltered data. (B) Functional connectivity matrices in the same BCP subjects after 
application of the notch respiratory filter across identical functional networks. (C) Statistical analysis using a paired t -test comparing the two approaches (unfiltered 
vs filtered) across functional networks. Here, stronger red indicates higher magnitude fc estimates when filtering data. Networks include: motor, temporal lobe 
(Temp), posterior frontoparietal (pFPN), posterior cingulate cortex (PCC), lateral visual (lVIS), medial visual (mVIS), dorsal attention (DAN), anterior frontoparietal 
(aFPN), cingulo-opercular (CO), default mode (DMN), and unassigned (Usp). 

Fig. 5. Reliability of within subject connectivity across FD thresholds. Demonstration of mean spatial correlation for FC values using a split-half protocol (shaded 
regions represent ∼2 standard deviations from the mean). This approach evenly split individual subject data into two groups. A corresponding connectivity matrix 
was created for each group, with the spatial correlation across various FD thresholds then computed for both unfiltered and filtered data. Greater spatial correlation 
is observed across all FD thresholds for the filtered timeseries, indicating greater reliability of functional connectivity. 

motion, this respiratory-driven head motion does not bias fMRI correla- 
tion strength between regions based upon anatomic distance, and thus 
should not be incorporated when identifying frames for motion censor- 
ing ( Fair et al., 2020 ). Thus, traditional censoring approaches which 
conflate respiratory motion with spontaneous motion in the FD traces 
may result in unnecessary censoring of large quantities of data thereby 
reducing the power of fc analyses. This has led to the recent advent of 

frequency-based filtering approaches which successfully identify frames 
for removal due to spurious head motion only ( Fair et al., 2020 ). This 
is critical as it has been shown that increased amounts of rs-fMRI data 
result in more reliable measures of connectivity ( Gordon et al., 2017 ; 
Laumann et al., 2015 ). 

It was previously assumed that this respiratory motion artifact was 
not present in toddler rs-fMRI data given that their smaller chest sizes 
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Fig. 6. Frequency domain representations of multiband rs-fMRI timeseries data with notch frequency cutoffs. Power spectra representation in the Y-direction 
of the (A) BCP cohort and (B) eLABE cohort organized by FD with lowest motion subjects at the top. The red band between 0.25 and 0.5 Hz indicates respiratory- 
related artifact. Filter cutoffs suggested by Fair et al., based on the ABCD cohort are marked in dashed purple. This range does not fully encapsulate the respiratory 
band for all subjects in either cohort, with the red band often extending beyond the ABCD filter cutoff. The cutoff generated from the BCP data is marked in black, 
offering a more suitable range that captures the respiratory band for most subjects. In order to most effectively remove the variable respiratory artifact in this age 
group, a slightly wider filter of 0.25 to 0.5 Hz should be applied for subjects age 8–24 months. 

Fig. 7. FD trace resulting from application of various 

notch filters. The FD trace for a single subject is presented 
with various notch filter cutoffs represented. The tested ranges 
offer the maximum and minimum values of the high power 
band for BCP and eLABE subjects in the Y-direction indicat- 
ing respiratory artifact. Across all tested filters, application re- 
duces the power of FD as seen by a downward shift in the 
mean FD value. The filter with a wider cutoff range of 16–
35 bpm (lime) shows a more dramatic FD shift (compared to 
the narrower filter presented in red from 20 to 30 bpm), with 
much smaller FD oscillations in the resulting trace. However, 
across all ranges, FD spikes indicative of spontaneous motion 
still surpass the FD threshold and would be targeted for frame 
censoring. 

and faster breathing rates were thought to have minimal effects on 
the B0 field ( Power et al., 2019 ). Moreover, prior studies of toddlers 
primarily utilized single band rs-fMRI sequences ( Eggebrecht et al., 
2017 ; Smyser et al., 2016 ; Toulmin et al., 2015 ; Doria et al., 2010 ; 
Smyser et al., 2010 ; Gao et al., 2009 ; Fransson et al., 2007 ), which were 
shown in Fair et al., to be impacted by respiration to a lesser extent 
than MB data due to the lower in sampling rate. Subsequently, inves- 
tigation for the presence and severity of this artifact in this population 

has not been previously undertaken. However, herein we have shown 
across two independent cohorts that, similar to adult data, head motion 
due to respiration is indeed prevalent in FD traces and significantly al- 
ters frame censoring results in infants and toddlers. While the artifact is 
most pervasive in the phase encoding direction, it can “leak ” into other 
planes by means discussed in Fair et al., and mix with true head mo- 
tion in parameter estimates. This makes it difficult to disentangle real 
head motion from artifact in the non-phase encoding planes, so filtering 
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Fig. 8. Comparison of on-line (FIRMM) and off-line (cross_realign3d_4dfp) motion estimation. The FD trace computed scanner-side for a representative eLABE 
subject (A) without filtering and (B) with filtering. Percentage of usable frames for all eLABE participants determined using on-line calculated FD estimates compared 
to off-line calculated FD estimates using both (C) unfiltered and (D) filtered data. 

must be applied in all directions. Since there are multiple ways in which 
respiratory artifact can corrupt BOLD data, further work is needed to 
separate individual components. Critically, accurately identifying and 
correcting for this artifact using frequency-specific filters during frame 
censoring leads to significant increases in data retention and the relia- 
bility and strength of fc measures that are comparable to results in older 
populations ( Fair et al., 2020 ; Gratton et al., 2020 ). This is of particu- 
lar importance given that large amplitude, spontaneous movements are 
relatively common in sleeping toddlers and multiple scanning sessions 
are often impractical, factors which can make acquiring large quantities 
of rs-fMRI data challenging and frame retention increasingly important 
in these analyses. 

4.2. Filter Selection to remove respiratory artifact 

There are several filter types that can achieve removal of respiratory 
artifact, including bandpass, low pass, and notch filters. Both bandpass 
and low pass filters decrease the overall power of the FD trace, which 
shifts the entire trace to lower FD values. This is something to be cog- 
nizant of with frame censoring, as the conventional 0.2 mm threshold 
for the identification of low motion frames may no longer be applica- 
ble. In order to keep with established convention and to filter out only 
a narrowly defined frequency range, a notch filter is likely most suit- 
able. When selecting notch filter cutoffs, it is important to consider the 
width of the filter. Similar to bandpass and low pass filters, increas- 
ing the width of the notch too far may also decrease the power of the 
trace. Therefore, it is important to limit the width of the notch cutoffs 
to maintain applicability of conventional scrubbing thresholds. For 8 to 
24 months of age, we recommend using a slightly wider cutoff of 0.25 

to 0.5 Hz in order to fully capture the spectrum of respiratory rates for 
this particular age group without substantial power loss. Though in prin- 
cipal the cutoff frequencies could be calculated on the individual level, 
prior work has shown doing so is challenging in practice and provides no 
additional advantage over the group-level estimates ( Fair et al., 2020 ). 

4.3. Necessity of age-specific rs-fMRI acquisition and analysis methods 

Application of rs-fMRI in infants and toddlers has provided unique 
insights into the functional architecture of the developing brain and 
enabled characterization of both normal and disordered brain devel- 
opment ( Eyre et al., 2021 ; Azhari et al., 2020 ; Graham et al., 2015 ; 
Zhang et al., 2019 ; Eggebrecht et al., 2017 ; Marrus et al., 2018 ; 
Gao et al., 2009 ; Fransson et al., 2007 ; Lin et al., 2008 ). However, when 
determining optimal data acquisition and processing approaches for use 
in these age group, special attention must be paid to the unique char- 
acteristics of this target population. Principle among these are differ- 
ences across key variables including motion patterns during data col- 
lection, head size, and tissue contrasts. There have now been numerous 
strategies developed to specifically address the unique challenges in- 
herent to studying this age group ( Kim et al., 2013 ; Zhang et al., 2016 ; 
Hazlett et al., 2017 ). For example, age-specific techniques to minimize 
subject motion during data collection (i.e., collecting sleep scans with 
immobilization) have been developed and applied ( Howell et al., 2019 ). 
Further, age-specific atlases which address differences in head size, tis- 
sue contrast properties, and relative growth patterns have been created 
to facilitate successful image registration procedures. In this investiga- 
tion, we demonstrate that age-specific methods for identifying, charac- 
terizing, and removing the effects of subject motion during rs-fMRI data 
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processing, including those driven by respiratory artifact, are another 
critical element of these procedures. 

4.4. FIRMM for real-time head motion estimation 

Given the challenges of acquiring low motion rs-fMRI data in 
younger populations ( Turesky et al., 2021 ; Raschle et al., 2012 ), it may 
be highly valuable to obtain an accurate assessment of data quality dur- 
ing the scan. The results shown here, including the use of population 
specific respiratory and head circumference settings, can be readily im- 
plemented using FIRMM (Framewise Integrated Real-Time MRI Moni- 
toring) ( Dosenbach et al., 2017 ), a scanner-side software platform that 
provides real-time head motion estimates throughout the entirety of the 
study for both unfiltered and filtered FD. These estimates match closely 
with what is estimated in post-scanner processing, shown for a repre- 
sentative eLABE subject in Fig. 8 . 

4.5. Limitations 

When comparing across the BCP and eLABE cohorts, there were some 
collection differences that could not be corrected for post-acquisition. 
Namely, some BCP rs-fMRI acquisitions were collected with a TR of 
720 ms, while the majority were collected with a TR of 800 ms. Despite 
these differences, the respiratory artifact high power band was observed 
across all TR ranges (SI Fig. 1 ), indicating that this phenomenon may 
extend beyond only cohorts with specific acquisition protocols. Further, 
as shown in SI Fig. 1 , application of the respiratory filter effectively 
removes respiratory artifact in each TR group independently. In addi- 
tion, application of the respiratory filter was completed using two differ- 
ent functions in MATLAB (iirnotch and butter) based upon institutional 
availability of software packages. Again, there was no observable dif- 
ference between these two approaches, demonstrating flexibility when 
applying the suggested filter. 

This work was completed using data collected from two healthy in- 
fant and toddler cohorts; therefore, best practices for application of these 
methods in non-normative population studies requires further investiga- 
tion. Additionally, this work was limited to children down to 8 months 
of age. Further investigation into even younger populations also remains 
necessary due to the higher sampling rate required to avoid aliasing into 
lower frequencies caused by an increase in respiratory rate. 

5. Conclusion 

This work has shown that apparent head motion due to respiration 
is present in rs-fMRI data in infants and toddlers. Critically, this artifi- 
cial head motion spuriously decreases the amount of usable (i.e., low 

motion) rs-fMRI data. Applying an age-specific notch filter to the FD 

trace can readily and effectively remove this artifact, thereby optimizing 
frame retention and increasing fc measure reliability. Critically, these 
approaches can be readily and successfully applied in younger popula- 
tions using existing software applications both in real-time at the scan- 
ner during data collection and in off-line post-processing. When work- 
ing with data from younger populations, it is important to adjust notch 
filter cutoffs appropriately for the population being studied in a data- 
driven manner. Successful application of these approaches is necessary 
for both improving understanding of early functional brain development 
and defining brain-behavior relationships during this critical develop- 
mental window. 
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