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Purpose: Magnetic resonance (MR) image guidance may facilitate safe ultrahypofractionated radiation dose escalation for
inoperable pancreatic ductal adenocarcinoma. We conducted a prospective study evaluating the safety of 5-fraction Stereotactic
MR-guided on-table Adaptive Radiation Therapy (SMART) for locally advanced (LAPC) and borderline resectable pancreatic
cancer (BRPC).

Methods and Materials: Patients with LAPC or BRPC were eligible for this multi-institutional, single-arm, phase 2 trial after
>3 months of systemic therapy without evidence of distant progression. Fifty gray in 5 fractions was prescribed on a 0.35T
MR-guided radiation delivery system. The primary endpoint was acute grade >3 gastrointestinal (GI) toxicity definitely attrib-
uted to SMART.

Results: One hundred thirty-six patients (LAPC 56.6%, BRPC 43.4%) were enrolled between January 2019 and January 2022.
Mean age was 65.7 (36-85) years. Head of pancreas lesions were most common (66.9%). Induction chemotherapy mostly con-
sisted of (modified) FOLFIRINOX (65.4%) or gemcitabine/nab-paclitaxel (16.9%). Mean CA19-9 after induction chemotherapy
and before SMART was 71.7 U/mL (0-468). On-table adaptive replanning was performed for 93.1% of all delivered fractions.
Median follow-up from diagnosis and SMART was 16.4 and 8.8 months, respectively. The incidence of acute grade >3 GI tox-
icity possibly or probably attributed to SMART was 8.8%, including 2 postoperative deaths that were possibly related to
SMART in patients who had surgery. There was no acute grade >3 GI toxicity definitely related to SMART. One-year overall
survival from SMART was 65.0%.

Conclusions: The primary endpoint of this study was met with no acute grade >3 GI toxicity definitely attributed to ablative
5-fraction SMART. Although it is unclear whether SMART contributed to postoperative toxicity, we recommend caution
when pursuing surgery, especially with vascular resection after SMART. Additional follow-up is ongoing to evaluate late toxic-
ity, quality of life, and long-term efficacy. © 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

radiation to the target with respiratory motion management
using real-time cine images. Retrospective outcomes of 5-
fraction SMART for inoperable PDAC have been favorable
with respect to treatment efficacy and safety.” '’ However,
5-fraction SMART has not previously been studied in a pro-
spective manner.

We conducted the first multi-institutional prospective
phase 2 trial of ablative 5-fraction SMART for locally
advanced pancreatic cancer (LAPC) and borderline resect-
able pancreatic cancer (BRPC) (NCT03621644) and herein
present the initial study outcomes.

Introduction

The use of radiation therapy (RT) for pancreatic ductal ade-
nocarcinoma (PDAC) remains controversial. Contemporary
studies have shown no apparent effect on overall survival
(0S)."” Large retrospective studies that employ modern
chemotherapy regimens such as (modified)FOLFIRINOX
also do not clearly demonstrate that adding RT to chemo-
therapy improves OS for inoperable PDAC."

Prior prospective studies of 5-fraction RT for PDAC have
used nonablative radiation dose because of the proximity of
nearby gastrointestinal luminal organs at risk (GI-OARs) and
concerns about causing severe toxicity. Emerging data suggest
that increasing the prescribed radiation dose to an ablative
range improves local control (LC) and potentially OS.™

Methods and Materials

Stereotactic Magnetic resonance-guided Adaptive Radia-
tion Therapy (SMART) is a novel approach that uses mag-
netic resonance imaging (MRI) scans acquired both before
and continuously during treatment delivery. SMART facili-
tates on-table RT treatment plan modification to account
for daily anatomic changes while delivering ablative

Study design and eligibility criteria

This multi-institutional, single-arm, phase 2 trial enrolled
136 patients across 13 sites in 3 countries (United States
[n = 11], Italy [n = 1], Israel [n = 1]). All enrolled patients
had pathologically confirmed LAPC or BPRC based on
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institutional resectability criteria. Study participants were
required to receive at least 3 months of any systemic chemo-
therapy without evidence of distant progression before study
enrollment. Study eligibility also included that participants
have Eastern Cooperative Oncology Group performance
status <1 and CA19-9 < 500 U/mL after induction chemo-
therapy.

Participating institutions were in compliance with the
protocol approved by study sites’ respective institutional
review boards/ethics committees and in accordance with the
ethical and regulatory guidelines for their country.

Study data were reviewed by an independent Data Safety
Monitoring Board (DSMB) and a separate independent
Clinical Events Committee (CEC), both comprised of clini-
cians with expertise in PDAC management. Both commit-
tees were independent of the primary investigators of the
study, as recommended in Food and Drug Administration
guidance material (https://www.fda.gov/media/75398/down
load). Further, the DSMB and CEC were not composed of
the same individuals. The DSMB reviewed the study for
safety at least on an annual basis. The CEC adjudicated all
grade >3 GI toxicity events.

SMART

SMART was delivered using an integrated 0.35T MR-cobalt
(n = 2, 1.5%) or MR linear accelerator (LINAC) system
(n = 134, 98.5%) (MRIdian; ViewRay, Inc, Denver, CO).
Details regarding the MR-cobalt and MR-LINAC technolo-
gies and associated workflow have previously been
reported.'*'” Integral to the workflow is the prediction of
the radiation dose that would be delivered to the target vol-
ume and OARs, assuming the original plan was used, based
on anatomic changes visualized on volumetric pretreatment
MRI scans acquired each treatment day on the Magnetic
Resonance-guided Radiation Therapy (MRgRT) system.
When OAR constraints were violated because of anatomic
changes, the study required that on-table adaptive replan-
ning be performed to primarily ensure that OAR constraints
were met; optimizing target volume coverage was a second-
ary objective. The original plan was not delivered if on-table
adaptive replanning was required. On-table plan adaptation,
plan evaluation, and adaptive quality assurance occurred
while the patient remained in the treatment position. Dur-
ing treatment delivery, sagittal planar MR images were con-
tinuously acquired during treatment delivery at either 4 or 8
frames per second, and the radiation beam was automati-
cally paused when the tracked pancreatic tumor moved out
of a defined gating boundary, which typically was due to
respiratory motion.

SMART was delivered with a prescribed dose of 50 Gy in
5 fractions (biologically effective dose [BED];o = 100 Gy)
with at least 2 fractions delivered per week and a minimum
interval of 18 hours between fractions. Focal hotspots were
permitted if they were located within the gross tumor vol-
ume (GTV), with no specified maximum dose limit. GI-

Table 1 Gastrointestinal organ-at-risk constraints

Structure Goal

Liver Mean dose < 20 Gy
Keep 700 cm® under 15 Gy

Duodenum maximum dose V33 <0.5cm’

Stomach maximum dose V33<0.5 cm’

Small bowel maximum dose V33 <0.5cm’

Large bowel maximum dose V33 <0.5cm’

Spinal canal V25 < 0.5 cm®

Kidney (each) Mean < 12 Gy
Two-thirds of each kidney

<14 Gy

OAR dose constraints are listed in Table 1. The GTV
included radiographically visible tumor in the pancreas and
involved locoregional lymph nodes. The study protocol
allowed for the optional use of a clinical target volume
(CTV) to cover potential microscopic disease. The extent of
the CTV was not defined in the study protocol and was at
the discretion of the treating physician; this could have
included an isotropic expansion of the GTV alone or inclu-
sion of specific anatomic regions and structures (eg, local
vascular structures) considered to be at high risk of harbor-
ing micrometastatic disease. A “comprehensive” nodal vol-
ume was never included. The planning target volume (PTV)
was developed as a 3-mm uniform expansion from the
GTV, or otherwise the CTV if one was used. For dose plan-
ning, OAR dose limits superseded dose coverage to the
PTV.

Post-SMART therapy

Additional PDAC therapy after completion of SMART,
including chemotherapy and/or surgery, was permitted at
the discretion of the treating physician.

Patient assessments

Routine follow-up was scheduled at 90 days, 6 months, 12
months, and every 6 months through 5 years after initiation
of study treatment. Physical examination, assessment of per-
formance status, and cross-sectional imaging were per-
formed at each visit. Adverse events were graded using
National Cancer Institute Common Terminology Criteria
for Adverse Events version 5.0. Patient-reported quality of
life (QoL) was measured using the Functional Assessment
of Cancer Therapy Hepatobiliary Cancer Symptom Index
(FACT FHSI-18) survey instrument at baseline and 3 and
12 months after SMART.

Each RT plan delivered in the study was sent to a central
DICOM (Digital Imaging and Communications in Medi-
cine) storage section for central review at the end of the
study (ProKnow DS, version 1.32.0). Post hoc central review
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of contours and plans was performed after all patients had
been treated. Dosimetric outcomes including OAR viola-
tions within the current analysis were reported by each insti-
tution and had not undergone central review at the time of
this analysis. Metrics regarding target coverage were col-
lected on a per-fraction basis.

Statistical evaluation

The primary endpoint was to determine Common Termi-
nology Criteria for Adverse Events grade 3 or greater defi-
nitely related GI toxicity up to 90 days after initiation of
SMART. Secondary endpoints were (1) OS at 2 years
defined from the time from tissue diagnosis of PDAC, (2)
distant progression-free survival (DPFS) at 6 months from
the end of SMART, and (3) patient-reported QoL measured
using the Functional Assessment of Cancer Therapy Hepa-
tobiliary Cancer Symptom Index (FACT FHSI-18) survey
instrument."”’

The sample size for this trial was determined using PASS
14 (NCSS, Kaysville, UT). Data from a minimum of 113
participants provided 80% power to detect a statistically sig-
nificant (P < .05) and clinically important reduction from a
historic comparison of 15.8% to 8% in grade 3 toxicity rates
at 90 days.'* To account for attrition, predicted at 15%, we
planned to enroll a minimum of 133 patients. A statistically
significant P value of <.05 and an observed value of the 1-
sided upper 95% confidence bound were used. Statistical
analyses were conducted using SAS (version 9.4; SAS Insti-
tute, Cary, NC). Follow-up time was calculated from the first
day of SMART until the last study contact date, which is the
latest date of all follow-up visits, assessments, adverse event
onset or resolution, and study exit, including date of death.
OS, LC, and DPFS were obtained from Kaplan-Meier analy-
ses. Descriptive statistics of target coverage for each RT plan
were analyzed with Excel.

An exploratory analysis was done for patients who had
surgery versus no surgery after SMART and, unlike the pri-
mary endpoint evaluation, was not limited to 90 days after
SMART. Each treating institution was asked to submit
details for resected patients, including type of surgery, time
interval from SMART to surgery, and margin status. Surgery
was not required to be done at the institution where SMART
was delivered. The primary investigators categorized each
toxicity using the Clavien-Dindo classification.

Results

From January 2019 to January 2022, 136 participants com-
pleted 5-fraction SMART and were included in the primary
endpoint evaluation. Of these 136 patients, all had at least
90 days of follow-up, except for 6 patients who died within
90 days of SMART.

The mean age of the study participants at enrollment was
65.7 years (range, 36-85 years). Most received induction (m)

Table2 Baseline tumor characteristics
Characteristic N =136
Histology
Adenocarcinoma 99.3% (135/136)

Other histology: carcinoma with 0.7% (1/136)

squamous differentiation
Location of lesion
Pancreatic head 66.9% (91/136)
Body 18.4% (25/136)
7.4% (10/136)

3.7% (5/136)

Overlapping body/tail

Pancreatic neck

Overlapping head/body 2.9% (4/136)

Tail 0.7% (1/136)
Size of primary lesion (cm)

No. 134

Mean =+ SD 3.1£1.20

Min, max 0.6, 6.6
Stage T

Tl 3.7% (5/135)

T2 24.4% (33/135)

T3 12.6% (17/135)

T4 59.3% (80/135)
Stage N

NO 68.9% (93/135)

N1 24.4% (33/135)

NX 6.7% (9/135)
Stage M

MO 100.0% (135/135)
Stage TNM category

I 16.3% (22/135)

II 23.7% (32/135)

111 60.0% (81/135)
Tumor marker CA19-9 at diagnosis (U/

mL)

No. 134

Mean + SD 537.5 £ 1254.01

Min, max 1.0, 9600.0

Tumor classification

Borderline resectable pancreatic 43.4% (59/136)

cancer

Locally advanced pancreatic cancer, 56.6% (77/136)

unresectable

Values are percentages (counts/sample size) unless otherwise stated.
Table contains site-reported data.

Abbreviations: max = maximum; min = minimum; SD = standard
deviation; TNM = tumor, node, metastases; CA19-9 = carbohydrate
antigen 19-9.
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Table3 Adaptive radiation therapy characteristics

Average across
Characteristic Fraction 1 Fraction 2 Fraction 3 Fraction 4 Fraction 5 fractions
Fraction adapted 94.9% (129/136) 91.9% (125/136) 91.9% (125/136) 94.1% (128/136) 92.6% (126/136) -*
GI-OAR 95.3% (123/129) 93.6% (117/125) 95.2% (119/125) 96.9% (124/128) 96.8% (122/126) -'
constraints
violated*
Other reason for 9.3% (12/129) 12% (15/125) 7.2% (9/125) 5.5% (7/128) 8.7% (11/126) 4
adaptation'
Dose covering 95%
of GTV (Gy)
No. 131 127 125 128 128 134
Mean + SD 426+72 43074 42.1+83 425+ 8.0 419 £ 8.0 424+78
(Min, max) (24.5, 56.6) (23.7,57.3) (9.2, 59.3) (22.5, 55.9) (21.3,57.4) (9.2,59.3)
GTV (cm?)
No. 131 126 125 128 128 134
Mean + SD 90.3 +47.4 91.5 £ 47.6 91.9 £ 473 93.1+47.3 90.7 £ 48.9 91.5+£47.6
(Min, max) (17.5,282.9) (19.3, 285.3) (21.2,284.6) (20.8, 274.8) (18.1,274.8) (17.5, 285.3)
GTV V50Gy (%)
No. 127 124 122 126 122 127
Mean 84.9 86.1 85.4 85.8 85.4 85.5
(Min, max) (30.0, 99.5) (45.8, 100.0) (36.2,99.8) (48.7, 100.0) (50.4, 99.9) (30.0, 100.0)
Values are percentages (counts/sample size) unless otherwise stated. Table contains site-reported data.
Abbreviations: GI-OAR = gastrointestinal organ at risk; GTV = gross tumor volume; max = maximum; min = minimum; SD = standard deviation.
T GI-OARs included the duodenum and stomach, as well as the large and small bowel.
! Other reasons for adaptation included liver, spine, kidney, and tumor coverage.
* No averages were recorded for these characteristics.

FOLFIRINOX (n = 89; 65.4%) or gemcitabine/nab-pacli-
taxel (n = 23; 16.9%), and 22 patients had multiple sequen-
tial chemotherapy regimens (16.2%) before study
enrollment; the mean induction chemotherapy duration
was 5.1 £ 2.0 months. The mean time from completion of
chemotherapy until the start of SMART was 1.3 + 0.8
months.

Of the participants, 43.4% (n = 59) had BRPC and 56.6%
(n = 77) had LAPC. The mean primary tumor size was 3.1
+ 1.2 cm (range, 0.6-6.6 cm), with most located in the pan-
creatic head (69.9%; n = 91). The mean CA19-9 at diagnosis
was 537.5 £ 1254.01 U/mL (n = 134), which decreased to
71.7 £ 106.05 U/mL after chemotherapy and before study
enrollment. Table 2 describes baseline tumor characteristics;
all data were not available for 2 patients.

The mean GTV and PTV were 91.5 4 47.6 cm’ (range,
17.5-285.3) and 1334 + 67.15 cm® (range, 32.8-444.2),
respectively. The average D95 of the GTV was 42.4 Gy
(range, 9.21-59.3). A CTV was used for 54.4% of patients;
93.1% (633/680) of the total delivered fractions were
adapted, most commonly because of predicted GI-OAR
constraint violations (96% of adapted fractions). Violations
of the duodenum, stomach, small bowel, and large bowel
constraints occurred in 79%, 65%, 47%, and 26% of frac-
tions, respectively. Each fraction delivered met all GI-OAR

constraints after plan adaptation. Table 3 describes addi-
tional adaptive MRgRT characteristics.

Additional treatment after SMART included chemother-
apy (n = 27; 19.9%) and surgery (n = 44; 32.4%). Most
resected patients had BPRC (n = 33; 75%), whereas the
minority had LAPC (n = 11; 25%). Surgery was performed
after a mean 51.4 £ 52.8 days from SMART (range, 13-349
days). Twenty-three patients (52%) who received surgery
required vascular resection. Vascular resection was venous
only (n = 15; 65%), arterial only (n = 3; 13%), or arterial and
venous (n = 5; 22%).

Median follow-up from diagnosis and SMART was 16.4
months (8.0, 40.3) and 8.8 months (1.2, 36.1), respectively.
One-year DPES, LC, and OS from SMART (Fig. 1) were
50.6%, 82.9%, and 65.0%, respectively. One-year DPFS, LC,
and OS from diagnosis were 80.1%, 90.0%, and 93.9%,
respectively. One-year DPFS, LC, and OS from SMART in
resected versus unresected patients were 82% versus 46%,
93% versus 78%, and 85% versus 56%, respectively.

Twelve patients (8.8%) had treatment-related acute (<90
days) GI grade 3 or higher toxicities (Table 4), including
abdominal pain (n = 6), bleeding (n = 4), diarrhea (n = 1),
and chyle leak after surgery (n = 1). All were determined to
be possibly related to SMART except for 3 incidents of
abdominal pain that were adjudicated as probably related.
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Fig. 1. Overall survival from stereotactic magnetic resonance-guided adaptive radiation therapy.

Each was determined to be grade 3 except for 2 grade 4
events (abdominal pain occurring 10 days after surgery with
intraoperative irreversible electroporation; duodenal bleeding
with evidence of tumor invasion into the duodenum) and 2
grade 5 events (gastroduodenal artery bleed 5 weeks after sur-
gery and 11 weeks from SMART; bleeding during surgery
performed 8 weeks after SMART). Both grade 5 events were
determined to be possibly related to SMART and occurred in
patients with BRPC who underwent portal vein resection and
reconstruction. There were 4 additional deaths within 90 days
of SMART not attributed to SMART and instead either dis-
ease progression (n = 3) or suicide (n = 1).

Clavien-Dindo grade 3 or higher surgical complications
occurred in 9/44 (20.5%) resected patients. In addition to
the 2 patients whose surgical complications were related to
SMART, there was 1 patient who had surgery 129 days after

SMART and died of postoperative complications adjudi-
cated as being unrelated to SMART. All 3 postoperative
deaths occurred in patients who had a vascular resection >5
weeks from SMART (39, 60, 129 days, respectively). The
most common Clavien-Dindo grade 3 or higher complica-
tions after surgery included abdominal pain (23.1%), wound
infection (23.1%), and hemorrhage (23.1%).

Discussion

Radiation therapy for inoperable PDAC is typically deliv-
ered using nonablative doses, with higher dose being
avoided in order not to exceed the radiation tolerance of
nearby GI luminal organs. Common nonablative regimens
for BRPC/LAPC include 504 Gy in 28 fractions
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Table 4 Gastrointestinal toxicity attributed to radiation
therapy

Participants with
events (by worst

Characteristic Total events* event)
0-90d
Treatment-related
GI toxicity'
Grade 3 10 5.9% (8/136)
Grade 4 2 1.5% (2/136)
Grade 5 2 1.5% (2/136)
Grade >3 14 8.8% (12/136)
Treatment-related
GI toxicity:
definitely related
Grade 3 0 0.0% (0/136)
Grade 4 0 0.0% (0/136)
Grade 5 0 0.0% (0/136)
Grade >3 0 0.0% (0/136)
Treatment-related
GI toxicity:
probably related
Grade 3 3 2.2% (3/136)
Grade 4 0 0.0% (0/136)
Grade 5 0 0.0% (0/136)
Grade >3 3 2.2% (3/136)
Treatment-related
GI toxicity:
possibly related
Grade 3 7 3.7% (5/136)
Grade 4 2 1.5% (2/136)
Grade 5 2 1.5% (2/136)
Grade >3 11 6.6% (9/136)

Values are percentages (counts/sample size) unless otherwise stated.
Table contains CEC-adjudicated data.

Abbreviations: ~ CEC =  Clinical  Events
GI = gastrointestinal.
" One participant may have more than 1 event.

Committee;

T Definitely, probably, or possibly related.

(BED; = 59.5 Gy) and 33 Gy in 5 fractions (BED;, = 54.8
Gy). Published data demonstrate that higher prescribed
BED;, is expected to improve local tumor control, especially
for patients with PDAC who do not ultimately undergo sur-
gery."”” The concept that ablative radiation dose (BED;o >
100 Gy) improves tumor control probability has been clearly
demonstrated for other cancers such as stage I non-small
cell lung cancer."®

Significant radiation dose escalation has not been pur-
sued for PDAC because of technological limitations in visu-
alizing and avoiding radiation to the mobile and
radiosensitive stomach and small intestine at the time of

treatment delivery. Standard LINACs that use on-board
cone beam computed tomography (CT) for daily image
guidance are unable to image the tumor and surrounding
OARs during treatment with high resolution and do not
have an on-table adaptive workflow to modify dose distribu-
tions before each fraction to account for substantial inter-
fraction anatomic changes. Outcomes of a phase 1 trial of
cone beam CT—guided, dose-escalated, 5-fraction pancreas
stereotactic body RT (40, 45, 50 Gy) had 2 patients (6.7%)
who experienced late grade 4 or 5 GI bleeding in the 45 Gy
group.'” A phase 2 pancreas stereotactic body RT trial that
prescribed 45 Gy in 3 fractions (BED;, = 112.5 Gy) with 2-
dimentional x-ray guidance reported acute grade 3 to 4 tox-
icities in most patients.'® Reyngold et al® published a retro-
spective analysis of 15- to 25-fraction CT-guided ablative
RT for LAPC that demonstrated favorable 2-year OS; a rela-
tively low incidence (12.6%) of grade 3 toxicity was
reported, most commonly upper GI bleeding. Although our
study included patients who had surgery after SMART, no
patients in the study by Reyngold et al were reported to
have surgery.

Our trial represents the first prospective, multi-institu-
tional evaluation of SMART delivered in 5 fractions with an
ablative prescription dose of 50 Gy (BED;, = 100 Gy). The
primary objective of the study was met, which was to dem-
onstrate that the incidence of acute grade 3 or higher GI tox-
icity definitely related to SMART would be <15.8%, and the
observed incidence was 0%. The incidence of acute grade 3
or higher GI toxicity at least possibly related to SMART was
8.8%, similar to what is expected from nonablative CT-
guided RT."” This confirms findings from several published
phase 1 trials using dose-escalated 5-fraction SMART on a
0.35T MRgRT system delivered to various targets in the
abdomen and pelvis with minimal toxicity,'”*" as well as
multiple retrospective studies with similar findings.” "’
Table 5 summarizes toxicities reported in other RT studies.

Although most patients in the current study did not have
severe toxicity, a small number did experience grade 4 to 5
events. Although we cannot exclude the possibility that
SMART may have contributed, the available data are not
sufficient to draw meaningful conclusions regarding
SMART and the causality of these events. Two patients
experienced acute grade 4 toxicity possibly due to SMART;
1 resected patient had abdominal pain in the immediate
postoperative period and another had bleeding with endo-
scopic evidence of duodenal invasion by tumor. Two
patients with BRPC who underwent surgery with vascular
reconstruction died because of bleeding complications
within 90 days, 1 intraoperatively and 1 just under 3 months
after surgery. One BRPC patient who had surgery with
venous resection 129 days after SMART died 20 days post-
operatively from spontaneous GI bleed.

Minimizing the risk of treatment-related toxicities should
always be a priority, although despite best efforts to do so,
some patients with BRPC or LAPC treated with or without
RT will experience severe morbidity and even mortality.
The probability of such events is not trivial, especially



806 Parikh et al.

International Journal of Radiation Oncology ® Biology ® Physics

Table 5 Toxicity outcomes from select studies of RT for inoperable pancreatic cancer
Prescribed
Image radiation dose/  Prescribed Median
Reference Study design No. guidance  fractions BED,, follow-up Toxicity
Herman et al'! Phase 2 49  CBCT 33 Gy/5 54.8 Gy 13.9 mo from Acute G2+ GI:
fractions diagnosis 2%; late G2+
GI: 11%
Quan et al*® Phase 2 35  CBCT 36 Gy/3 79.2 Gy 15.4 mo from Acute G3+ GL:
fractions diagnosis 0%; late G3+
GIL: 0%
Comito et al”’ Phase 2 45  CBCT 45 Gy/6 78.8 Gy 13.5 mo from Acute G3+ GI:
fractions diagnosis 0%; late G3+
GI: 0%
Rudra et al® Retrospective 44  0.35T MRI  Various Various 17 mo from Acute G3+ GL:
diagnosis 0% (BED;, >
70 Gy); late
NR
Hassanzadeh et al” Retrospective 44  0.35T MRI 50 Gy/5 100 Gy 16 mo from Acute G3+ GI:
fractions diagnosis 0%; late G3+
GI: 4.6%
Chuong et al’ Retrospective 62 0.35T MRI  Median, 50 Gy/5 Median, 100 Gy  18.6 mo from Acute G3+ GI:
fractions diagnosis; 11.0 4.8%; late G3+
mo from RT GI: 4.8%
Present study Phase 2 136  0.35T MRI 50 Gy/5 100 Gy 8.8 mo from RT  Acute G3+ GI:
fractions 0% definitely
related, 8.8%
possibly/
probably
related
Abbreviations: BED = biologically effective dose; CBCT = cone beam computed tomography; G = grade; GI = gastrointestinal; MRI = magnetic reso-
nance imaging; RT = radiation therapy; NR= not reported.

among patients who undergo surgery after preoperative
therapy, especially when vascular resection is performed.
The observed Clavien-Dindo grade >3 complication rate in
our study was 20.5%, which is similar to outcomes from a
recent retrospective study of postoperative outcomes after
ablative 5-fraction SMART from Moffitt Cancer Center.”’
We highlight that the rates of severe surgical complications
from both studies are similar to historical surgical studies
that did not include preoperative RT. Caruso et al** reported
outcomes of 65 consecutive patients with LAPC who did not
receive preoperative RT and had surgery with venous resec-
tion at 3 high volume centers in Spain; the Clavien-Dindo
grade 3 perioperative morbidity rate was 21.5%. An analysis
of 14 retrospective cohort studies including 7604 patients
who underwent resection for PDAC without preoperative
RT reported Clavien-Dindo grade >3 complication rates up
to 31%.” A single institution analysis of 1056 pancreatico-
duodenectomies reported a Clavien-Dindo grade >3 com-
plication rate of 15.3%.”* An international multicenter
retrospective cohort study of 423 patients with PDAC who
had preoperative FOLFIRINOX and then surgery found
that postoperative major morbidity occurred in 20.8% and
90-day mortality was 2.8%.”

Although the incidence of grade 3 or higher postopera-
tive complications in our study is not overtly higher than
historical surgical outcomes without SMART, there is still
much that is unknown about the effect of ablative radiation
dose on surgery. We recommend proceeding cautiously
when pursuing surgery, especially if vascular resection is
required after ablative RT, and patients should be informed
of potential surgical risks. Future studies are needed to bet-
ter understand the effect of SMART on surgical outcomes
and approaches, including the optimal timing of surgery
after SMART; the postoperative deaths in our study
occurred when surgery with vascular resection was per-
formed >8 weeks after SMART. Lastly, we recommend that
resections be performed by a surgeon with experience oper-
ating after ablative RT.

Strengths of this study are its prospective nature, use of a
novel radiation delivery technology, detailed radiation plan-
ning guidelines, and the use of an independent clinical
events review committee separate from the study investiga-
tors. This study was not limited to quaternary cancer refer-
ral centers and included both public and private institutions
across multiple countries, thereby allowing the study results
to be more generalizable to a spectrum of clinical practices.
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There are several study limitations, which include enroll-
ing both BRPC and LAPC that had different prognoses;
LAPC or BPRC was determined based on institutional
resectability criteria; variability in chemotherapy permitted
before study enrollment, including single agent regimens;
single-arm trial design; and variability in additional thera-
pies given after SMART. At present, follow-up after SMART
is limited, although our early results are encouraging and
warrant additional evaluation of this novel treatment strat-
egy. Longer follow-up is planned to better understand late
toxicity outcomes and treatment efficacy results especially
beyond 1 to 2 years from SMART. Lastly, we do not present
patient-reported QoL outcomes in this article because not
all data were available at the time of analysis; these outcomes
will be presented in the future.

Based on the encouraging early results from this phase 2
trial, we plan to conduct an international, multi-institu-
tional, phase 3 randomized trial for LAPC of chemotherapy
alone versus chemotherapy followed by 5-fraction ablative
SMART delivered on a 0.35T MR-LINAC with primary
endpoint of 2-year OS (NCT05585554).

Conclusion

This is the first prospective evaluation of 5-fraction abla-
tive SMART delivered on a 0.35T MR-guided radiation
delivery system. Acute treatment-related grade 3 or
higher toxicity was rare and the primary endpoint was
met. Although it is unclear whether SMART contributed
to postoperative toxicity, we recommend caution when
pursuing surgery, especially with vascular resection. Fur-
ther investigation is needed regarding the safety of sur-
gery after SMART. Additional prospective evaluation of
this novel treatment strategy is planned, with focus on
long-term treatment efficacy.
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