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a b s t r a c t 

Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. 

Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not 

consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, 

measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices 

of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray mat- 

ter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, 

and cognition, using a large sample ( n = 750) of young adults of the human connectome project (HCP) and two 

tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain 

functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses re- 

vealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in 

the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures 

of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any addi- 

tional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the 

relationship between emotion processing task-evoked BOLD response and performance was observed. Our find- 

ings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local 

neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure 

represents a new target of investigation providing strong potential for clinical translation. 

1. Introduction 

Functional MRI (fMRI) examines brain activity by measuring the 

blood-oxygen-level-dependent (BOLD) signal, which is driven by an 

oversupply of local blood flow following increased neural activity. Al- 

though fMRI has been widely used to examine changes in brain ac- 

tivity during cognitive tasks, there is still debate about which specific 

aspects of neural processing drive the BOLD response ( Drew, 2019 ; 

Ekstrom, 2010 ; Hall et al., 2016 ). Neural signals within and between 

brain regions are propagated via neurites, comprising axons transmit- 

ting signals between regions and dendrites receiving neural information 

from synapses and propagating them ( Jessell and Kandel, 1993 ). Neu- 

rite organization can influence the neural dynamics in terms of how 

efficiently information is transmitted; for example, dendritic complex- 

ity contributes to the quantity of inputs captured from other neurons 
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( Lefebvre et al., 2015 ). Although the function and organizing of neu- 

rites is a key feature of local neuronal processing, which is the presumed 

neurophysiological basis for the BOLD signal, the relationship between 

gray matter neurite microstructure and BOLD activity remains largely 

unexplored in humans. 

Measures of gray matter macrostructure (i.e., cortical thickness and 

surface area or volume) have been linked to performance in a variety of 

cognitive tasks targeting neurocognitive and social cognitive processes 

(reviewed by Karantonis et al., 2021 ; Kaup et al., 2011 ; Khalil et al., 

2022 ; Salthouse, 2011 ). However, the literature is conflicting in terms 

of relating gray matter macrostructure to BOLD response and cognition. 

While some studies have related higher-order cognitive function such as 

working memory separately to cortical thickness and BOLD response in 

the prefrontal cortex (PFC) ( Ehrlich et al., 2012 ; Yuan and Raz, 2014 ), 

others have shown no association between working memory-evoked 
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BOLD activity in PFC and both cortical thickness ( Owens et al., 2018 ; 

Zacharopoulos et al., 2020 ) and surface area ( Evangelista et al., 2021 ). 

For contrary results see ( Zacharopoulos et al., 2020 ) reporting a neg- 

ative association between left frontal pole surface area and BOLD re- 

sponse towards working memory. This lack of relationships may not be 

surprising given that gray matter macrostructure is composed of various 

microstructural elements including the neuropil (neuronal bodies, den- 

drites and synapses), glial cells, axons, and vasculature ( Zatorre et al., 

2012 ) limiting its specificity and interpretability related to neurite char- 

acteristics. For lower-level social cognitive function, such as emotional 

processing, where the amygdala is a key region, relationships with 

macrostructure (i.e., volume) ( Pera-Guardiola et al., 2016 ; Zhao et al., 

2013 ) and function ( Derntl et al., 2009 ; Habel et al., 2007 ) have been 

reported separately. 

Advances in multishell diffusion-weighted MRI (dMRI) acquisi- 

tion and modeling, such as neurite orientation dispersion and den- 

sity imaging (NODDI) ( Zhang et al., 2012 ), have made it possible to 

model distinct aspects of gray matter microstructure related to neu- 

rites ( Mah et al., 2017 ). Using compartmentalization of brain tissue 

enables the estimation of indices of neurite density (NDI; how many 

axons/dendrites are in a given space) and orientation dispersion (ODI; 

the complexity/branching/organization of dendritic trees) ( Nazeri et al., 

2020 ). Recent work shows a clear distinction in patterns of NDI and 

ODI distribution across the cortical gray matter ( Fukutomi et al., 2018 ). 

While NDI seemed to correspond well with the distribution of myelin 

(myeloarchitecture) ( Braak, 1980 ; Nieuwenhuys, 2013 ), ODI was inter- 

preted as reflecting regional variations in the cortical cytoarchitecture 

( Von Economo, 2009 ; von Economo and Koskinas, 1925 ). These indices 

of neurite architecture may be related to working memory and emo- 

tion recognition performance ( Nazeri et al., 2015, 2017; Yasuno et al., 

2020 ), functional connectivity ( Morris et al., 2016 ; Nazeri et al., 2015 ) 

and BOLD response towards basic stimuli (i.e., motor activity, visual 

stimuli and reading) ( Teillac et al., 2017 ). 

Using NODDI-based measures of gray matter microstructure, we 

studied the relationship among neurite architecture, BOLD fMRI, and 

cognition, using the human connectome project (HCP) dataset (S900 

release). The HCP acquisitions included fMRI in several tasks targeting 

different cognitive domains from more basic, lower-order social cog- 

nition (emotional processing) up to complex, higher-order neurocogni- 

tion (working memory) ( Barch et al., 2013 ). For this initial study of the 

relationship between neurite architecture, BOLD fMRI, and cognition, 

we constrained our analyses by choosing two of the most commonly 

used tasks in the literature with a very clear, repeatedly shown and re- 

liable activation pattern ( Plichta et al., 2012 ; Sabatinelli et al., 2011 ; 

Sergerie et al., 2008 ), covering domains of working memory and emo- 

tion processing, as we have done in former studies of our group ( Ameis 

et al., 2011; Barr et al., 2013; Hawco et al., 2020; Jacobs et al., 2021; 

Nazeri et al., 2017; Oliver et al., 2019, 2021; Voineskos et al., 2021 ). 

These two tasks index different cognitive domains/constructs, differ- 

ent brain networks, and represent relatively higher-order and lower- 

order cognitive tasks. We hypothesized that the BOLD response in key 

regions, specifically dorsolateral prefrontal cortex (DLPFC) for work- 

ing memory ( Barbey et al., 2013 ) and amygdala for emotional process- 

ing ( López et al., 1999 ; Vuilleumier et al., 2001 ), would be associated 

with neurite density and/or orientation dispersion, estimated using the 

NODDI model, independent of macrostructural measures (i.e., cortical 

thickness and surface area or subcortical volume). We further hypothe- 

sized that the underlying neurite architecture would impact the BOLD 

response-task performance relationship in those key regions. 

2. Methods 

2.1. Participants 

Structural, multishell dMRI and task fMRI data from young, 

healthy adults were obtained from the WU-Minn Human Connectome 

Project ( Barch et al., 2013 ; Glasser et al., 2016b ; Van Essen et al., 

2013 ), downloaded from ConnectomeDB as part of the S900 release 

( http://db.humanconnectome.org ). Of 900 participants, only those who 

completed both working memory and emotion processing fMRI tasks, 

the multishell dMRI scan and had good quality data for all modalities 

(including structural scans) were included (see “Quality control ” sec- 

tion below), leaving a sample of n = 750 (see Supplementary Table 1 

for sample characteristics). This study received approval from the local 

ethics board and data were accessed with permission of HCP. 

2.2. Acquisition and processing of downloaded data 

All subjects were scanned using the same imaging protocol on mod- 

ified Siemens Skyra scanners. For multishell dMRI the following pa- 

rameters were used, as described before ( Van Essen et al., 2013 ): 

TR = 5520 ms, TE = 89.5 ms, gradient duration ( 𝛿) = 10.6 ms, gradi- 

ent separation ( Δ) = 43.1 ms, image resolution = 1.25 ×1.25 ×1.25 mm 

3 , 

phase partial Fourier = 0.75, and multiband factor = 3. The dMRI data 

were acquired with 3 b-values of nominally 1000, 2000 and 3000 s/mm 

2 

with 90 gradient directions at each shell. Additionally, 18 b = 0 images 

were collected. For each scan, the dMRI data were acquired twice with 

opposite phase encoding directions to correct for susceptibility-induced 

image distortions. During the preprocessing, images with opposite phase 

encoding directions were combined to obtain the final image. As down- 

loaded, the data were preprocessed with corrections for gradient nonlin- 

earity distortions, susceptibility-induced distortions, head motion, and 

eddy current artifacts ( Glasser et al., 2013 ; Sotiropoulos et al., 2013 ). 

The fMRI task activation maps from specific first-level contrasts 

across two cognitive paradigms were used (selected contrast in paren- 

theses): N-back working memory (2-back minus 0-back) and emotion 

processing (faces minus shapes). The HCP n-back working memory task 

consisted of 0-back and 2-back trials containing images of faces, places, 

tools and body parts. We used the working memory load contrast (2- 

back minus 0-back) across all the available image categories as described 

before ( Barch et al., 2013 ). The HCP emotion processing task consisted 

of trials with negative faces (sad or angry) or shapes (ovals in different 

orientations) ( Hariri et al., 2002 ). The only available contrast consisted 

of faces minus shapes which was used in the current study, as previ- 

ously described ( Barch et al., 2013 ). The acquisition parameters for the 

task fMRI scans were the following: Whole-brain EPI images were ac- 

quired with a 32-channel head coil with TR = 720 ms, TE = 33.1 ms, 

flip angle = 52°, BW = 2290 Hz/Px, in-plane FOV = 208 ×180 mm, 72 

slices, 2.0 mm isotropic voxels, with a multi-band acceleration factor 

of 8 ( Feinberg et al., 2010 ). For each task, the HCP collected two runs 

which differed with respect to the MRI phase encoding direction (left to 

right or right to left). The HCP fMRI tasks are described in detail else- 

where ( Barch et al., 2013 ). Data to download were selected from the 

surface smoothed 8 mm FWHM using the HCP minimal preprocessing 

pipeline ( Glasser et al., 2013 ). This pipeline included motion correction, 

distortion correction, registration to standard space, and generation of 

a grayordinate (cortical surface) time-series for each task run ( Fig. 1 ). 

Statistical analyses were performed in FSL (www.fmrib.ox.ac.uk/fsl). 

Fixed-effects ( “first-level ”) analysis was performed on each run sepa- 

rately, including the smoothing stage (performed on the cortical sur- 

face), and then the two runs for each task were combined via a second 

fixed-effects analysis. For each participant, the HCP provided t-maps for 

each task which were downloaded and used. We used t-maps as opposed 

to Beta estimates as the t-values are deweighted in noisy voxels due to 

the higher variance. Individual fMRI-task-performance data, comprising 

the performance of 2-back (n-back task) and emotional faces (emotion 

processing task) trials, were also downloaded. 

2.3. NODDI calculation 

The biophysical NODDI model allows to estimate neurite architec- 

ture using three compartments: (1) intracellular (restricted diffusion; 

2 
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Fig. 1. Schematic diagram showing the processing steps for the functional MRI (fMRI) and diffusion-weighted MRI (dMRI) scan data. 

bounded by the membrane of neurites and myelin sheaths), (2) extra- 

cellular (anisotropic, hindered diffusion; outside of neurites and poten- 

tially including glial cells), and (3) CSF compartments (isotropic dif- 

fusion). These three microstructural compartments can provide inde- 

pendent measures of: (i) neurite density by estimating the fraction of 

water restricted in the intracellular compartment (neurite density index 

[NDI]) which relates to the amount of neurites and (ii) neurite organi- 

zation/spatial configuration by estimating dispersion (orientation dis- 

persion index [ODI]). CSF compartment estimates in each voxel ensure 

that each index is fully adjusted for CSF contamination ( Zhang et al., 

2012 ). 

Using the downloaded, preprocessed dMRI data, the NODDI model 

was fitted using the MDT toolbox v.0.20 ( Harms et al., 2017 ) 

(www.mdt-toolbox.readthedocs.io) batchfit algorithm ( Fig. 1 ). Vali- 

dated on an internal sample of data, NODDI fitting using the MDT tool- 

box gave the same results as with the original NODDI matlab toolbox 

( http://mig.cs.ucl.ac.uk/ ) (data not shown). The MDT output included 

NDI and ODI maps in subject space. 

2.4. Surface reconstruction of NODDI data 

Individuals’ preprocessed structural images (0.7 mm isotropic T1- 

weighted [T1w]) and their 32k space projections were downloaded from 

HCP and used for surface mapping of the NODDI maps. In brief, the 

structural images were preprocessed (corrected for gradient nonlinear- 

ity, readout, and bias field; aligned to AC-PC “native ” space; then reg- 

istered to MNI 152 space using FSL’s FNIRT). The native space images 

were used to generate individual white and pial surfaces ( Glasser et al., 

2013 ) using the FreeSurfer ( https://surfer.nmr.mgh.harvard.edu/ ) and 

HCP pipelines ( https://github.com/Washington-University/Pipelines ). 

In the post-FreeSurfer pipeline, the individual subject’s native-mesh sur- 

faces were registered using a multimodal surface matching (MSM) algo- 

rithm ( Robinson et al., 2014 ) with MSMSulc to the Conte69 folding- 

based template ( Van Essen et al., 2012 ). 

Individual dMRI data were registered to each individual’s structural 

T1w AC-PC space using the b0 volume and the white surface with the 

BBR cost function in FSL v.6.0.0 ( Greve and Fischl, 2009 ). The diffusion 

gradient vectors were rotated based on the rotational information of the 

b0 to T1w transformation matrix. A combined transform (b0 to T1w and 

T1w to MNI) was used to warp the NODDI maps (NDI and ODI) into MNI 

space. The NODDI maps were mapped onto the cortical surface using 

an algorithm weighted towards the cortical mid-thickness ( Glasser and 

Van Essen, 2011 ) and Connectome Workbench v.1.3.2 ( https://github. 

com/Washington-University/workbench ). For each mid-thickness sur- 

face vertex on the native mesh, the algorithm identified cortical ribbon 

voxels within a cylinder orthogonal to the local surface. The surface 

maps were subsequently resampled based on MSMAll surface registra- 

tion ( Glasser et al., 2016a; Robinson et al., 2014 ) and onto the 32k group 

average surface mesh ( Dickie et al., 2019 ). 

2.5. Quality control 

HCP’s openly available issue websites ( https://wiki. 

humanconnectome.org/display/PublicData/HCP + Data + Release + 

Updates%3A + Known + Issues + and + Planned + fixes and https://wiki. 

humanconnectome.org/pages/viewpage.action?pageId = 88901591 ) 

and visual checks were used to exclude data of poor quality, with major 

processing issues and non-usable task data. 

2.6. Parcellation and region of interest (ROI) selection 

The relationship between gray matter neurite architecture and task- 

related BOLD activity was explored using an ROI approach. Given its 

role and strong activation in working memory ( Fig. 2 ) ( Barbey et al., 

2013 ), the DLPFC was chosen a priori for the n-back task-related BOLD 

activity associations with neurite architecture. Specifically, region p9–

46v from the HCP Multi-modal Cortical Parcellation 1.0 (HCP_MMP1.0 

210P MPM version) ( Glasser et al., 2016a ) was selected, as this region 

showed the strongest activity in the group statistical map of the fMRI 

n-back task ( Fig. 2 ). For the emotion processing task, the amygdala was 

selected due to its role in emotion processing and strong activation to 

emotional tasks, especially involving faces with negative emotions such 

as fear and anger ( Fig. 4 A) ( Sabatinelli et al., 2011 ; Vuilleumier et al., 

2001 ). Microstructure and BOLD: Each individual’s mean values for NDI, 

ODI and task t-statistic were extracted separately for both the left and 

right hemispheres from the selected regions (for a total of 4 ROIs; Con- 

nectome Workbench v.1.3.2). For the subcortical gray matter ROIs (left 

and right amygdala), outer ROI voxels (layer of one voxel) with NDI 

values ≥ 0.75 were identified and removed from NDI and ODI maps 

to avoid partial volume effects and potential residual white matter. 

Macrostructure: Cortical thickness and surface area of the pial surface 

were extracted separately for both the left and right DLPFC (Connec- 

tome Workbench v.1.3.2). Subcortical volume values of the amygdala 

(left and right; in mm 

3 ) were provided by HCP as part of the FreeSurfer 

outputs and were corrected for intracranial volume. 

2.7. Statistical analysis 

All analysis was performed using R (v.4.0.2). The lm.beta package 

(v.1.5–1; https://cran.r-project.org/web/packages/lm.beta/index. 

html ) was used for standardization of beta values. The ggplot2 package 

(v.3.3.2; https://cran.r-project.org/web/packages/ggplot2/index. 

html ) and Connectome Workbench (v.1.3.2; https://www. 

humanconnectome.org/software/connectome-workbench ) were used 

for visualization. Interaction plots and simple slope analysis were 

generated with the interactions package (v.1.1.5; https://cran.r- 

project.org/web/packages/interactions/index.html ) using the inter- 

act_plot and sim_slope functions, respectively. 

Hierarchical regressions were used to study the relationships be- 

tween neurite architecture (i.e. NODDI indices) and BOLD activity. 

3 
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Fig. 2. Cortical NODDI indices (NDI and ODI) and n-back task-related BOLD activity (2-back minus 0-back) maps. Group average values for ODI (top), NDI (middle) 

and BOLD (group t-statistic, bottom) in cortical regions including the DLPFC (shown in surface space), (left) without any overlay and (right) overlaid by the HCP 

Multi-modal Cortical Parcellation 1.0. 

Macrostructural measures were incorporated in order to examine speci- 

ficity of the neurite architecture-BOLD activity relationship. For exam- 

ple, any relationships between ODI or NDI and BOLD activity could rep- 

resent general structural changes (i.e., changes in macrostructure), as 

opposed to changes specific to microstructure. For the DLPFC, cortical 

thickness and surface area in the DLPFC ROIs were used as macrostruc- 

tural measures, while in the amygdala ROIs, amygdala volume (cor- 

rected for intracranial volume) was used. Separately for each of the four 

ROIs (left DLPFC, right DLPFC, left amygdala, and right amygdala), a 

three-step hierarchical regression was performed with BOLD activity as 

the dependent variable. Age and sex were entered at step one of the 

regression to control for demographic differences (ongoing alterations 

in NDI and ODI from late adolescence to adulthood have been reported 

as well as sex differences ( Tsuchida et al., 2021 )). Neurite architectural 

variables (ODI and NDI) were entered at step two, and the macrostruc- 

tural measure (DLPFC thickness and surface area or amygdala volume) 

at step three. The relationship variables were entered in this order as 

it seemed plausible given that neurite architectural measures (ODI and 

NDI) are underlying at least partially the measures of gross brain struc- 

ture such as cortical thickness ( Fukutomi et al., 2018 ; Genç et al., 2018 ), 

surface area and subcortical volume. Step two regression models were 

followed by partial correlation analysis (regressing out age and sex) of 

the relationship between the separate NODDI indices, ODI and NDI, and 

BOLD activity. 

Neurite architecture was also examined as a moderator of the re- 

lationship between BOLD activity and task performance. We first es- 

tablished the relationship between BOLD activity and task performance 

using linear regressions per ROI (corrected for age and sex). This was 

followed by the moderation analyses, performed separately for each of 

the four ROIs (left DLPFC, right DLPFC, left amygdala, and right amyg- 

dala). For the DLPFC and amygdala ROIs respectively, performance of 

the 2-back or emotional faces tasks were used as the dependent vari- 

ables. Either ODI or NDI was entered in the first step of the regression 

analysis together with BOLD activity, age and sex. In the second step, the 

interaction between BOLD and either ODI or NDI was added, to examine 

the moderating effect of neurite organization or density on the relation- 

ship between BOLD activity and task performance; a significant change 

in R 

2 would represent a moderation between BOLD activity, neurite ar- 

chitecture, and task performance. Where residuals of the moderation 

analysis regressions were not normally distributed, we explored permu- 

4 
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Fig. 3. Associations between n-back task- 

related BOLD activation and NODDI indices in 

DLPFC. Partial correlations of ODI (top row) 

and NDI (bottom row) with BOLD activity, cor- 

rected for age and sex. Association of ODI in 

right DLPFC was significant after multiple com- 

parisons’ correction using FDR. 

tation testing with the lmPerm package for R (v.2.1.0; https://cran.r- 

project.org/web/packages/lmPerm/index.html ) using the lmp function 

with ‘Prob’ permutation option. Affected models are described in the 

results section. 

P-values of subsets of analyses were corrected for multiple compar- 

isons (4 ROIs [left DLPFC, right DLPFC, left amygdala, right amygdala] 

within each step of each model run, i.e., hierarchical regression and 

moderation analyses; FDR correction) as indicated in the results. In this 

context, p-values of ≤ 0.05 were considered statistically significant. 

Code is made available via github ( https://github.com/cschifani/ 

HCP _ NODDIvsfMRI ). 

3. Results 

3.1. Relationships of task-related BOLD activation with neurite architecture 

(ODI and NDI) and macrostructure (cortical thickness, surface area and 

subcortical volume) 

3.1.1. Neurite architecture but not cortical thickness or surface area 

explained variability in n-back task-related BOLD activation in DLPFC 

Whole-brain group averages for NDI and ODI, and 2 nd -level group 

n-back BOLD activity are shown in Fig. 2 . 

Hierarchical regression analysis for right DLPFC revealed that in- 

troducing the microstructural variables (ODI and NDI; step two), after 

controlling for age and sex (step one), explained additional variance 

in BOLD activity (F 2, 745 = 4.05, p = 0.018), with an increase in R 

2 of 

0.01. However, in step three, adding right DLPFC thickness and sur- 

face area (macrostructural variables) was not significant (F 2, 743 = 2.44, 

p = 0.088). When either four or all six independent variables were 

included in steps two or three of the regression model, respectively, 

ODI was the only significant predictor of BOLD activity in right DLPFC 

(step 2: beta = − 0.10, t = − 2.79, p (FDR-corrected) = 0.011; step 3: 

beta = − 0.11, t = − 2.98, p (FDR-corrected) = 0.012) which uniquely 

explained 1% of the total variance in BOLD activity (for further de- 

tails see Supplementary Table 2, right). This was further confirmed by 

partial correlation analysis ( Fig. 3 , right), showing a significant nega- 

tive association of BOLD activity in right DLPFC with ODI ( R = − 0.10, 

p (FDR-corrected) = 0.011) but not with NDI ( R = − 0.02; p (FDR- 

corrected) = 0.66). 

For left DLPFC, after controlling for age and sex, introducing the 

microstructural variables (ODI and NDI, step two) and macrostructural 

variables (cortical thickness and surface area, step three) did not explain 

additional variance in BOLD activity (model two: F 2, 745 = 1.72, p = 0.18; 

model three: F 2, 743 = 2.25, p = 0.11) (for further details see Supplemen- 

tary Table 2, left). This was further confirmed by partial correlation 

analysis ( Fig. 3 , left), showing no significant association of BOLD activ- 

ity in left DLPFC with either ODI ( R = 0.01, p (FDR-corrected) = 0.71) 

or NDI ( R = 0.067, p (FDR-corrected) = 0.089). 

Exploratory relationships between neurite architecture and BOLD ac- 

tivity in other cortical brain regions can be found in Supplementary Fig- 

ure 1. 

3.1.2. Neurite architecture but not subcortical volume explained variability 

in emotion processing task-related BOLD activation in amygdala 

Subcortical group averages for NDI and ODI, and 2 nd -level group 

emotional processing task BOLD activity are shown in Fig. 4 A. 

Hierarchical regression analysis for right amygdala revealed that in- 

troducing the microstructural variables (ODI and NDI; step two), after 

controlling for age and sex (step one), explained additional variance in 

BOLD activity (F 2, 745 = 11.20, p = 1.61 × 10 − 5 ), with a change in R 

2 of 

0.03. However, adding right amygdala volume to the regression (step 

three) did not explain significant additional variance (F 1, 744 = 3.22, 

p = 0.073). In both steps two or three of the regression model both 

ODI (step 2: beta = − 0.11, t = − 2.90, p (FDR-corrected) = 0.015; step 

3: beta = − 0.12, t = − 3.09, p (FDR-corrected) = 0.0095) and NDI 

(step 2: beta = − 0.13, t = − 3.33, p (FDR-corrected) = 0.0037; step 

3: beta = − 0.14, t = − 3.44, p (FDR-corrected) = 0.0041) were signif- 

icant predictors of BOLD activity in right amygdala which uniquely 

explained similar amounts of variance (each about 1.5%) (for further 

details see Supplementary Table 3, right). This was further confirmed 

by partial correlation analysis ( Fig. 4 B, right), which showed signifi- 

cant negative associations of BOLD activity in right amygdala with ODI 

( R = − 0.12, p (FDR-corrected) = 0.0036) and NDI ( R = − 0.13; p (FDR- 

corrected) = 0.0018). 

The hierarchical regression analysis for left amygdala revealed that 

introducing the microstructural variables (ODI and NDI; step two), after 

controlling for age and sex (step one), explained additional variance in 

BOLD activity (F 2, 745 = 6.10, p = 0.0024), with a change in R 

2 of 0.02. 

However, adding left amygdala volume to the regression (step three), 

did not explain additional variance (F 1, 744 = 0.009, p = 0.92). In both 

steps two or three of the regression model, NDI was a significant predic- 

tor of BOLD activity in left amygdala (step 2: beta = − 0.11, t = − 2.81, 

p (FDR-corrected) = 0.010; step 3: beta = − 0.11, t = − 2.81, p (FDR- 

corrected) = 0.012), while ODI was not statistically significant (step 2: 
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Fig. 4. Associations between BOLD activity (faces minus shapes) and NODDI indices in amygdala. (A) Group average values for ODI (left), NDI (middle) and BOLD 

(group t-statistic, right) in subcortical regions including the amygdala. (B) Partial correlations of ODI (top row) and NDI (bottom row) with BOLD activity, corrected 

for age and sex. Associations of ODI in right amygdala, and NDI in right and left amygdala, were significant after multiple comparisons’ correction using FDR. 

beta = − 0.07, t = − 1.90, p (FDR-corrected) = 0.078; step 3: beta = − 0.07, 

t = − 1.90, p (FDR-corrected) = 0.066). ODI and NDI uniquely explained 

about 0.6 and 1% of the variance in BOLD activity in left amygdala, re- 

spectively (for further details see Supplementary Table 3, left). This was 

further confirmed by partial correlation analysis ( Fig. 4 B, left), show- 

ing a significant negative association of BOLD activity in left amygdala 

with NDI ( R = − 0.11; p (FDR-corrected) = 0.0093) while the association 

with ODI did not survive multiple comparisons’ correction ( R = − 0.08, 

p (FDR-corrected) = 0.063). 

These results generally confirmed significant relationships between 

higher ODI or NDI indices and lower BOLD activity during emotion pro- 

cessing ( Fig. 4 B) and this relationship did not seem to be explained by 

macrostructure (amygdala volume). 

3.2. Impact of neurite architecture on the relationship between task-related 

BOLD activation and task performance 

3.2.1. No moderating effect of neurite architecture on the relationship 

between n-back task-related BOLD activation in DLPFC and working 

memory task performance 

As expected, both left and right DLPFC BOLD activity were associ- 

ated with 2-back task performance (left DLPFC: beta = 0.36, df = 746, 

t = 10.84, p (FDR-corrected) = 8 × 10 − 16 ; right DLPFC beta = 0.35, 

df = 746, t = 10.28, p (FDR-corrected) = 4 × 10 − 16 ; corrected for age 

and sex). 

To study the moderating effect of neurite architecture on this re- 

lationship, BOLD activity and NODDI indices (ODI or NDI) for left or 

right DLPFC were entered into the first step of the regression analysis 

(together with age and sex). In the second step of the regression analy- 

sis, the interaction term between the NODDI indices and BOLD activity 

was entered, and it did not result in any significant change in variance 

explained in 2-back task performance (ODI: left DLPFC: ΔR 

2 = 0.0001, 

F 1, 744 = 0.14, p (FDR-corrected) = 0.95; right DLPFC: ΔR 

2 = 0, F 1, 

744 = 0.06, p (FDR-corrected) = 0.80; NDI: left DLPFC: ΔR 

2 = 0.0002, 

F 1, 744 = 0.18, p (FDR-corrected) = 0.67; right DLPFC: ΔR 

2 = 0.0004, 

F 1, 744 = 0.40, p (FDR-corrected) = 0.70). 

3.2.2. Moderating effect of neurite architecture on the relationship between 

emotion processing task-related BOLD activation in amygdala and emotion 

processing performance 

As expected, both left and right amygdala BOLD activity were associ- 

ated with faces task performance (left amygdala: beta = 0.13, df = 746, 

t = 3.54, p (FDR-corrected) = 0.00056; right amygdala: beta = 0.08, 

df = 746, t = 2.19, p (FDR-corrected) = 0.029; corrected for age and 

sex). Given a non-normal distribution of the models’ residuals, sensitiv- 

ity analysis was conducted where p-values were calculated using per- 

6 



C. Schifani, C. Hawco, A. Nazeri et al. NeuroImage 262 (2022) 119575 

Fig. 5. Neurite architecture as a moderator of the 

relationship between emotion processing task-related 

BOLD activation and task performance. Simple slopes 

of the associations between BOLD activity and faces 

task performance for 1 SD below the average of the 

NODDI indices (light green), the average of the NODDI 

indices (green-blue) and 1 SD above the average of the 

NODDI indices (dark blue) for (left) left and (right) 

right amygdala. ODI is depicted in upper row; NDI in 

lower row. BOLD, ODI and NDI are corrected for age 

and sex. 

mutation tests. The direction of results stayed the same (FDR-corrected 

p-values; left amygdala: p = 4 × 10 − 16 ; right amygdala: p = 0.0006). 

To study the moderating effect of neurite architecture on this rela- 

tionship, BOLD activity and NODDI indices (ODI or NDI) for left or right 

amygdala were entered into the first step of the regression analysis (to- 

gether with age and sex). Entering the interaction term between ODI 

and BOLD activity (step 2 of the regression) resulted in a significant in- 

crease in variance explained in faces task performance (left amygdala: 

ΔR 

2 = 0.01, F 1, 744 = 7.37, p (FDR-corrected) = 0.014; right amyg- 

dala: ΔR 

2 = 0.02, F 1, 744 = 11.61, p (FDR-corrected) = 0.0028; Fig. 5 , 

top row). Entering the interaction term between NDI and BOLD activ- 

ity (step 2 of the regression) resulted in a significant increase in vari- 

ance explained in faces task performance only in the right amygdala 

(left amygdala: ΔR 

2 = 0.001, F 1, 744 = 0.78, p (FDR-corrected) = 0.76; 

right amygdala: ΔR 

2 = 0.008, F 1, 744 = 6.28, p (FDR-corrected) = 0.050; 

Fig. 5 , bottom row). Thus, neurite architecture was concluded to be a 

significant moderator of the relationship between BOLD activity and 

faces task performance. Given a non-normal distribution of the mod- 

els’ residuals, sensitivity analysis was conducted where p-values were 

calculated using permutation tests. The direction of results stayed the 

same (FDR-corrected p-values; ODI left amygdala: p = 4 × 10 − 16 ; ODI 

right amygdala: p = 8 × 10 − 16 ; NDI left amygdala: p = 0.24; NDI right 

amygdala: p = 0.0016). 

Faces task performance was significantly related to both left and 

right amygdala BOLD activity when ODI or NDI was one standard de- 

viation (SD) above the mean ( p (FDR-corrected) < 0.005) and when at 

the mean ( p (FDR-corrected) < 0.05), but not when neurite architecture 

was one SD below the mean ( p (FDR-corrected) > 0.05) ( Fig. 5 ). See 

Supplementary Table 4 for detailed statistics. 

4. Discussion 

In this investigation of a large sample of young healthy adults, we 

found a relationship between gray matter neurite architecture and task- 

evoked BOLD activity. Lower ODI in DLPFC or ODI and NDI values in 

amygdala were related to higher BOLD activity, while common mea- 

sures of brain macrostructure such as cortical thickness, surface area and 

subcortical volume did not explain any additional variance in BOLD ac- 

tivity. Our findings support the possibility that neurite architecture, i.e. 

gray matter microstructure, accounts for some variability in functional 

7 



C. Schifani, C. Hawco, A. Nazeri et al. NeuroImage 262 (2022) 119575 

brain activity. Additionally, a moderating effect of neurite architecture 

on the relationship between emotion processing task-evoked BOLD re- 

sponse in amygdala and performance was observed. Our findings expand 

our current knowledge about the microstructural underpinnings of the 

individual capacity of cognition and related brain activation in healthy 

adult brains. 

We found that lower ODI, but not NDI, in DLPFC was related to 

higher BOLD activity during the working memory task. ODI may repre- 

sent the branching and complexity (i.e., arborization) of dendritic trees 

in gray matter, while NDI maps onto neurite density in gray matter 

(that may reflect density of dendrites and myelinated fibers or myelin 

content) ( Deligianni et al., 2016 ; Fukutomi et al., 2018 ; Grussu et al., 

2017 ; Mah et al., 2017 ; Zhang et al., 2012 ). Recent evidence exam- 

ining a smaller portion of the HCP sample reported distinct patterns 

of neurite architectural distribution across the cortex ( Fukutomi et al., 

2018 ). While NDI corresponded well with the distribution of myelin 

(myeloarchitecture) ( Braak, 1980 ; Nieuwenhuys, 2013 ), ODI was inter- 

preted as reflecting regional variations in the cortical cytoarchitecture 

( Von Economo, 2009 ; von Economo and Koskinas, 1925 ), showing high 

values in granular cortical areas (early sensory areas such as somatosen- 

sory, visual, and auditory cortices) and low in the agranular cortical 

areas (e.g., primary motor cortex, anterior insula, anterior cingulate). 

Importantly, regions associated with higher-order cognitive functions, 

including frontal and temporal cortices, had lower ODI values. Neurite 

architecture (ODI and to a lesser extent NDI) was also negatively asso- 

ciated with cortical thickness, especially lateral/medial aspects of the 

frontal cortex (including DLPFC) showing low ODI and relatively thick 

cortex ( Fukutomi et al., 2018 ). 

Our significant association with the BOLD response via cortical mi- 

crostructure contrasts with our reported lack of association of BOLD 

with cortical macrostructure (e.g., cortical thickness), which has been 

noted in previous studies ( Evangelista et al., 2021 ; Owens et al., 2018 ; 

Zacharopoulos et al., 2020 ). Cortical thickness and surface area did not 

provide any explanatory variance over and above that of ODI on the 

BOLD fMRI signal in DLPFC during the working memory task. Recent 

evidence initially linked higher intelligence directly to higher cortical 

volume and lower cortical ODI (and to a lesser extent to NDI) ( Genç

et al., 2018 ). One may speculate that while the efficient organization of 

the neurites/dendrites in DLPFC is crucial for efficient signal transmis- 

sion (i.e., higher working memory-evoked BOLD activity) in the present 

study, the role of neurite density may be less important, supported by 

our recent study showing a tendency towards a negative relationship be- 

tween ODI (but not NDI) and functional connectivity in the frontotem- 

poral network (with key involvement in working memory performance) 

( Nazeri et al., 2015 ). It is possible that higher-performing participants 

benefit from more organized (i.e., less ramified) dendritic trees, since 

restricting synaptic connections to an efficient minimum facilitates the 

differentiation of signals from noise while saving network and energy 

resources ( Genç et al., 2018 ), leading to better task-related brain acti- 

vation ability and performance. 

In the amygdala, we found a negative association of NDI with task- 

related BOLD activity and also of ODI with task-related BOLD activ- 

ity. Both NDI and ODI explained a comparable amount of variance on 

emotion processing-evoked BOLD activity, unlike the DLPFC where only 

ODI explained variance. The specificity of ODI to BOLD activity in the 

DLPFC vs. the joint contribution of ODI and NDI to BOLD activity in 

the amygdala may have been driven by the fundamental differences 

of both regions with regard to evolution, function and structural or- 

ganization. The DLPFC is a highly-organized, hierarchical structure (six 

distinct layers with strong interconnectivity ( Amunts and Zilles, 2012 ); 

specific fiber orientation throughout the layers; and cell bodies arranged 

into (mini)columns ( Buxhoeveden et al., 2000 ; Schlaug et al., 1995 ), 

enabling the high interconnectivity of cortical regions and strong con- 

nectivity with subcortical regions for efficient information transfer. The 

highly-evolved ability to modulate its connectivity distinguishes the 

DLPFC further from more primitive sensory cortex and subcortical struc- 

tures (e.g., amygdala) ( Arnsten and Jin, 2014 ). The amygdala (or “amy- 

loid complex ”) is also characterized by stronger heterogeneity (com- 

posed of over 20 interconnected nuclei with distinct architecture, func- 

tion and afferents/efferents ( Swanson and Petrovich, 1998 )) and sim- 

pler neuronal layering compared to DLPFC. The amygdala is highly con- 

nected to cortical and subcortical structures ( Fossati, 2012 ), illustrated 

by extensive efferent and afferent fiber bundles enervating/leaving the 

major nuclei ( Kedo et al., 2018 ). In a more complex, layered structure 

such as the DLPFC optimal organization of neurites interconnecting the 

different layers and columns (estimated by ODI) might be more impor- 

tant for brain function related to higher-order cognition. Whereas in 

amygdala, both the organization and the number/density of neurites (es- 

timated via NDI) might be similarly important given the simpler, more 

time-dependent needs of emotion processing in the amygdala. 

Finally, although we reported strong relationships between BOLD 

activity during working memory and emotion processing with task per- 

formance, mirroring former studies (e.g., Derntl et al., 2009 ; Habel et al., 

2007 ; Manoach et al., 1997 ), we did not observe any moderating effect 

of neurite architecture on the relationship between working memory 

task-related BOLD activation in DLPFC and performance of the 2-back 

task. In contrast, gray matter neurite architecture in the amygdala mod- 

erated the relationship between emotion processing task-related BOLD 

activation and faces task performance. As neurite orientation dispersion 

and density (NDI only in right amygdala) increased, the effect of the 

BOLD response (i.e., the slope of BOLD activity and faces task perfor- 

mance) also increased. We found one study which reported that diffi- 

culties in recognition of facial emotional expressions during horizontal 

slit-viewing were linked to alterations in both NDI and ODI in clusters in- 

cluding the ventral occipital complex region, superior temporal/parietal 

association areas, and forceps major of the corpus callosum in patients 

with autism spectrum disorder ( Yasuno et al., 2020 ). Overall, our re- 

sults are novel and warrant replication (see “Limitations and future di- 

rections ” section for potential further explanation). 

It should be acknowledged that our effects of relationships between 

neurite architecture, brain function and cognition are fairly small (e.g., 

variance of 1–2% for BOLD activation vs NODDI indices regressions 

with correlation coefficients of R = − 0.13 maximum). Recent brain- 

wide association studies of large datasets substantiate the evidence that 

fairly small effect sizes in associations between brain features (struc- 

ture or function) and phenotypes (cognition or psychopathology) are 

normal and highly consistent across large neuroimaging study samples 

such as HCP, ABCD and UK-Biobank (median effect sizes between 0.02 

and 0.03; range of R = − 0.15 to 0.15, similar to the current study). On 

the other hand, studies with small sample size may show inflated effect 

sizes with fairly limited reproducibility ( Marek et al., 2022 ). Addition- 

ally, a recent large study on the relationship between working memory- 

evoked BOLD activation and corresponding gray matter volume in the 

HCP sample ( n > 1000) reported comparable small effects of significant 

brain-wide correlations (R ranging from a maximum of − 0.111 to 0.151) 

( Owens et al., 2018 ). One explanation for the smaller variance shown 

between NODDI indices and BOLD response in our study and similar 

small effects on relationships between brain features and phenotypes 

shown by others ( Marek et al., 2022 ; Owens et al., 2018 ) may relate to 

inter-subject variability in both brain activation patterns ( Gordon et al., 

2017; Hawco et al., 2021; Miller et al., 2012; Van Horn et al., 2008 ) as 

well as brain structure ( Forde et al., 2020 ; Zilles and Amunts, 2013 ). 

Our results further suggest that the relationship between neurite archi- 

tecture and task-related BOLD activity is complex and that other fac- 

tors, apart from individual neurite architecture, play a role in driving 

individual cognitive task-evoked BOLD response. The findings of cross- 

sectional brain-behavior correlations being often small and unreliable 

without large samples urges “[…] human neuroscience towards study 

designs that either maximize sample sizes to detect small effects or max- 

imize effect sizes using focused investigations ” ( Gratton et al., 2022 ). 

Our present findings provide evidence that cognition-related BOLD 

activity is (at least partially) driven by the underlying local neurite or- 
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ganization and density with direct impact on cognition. In vivo gray 

matter microstructure represents a new target of investigation pro- 

viding strong potential for translation into the clinic. In various psy- 

chiatric disorders, e.g. schizophrenia and autism spectrum disorder, 

postmortem-derived alterations in dendritic arborization and synaptic 

density ( Berdenis van Berlekom et al., 2019 ; Martínez-Cerdeño, 2017 ) 

have been suggested to drive symptoms and alterations in brain func- 

tion ( Copf, 2016 ; Selemon and Zecevic, 2015 ), which could be recently 

confirmed by using novel in vivo gray matter microstructural imag- 

ing ( Carper et al., 2016 ; D’Souza et al., 2021 ; Matsuoka et al., 2020 ; 

Nazeri et al., 2017 ; Onwordi et al., 2020 ; Parvathaneni et al., 2017 ). As 

data required for NODDI fitting (or other biophysically plausible mod- 

els) can now be acquired in a clinically feasible time frame and setting, 

this tool opens up new possibilities for clinicians to more rapidly detect 

disease signatures and allows earlier intervention in the course of the 

disease. Given that neurites and gray matter microstructure have the 

capacity to rapidly remodel, these novel dMRI-based methods also rep- 

resent an opportunity to non-invasively monitor neuroplastic changes 

post-therapy within much shorter time scales. 

4.1. Limitations and future directions 

A priori, we decided for an ROI-based rather than a whole brain- 

based analysis given that both tasks used have strong spatial specificity 

in activity patterns in core regions which are related to cognitive pro- 

cessing and task performance. It is well established that the DLPFC has 

a key function in working memory and shows pronounced activation 

upon working memory challenge ( Barbey et al., 2013 ; Ragland et al., 

2002 ). Similarly, the amygdala is a key player in emotional regula- 

tion and cognition with a clear activation pattern upon emotional chal- 

lenge ( Plichta et al., 2012 ; Sabatinelli et al., 2011 ; Vuilleumier et al., 

2001 ). However, choosing a larger ROI instead of doing a vertex-/voxel- 

wise analysis may have reduced our effect of the relationship between 

neurite architecture and functional brain activity given that the peak 

effect/activation may have been within a small accumulation of ver- 

tices/voxels rather than the whole chosen ROIs. 

It is important to acknowledge that the present sample consists ex- 

clusively of healthy, young adult individuals with generally good cog- 

nitive function. Given the changes in individual cytoarchitecture across 

the life span ( Nazeri et al., 2015 ), a sample spanning a larger age range 

and including a geriatric population as well as individuals with lower 

cognitive function might allow for a more complete understanding of 

the relationship between functional brain activity and gray matter mi- 

crostructure, particularly in the context of biological challenges and the 

implications for functional activity in the presence of microstructural 

deficits. 

The moderating effect of gray matter neurite architecture on the rela- 

tionship between emotion processing task-related BOLD activation and 

faces task performance in the amygdala may have been driven by the 

stronger variance in BOLD activity and task performance in participants 

with higher ODI and NDI values, and the limited variation in the partic- 

ipants with the highest performance may have produced a ceiling effect 

( Barch et al., 2013 ; West et al., 2021 ). In future studies this moder- 

ation should be reassessed using a more demanding emotion process- 

ing task to produce a higher variability and reduce a ceiling effect in 

performance to enable a better identification of the underlying neurite 

architecture-BOLD activation relationship. One could speculate that task 

performance may more directly (negatively) relate to neurite architec- 

ture in those studies. 

5. Conclusion 

We examined the neurophysiological role of NODDI indices (i.e., in 

vivo neurite architecture) in relation to cognition-evoked BOLD brain 

activity. We provided direct evidence linking ODI/NDI and BOLD activ- 

ity in two separate tasks, with some differences between DLPFC (ODI 

only) and amygdala (ODI and NDI). We conclude that neurite architec- 

ture may account for some variability in functional activity. The mod- 

erate variance between neurite architecture and task-related BOLD ac- 

tivity suggests that their relationship is complex and that other factors, 

apart from individual neurite architecture, may play a role in driving 

individual cognitive-task evoked BOLD response. In sum, NODDI model 

indices may play a unique role as structural correlates of fMRI sig- 

nal underpinnings, particularly given a lack of association with cortical 

macrostructure. 
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