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Abstract
The epigenome of stem cells occupies a critical interface between genes and environ-
ment, serving to regulate expression through modification by intrinsic and extrinsic 
factors. We hypothesized that aging and obesity, which represent major risk factors 
for a variety of diseases, synergistically modify the epigenome of adult adipose stem 
cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine 
ASCs from lean and obese mice at 5- and 12-months of age, we identified global 
DNA hypomethylation with either aging or obesity, and a synergistic effect of aging 
combined with obesity. The transcriptome of ASCs in lean mice was relatively stable 
to the effects of age, but this was not true in obese mice. Functional pathway analy-
ses identified a subset of genes with critical roles in progenitors and in diseases of 
obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential 
hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO 
vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging 
in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated 
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upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in 
young animals (YO vs. YL), suggesting that these factors could play a role in acceler-
ated aging with obesity. Finally, we identified candidate driver genes that appeared 
recurrently in all analyses and comparisons undertaken. Further mechanistic stud-
ies are needed to validate the roles of these genes capable of priming ASCs for dys-
function in aging- and obesity-associated pathologies.

K E Y W O R D S

Affl, Cd44, diabetes, Dusp6, Itih2, mesenchymal stem cell, multiomics, Nfatc2, oncogenesis, 
osteoarthritis, tumorigenesis

Abbreviations: 2210408F21Rik, 2210408F21 sequence RIKEN Mouse Gene Encyclopaedia Project; 3′UTR, 3′ untranslated region; 5′UTR, 5′untranslated 
region; A, aged; Ablim1, actin binding LIM protein 1; Actn1, actinin alpha 1; Adam19, a disintegrin and metalloprotease domain metallopeptidase domain 
19; Adh7, alcohol dehydrogenase 7; Aff1, AF4/FMR2 family, member 1; Akap13, A-kinase anchoring protein 13; AL, aged lean; AO, aged obese; App, 
amyloid beta precursor protein; ASCs, adipose stem cells; Atf6, activating transcription factor 6; Baiap2, BAR/IMD domain containing adaptor protein 2; 
BEDTools, browser extensible data format file tools; BMI, body mass index; Capn6, calpain 6; Casp2, caspase 2; Ccl9, chemokine (C-C motif) ligand 9; 
Ccnd1, cyclin D1; CD29, cluster of differentiation 29; CD31, cluster of differentiation 31; CD34, cluster of differentiation 34; CDd44, cluster of 
differentiation  44; CD45, cluster of differentiation 45; CD73, cluster of differentiation 73; CD90, cluster of differentiation 90; CD105, cluster of 
differentiation 105; CD166, cluster of differentiation 166; Cdh13, cadherin 13; Cdkn1a, cyclin dependent kinase inhibitor 1A; Cdkn2a, cyclin dependent 
kinase inhibitor 2A; CDS, coding sequence; CG, cytosine followed by guanine nucleotide; CGI, cytosine followed by guanine nucleotide island; Cmtm4, 
CKLF like MARVEL transmembrane domain containing 4; CO2, carbon dioxide; Col12a1, collagen type XII alpha 1 chain; CpG, 5′cytosine-phosphate-
guanine 3′; Ctnnb1, catenin beta 1; Cyb5d1, cytochrome b5 domain containing 1; DESeq2, differential gene expression of RNA-seq data; DEx, differential 
expression; DGE, differential gene expression; DHMRI, David H. Murdock Research Institute; Dhrs9, dehydrogenase/reductase 9; Dkk1, dickkopf WNT 
signaling pathway inhibitor 1; DMC, differentially methylated cytosine; DMeth, differential methylation; DMW, differentially methylated window; DNA, 
deoxyribonucleic acid; Dusp6, dual specificity phosphatase 6; ENCODE, encyclopedia of DNA elements; FACS, fluorescent-activated cell-sorting; FDR, 
false discovery rate; En2, engrailed homeobox 2; ERK, extracellular regulated MAP kinase; Fam83f, family with sequence similarity 83 member F; Fnip2, 
folliculin interacting protein 2; FoxG1, forkhead box G1; Foxo3, forkhead box O3; Gas6, growth arrest specific 6; Gbx2, gastrulation brain homeobox 2; 
Gdap2, ganglioside induced differentiation associated protein 2; Gm15663, predicted gene 15663; Gpr85, G protein-coupled receptor 85; GRCm38, 
Genome Reference Consortium Mouse Build 38 Organism: Mus musculus; GTF, general feature format; GTPase, guanosine triphosphate hydrolase; 
Gucy1b1, guanylate cyclase 1 soluble subunit beta 1; Gzf1, GDNF inducible zinc finger protein 1; Gzme, granzyme E; H3K4m3, histone H3 protein 
trimethylation at the 4th lysine residue; H3K9me3, histone H3 protein trimethylation at the 9th lysine residue; H3K27me3, histone H3 protein 
trimethylation at the 27th lysine residue; HLA-A, major histocompatibility complex, class I, A; Hipk2, homeodomain interacting protein kinase 2; HTSeq, 
high throughput sequence analysis; IACUC, institutional care and use committee; Id2, inhibitor of DNA binding 2; Ifngr2, interferon gamma receptor 2; 
IGF-1, insulin like growth factor 1; Il11, interleukin 11; Intu, inturned planar cell polarity protein; IPA, Ingenuity Pathways Analysis; IRSp53, Insulin 
receptor substrate 53 kDa; Itih2, inter-alpha-trypsin inhibitor heavy chain 2; Itpr3, inositol 1,4,5-trisphosphate receptor type 3; JMP, John's Macintosh 
Project; Jup, junction plakoglobin; Kb, kilobase; Kif1a, kinesin family member 1A; Klra4, killer cell lectin-like receptor, subfamily A, member 4; KMT2A, 
lysine methyltransferase 2A; L, lean; Ltbp4, latent transforming growth factor beta binding protein 4; MAP, mitogen-activated protein; Mapk14, mitogen-
activated protein kinase 14; Mapt, mitogen-activated protein kinase; Mb, mega base pairs; Mboat1, membrane bound O-acyltransferase domain containing 
1; Mcl1, Myeloid Cell Leukemia sequence 1; Mm10, Mus musculus build 10; mRNA, messenger RNA; MSC, mesenchymal stem cell; Msx1, msh 
homeobox 1; Myc, myelocytomatosis oncogene; Ncoa3, nuclear receptor coactivator 3; ncRNA, non-coding RNA; Nedd9, neural precursor cell expressed, 
developmentally down-regulated 9; Nfatc2, nuclear factor of activated T cells 2; Noct, nocturnin; Nop56, nucleolar protein 56 ribonucleoprotein; Nr3c2, 
nuclear receptor subfamily 3 group C member 2; O, obese; Oct4, organic cation/carnitine transporter4; O2, oxygen; Padj, adjusted p-value; Parm1, prostate 
androgen-regulated mucin-like protein 1; Pax3, paired box 3; Piezo2, piezo type mechanosensitive ion channel component 2; Plag1, pleiomorphic 
adenoma gene 1; Plagl1, pleiomorphic adenoma gene-like 1; PLS, partial least squares; PLS-DA, partial least squares discriminant analysis; PPARγ, 
peroxisome proliferator activated receptor gamma; Ppp2r3a, protein phosphatase 2 regulatory subunit B''alpha; Pvt1, plasmacytoma variant translocation 1 
oncogene; Q2, predictive accuracy of the model (coefficient of prediction); R2, fraction of variance in model fit (coefficient of determination); Rap1gap2, 
RAP1 GTPase activating protein 2; Rarg, retinoic acid receptor gamma; Relt, RELT tumor necrosis factor receptor; Rhobtb1, Rho related BTB domain 
containing 1; RIN, RNA integrity number; RNA, ribonucleic acid; Sptb, spectrin beta, erythrocytic; Sca, stem cell antigen; SD, standard deviation; Sfi1, Sfi1 
homolog, spindle assembly associated (yeast); Shox2, short stature homeobox 2; Slc2a9, solute carrier family 2 member 9; Slc38a4, solute carrier family 38 
member 4; Slc35e4, solute carrier family 35 member E4; Sorcs2, sortilin related VPS10 domain containing receptor 2; Sox2, SRY-box transcription factor 2; 
Sox11, SRY-box transcription factor 11; Sox12, SRY-box transcription factor 12; Stard13, StAR related lipid transfer domain containing 13; STAR RNA-seq, 
spliced transcripts alignment to a reference ribonucleic acid sequencing; Stat3, signal transducer and activator of transcription 3; Stat5a, signal transducer 
and activator of transcription 5a; Stat5b, signal transducer and activator of transcription 5b; Tapbp, TAP binding protein; Tbk1, TANK binding kinase 1; 
Tbx3, T-box transcription factor 3; Tfec, transcription factor EC; Tgfb1, transforming growth factor beta 1; THOP1, thimet oligopeptidase 1; Tiam1, T cell 
lymphoma invasion and metastasis 1; Tnfsf11, tumor necrosis factor (ligand) superfamily, member 11; Tnfrsf12a, tumor necrosis factor receptor 
superfamily, member 12a; Tnpo1, transportin 1; Tp53, tumor protein p53; Trhde, thyrotropin releasing hormone degrading enzyme; Tspan5, tetraspanin 5; 
TSS, transcription start site; Vhl, von Hippel-Lindau tumor suppressor; VIP, variable importance in projection; WGCNA, weighted gene co-expression 
network analysis; Wnt, Wingless-related integration site; Y, young; YL, young lean; YO, young obese; Zbtb18, zinc finger and BTB domain containing 18; 
Zfp78, zinc finger protein 78; Zfp992, zinc finger protein 992.
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1   |   INTRODUCTION

The epigenome occupies a critical interface between the 
response of genes to the environment, serving to regulate 
expression through coordinated modifications by intrinsic 
and extrinsic factors. In this regard, adult stem cells have 
the potential to acquire epigenetic memory of these envi-
ronmental factors over a lifetime. Of the many factors in-
fluencing genetic modification, aging and obesity appear 
to have significant contributions to the risk of multiple 
pathologic conditions. Aging is a ubiquitous intrinsic fac-
tor influencing epigenetic changes.1,2 Typically, aging in 
both somatic tissues and adult stem cells is associated with 
CpG island hypermethylation and global DNA hypometh-
ylation.2–6 Age-related hypomethylation at specific sites in 
differentiated tissues is associated with disease, but the ex-
tent to which DNA methylation change is a consequence 
of aging or whether it contributes to aging is unknown.2

Superimposed on the inevitable progression of age, 
over 40% of Americans are obese; therefore, diet-induced 
obesity is a common extrinsic factor that impacts the epig-
enome. Consequently, the effects of obesity, high-fat diet, 
and increased adiposity on DNA methylation are being 
explored in a variety of tissues relevant to human health. 
These previous studies have found maternal and offspring 
high-fat diet increases epigenetic ‘age’ in the mouse liver.6 
Additionally, diabetic and obese phenotypes and clinical 
traits have identified characteristic differential methyl-
ation patterns in both mouse and human adipocytes, in 
adipose tissue, and in liver.7,8 Differential methylation of 
periprostatic adipose tissue containing adult stem cells in 
patients with prostate cancer likely contributes to impaired 
lipid metabolism and immune dysregulation.9 Despite 
these studies, the characteristic effects of obesity on the 
epigenomes of progenitor cells are not well understood 
even though there are widespread phenotypic and molec-
ular effects of obesity on these cells.10,11 Taken together, 
these findings suggest that obesity may in fact represent 
a disease of the body's stem cells.12 These effects include 
reduced ‘stemness’, impaired differentiation, an increase 
in expression of pro-inflammatory genes, impaired im-
munomodulation and anti-inflammatory roles, dysreg-
ulated metabolism, and altered motility.10,11 Obesity also 
induces dysregulation of cell–cell cross-talk, both between 
different progenitor cell populations in different tissue lo-
cations,13 and between progenitor cell populations and 
entirely difference cell types, including solid tumors.14 In 
this regard, adipose-derived stem cells (ASCs) contribute 
to regulation of adipose tissue homeostasis, and thus epi-
genetic modifications of these cells could have significant 
long-term and intergenerational consequences on fac-
tors such as body weight, insulin resistance, and overall 
health.15 Furthermore, ASCs and other adult stem cells 

are attractive progenitor cell sources for regenerative 
medicine and tissue engineering purposes. However, the 
regenerative potential of progenitor cells identified in 
pre-clinical studies has not been matched by their ther-
apeutic efficacy in humans.16 The reasons for this lack 
of therapeutic efficacy are multi-factorial. While several 
studies have examined the role of dietary intervention to 
slow epigenetic aging in somatic tissues, the role of high-
fat diet and obesity in the epigenetic and transcriptomic 
dysfunction of progenitor cells is less well understood. 
In addition, the interactions between age and modifiable 
factors that could impact the regenerative potential of au-
tologous ASCs and other adult progenitor cells have not 
been studied.

Here, we hypothesized that age-related disruption of 
both the methylome and transcriptome of ASCs would 
be exacerbated by high-fat diet-induced obesity. Our aims 
were (1) to characterize the methylome and transcriptome 
of murine ASCs harvested from lean, obese, young and 
old mice, (2) to identify putative driver genes for epigen-
etic and transcriptomic disruption occurring with aging 
and obesity, (3) to identify candidate functional pathways 
dysregulated in aging ASCs in diet-induced obesity, and 
(4) to identify candidate biomarkers for obesity and aging 
in murine ASCs, as a first step to the identification of the 
‘healthy’ ASC phenotype.

2   |   MATERIALS AND METHODS

2.1  |  Animals, tissue, and cell isolation

All procedures were approved by the Duke University 
IACUC. Male C57BL6/J mice (n = 12/group) were pur-
chased at 19 weeks of age from the diet-induced obesity 
colony at The Jackson Laboratory. Beginning at 6 weeks 
of age, control normal bodyweight ‘lean (L)’ mice were 
fed control lean diet (10% kcal fat, D12450B, Research 
Diets Inc.), and ‘obese (O)’ mice were fed lard-based high-
fat diet (60%kcal fat, D12492, Research Diets, Inc.). Mice 
were group housed (4–5 animals/cage) under standard 
light cycle and laboratory animal environmental condi-
tions. ‘Young (Y)’ mice were acclimated for 1 week be-
fore euthanasia at 20 weeks of age, whereas ‘aged (A)’ 
mice were sacrificed at 52 weeks of age. The original 
intent of the study was to age the mice until 2 years of 
age, but increased mortality in the ‘aged obese (AO)’ 
mice was noted beginning at age 10 months, such that 
by 51 weeks of age only n = 8 remained, and therefore, 
aged mice were sacrificed at 52 weeks of age in order to 
maintain statistical power of our study design. Animals 
were euthanized by cervical dislocation following iso-
flurane anesthesia. Then, the subcutaneous inguinal fat 
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pad was isolated bilaterally and digested at 37°C for 1–
1.5 h in 0.2% collagenase type I (Worthington). Murine 
ASCs were isolated from digested fat, enriched for 
Sca-1+, CD34+ CD31−, CD45−, Ter119− markers using 
fluorescent-activated cell-soring (FACS) and expanded 
using previously described methods.17 Briefly, sorted 
cells were cultured under hypoxic conditions (2% O2, 5% 
CO2) in α-Modified Eagle's medium, 20% fetal bovine 
serum and 1% penicillin/streptomycin/amphotericin 
B at 37°C. Media were replaced every 3 days, and cells 
were trypsinized in 0.25% trypsin–EDTA at 90% conflu-
ence. Cells were harvested and frozen at Passage 2 in 
aliquots of 1–2 × 106 murine ASCs for independent DNA 
and RNA extraction. Four groups of murine ASCs were 
compared for the current study: YL (young lean), YO 
(young obese), AL (aged lean), and AO (aged obese).

2.2  |  DNA and RNA extraction and 
library preparation

Following DNA extraction using Qiagen's All Prep kit 
(Qiagen catalog # 80284) standard methods, libraries 
were prepared using the SureSelect Methyl-Seq Library 
Prep Kit ILM (Agilent catalog # 5500-0128) included the 
indices for pooled sequencing, and SureSelectXT Mouse 
Methyl-Seq Reagent Kit (Agilent catalog # 931052). 
Representative library preparation quality control data 
are provided in Figure S1. Briefly, after shearing and post-
end repair, DNA fragment length was evaluated using the 
Agilent 2100 BioAnalyzer DNA1000chip or Agilent 4200 
TapeStation High Sensitivity D1000 ScreenTape to con-
firm a DNA fragment size peak between 125 and 175 bp. 
Post-ligation, DNA fragment size was confirmed in the 
same way to be 200–300 bp, with adequate yield (>350 ng) 
of adapter-ligated DNA (mean = 516 ± 80 ng). Quality as-
sessment and quantification of indexed DNA samples was 
performed using the 2100 BioAnalyzer or TapeStation to 
verify fragment peak size of 250–300 bp. Following extrac-
tion, RNA was evaluated by Nanodrop and quantified by 
Ribogreen. Samples were only used if RIN > 7 and if total 
yield exceeded 1 μg.

The David H. Murdock Research Institute Genomics 
core facility performed 100 bp paired-end sequencing, 
throughput and quality control in accordance with the 
ENCODE guidelines, using an entire 8-lane flowcell ded-
icated to the samples, with each sample run over two 
separate lanes on a HiSeq2500. Data were trimmed and 
demultiplexed according to the standard Illumina se-
quencing pipeline. Briefly, samples were separated based 
on Illumina barcodes, and only sequencing reads that 
had 100% similarity match for the barcodes were used for 
downstream analysis.

2.3  |  Data processing and annotation

Both Methyl-Seq and RNA-Seq data were processed using the 
TrimGalore (version 0.4.1) toolkit18 which employs Cutadapt 
(version 1.8.3)19 to trim low-quality bases and Illumina se-
quencing adapters from the 3′ end of the reads. Only read 
pairs where each read of the mate-pair was 20 nt or longer 
after trimming were kept for further analysis. Windows were 
retained if they had at least 10 reads in a single sample.

2.4  |  Methyl-Seq data analysis

Reads were mapped to the GRCm38 version of the mouse 
genome using the Bismark (version 0.17.0)20 bisulfite con-
verted sequence read aligner. Bismark utilizes the Bowtie2 
(version 2.2.4)21 alignment algorithm as part of its process-
ing pipeline. The MarkDuplicatesWithMateCigar function 
from the Picard Toolkit (version 2.4.1)22 was used to elimi-
nate amplification artifacts.

2.5  |  Identification of differentially 
methylated cytosines (DMC) and 
differentially methylated windows (DMW)

The MethylKit Bioconductor (version 1.2.0)23,24 package 
was used to process, normalize, and analyze differences 
between samples. Differential methylation was identified 
both on the base level for individual CpG sites (differen-
tially methylated cytosines; DMC) as well as over 200 base-
pair sliding windows (differentially methylated windows; 
DMW) in tileMethylCounts (R version 3.3.0)25 with a 100 
base-pair step size. The input was reduced to only those 
regions that had reads that overlapped with the target re-
gions in the SureSelect capture kit. CpG sites and sliding 
windows were annotated to their nearest gene according 
to the mm10 GRCm38v73 version of the mouse transcrip-
tome.26 The false discovery rate was calculated to control 
for multiple hypothesis testing for each comparison. For 
calculating differential methylation, the following param-
eters were used: overdispersion=“MN”, test=“Chisq”. For 
A versus Y comparisons of age, diet (O and L) were in-
cluded as covariates; for O versus L comparisons of diet, 
age (A and Y) were included as covariates in the model. 
Default parameters were used for all other packages.

2.6  |  Multivariate analysis partial least 
squares discriminant analysis (PLS-DA)

Partial least squares (PLS) is a versatile algorithm which 
can be used to predict either continuous or discrete/
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categorical variables. PLS-DA was applied to the data for 
multivariate analysis of the Methyl-Seq data. Variable 
Importance in Projection (VIP) scores estimate the im-
portance of each variable in the projection used in a PLS 
model and are often used for variable selection. Variables 
with VIP score above 1 were used as potential biomarkers 
of lean, obese, young, or aged status. Based on the number 
of variables with VIP score above 1, candidates were addi-
tionally filtered and analyzed based on a VIP score above 
2. R package ropls27 was used for the analysis. Specifically, 
matrices of methylation levels for each sample were gen-
erated by the function percMethylation of MethylKit and 
were used as X variables. Diet and/or age were provided 
as Y responses. One additional advantage of PLS-DA is 
the lack of dependence on p values; thus, VIP scores pro-
vide a means to rank the relative importance of potential 
biomarkers.

2.7  |  Distribution of DMW and DMC 
within CpG islands and genic regions

An in-house script was used to generate the input file 
for annotatr from MethylKit results, then the R func-
tion read_regions in annotatr28 was used to read into the 
input data. The R function plot_categorical in annotatr28 
was used to plot the distribution of DMW and DMC. 
Distributions of DMW and DMC were evaluated based 
on CpG annotation and genic annotation. CpG islands 
as the basis for all CpG annotations were determined 
using AnnotationHub29 mouse package. CpG shores 
were defined as 2 Kb upstream/downstream from the 
ends of the CpG islands. CpG shelves were defined as 
an additional 2Kb upstream/downstream of the farthest 
upstream/downstream limits of the CpG shores, exclud-
ing the CpG islands and CpG shores. The remaining 
genomic regions were annotated as inter-CpG islands 
(Inter-CGI) (http://bioco​nduct​or.org/packa​ges/relea​se/
bioc/vigne​ttes/annot​atr/inst/doc/annot​atr-vigne​tte.
html).

Murine gene region annotations were determined 
by functions from GenomicFeatures and data from the 
TxDb.Mmusculus.UCSC.mm10 and org.Mm.eg.db pack-
ages in Bioconductor. Genic annotations included 
1–5 Kb upstream of the transcription start site (TSS), the 
promoter (<1 Kb upstream of the TSS), 5′UTR, coding 
sequence (CDS, exons, introns, and intergenic regions) 
(http://bioco​nduct​or.org/packa​ges/relea​se/bioc/vigne​
ttes/annot​atr/inst/doc/annot​atr-vigne​tte.html). Genic 
annotations were generated using GTF file for Mus_
musculus.GRCm38.73 from ENSEMBL database using 
custom Python script.

2.8  |  RNA-Seq data analysis

Reads were mapped to the GRCm38v73 version of the 
mouse genome and transcriptome26 using the STAR 
RNA-seq alignment tool.30 Reads were kept for sub-
sequent analysis if they mapped to a single genomic 
location. Read counts for each gene feature for each 
animal were compiled using the HTSeq tool (Version 
0.7.0).31,32 The parameters used for HTSeq-Count were 
set for unstranded RNA-Seq. Counts from all biological 
replicates were merged into one file using custom Perl 
scripts to generate a merged read count matrix for all 
samples. The merged count matrix was used for down-
stream differential gene expression (DGE) analysis, and 
the quality of the count matrix was verified by deter-
mining basic statistics including data range and matrix 
size prior to downstream evaluation. Genes that had 
at least 5 or more counts in at least 50% of the animals 
from each group were retained for subsequent analysis. 
Normalization, gene-wise dispersion, and DGE analy-
sis between different groups was carried out using the 
DESeq233 (version 1.12.4) Bioconductor24 package with 
the R statistical programming environment (version 
3.4.0).25 To identify the genes that affected differently by 
age across different diet groups, interaction analysis was 
conducted in DESeq2.

Non-coding RNA (ncRNA) annotations were subset-
ted within the DGE obtained by the DESeq2 method in 
ENSEMBL, and Biomart (archived version of release 75) 
was used to identify the closest coding RNA.

2.9  |  Weighted correlation network 
analysis (WGCNA) for construction of 
co-expression network

Based on the anticipated complexity of the DGE data, 
WGCNA34,35 was used to identify clusters (modules) 
of highly correlated genes related to the external sam-
ple traits of age and obesity (using eigengene network 
methodology). As described above, the merged count 
matrix was used after retaining genes that had 5 or more 
counts in at least 50% of the samples. After normaliza-
tion, the log2 transformed counts were used as input to 
WGCNA (WGCNA, version 1.61). The function pickSoft-
Threshold was used to pick an approximate power value. 
Then, blockwiseModules (networkType = “signed hybrid” 
and TOMtype = “signed”) was used to construct the co-
expression network using: Soft thresholding power  =  9, 
minimum module size  =  30, the module detection sen-
sitivity deepSplit = 2, and cut height for merging of mod-
ules 0.25 (implying that modules whose eigengenes are 
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correlated above 1–0.25 =  0.75 will be merged). Finally, 
chooseTopHubInEachModule returned genes in each 
module with the highest connectivity to all differentially 
expressed genes; these genes are often regulatory genes 
and represent candidate biomarkers.36

2.10  |  Multivariate analysis of RNA-Seq 
data using PLS-DA

As described for Methyl-Seq, PLS-DA was also applied 
to multivariate analysis of the RNA-Seq data. Variables 
with VIP score >1 were used as potential biomarkers 
for the biological phenotype, and based on the num-
bers of variables with VIP score >1, further analysis was 
performed on potential biomarkers with VIP score >2. 
Specifically, normalized read counts were used as X vari-
ables, and diet and age were provided as Y responses in 
the R package ropls.

2.11  |  Integration of Methyl-seq and 
RNA-seq data

ClosestBed in BEDTools37 was used to extract the genes 
that were close to DMW. First the nearest genes and 
ncRNA that had a distance <2 kb with respect to the DMW 
were extracted using ClosestBed with the arguments: -D 
b. Then annotation information of the genes and ncRNA 
were added. For each comparison, only the DMW with 
genes <2 kb were shown. The corresponding MethylKit 
results and the DESeq2 results were also included using 
in-house scripts.

2.12  |  Attribution of biological relevance

Ingenuity Pathways Analysis (IPA) (Qiagen, version 
01-12) was used to examine the various comparisons, 
modules, and integrated data. Directionality of gene ex-
pression was considered for RNA-Seq data, but not for 
Methyl-Seq data, or for evaluation of genes in proximity 
to ncRNA identified in DGE analysis. There were a large 
number of DMW with VIP >1; therefore, to keep datasets 
within IPA software limits for pathways analysis of the 
possible effects of hypo- and hypermethylation together, 
evaluation of biological function of DMW biomarker 
and upstream candidates was restricted to those with 
only VIP >2. Furthermore, given the current limitations 
of building pathways in commercially available software 
from differential methylation data, only the directionality 
of the RNA species that were identified in both Methyl-
Seq and RNA-Seq datasets was considered.

Analysis of DGE between groups (padj < .05 compar-
isons) was performed in IPA in the context of biological 
knowledge relating to upstream cause of the DGE and 
probable downstream effects, including diseases and func-
tions used a combined enrichment score assessing overlap 
between observed and predicted gene sets (Fisher's exact 
test p-value) and a Z-score to predict activation (positive 
z-score) or inhibition (negative z-score) state of the reg-
ulator based on match of observed and predicted up- or 
down-regulation patterns.38

2.13  |  Generation of figures

All figures were generated using ggplot2 and cowplot in 
R,25 in IPA, or in JMP v 13.2.0 (SAS). For ease of identifica-
tion in figures presenting both Methyl-Seq and RNA-Seq 
data, and because both datasets were corrected for FDR, 
q value was used to denote statistical significance for 
Methyl-seq data, and padj was used to denote statistical 
significance for RNA-seq data.

3   |   RESULTS

3.1  |  Quality control outcomes

DNA and RNA yield and library preparation were of ade-
quate quality to allow both Methyl-Seq and RNA-Seq data 
from the same animal to be used for n = 7 YO, n = 5 YL, 
n = 5 AO, and n = 6 AL mice. Additionally, there were 
n =  1 YO, n =  3 YL, n =  1 AO, and n =  1 AL datasets 
available for RNA-Seq only, and thus these were included 
in the analyses of RNA-Seq data. Importantly, only ani-
mals with paired Methyl-Seq and RNA-Seq datasets were 
used for integration analyses. For all analyses, the focus 
was placed on the following biologically relevant compari-
sons: AO versus AL, AO versus YO, AL versus YL, and YO 
versus YL, A versus L and O versus L, with the AL versus 
YL comparison considered the healthy aging paradigm in 
this model.

3.2  |  Differential methylation results

3.2.1  |  Single-base resolution DNA 
methylome using targeted bisulfite 
sequencing platform

DNA methylation was quantified in single-base resolution 
for a total of 109 Mb of coverage using targeted bisulfite 
sequencing. On average, 83% of the targeted regions were 
covered by at least one read and 59% by at least 10 reads 
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      |  7 of 32XIE et al.

(Table  S1). The medians of the coverage of the samples 
ranged from 8 to 20, with an average of 14. Bimodal distri-
bution of CpG methylation levels was observed in all indi-
vidual samples but with no observed difference in global 
methylation levels across the samples at both single-base 
level and window level (Figure 1A,B).

3.2.2  |  Identification of DMC and DMW 
demonstrated global hypomethylation in 
aged and/or obese mice (Tables S2 and S3)

Consistent with the results observed in Figure 1A, when 
the biologically relevant comparisons (AO vs. YO, AL vs. 
YL, AO vs. AL, YO vs. YL, A vs. Y, O vs. L) were evalu-
ated, it was observed that methylation difference was 
centered at zero (Figure 1C). The percentage of windows 
with methylation difference below 5% ranged from 79% to 
93% across all comparisons, with an obvious bias between 

the number of hyper- and hypomethylated windows 
(Figure 1C). The percentage of hypomethylated windows 
(methylation difference < 0) ranged from 38.4% to 44% 
demonstrating that aged and/or obese mice had more 
windows with hypomethylation compared to young and/
or lean mice.

This bias in favor of hypomethylation was also reflected 
in the DMW (windows with q ≤ 0.05 and methylation level 
differences >±10%), and DMC (Table  S4). Furthermore, 
there were more total DMW in aging in obese mice com-
pared to lean mice, and in both aged and young obese 
mice compared to lean aged or young mice respectively, 
suggesting that obesity was synergistic or at least additive 
to the overall effect of aging. There were a greater propor-
tion of DMC not in DMW for obese mice, particularly with 
increased age, suggesting that DMC changes in obesity 
were more robust to statistical evaluation than methyla-
tion changes in lean mice or that there is a clustering of 
DMC not in DMW in obese, but not in lean mice.

F I G U R E  1   Violin plots showing distribution methylation levels for CpG (A) and differentially methylated windows (DMW) (B), and (C) 
volcano plots of methylation difference from MethylKit results for each group (A&B) and biologically relevant comparison (C), aged lean 
(AL), aged obese (AO), young lean (YL), young obese (YO), aged versus young (A vs. Y), and obese versus lean (O vs. L).
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We then evaluated the distribution of DMW and DMC 
based on the annotation of CGI in the mouse genome. 
Using all the analyzable windows for each comparison pair 
as background, DMW were less common in CG islands, CG 
shores and CpG shelves and more common in interCGI 
regions (Figure  2A). For the distribution of DMW-based 
genic annotations compared to background, we found that 
DMW were primarily in intron followed by intergenic re-
gions (Figure 2B). Distribution of methylation level by gene 
region (Figure  2C) suggested even distribution between 
hyper- and hypomethylation at 1–5 kb upstream, CDS and 
intronic sites, whereas promoters and 5′UTR were gener-
ally hypomethylated and had lower density of methylation 
compared to other genic regions, while 3′UTR seemed to 
have a preponderance of hypermethylation and the highest 
density of methylation. There was no obvious difference in 
global gene region methylation density or level between an-
imal groups (DMC data similar, data not shown).

3.2.3  |  Analysis of the DMW using PLS-DA 
identified several differentially methylated 
(q < 0.05) and differentially expressed genes 
(padj < .05) involved in upstream mechanistic 
networks and in cellular dysfunction

Score plots of PLS-DA model in the plane of the first pre-
dictive (t1) and the second predictive (t2) components for 
the comparisons were shown in Figure  3A, and when 
comparisons were made between the four groups of mice 
in Figure  3B. While there was good separation between 
the data (R2Y), the response variance explained by t (1) 
was modest, leading to modest predictive performance of 
the model (Q2Y).

Because we used the stringent cut of VIP > 1 and 
q < 0.05, the comparison between multivariate and uni-
variate analysis (Figure 4A,B and Table S5) yielded only 
a small proportion of the total DMW. A summary of the 
number of DMW with VIP scores >1 or >2 in Figure 4C is 
filtered by total, q value < 0.05 for PLS-DA and padj < .05 
for the associated comparison of gene expression (Full 
dataset in Table S6). Then, to improve understanding of 
the interconnectedness of highly significant VIP scores for 
each comparison between groups of animals, mechanistic 
networks were generated in IPA for all upstream regula-
tors for hyper- and hypomethylated DMW with VIP > 2 
associated with significant differences in gene expression 
(padj < .05) present within each biologically relevant com-
parison dataset (Figure 5A) and examined for common-
ality between comparison groups (Figure 5B). Mapt was 
the only gene involved in both hyper- and hypomethyl-
ated upstream mechanistic networks for several biological 
comparisons (AO vs. YO hypomethylated, AL vs. YL hy-
pomethylated, YO vs. YL hypermethylated), while Foxo3 
and Ccnd1 were involved in hypermethylated biological 
comparisons only (AL vs. YL and YO vs. YL). Several ad-
ditional genes were involved in several biological compar-
isons of hypomethylated upstream mechanistic networks: 
Nr3c2 for AO versus YO and AL versus YL comparisons, 
App and Ctnnb1 for AL versus AL, AO versus YO and AL 
versus YL comparisons, and Hipk2, Id2 and Tp53 over-
lapped between AO versus AL and AO versus YO compar-
isons (Figure 5B).

Finally, diseases and functions were overlaid onto 
the network of upstream regulators, and the top ten 
most significant were summarized for each comparison 
in (Table 1). In general, for all comparisons, the disease 
and function terms ‘tumor’, ‘apoptosis’, ‘proliferation’, 

F I G U R E  2   Distribution of differentially methylated windows for each biologically relevant comparison (see Figure 1) based on 
(A) annotation to CpG islands, shores, shelves, or inter-CpG island (CGI) regions, or annotation to (B) genic region. (C) Violin plots of 
methylation level for the different genic regions in the different groups.
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      |  9 of 32XIE et al.

‘development’, ‘cell cycle’ were highly represented, partic-
ularly for ‘epithelial’, ‘gland’ and ‘fibroblast’ tissues or cell 
lines.

3.2.4  |  Diet- or obesity-related methylation 
drift with age was not observed in these 
murine ASCs

To evaluate if age- or obesity-related drift in methylation 
could be identified in our data from mice at 20- and 52-
weeks of age, we first extracted all windows and CpG with 
differential methylation across the entire dataset, and a 
standard deviation >10 (7.41% of windows and 12.82% 
of CpG for AL vs. YL) was selected to identify the most 
variable sites for each individual mouse around a mean of 
all analyzable windows or CpG. We expected this would 
separate young from old lean mice into two distinct clus-
ters (Figure S2A,B). However, this was not observed, and 
when the same process was repeated for the aging in obe-
sity comparison, AO versus YO, while a greater propor-
tion of DMW and CpG had SD > 10 (12.53% DMW and 
17.37% of CpG having SD > 10), clustering into distinct 
clusters was also not observed (Figure S2) suggesting that 
age-related methylation drift reported by others39 did not 

occur over this age range in murine ASCs. We checked 
our results using a less stringent cut off to identify less 
substantial methylation drift, a standard deviation of 
>5, and similarly, age-related methylation drift was not 
observed for either AL versus YL or AO versus YO com-
parisons. Analysis of 32 CpG sites that overlapped with a 
differentiated multi-tissue DNA methylation clock across 
the mouse lifespan5 also did not cluster the mice into phe-
notypic groups for either comparison (Figure  S2) even 
though this clock has previously identified ‘rejuvenation’ 
of fibroblasts to induced pluripotent stem cells.5

3.3  |  RNA-Seq results

3.3.1  |  Differential gene expression

Cluster dendrograms and principal components anal-
ysis for differential expression of all RNA biotypes 
(Figure 6A,B) demonstrated considerable divergence be-
tween the groups, particularly with increasing age and 
obesity. Heat maps by age or diet condition (Figure 6C) 
and experimental group (Figure 6D) demonstrated a sub-
stantial number of RNA species impacted most notably by 
the combination of aging and obesity.

F I G U R E  3   Score plots of partial least squares discriminant analysis (PLS-DA) mode in the plane of the first predictive (t1) and the 
second predictive (t2) components for the different comparisons (A), and between the four different groups (see Figure 1). The percentage 
of response variance explained by the predictor component only (t1) is indicated in parentheses. R2X (respectively R2Y) means percentage 
of predictor (respectively response) variance explained by the full model. Q2Y means predictive performance of the model estimated by 
cross-validation. For the classification model, the ellipses corresponding to 95% of the multivariate normal distributions with the samples 
covariance for each class is shown.
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10 of 32  |      XIE et al.

F I G U R E  4   (A,B) Scatter plots of multivariate analysis by partial least squares discriminant analysis (PLS-DA) compared to univariate 
analysis by DESeq2 for the various biologically relevant comparisons (see Figure 1). Variable Importance in Projection (VIP) scores and 
q-values were used together to identify potential biomarkers for the effects of age and diet. (C) Summary of the numbers of differentially 
methylated windows identified using these methods for the cut-offs established, including the effect of adding the associated differential 
gene expression at padj < .05.
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      |  11 of 32XIE et al.

When evaluating differential RNA biotype expression 
(Table S7) and summarized in Table 2, obesity (O vs. L) 
influenced expression of almost 5-fold more RNA biotypes 
(padj < .05) than aging (A vs. Y), and this effect was most 
profound when obesity was superimposed on aging (AO 
vs. YO compared to AL vs. YL). In this regard, the ASCs 
from lean mice demonstrated a remarkably stable tran-
scriptome with aging (AL vs. YL), with differential expres-
sion of only 7 RNA biotypes; whereas there was >120-fold 
increase in the number of RNA biotypes with signifi-
cantly different expression in AO versus YO mice. With 
respect to directionality of RNA biotype expression, aging 
generally increased expression, whereas the influence of 

obesity was to moderate the increase in gene expression. 
Similarly, for the magnitude of expression changes (>2-
fold change), obesity reduced the number of RNA bio-
types with large changes in expression induced by aging, 
regardless of whether this was for a >2-fold increase or 
decrease in expression (Table 2; Table S7). Overall mRNA 
transcripts demonstrated similar patterns as the patterns 
of ‘ALL’ RNA biotypes. While our RNA extraction tech-
nique was not designed to capture all small RNAs and 
non-coding RNAs, we identified 1752 of these species 
following annotation of the data in ENSEMBL (Table S7). 
While many of these other biotypes demonstrated no 
significant differences (padj > .05) in the expression of 

F I G U R E  5   (A) Upstream regulators and mechanistic networks identified in Ingenuity Pathways Analysis (IPA) of hypo- and 
hypermethylated differentially methylated windows identified with Variable Importance in Projection (VIP) scores >2 and q < 0.05 by partial 
least squares discriminant analysis (PLS-DA). (B) Overlap between comparisons for hypo- and hypermethylated upstream regulators of 
mechanistic networks with differential gene expression identified in IPA. https://bioin​fogp.cnb.csic.es/tools/​venny/​index.html.

 15306860, 2023, 3, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202201413R

 by W
ashington U

niversity School, W
iley O

nline L
ibrary on [29/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://bioinfogp.cnb.csic.es/tools/venny/index.html


12 of 32  |      XIE et al.

T
A

B
L

E
 1

 
Su

m
m

ar
y 

of
 ‘t

op
 te

n’
 m

os
t s

ig
ni

fic
an

t d
is

ea
se

s a
nd

 fu
nc

tio
ns

 a
nn

ot
at

io
ns

 in
 In

ge
nu

ity
 P

at
hw

ay
s A

na
ly

si
s (

IP
A

) f
or

 th
e 

ne
tw

or
ks

 o
f u

ps
tr

ea
m

 re
gu

la
to

rs
 a

nd
 m

ec
ha

ni
st

ic
 

ne
tw

or
ks

 id
en

tif
ie

d 
fo

r e
ac

h 
co

m
pa

ri
so

n 
in

 F
ig

ur
e 

5.

C
om

pa
ri

so
n 

(n
um

be
r 

of
 u

ps
tr

ea
m

 
re

gu
la

to
rs

 in
 h

yp
o-

 
or

 h
yp

er
m

et
hy

la
te

d 
ne

tw
or

ks
)

H
yp

om
et

hy
la

ti
on

H
yp

er
m

et
hy

la
ti

on

D
is

ea
se

s 
or

 fu
nc

ti
on

 
an

no
ta

ti
on

p-
va

lu
e

# 
U

ps
tr

ea
m

 r
eg

ul
at

or
 

m
ol

ec
ul

es
 in

 d
at

as
et

 
fr

om
 F

ig
ur

e 
5 

(#
 m

ol
ec

ul
es

 in
 

di
se

as
e 

or
 fu

nc
ti

on
)

D
is

ea
se

s 
or

 fu
nc

ti
on

 a
nn

ot
at

io
n

p -
 v

al
ue

# 
U

ps
tr

ea
m

 r
eg

ul
at

or
 

m
ol

ec
ul

es
 in

 d
at

as
et

 
fr

om
 F

ig
ur

e 
5 

(#
 m

ol
ec

ul
es

 in
 

di
se

as
e 

or
 fu

nc
ti

on
)

A
L 

ve
rs

us
 Y

L 
(1

6 
hy

po
m

et
hy

la
tio

n)
  

(2
 h

yp
er

m
et

hy
la

tio
n)

Tr
an

sa
ct

iv
at

io
n

1.
65

E−
22

15
 (1

09
9)

M
at

ur
at

io
n 

of
 le

uk
em

ia
 c

el
l l

in
es

4.
9E

−
07

2 
(2

9)

Tr
an

sa
ct

iv
at

io
n 

of
 R

N
A

1.
47

E−
20

14
 (1

02
4)

D
ev

el
op

m
en

t o
f p

itu
ita

ry
 g

la
nd

 tu
m

or
7.

78
E−

07
2 

(3
2)

A
po

pt
os

is
 o

f t
um

or
 c

el
l l

in
es

3.
51

E−
15

15
 (3

93
9)

Pr
ol

ife
ra

tio
n 

of
 S

ch
w

an
n 

ce
lls

1.
69

E−
06

2 
(6

0)

C
el

l v
ia

bi
lit

y
6.

16
E−

15
15

 (4
38

7)
A

rr
es

t c
el

l c
yc

le
 p

ro
gr

es
si

on
 b

re
as

t c
an

ce
r 

ce
ll 

lin
es

2.
56

E−
06

2 
(6

7)

Bi
nd

in
g 

of
 D

N
A

1.
17

E−
14

12
 (1

42
9)

Li
fe

sp
an

 o
f c

el
ls

3.
38

E−
06

2 
(6

9)

D
ev

el
op

m
en

t o
f b

od
y 

tr
un

k
7.

35
E−

14
13

 (2
37

7)
A

rr
es

t i
n 

G
0/

G
1 

ph
as

e 
tr

an
si

tio
n 

of
 tu

m
or

 
ce

ll 
lin

es
4.

44
E−

06
2 

(1
19

)

M
or

ph
ol

og
y 

of
 g

la
nd

1.
04

E−
13

10
 (7

97
)

R
e-

en
tr

y 
in

to
 c

el
l c

yc
le

 p
ro

gr
es

si
on

4.
47

E−
06

2 
(8

0)

Fo
rm

at
io

n 
of

 lu
ng

1.
35

E−
13

9 
(4

82
)

Tr
an

sf
or

m
at

io
n 

of
 e

m
br

yo
ni

c 
ce

ll 
lin

es
4.

96
E−

06
2 

(1
21

)

D
ev

el
op

m
en

t o
f v

as
cu

la
tu

re
1.

52
E−

13
13

 (2
71

3)
D

iff
er

en
tia

tio
n 

of
 c

ar
di

om
yo

cy
te

s
5.

94
E−

6
2 

(1
08

)

V
as

cu
lo

ge
ne

si
s

1.
56

E−
13

12
 (2

02
2)

Tr
is

om
y

7.
16

E−
06

2 
(1

65
)

A
O

 v
er

su
s Y

O
 (3

1 
hy

po
m

et
hy

la
tio

n)
A

po
pt

os
is

1.
5E

−
23

31
 (7

45
4)

N
o 

m
ec

ha
ni

st
ic

 n
et

w
or

ks
 a

ss
oc

ia
te

d 
w

ith
 u

ps
tr

ea
m

 re
gu

la
to

rs
 in

 d
at

as
et

 th
er

ef
or

e 
no

 
di

se
as

e 
or

 fu
nc

tio
n 

an
no

ta
tio

n
A

po
pt

os
is

 o
f t

um
or

 c
el

l l
in

es
8.

68
E−

23
26

 (3
93

9)

N
ec

ro
si

s
9.

22
E−

23
31

 (1
00

03
)

C
el

l d
ea

th
 o

f t
um

or
 c

el
l l

in
es

1.
47

E−
21

27
 (5

02
4)

In
va

si
on

 o
f c

el
ls

2.
76

E−
21

22
 (2

84
9)

N
ec

ro
si

s o
f e

pi
th

el
ia

l t
is

su
e

8.
04

E−
21

20
 (1

69
5)

C
el

l d
ea

th
 o

f k
id

ne
y 

ce
lls

1.
03

E−
20

17
 (8

77
)

C
el

lu
la

r h
om

eo
st

as
is

6.
38

E−
20

25
 (4

35
9)

C
el

l m
ov

em
en

t o
f b

lo
od

 c
el

ls
8.

38
E−

20
22

 (2
68

0)

A
ng

io
ge

ne
si

s
1.

97
E−

19
21

 (2
46

9)

 15306860, 2023, 3, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202201413R

 by W
ashington U

niversity School, W
iley O

nline L
ibrary on [29/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  13 of 32XIE et al.

C
om

pa
ri

so
n 

(n
um

be
r 

of
 u

ps
tr

ea
m

 
re

gu
la

to
rs

 in
 h

yp
o-

 
or

 h
yp

er
m

et
hy

la
te

d 
ne

tw
or

ks
)

H
yp

om
et

hy
la

ti
on

H
yp

er
m

et
hy

la
ti

on

D
is

ea
se

s 
or

 fu
nc

ti
on

 
an

no
ta

ti
on

p-
va

lu
e

# 
U

ps
tr

ea
m

 r
eg

ul
at

or
 

m
ol

ec
ul

es
 in

 d
at

as
et

 
fr

om
 F

ig
ur

e 
5 

(#
 m

ol
ec

ul
es

 in
 

di
se

as
e 

or
 fu

nc
ti

on
)

D
is

ea
se

s 
or

 fu
nc

ti
on

 a
nn

ot
at

io
n

p -
 v

al
ue

# 
U

ps
tr

ea
m

 r
eg

ul
at

or
 

m
ol

ec
ul

es
 in

 d
at

as
et

 
fr

om
 F

ig
ur

e 
5 

(#
 m

ol
ec

ul
es

 in
 

di
se

as
e 

or
 fu

nc
ti

on
)

A
O

 v
er

su
s A

L 
(1

6 
hy

po
m

et
hy

la
tio

n)
Ex

pr
es

si
on

 o
f R

N
A

1.
01

E−
15

16
 (4

18
9)

N
o 

m
ec

ha
ni

st
ic

 n
et

w
or

ks
 a

ss
oc

ia
te

d 
w

ith
 u

ps
tr

ea
m

 re
gu

la
to

rs
 in

 d
at

as
et

 th
er

ef
or

e 
no

 
di

se
as

e 
or

 fu
nc

tio
n 

an
no

ta
tio

n
M

or
ph

ol
og

y 
of

 d
ig

es
tiv

e 
sy

st
em

6.
41

E−
15

12
 (1

33
3)

N
ec

ro
si

s o
f e

pi
th

el
ia

l t
is

su
e

3.
22

E−
14

12
 (1

69
5)

Tr
an

sc
ri

pt
io

n
3.

94
E−

14
15

 (3
86

3)

D
ev

el
op

m
en

t o
f e

pi
th

el
ia

l 
tis

su
e

4.
42

E−
14

11
 (1

13
0)

N
eu

ro
na

l c
el

l d
ea

th
1.

77
E−

13
12

 (2
03

6)

C
el

l d
ea

th
 o

f e
pi

th
el

ia
l c

el
ls

2.
27

E−
13

11
 (1

42
9)

Tr
an

sc
ri

pt
io

n 
of

 R
N

A
2.

82
E−

13
14

 (3
24

9)

A
bn

or
m

al
 m

or
ph

ol
og

y 
of

 
di

ge
st

iv
e 

sy
st

em
8.

55
E−

13
10

 (9
18

)

G
ro

w
th

 fa
ilu

re
1.

09
E−

12
10

 (9
52

)

YO
 v

er
su

s Y
L 

(4
 

hy
po

m
et

hy
la

tio
n)

 (8
 

hy
pe

rm
et

hy
la

tio
n)

Fo
rm

at
io

n 
of

 m
am

m
ar

y 
gl

an
d

4.
41

E−
09

4 
(3

03
)

C
el

l d
ea

th
 o

f c
on

ne
ct

iv
e 

tis
su

e 
ce

lls
3.

52
E−

12
8 

(1
39

0)

Bi
nd

in
g 

of
 S

p1
 b

in
di

ng
 si

te
4.

33
E−

08
3 

(8
2)

C
el

l d
ea

th
 o

f e
m

br
yo

ni
c 

ce
ll 

lin
es

1.
42

E−
11

7 
(8

06
)

Bi
nd

in
g 

of
 p

ro
te

in
 b

in
di

ng
 

si
te

1.
29

E−
07

4 
(6

94
)

C
el

l d
ea

th
 o

f f
ib

ro
bl

as
t c

el
l l

in
es

3.
42

E−
11

7 
(8

83
)

M
or

ph
ol

og
y 

of
 g

la
nd

1.
87

E−
07

4 
(7

97
)

Q
ua

nt
ity

 o
f b

lo
od

 c
el

ls
1.

52
E−

10
8 

(2
51

9)

Si
ze

 o
f b

re
as

t c
an

ce
r c

el
l l

in
es

2.
25

E−
07

2 
(1

2)
Q

ua
nt

ity
 o

f h
em

at
op

oi
et

ic
 c

el
ls

2.
17

E−
09

6 
(6

93
)

D
iff

er
en

tia
tio

n 
of

 d
en

dr
iti

c 
pr

ec
ur

so
r c

el
ls

3.
00

E−
07

2 
(9

)
A

po
pt

os
is

 o
f t

um
or

 c
el

l l
in

es
4.

71
E−

09
8 

(3
88

2)

Bi
nd

in
g 

of
 tu

m
or

 c
el

l l
in

es
3.

55
E−

07
4 

(1
00

1)
Pr

ol
ife

ra
tio

n 
of

 c
an

ce
r c

el
ls

4.
8E

−
09

6 
(9

34
)

M
et

as
ta

tic
 e

st
ro

ge
n 

re
ce

pt
or

 
po

si
tiv

e 
H

ER
2 

po
si

tiv
e 

br
ea

st
 c

an
ce

r

3.
86

E−
07

2 
(3

7)
Ex

pa
ns

io
n 

of
 b

lo
od

 c
el

ls
1.

02
E−

08
5 

(4
63

)

Se
ne

sc
en

ce
 o

f t
um

or
 c

el
l 

lin
es

3.
89

E−
07

3 
(2

42
)

C
el

l s
ur

vi
va

l
1.

04
E−

08
8 

(4
52

0)

A
bn

or
m

al
 m

or
ph

ol
og

y 
of

 
ex

oc
ri

ne
 g

la
nd

4.
05

E−
07

3 
(1

81
)

A
ut

op
ha

gy
1.

15
E−

08
6 

(1
39

7)

T
A

B
L

E
 1

 
(C

on
tin

ue
d)

 15306860, 2023, 3, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202201413R

 by W
ashington U

niversity School, W
iley O

nline L
ibrary on [29/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 32  |      XIE et al.

F I G U R E  6   (A) Cluster dendrogram of differential expression for all genes from RNA-Seq analysis, and (B) Principal component 
analysis for mRNA biotypes. Heat maps by diet or age condition (C) and experimental group comparisons (D) for all RNA biotypes.
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specific RNA species with aging or obesity, many of these 
RNA biotypes followed the same general patterns as for as 
for mRNA transcripts.

3.4  |  Biological relevance of differential 
gene expression

In lean mice, we identified no significant effect of aging 
on IPA designated ontological functions, or upstream 
regulators. In ‘healthy aging’ mice (AL vs. YL), the only 
altered and scored networks identified involved ‘cellular 
development, cellular growth and proliferation’, and ‘he-
matological system development and function’, and dis-
eases and functions involved ‘Cell Death and Survival’, 
‘Gene Expression’, and ‘Tissue Morphology’ (Table  S8). 
However, all other comparisons examined involving 
obesity identified dozens of putative upstream regula-
tors, networks, functions, and diseases and functions im-
pacted, many of which have been extensively associated 
with diseases of obesity (Table S8). DESeq2 was used to 
examine the interaction between age and diet, and 7 dif-
ferentially expressed (padj < .05) genes were identified: 
Ccl9, Gucy1b1, Ltbp4, Kif1a, Cmtm4, Itpr3, and Piezo2 
(Figure 7A,B, Table S9).

3.5  |  WGCNA results

Based on the complexity of the differential expression 
data, eigengene network methodology WGCNA was used 
to identify unique (no overlapping RNA biotypes) mod-
ules of highly correlated genes related to the external 
sample traits of age and diet in all mice, and bodyweight 
at euthanasia for aged mice. Each module was a cluster 
of highly interconnected genes related (positive or nega-
tive correlation) to diet or age, and for aged mice for the 
external trait of bodyweight at euthanasia. First, consid-
ering all groups of mice, aged and obese condition were 
assigned trait values  =  1, and young or lean condition 
were assigned trait values of 0. Relationships between the 
consensus module eigengenes (the first principal compo-
nent of a given module) and sample traits were generated 
(Figure  8A,B), and biotypes present in each module are 
found in Table S10. Module eigengenes were considered 
as representative of the gene expression profiles in a mod-
ule. For age, there were 5 modules negatively correlated 
with age, with p < .05, and 7 modules positively correlated 
with age. For diet, there were 2 modules negatively corre-
lated with diet, but no modules positively correlated with 
diet. To better assess the gene modules specifically associ-
ated with bodyweight at sacrifice in aged mice rather than 
diet itself, trait value of bodyweight was assigned and the T
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WGCNA analysis was repeated (Figure  8C–E) and bio-
types present in each module are found in Table S11. This 
time, there were 5 modules negatively correlated with 
bodyweight, and 4 modules positively correlated with 
bodyweight, at p < .05.

3.6  |  ncRNA in WGCNA modules

Some modules contained large numbers of ncRNA bio-
types age and diet, ranged 3.9%–61.8% ncRNA of total 
RNA biotypes (Table  S12), bodyweight at euthanasia in 
aged mice, ranged 2.8%–26.6% ncRNA of total RNA bio-
types (Table  S13). While ncRNAs that were annotated 
were included within the baseline IPA analysis for each 
module, we attempted to gain further additional insight 
into the possible function of the ncRNAs within the con-
text of the coding RNA also present within the module. 
Each ncRNA species within distinct WGCNA modules 
significantly associated with age, diet, or bodyweight at 
euthanasia was examined for the presence of coding tran-
scripts within ±20 kb of their locus. 43% modules con-
tained ncRNA that was within ±20 kb of a coding RNA 
species in the same module, and all modules had at least 
one in-module ncRNA species (range 1–72 coding spe-
cies) within ±20 kb of an mRNA species not in the origi-
nal module. Furthermore, several of these mRNA species 
were within 20 kb of more than one ncRNA species within 
a module, suggesting the possibility of multiple additional 
regulatory pathways, both within modules, between mod-
ules, and to mRNA species not associated with a module. 

Furthermore, in pathways analysis of the mRNA within 
20 kb of ncRNA species, aged obese mice had different 
nodes to those identified in aged lean mice, and the con-
nectedness of mRNA within 20 kb of ncRNA within net-
works was reduced in obesity, suggesting the combination 
of aging and obesity could disrupt normal communication 
between mRNA species regulated by ncRNA.

3.7  |  Biological relevance of significant 
WGCNA modules

IPA analysis was performed on the modules with the as-
sociated fold-change expression data for the most relevant 
biological comparisons (YO vs. YL, AO vs. AL, AO vs. YO, 
and AL vs. YL), and separately on the nearest protein-
coding data from the evaluation of ncRNA within the 
modules. The later was performed without regard for direc-
tionality of potential expression since the effect of change 
in expression of ncRNA on the expression of the nearest 
mRNA was unknown. The ChooseTopHubInEachModule 
function was performed using WGCNA (version 1.61) 
R package and then network analysis was performed in 
IPA to examine interconnectedness between the genes 
identified for each module across different regions of 
the cell (Figure 9), with top hub genes Tgfb1, Mcl1, and 
Mapk14 noted as especially interconnected with other 
module top hub genes for all conditions (Figure  9A). 
Significant canonical pathways for these top hub genes 
were ‘Type I Diabetes Mellitus Signaling’, ‘Inhibition of 
Angiogenesis by TSP1’, ‘Antigen Presentation Pathway’, 

F I G U R E  7   Heat map (A) and normalized counts (B) for seven genes differentially expressed (padj < .05) with diet and age identified by 
DESeq2 analysis.
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‘Role of Osteoclasts, Osteoblasts, and Chondrocytes in 
Rheumatoid Arthritis’, and ‘T Helper Cell Differentiation’. 
When examining the interactions of diet with bodyweight 
in aged mice (Figure 9B), HLA-A, Gas6, and Nedd9 were 
noted as especially interconnected with other module top 
hub genes, and significant canonical pathways for these 
top hub genes were ‘Neuroprotective Role of THOP1 in 
Alzheimer's Disease’, ‘Protein Ubiquitination Pathway’, 
‘Sucrose Degradation V (Mammalian)’, ‘Ketogenesis’, and 
‘Mevalonate Pathway I'. IPA analysis of the RNA biotypes 
in the modules revealed wide ranging canonical path-
ways, upstream, causal, networks, and diseases and func-
tions involved. In this regard, top diseases and functions 
across all modules were related to oncogenic or neoplastic 

processes, or to tumors (Diseases and Functions presented 
as Upset Plots in Figure S3).

3.8  |  PLS-DA

As expected from the preceding analyses, score plots of 
PLS-DA model in the plane of the first predictive (t1) and 
the second predictive (t2) components for age (Figure 10A) 
and diet (Figure 10B) for Ensembl genes demonstrated a 
greater effect of diet than age, with less separation between 
age components than diet (Table S14). However, PLS-DA 
analysis of genes from Ensembl database for the inter-
action of age and diet did not have a good performance 

F I G U R E  8   Module-trait relationships (A) reporting the relationships of consensus eigengenes (the first principal component of a given 
module) and sample traits. Each row in the figure corresponds to a consensus module, and each column to a trait. Numbers in the table 
report the correlations of the corresponding module eigengenes and traits, with the p-values printed in the correlations in parentheses. The 
table is color coded by correlation according to the color legend. Heatmaps (B) for significant (p < .05; parentheses) modules for age and diet, 
with number of biotypes and the r-value highlighted. (C) Sample dendrogram and trait heatmap, (D) module-trait relationships, and (E) 
heatmaps of significant modules for bodyweight of aged mice at sacrifice.
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F I G U R E  9   Networks generated in Ingenuity Pathways Analysis (IPA) and organized by cellular localization to examine 
interconnectedness between top hub genes in each significant modules identified by weighted correlation network analysis (WGCNA) for 
all conditions (A) and for the interactions of diet with bodyweight in aged mice at euthanasia (B). For clarity in presentation, non-hub genes 
have been removed, if they could be removed without impacting the interconnectivity between hub genes.
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based on Q2Y values (0.193). Scatter plots of univariate 
analysis in DESeq2 (Figure 10C,D) and multivariate anal-
ysis in PLS-DA demonstrated several genes for both age 
(Figure  10C) and diet (Figure  10D) with VIP scores >1 
and padj < .05.

There were 420 genes with VIP ≥ 1 and p < .05 related 
to age, of which 385 were also differentially expressed, 
and 2013 genes related to diet of which 1610 were also dif-
ferentially expressed, with 9 genes VIP ≥ 1 and p < .05 for 
both age and diet (Capn6, Dusp6, Gzme, Il11, Itih2, Klra4, 
Rap1gap2, Relt, Tnfrsf12a), all of which were also differen-
tially expressed (Figure 11). Given the versatility of PLS-DA 
to predict discrete variables, in this case obesity or aging, 
the PLS-DA transcripts with VIP ≥ 2 and p < .05 (45 genes 
for age (Figure  S4), 105 for diet (Figure  S5), including 1 
gene (Capn6) differentially expressed and VIP ≥ 2 for both 
age and diet) were considered as potential ASC biomarkers 
for obesity and/or age. Given that identification of putative 
driver genes for ASC dysfunction in aging and obesity was 

an aim of this work transcriptional regulators with VIP ≥ 2 
were considered for additional evaluation. Of the 105 dif-
ferentially expressed genes with VIP ≥ 2 for diet, 6 were 
transcriptional regulators (Cdkn2a, FoxG1, Ncoa3, Pax3, 

F I G U R E  1 0   Score plots of partial least squares discriminant analysis (PLS-DA) mode in the plane of the first predictive (t1) and the 
second predictive (t2) components for RNA biotype responses to age (A) and diet (B). The percentage of response variance explained by the 
predictor component only (t1) is indicated in parentheses. R2X (respectively R2Y) means percentage of predictor (respectively response) 
variance explained by the full model. Q2Y means predictive performance of the model estimated by cross-validation. For the classification 
model, the ellipses corresponding to 95% of the multivariate normal distributions with the samples covariance for each class is shown. 
Scatter plots of multivariate analysis by partial least squares discriminant analysis (PLS-DA) compared to univariate analysis by DESeq2 
for age (C) and diet (D). Variable Importance in Projection (VIP) scores and padj-values were used together to identify potential RNA 
biomarkers for the effects of age and diet.

F I G U R E  1 1   Overlap between RNA biotypes with Variable 
Importance in Projection (VIP) scores >1, or >2 and padj < .05 
related to age or diet. https://bioin​fogp.cnb.csic.es/tools/​venny/​
index.html.
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Plagl1, and Plag1). Of the 45 differentially expressed genes 
with VIP ≥ 2 for age, 9 were transcriptional regulators (En2, 
Gzf1, Shox2, Sox12, Tfec, Vhl, Zbtb18, Zfp78, and Zfp992).

Finally, comparison of PLS-DA age dataset to genes pre-
viously associated with methylation drift in blood during 
aging in mice,39 15 genes of the original 32 validated in 
that study overlapped with the current data (Figure S6), 
but none were significantly associated with AL versus YL 
comparison, only Tapbp was significantly increased in AO 
versus YO (padj = .02). Sox11 (p = .03), and Trhde (p = .05) 
were increased and Cdh13 (p = .015) decreased (Cdh13) in 
YO versus YL comparison, and only Pax3 (p = .004) was 
decreased in AO versus AL comparison.

3.9  |  Integration of Methyl-seq and RNA-
seq data

To further investigate the correlation between variation of 
DNA methylation and gene expression, genes (Table S15) 
or significantly differentially expressed genes (padj < .05) 
(Table S16) that had a distance <2 kb from the DMW were 
extracted (DMC data not shown). AO versus YO had the 
greatest number of significant DMW (159) and DMC (29 
genes) (q < 0.05) in genic regions with significant differen-
tial expression (padj < .05) compared to all other biologi-
cally relevant comparisons (AL vs. YL: 1 DMC, 2 DMW, 
YO vs. YL: 1 DMC, 3 DMW, AO vs. AL: 1 DMC, 9 DMW) 
(Table  3). The majority of differentially expressed genes 
contained only one DMW or DMC, and as expected from 
the methylome wide analysis of genic location, the major-
ity of DMC or DMW were contained within the introns 
of differentially expressed genes. Also as expected more 
DMC or DMW sites in differentially expressed genes were 
hypomethylated than hypermethylated, but this difference 
was generally greater compared to the differential methyl-
ation when assessed across all available loci. Interestingly, 
however, hypermethylation of DMC or DMW was not as-
sociated with decreased gene expression except for DMW 
in AO versus YO, while as expected hypomethylation of 
DMC or DMW was more frequently associated with in-
creased gene expression in aging, but in obesity when 
hypomethylation was more frequently associated with 
decreased gene expression (Table  3). To visualize these 
methylation and gene expression data, boxplots were gen-
erated for both the methylation data and gene expression 
data for the DMW that showed significant methylation 
difference and had a significantly differentially expressed 
gene nearby (distance <2 kb) (Figure S7).

To identify putative biomarkers for changes associated 
with age and obesity in ASCs, using PLS-DA analyses 
from both differentially methylated (DMeth) (Table  S6) 
and differentially expressed (DEx) (Table  S14), common 

elements were identified for each comparison. As previ-
ously stated, Capn6 was the only common element be-
tween DEx Diet and DEx Age comparisons with VIP > 2 
and padj < .05; however, this was not present in any of the 
DMeth Comparisons with VIP > 2. Eight additional bio-
types (Il11, Itih2, Relt, Tnfrsf12a, Klra4, Rap1gap2, Dusp6, 
Gzme) were identified in common between DEx Diet and 
DEx Age comparisons with VIP > 1 and padj < .05. For 
DMeth comparisons of AL versus YL with VIP > 1 and 
q < 0.05, there were 3 common elements with DEx Age 
(Nfatc2, Tbk1, Fnip2), and 10 with DEx Diet (Pvt1, Parm1, 
Atf6, Gdap2, 2210408F21Rik, Gpr85, Mboat1, Hipk2, Aff1, 
Sfi1). For DMeth comparisons of AO versus YO with 
VIP > 1 and q < 0.05, there were 160 common elements 
with DEx Diet comparisons with VIP > 1 and padj < .05, 
and 56 common elements with DEx Age comparisons 
with VIP > 1 and padj < .05, with an additional 2 elements 
(Itih2, Dusp6) in common with both DEx Diet and DEx 
Age comparisons. For DMeth YO versus YL compari-
son against DEx Diet, there were 2 common elements 
(Actn1, Tnpo1), and no elements in common with Age. 
For DMeth AO versus AL comparison, there were 45 com-
mon elements with DEx Diet with VIP > 1 and padj < .05 
and 11 common elements with DEx Age with VIP > 1 
and padj < .05, with an additional element in common 
with both DEx Diet and DEx Age (Dusp6). For DMeth A 
versus Y comparison, there were 149 common elements 
with DEx Diet with VIP > 1 and padj < .05 and 42 com-
mon elements with DEx Age with VIP > 1 and padj < .05, 
with an additional 2 elements in common with both DEx 
Diet and DEx Age (Itih2, Dusp6). For DMeth O versus L 
comparison, there were 10 common elements with DEx 
Diet with VIP > 1 and padj < .05 (Adam19, Tiam1, Mboat1, 
Sorcs2, Ablim1, Intu, Col12a1, Cyb5d1, Ppp2r3a, Nop56) 
and 2 common elements with DEx Age with VIP > 1 and 
padj < .05 (Sptb, Ifngr2).

Finally, the list of elements identified as significant in 
each analysis, comparison, or module were combined into 
a single table, and the number of times each element ap-
peared in ≥4 analyses and comparisons was recorded and 
rank ordered (Figure 12, Tables S17, and S18). Consistent 
with other analyses, for the AL versus YL comparison, few 
elements appeared multiple times, with Nfatc2 appearing 
a total of 8 times (Figure  12A). In contrast, for the AO 
versus YO comparison (Figure  12B), a number of genes 
appeared in 9 analyses (Akap13, Baiap2, Cd44, Gm15663, 
Jup, Msx1, Noct, Rarg, Rhobtb1, and Slc35e4). As suggested 
from the previous analyses described here, there were 
fewer elements identified recurrently for the YO versus 
YL comparison (Figure 12C) (Actn1 and Tnpo1 present in 
7 analyses each) than for the AO versus AL comparison 
(Gbx2 (7), Fam83f (7), Adh7. (6) Tnfsf11 (6)) (Figure 12D). 
For the A versus Y comparison (Figure 12E), the number 
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of elements appearing in multiple analyses increased, 
with Dusp6 appearing 11 times, followed by Itih2, Jup, 
Noct, Slc35e4, Stard13, and Stat5b each appearing in 10 
analyses. For the O versus L comparison (Figure  12F), 
the number of elements appearing in multiple analyses 
was more diffuse, with Ablim1 (9), Cyb5d1 (9), Adam19 
(8) Col12a1 (8), Dhrs9 (7), Intu (7), Nop56 (7), Pax3 (7), 
Slc2a9 (7), Slc38a4 (7), Sorcs2 (7), and Tspan5 (7) the most 
common recurring elements. Finally, when all compari-
sons were considered together, (Figure  12G) Dusp6 was 
identified in 35 analyses, and Aff1, Nfatc2, Itih2, Stard13, 
Baiap2, Noct, Pvt1, Stat5b, Cd44, and Tbx3 were all identi-
fied in at least 25 analyses.

4   |   DISCUSSION

We identified substantial global DNA hypomethylation 
with aging or obesity using RNA-Seq, Methyl-Seq, and 
integrated RNA-Seq and Methyl-Seq analyses in murine 
ASCs from lean and obese mice at 5- and 12-months of 
age, and identify an apparent additive or synergistic ef-
fect of aging combined with obesity. In contrast, the tran-
scriptome of aging lean mice (AL vs. YL) was remarkably 
stable with only seven differentially expressed genes. 
PLS-DA and WGCNA were helpful in ranking DMW and 
genes according to possible importance as biomarkers, 
and in identifying modules of related genes, respectively. 
Functional analysis of pathways identified by PLS-DA 
and WGCNA provided substantial insight into potential 
upstream mechanistic networks and potential diseases 
and functions associated with these changes. When these 
and other analyses were evaluated across all biologic com-
parisons, relatively few recurrent genes were identified in 
multiple comparisons; many of these were genes already 
known for their critical roles in progenitors and in dis-
eases of obesity and aging. Therefore, these genes are con-
sidered to be potential drivers capable of priming ASCs for 
dysfunction with aging and obesity.

ASCs have important roles in tissue homeostasis and 
immunomodulation and pathophysiologic roles in en-
hancing proliferation and cancer stem cell-like proper-
ties [reviewed in Ref. 40],41,42 in sensing the metabolic 
environment, and in acting upstream of inflammatory 
responses.43 The substantial interest in their use in re-
generative medicine applications demands a better un-
derstanding of the factors that drive ASCs from their 
physiologic role to a pathophysiologic role in situ, and in 
understanding mechanisms that diminish their evolving 
therapeutic importance in regenerative medicine. Notably, 
the regenerative capacity of stem cells is attenuated if the 
cells are harvested from aged patients with chronic dis-
ease.44 As in obesity, age-related changes to ASCs and E
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other mesenchymal stem cells (MSCs) reduces their re-
generative potential, and ASCs and MSCs are sensitive 
to environmental obesogens.45–48 Furthermore, MSCs 
from obese human donors have impaired expression of 
adhesion markers (CD29, CD44, CD166), MSC markers 
(CD73, CD90, CD105), increased expression of epithelial 
marker CD31, and have impaired proliferation, decreased 
osteogenic and adipogenic differentiation, increased se-
nescence, and evidence of endoplasmic reticulum stress.49 
In contrast, our previous data demonstrate enhanced ad-
ipogenesis and osteogenesis, but impaired chondrogenic 
differentiation in murine ASCs from high-fat diet-induced 
C57BL6/J obese mice.17 Overfeeding of neonatal mice 
before weaning induces metabolic re-programming of 
ASCs toward increased adipogenic differentiation, and 
decreased osteogenic differentiation,50 demonstrating that 
dysregulation in obesity can begin early in life, which im-
plicates a role for epigenetic regulation.

DNA methylation at the 5′ site of cytosine is a critical 
component of the heritable and modifiable epigenetic 
landscape. It contributes to precise fine-tuning and pre-
cision of gene expression patterns that are required for 
stem cell viability, proliferation, pluripotency, differen-
tiation, transdifferentiation, and reprogramming.51 The 
global hypomethylation we identified in aged or obese 
mice, with an apparent synergistic or additive effect in 
both aged and obese mice, was primarily in inter-CGI 
regions and with regard to genic location, primarily in-
tronic followed by intergenic regions. The greater num-
ber of differentially expressed biotypes in AO versus YO 
compared with AL versus YL suggests greater dysregu-
lation of epigenetic co-factors and machinery in obesity 
compared to aging in ASCs from lean animals. CpG is-
lands represent a minority of the genome; the majority 
of CpG are found in repetitive DNA elements, located in 
intergenic regions.52 While much about the function of 
these repetitive elements is unknown, they are critical 
for chromosomal organization and function, for exam-
ple, forming centromeres and telomeres.52 Repetitive 
elements are notoriously unstable, and are frequently 
a source of mutations but epigenetic mechanisms have 
evolved to effectively improve the stability of these re-
gions.52 Thus, widespread intergenic and inter-CGI 
hypomethylation is expected to reduce the efficacy of 
these epigenetic mechanisms, and reduce stability of 
repetitive elements, thus predisposing to mutations and 
dysfunction. This instability induced by widespread 
hypomethylation is a key factor in a rapidly expanding 
range of devastating diseases, including the chronic 
effects of environmental factors.52 Combined with the 
abnormalities of genic region methylation and RNA 
biotype identified, this intergenic, inter-CGI hypometh-
ylation could be devastating for normal ASC function. 

In support of our findings, human ASCs from obese 
(BMI 32.6 ± 2.2 kg/m2, age 34.3 ± 7.4 years) compared to 
lean (BMI 22.4 ± 12 kg/m2, age 44.3 ± 9.2 years) donors 
demonstrated global hypomethylation,53 even though 
the obese population in this study was slightly younger 
overall than the general obese population. Similarly, 
whole blood samples54 and bone marrow-derived MSCs 
[reviewed in Ref. 55] demonstrate global demethylation 
with age, and this demethylation was predominantly 
distributed away from CGI. Also in agreement with 
our findings, most of the differential methylation was 
also overwhelmingly in non-CGI regions in obese ASCs 
within transcribed regions of gene bodies followed by 
intergenic regions,53 whereas we have identified enrich-
ment more specifically in intronic regions followed by 
intergenic regions. While the precise epigenetic mech-
anism of this global hypomethylation remains to be 
determined, obese porcine ASCs had reduced global 
DNA hydroxymethylation and H3K4m3 marks, whereas 
H3K9me3 and H3K27me3 marks were unchanged com-
pared to lean porcine ASCs,56 but the age of the pigs was 
not considered as a factor in these studies. These hy-
droxymethylation and H3K4m3 findings were associated 
with genomic transcriptional repression.56 In the current 
study, DNA hypomethylation was generally associated 
with increased gene expression with aging, as expected. 
However, in obesity, DNA hypomethylation was associ-
ated with decreased gene expression and no association 
between DNA hypermethylation and decreased gene 
expression was observed. These intriguing findings are 
also consistent with our observation that obesity moder-
ated the number of RNA biotypes with large changes in 
gene expression, particularly for the increase in expres-
sion of RNA biotypes we observed with aging. Our find-
ing that despite the extent of DNA methylation changes 
observed, ‘healthy’ aging (AL vs. YL) maintained a re-
markably stable transcriptome, with only seven differ-
entially expressed genes is in line with the findings of 
meta-analyses of gene microarray studies across a range 
of tissues.57 Also in line with previous studies57 is the 
preponderance of over- rather than under-expression 
in ‘healthy’ aging (AL vs. YL). s expected therefore, for 
this comparison, changes in gene expression were not 
associated with significant effects on function, or on up-
stream regulators of any pathways—networks involved 
included those expected for aging, cellular growth, 
proliferation, death, and survival as seen previously in 
ASCs derived from old donors.58 We were surprised to 
discover however, that all comparisons involving obe-
sity identified dozens of impacted potential upstream 
regulators, networks, functions, and diseases, many of 
which have been extensively associated with diseases for 
which obesity is a risk factor.
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The lack of age-related epigenetic drift using existing 
methylation markers of aging was surprising, even when 
evaluating similar markers in multiple other species or 
strains of mice.39,59 However, our results were consis-
tent with data from muscle stem cells from young (1.5–
2.1 months) and old (23.3–27 months) mice, a wider age 
range than we evaluated.60 The slight increase in DNA 
methylation age identified in the muscle stem cells lagged 
far behind the chronological age of the mice. Current 
DNA methylation aging ‘clocks’ are developed with data 
from bulk tissues, rather than stem cell populations, and 
since stem cells generally represent a very small propor-
tion of the overall cellularity of a tissue, it is possible that 
differentiated cell populations drive the characteristics 
of the epigenetic aging ‘clock’ at a tissue level. If similar 
findings are true for stem cells from a variety of sources 
over the full lifespan, accurate matching of stem cell and 
chronological age may entail development of an entirely 
different set of methylation marks to account for their ap-
parently slower rate of epigenetic aging. Given the find-
ings of this study and the diseases and functions identified 
as modified by obesity and aging in ASCs, this could be 
useful in a similar way to screen individual donor ASCs 
derived from subcutaneous adipose tissue for risk of dis-
ease or dysfunction, similar to how markers of epigenetic 
age are being used.61

Non-coding RNA plays a critical role in biological reg-
ulation, obesity,62 in the beneficial effect of caloric restric-
tion,3 in identifying disease sub-phenotypes,63–65 and in 
the modification of the epigenetic landscape.66 Reducing 
the complexity of differential expression data using 
WGCNA extracted clusters of highly co-expressed genes 
and ncRNA biotypes related to age, diet, or bodyweight at 
sacrifice. Many of the loci of ncRNA biotypes were close 
to those of in-module mRNA biotypes or were associated 
with another mRNA biotype contained within another 
module. Thus, ncRNA biotypes could provide a level of 
connectedness between different clusters or functions of 
modules. This connectedness reduced with obesity pro-
viding a potential mechanism of ncRNA and regulatory 
pathway dysregulation in obesity whereby there could be 
an overall reduction in ncRNA regulation. The modules 
significantly associated with diet and age had a wide range 
of diseases and functions, but the top hit for every mod-
ule was related to tumors, neoplasia, or to oncogenesis. 

Interconnectedness of modules associated with age and 
obesity examined identified Tgfb1, Mcl1 (anti-apoptotic 
gene), and Mapk14 as highly interconnected regulatory 
factors related to the transcriptional changes, whereas the 
same analysis for body weight at sacrifice associated with 
high-fat diet or control diet found HLA-A, Gas6 (regula-
tion of cell proliferation), and Nedd9 (focal adhesion pro-
tein) to be the most highly interconnected. Together with 
the differences in top canonical signaling pathways iden-
tified for the two comparisons, this provides a useful start-
ing point for future studies evaluating how bodyweight 
gain in response to a specific diet influences disease risk. 
Together, our data support previous findings of WGCNA 
in subcutaneous fat suggesting obesity could accelerate 
the aging process,67 even though functions associated with 
lipid and carbohydrate metabolism and the immune sys-
tem and inflammatory response were the dominant path-
ways involved with aging in subcutaneous adipose tissue. 
Interestingly, a study of sex-related differences in subcuta-
neous adipose tissue in obesity that specifically included 
ncRNA identified a large number of differentially ex-
pressed ncRNA biotypes. NcRNAs were over-represented 
in epigenetic and transcriptional regulatory pathways, 
and dysregulation of ncRNA species was identified as po-
tential link with cancer and neurodegenerative diseases 
in sex-related differences in obesity, similar to the inter-
actions of age and obesity in the current study, and simi-
larly suggesting a role for ncRNA in changes in expression 
of obesity-related mRNA biotypes.68 Therefore, improved 
understanding of the emerging functions of ncRNA in the 
modification of the epigenetic landscape66 merits further 
study. With additional more comprehensive study of the 
role of ncRNA in aging and obesity of ASCs, and in sex-
differences between ASCs, WGCNA could identify poten-
tial targets and interactions for modulation.

In contrast to the WGCNA approach, VIP scores gen-
erated from PLS-DA allowed us to identify individual 
variables. These variables can separate the experimental 
groups as potential biomarkers for the effects of diet and 
age in both the Methyl-Seq and RNA-Seq data individu-
ally, in combination, and to compare between the vari-
ables that best distinguished the groups in Methyl-Seq to 
DGE. Mapt, Nr3c2, App, and Ctnnb1 emerged as poten-
tial hypomethylated upstream regulators in both aging 
and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, 

F I G U R E  1 2   ‘Top Hit’ summary of the rank order frequency of genes and biotypes occurring across all analyses performed in the 
current study for (A) AL versus YL, (B) AO versus YO, (C) YO versus YL, (D) AO versus AL, (E) A versus Y, (F) O versus L, and (G) All 
Comparisons. Columns represent rank order of frequency then alphabetized biotype names, rows represent individual analyses and 
comparisons. Number in parentheses after individual biotype abbreviation is the number of times that specific biotype appears across 
all analyses. *Represents truncation of table for elements appearing in fewer analyses for clarity. Full dataset available for all elements 
appearing ≥4 analyses in Table S18.
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Hipk2, Id2, and Tp53 with the additional effects of aging 
in obese animals, with Foxo3 and Ccnd1 as potential hy-
permethylated upstream regulators of healthy aging (AL 
vs. YL), but also for the effects of obesity in young animals 
(YO vs. YL), suggesting that these factors could play a role 
in accelerated aging with obesity. As expected, based on 
global hypomethylation data, there appeared to be loss 
of variables with differential expression and hypermeth-
ylation in obesity combined with aging, with only Foxo3 
and Ccnd1 associated with both healthy aging and with 
obesity in young animals. All of the functions of these 
upstream regulators were consistent with disease and 
function terms associated with cancer, neurodegenerative 
diseases, and abnormalities in the cell cycle.

PLS-DA analysis of RNA-Seq data identified nine 
genes with VIP > 1 for both age and diet that were also dif-
ferentially expressed emerged: Capn6, Dusp6, Gzme, Il11, 
Itih2, Klra4, Rap1gap2, Relt, and Tnfrsf12a. Interestingly, 
none of these potential biomarkers for both age and diet 
with DGE were identified as transcriptional regulators, 
but when considering differentially expressed biomarker 
candidates with VIP ≥ 2 for diet, transcriptional regulators 
were identified (i.e., Cdkn2a, FoxG1, Ncoa3, Pax3, Plagl1, 
and Plag1). For age by similar filters, 9 transcriptional reg-
ulators were identified, En2, Gzf1, Shox2, Sox12, Tfec, Vhl, 
Zbtb18, Zfp78, and Zfp992. Once again, several of these 
genes have been previously associated with ASC dysfunc-
tion, or with many of the diseases and functions identified 
in pathways analysis.

From all analyses used to evaluate the data, no RNA 
biotypes consistently emerged recurrently across data-
sets or comparisons between the groups. However, the 
disease and functional effects of obesity and age on 
ASCs were remarkably consistent. This, together with 
the high level of connectivity between hub genes, leads 
us to ask if potential driver genes could be identified 
based on the degree of their recurrent appearance in dif-
ferent analyses and between group comparisons, rather 
than necessarily appearing as a ‘top hit’ appearance in 
a specific module or single analysis. The current defi-
nition of driver gene relates mostly to cancer—a gene 
whose mutations increase cell growth under specific 
intracellular microenvironmental conditions.69 Here, 
we did not sequence individual ASCs for clonal muta-
tions already associated with malignancy or with stem 
cell dysfunction, nor would the genetic mutation rate 
in these baseline conditions be expected to be elevated 
above stochastic low levels. Therefore, tumor datasets 
used to identify cancer genes are not likely to be rele-
vant in the current study and many of the driver gene 
prediction tools developed for cancer are unlikely to be 
useful; individual analyses revealed differential methyl-
ation and differential expression of many RNA biotypes 

already associated with cancer. There are currently no 
established frameworks for identifying epigenetic driv-
ers in cancer or any other discipline,70 or their effect on 
downstream pathways.71 However, given that epigene-
tic aberrations can themselves impact the mutation rate 
and genetic instability in carcinogenesis,71 we attempted 
to determine RNA biotypes that could ultimately be 
responsible for driving ASC dysfunction down many 
of the identified pathways. We attempted to identify a 
pre-primed driver ‘switch’ for ASC dysfunction on the 
premise that epigenetic ‘priming’ can lead to cancer de-
velopment.72 For example, could we identify a critical 
switch if the local ASC niche became permissive of such 
dysfunction in situ, if the ASCs were implanted into a 
dysfunctional niche, if the ASCs were exposed to exog-
enous signaling or differentiation cues, or if the ASC 
dysfunction attained a level capable of influencing the 
niche itself, and of function of surrounding cells? To 
begin to answer this question, we used the general ap-
proach applied to identification of cancer driver genes, 
to evaluate the data using multiple robust methods and 
identify genes predicted by more than one method,69 by 
looking for RNA biotypes that appeared as significant or 
important recurrently in multiple analyses and in mul-
tiple comparisons. When the data from all analyses and 
comparisons were manually curated, and rank ordered 
by frequency of occurrence (Figure 12, Table S18), the 
number of individual RNA recurrent biotypes was low 
for healthy comparisons, highlighting Nfatc2 in healthy 
aging of ASCs. Nfatc2 is a calcium-regulated member 
of the Nuclear Factor of Activated T-cells transcription 
factor family that regulates a number of key cellular 
functions including differentiation and adaptation,73 
cytokine gene expression in immune responses,74 sar-
comas and round cell sarcomas,75,76 and adipogenesis.77 
Moreover, Nfatc2 is a key regulator of chondrogene-
sis including in MSCs,78 contributes to normal carti-
lage homeostasis, and is regulated through epigenetic 
mechanisms.79 Additionally, Nfatc2 demonstrates age-
dependent increases in expression in other cell types.80 
Nfatc2 therefore makes ‘biological sense’ as a potential 
driver of aging in ASCs.

As suggested from our individual analyses, the addi-
tion of obesity to aging increased the number of RNA bio-
types occurring recurrently throughout the entire dataset. 
When rank-ordered by frequency of appearance for all 
group comparisons, Dusp6 was identified in 35 analyses, 
and Aff1, Nfatc2, Itih2, Stard13, Baiap2, Noct, Pvt1, Stat5b, 
Cd44, and Tbx3 were all identified at least 25 times, of 
which Dusp6, Nfatc2, Itih2, Stard 13, Baiap2, Noct, Stat5b, 
and Tbx3 were all also differentially methylated and dif-
ferentially expressed in at least one biologic compari-
son. All of these mRNA biotypes had known functions 
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consistent with putative roles as drivers of ASC priming to 
dysfunction and disease with aging and obesity: Depletion 
of AFF1 improves osteogenic differentiation of MSCs via 
inhibition of DKK1, an inhibitor of Wnt/β-catenin signal-
ing, whereas overexpression impairs osteoblast differenti-
ation,81 and AFF1 depletion also enhances adipogenesis.82 
In combination with KMT2A overexpression, AFF1 is 
associated with poor prognosis in acute lymphoblastic 
leukemia.83 ITIH2 was recently identified as a core gene 
for colorectal cancer liver metastasis, with overexpres-
sion associated with poor survival,84 and as a hub gene in 
metastatic uveal melanoma,85 whereas in multiple other 
primary solid tumors, downregulation of ITIH2 is iden-
tified.86 Elevations of serum ITIH2 are associated with 
metabolic dysfunction in obese dogs compared to those 
without metabolic dysfunction.87 STARD13 is a GTPase 
activating protein for Rho GTPases, and is a tumor sup-
pressor that regulates cell survival and apoptosis. Its role 
in normal Rho GTPase function also means dysregula-
tion impacts tumor invasiveness and metastasis,88 while 
downregulation of Stard13 in combination with Stat3 
and Casp2 contributes to the anti-aging effects of caloric 
restriction on the liver.89 BAIAP2 (IRSp53) is part of a 
ubiquitin-dependent switch that stabilizes cortical actin 
at points of cell–cell contact to align membranes and fa-
cilitate cell fusion at key points in development, a process 
that is key for formation of osteoclasts, myofibers (includ-
ing cardiac), giant cells, and placental development,90 
and deletion is embryonic lethal, while deletion in adult 
mice demonstrate failure to regulate synaptic plasticity 
and demonstrate learning deficiencies associated with 
the hippocampus.91 Overexpression of Noct, a gene essen-
tial for regulating circadian rhythm output in enterocytes 
and bone, is expressed in antiphase to IGF-1 but is non-
rhythmic in white adipose tissue under normal feeding 
states, despite its interactions with PPARᵧ. However, in 
conditions of restricted feeding, Noct becomes rhythmic. 
Noct deletion confers resistance to high-fat diet induced-
obesity, and conversely, Noct overexpression reduces fat 
mass in male mice under normal diet conditions and re-
duces adipocyte size, through its de-adenylase activity and 
mitochondrial actions.92 Pvt1 is a long non-coding RNA 
regulated by p53 that has been identified as pro-fibrotic,93 
and an oncogene, with over-expression or high copy num-
ber associated with many types of cancers, and with neg-
ative prognosis. PVT1 has multiple variants in human, 
some of which are linear, and some of which are circular, 
but both of these transcript-types control cell proliferation 
via effects on MYC and CDKN1A targets, facilitate tumor 
cell invasion and metastasis by promoting epithelial-
mesenchymal transition, and both have anti-apoptotic 
functions.94 On the other hand, circular PVT1 expression 
is reduced in senescent human tendon progenitors,95 but 

inhibition of other isoforms of PVT1 is associated with re-
duced senescence and increased proliferation.96 PVT1 iso-
forms also interact with Notch signaling, pathways with 
wide-ranging effects on cell proliferation, development, 
differentiation, and homeostasis.97 Constitutive activation 
of Stat5b promotes adipogenesis along with Stat5a via 
PPARγ,98 and is a growth hormone signaling intermedi-
ate in the regulation of postnatal growth and adiposity.99 
CD44, the well-known MSC marker100 and receptor for 
hyaluronan, is also a cancer stem cell marker associated 
with drug resistance, epithelial-mesenchymal transition, 
metastasis, and survival.101 Tbx3 is dynamically regulated 
during maintenance and induction of pluripotency in em-
bryonic stem cells,102 and is a critical regulator in devel-
opment. In the adult, TBX3 is frequently overexpressed in 
epithelial and mesenchymal cancers and is a regulator of 
cancer stemness,103 and is a critical regulator of pluripo-
tency and in induced pluripotency.103

The most frequently recurrent gene, Dusp6 is associ-
ated with transition between naïve and primed pluripo-
tency states in mouse embryonic stem cells, is part of core 
pluripotency circuitry, acts upstream of Oct4, and Sox2, 
and as such has been described as a ‘guardian’ of pluripo-
tency.104,105 Dusp6 is in the MAP kinase phosphatase fam-
ily and reduces the high levels of basal ERK signaling and 
pulses typically present in stem cells to the low levels of 
ERK signaling in differentiated cells,106 thus Dusp6 pro-
motes early differentiation at the time of commitment,107 
acting as a switch that transitions stem cells to differenti-
ated cells. Dusp6 is a key regulator in many other processes 
and tissues, and in cellular stress responses.108 In primary 
adipocytes, Dusp6 expression is greater in high-fat diet 
obese mice compared to lean controls, and Dusp6 knock-
out impairs glucose tolerance, and confers resistance to 
obesity, depending on genetic background.109 Dusp6/8 
knockout in mice confers resistance to diet-induced obe-
sity and improves metabolic parameters via increases in 
ERK1/2 phosphorylation suggesting a critical role for 
Dusp regulation of ERK 1/2 in metabolism.110 Dusp6 plays 
a critical role in the methylation landscape, and is critical 
for completion of global demethylation in naïve embry-
onic stem cells, re-setting the epigenome.111 Dusp6 has 
other epigenetic effects, for example, Dusp6 inhibition is 
also one effect of Hdac3 inhibitors, and Dusp6 has par-
tial anabolic effects on Hdac3-depleted chondrocytes.112 
Finally, Dusp6 is also important in p53-mediated cell se-
nescence, with Dusp6 expressed at greater levels in senes-
cent cells; Erk1/2 being the major kinase that controls cell 
proliferation.113 Thus, Dusp6 could be a key driver of both 
epigenetic, transcriptional, and functional results of obe-
sity and aging in ASCs, and awaits further study. While it 
was somewhat surprising that differential expression and 
differential methylation was not identified for more than 
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one comparison, the Dusp6 protein and mRNA have very 
short half-lives, and stability of these species was not in-
vestigated here.114

This study highlights the substantial interactions be-
tween one inevitable intrinsic factor, and one highly 
prevalent extrinsic factor across part of the life course. 
Identifying the epigenetic drivers of other life-course 
factors, their interactions, and the pathways impacted by 
these drivers could provide targets to mitigate the sub-
sequent genetic instability or induced dysfunction. For 
example, given the critical role ASCs play in the tumor 
microenvironment in a variety of cancers and cancer me-
tastases [reviewed in Ref. 40], understanding and mitigat-
ing epigenetic and transcriptomic disruption in response 
to intrinsic and extrinsic risk factors could be critical 
to preventing cancer development and progression. 
Furthermore, a large proportion of the ASC literature is 
focused on their potential for treatment or immunomodu-
lation of several diseases. While some limitations of ASCs 
in this role have been identified for age, sex, and adipos-
ity, the effects of other factors remain largely unexplored. 
Finally, data from this study suggest epigenetic and tran-
scriptomic risks of the life course on ASCs could explain 
some of the potentially devastating side effects of using 
unproven stem cell interventions that have recently been 
highlighted,115 together with unexpected failures in clini-
cal trials compared to preclinical studies.116

4.1  |  Limitations

ASCs are not a homologous population and others have 
begun to establish the diversity of ASC populations, 
using single-cell RNA sequencing (scRNA-Seq).117 With 
this in mind, we do not know if the shifts identified here 
result from changes within the cell population homo-
geneously, from changes in abundance or function of 
individual cell populations, or universally within cell 
populations currently defined as ASCs but further study 
to perform paired scRNA-Seq with the bulk RNA-Seq 
data evaluated here from the same individuals could re-
solve this question. We were therefore unable to evaluate 
ASC subset changes recently identified using scRNA-
Seq in visceral adipose tissue in obese mice118 but many 
of the biological pathways identified in the current 
study were also previously reported by scRNA-Seq anal-
ysis. Transcriptional variability generally increases with 
age in scRNA-Seq studies119 and even though we used 
a homogeneous cell population sorted by cell surface 
markers for ASCs, it is possible that the bulk DNA meth-
ylation and transcriptomic data evaluated here masked 
some heterogeneity within a relatively uniform cell pop-
ulation. Clearly, however, transcriptional heterogeneity 

is substantially increased in obese compared to lean 
mice. A potential limitation of the work described here 
is the use of murine ASCs, with the associated limita-
tions of an isogenic background and homogenous labo-
ratory animal environmental conditions and exposome. 
However, this model system does allow the effects of in-
dividual intrinsic and extrinsic factors and their interac-
tions to be evaluated specifically. Our hope is that with 
future studies, a complex map of the exposome could be 
built to begin to understand how the exposome of ASC 
and MSC donors interacts. Indeed, the data presented 
here highlight an additional area of dissonance between 
mouse preclinical studies and human clinical outcomes 
in regenerative medicine that have become increasingly 
evident116—that intrinsic and extrinsic variables of the 
exposome which we shown disrupt both the methylome 
and the transcriptome require a multi-factorial mod-
eling approach within in the tightly controlled labora-
tory animal environment to fully elaborate the effects of 
each individual factor. Nonetheless, evaluation of these 
variables in carefully controlled combinations in future 
multi-dimensional studies could substantially advance 
our understanding of how the exposome could impact 
regenerative therapies, through more advanced applica-
tion of the computational approaches tested here, both 
in larger and more complex future independent mouse 
datasets and through mining of open source large data-
sets where the exposome of the human donors is likely 
unknown.

The effect of expansion of the mASCs to Passage 
2 on the methylome and transcriptome is unknown, 
but is of translational relevance. While expansion rep-
resents a change from the native environment, industry 
sponsored allogeneic MSCs allow manufacture of up to 
1 million doses per donor116; thus, data from expanded 
ASCs are translationally relevant for treatment, trans-
plantation, regenerative medicine, and tissue engineer-
ing applications. Human bone-marrow derived stem 
cells undergo genome-wide demethylation with long 
term culture (Passage 3–12). In this study, all Passage 2 
cells from these isogenic animals were subjected to sim-
ilar isolation and expansion protocols suggesting that 
the differences identified resulted from the underlying 
biological phenotype.

5   |   CONCLUSIONS

Our data show that while global hypomethylation of ASCs 
occurs with aging, the transcriptome remains remark-
ably stable. This global hypomethylation is exacerbated 
and becomes dysregulated with obesity; simultane-
ously the number of dysregulated RNA biotypes in the 
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transcriptome increases more than 120-fold in obese mice 
with aging compared to lean mice. Multiple analyses ap-
plied here allude to the potential importance of this dys-
regulation in diseases associated with obesity and aging, 
and for the potential of driver genes in these ASCs to cause 
this dysregulation. These driver genes are particularly im-
portant to validate in further studies given the widespread 
distribution of ASCs within their niche, their role in many 
diseases, and in regenerative medicine strategies.
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