
This is a repository copy of Active inference of EFSMs without reset.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/207973/

Version: Accepted Version

Proceedings Paper:
Foster, M. orcid.org/0000-0001-8233-9873, Groz, R. orcid.org/0000-0003-3730-8300, 
Oriat, C. orcid.org/0000-0002-5674-0855 et al. (3 more authors) (2023) Active inference of 
EFSMs without reset. In: Li, Y. and Tahar, S., (eds.) Formal Methods and Software 
Engineering: 24th International Conference on Formal Engineering Methods, ICFEM 2023,
Brisbane, QLD, Australia, November 21–24, 2023, Proceedings. 24th International 
Conference on Formal Engineering Methods, ICFEM 2023, 21-24 Nov 2023, Brisbane, 
QLD, Australia. Lecture Notes in Computer Science, LNCS 14308 . Springer Singapore , 
pp. 29-46. ISBN 9789819975839 

https://doi.org/10.1007/978-981-99-7584-6_3

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a paper 
published in Li, Y., Tahar, S. (eds) Formal Methods and Software Engineering. ICFEM 
2023. Lecture Notes in Computer Science, vol 14308 is made available via the University 
of Sheffield Research Publications and Copyright Policy under the terms of the Creative 
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted 
use, distribution and reproduction in any medium, provided the original work is properly 
cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Active Inference of EFSMs Without Reset⋆

Michael Foster1[0000−0001−8233−9873], Roland Groz2, Catherine Oriat2, Adenilso
Simao3, Germán Vega2, and Neil Walkinshaw1

1 Department of Computer Science, The University of Sheffield, UK
{m.foster, n.walkinshaw}@sheffield.ac.uk

2 Univ. Grenoble Alpes, Laboratoire d’Informatique de Grenoble (LIG), France
{roland.groz, catherine.oriat, german.vega}@univ-grenoble-alpes.fr

3 ICMC, São Carlos, Brazil
adenilso@icmc.usp.br

Abstract. Extended finite state machines (EFSMs) model stateful sys-
tems with internal data variables, and have many software engineering
applications, including system analysis and test case generation. Where
such models are not available, it is desirable to reverse engineer them by
observing system behaviour, but existing approaches are either limited
to classical FSM models with no internal data state, or implicitly require
the ability to reset the system under inference, which may not always be
possible. In this paper, we present an extension to the hW-inference al-
gorithm that can infer EFSM models, complete with guards and internal
data update functions, from systems without a reliable reset, although
there are currently some restrictions on the type of system and model.

1 Introduction

Accurate models of software behaviour are useful for a wide range of software en-
gineering tasks, including checking system correctness [12], identifying sequences
of test inputs [7], and comparing differences in behaviour between software ver-
sions [8]. Reactive systems — systems that respond to their environment, their
users, or other systems — are commonly modelled as (Extended) Finite State
Machines ((E)FSMs), and such models form the basis of many testing and veri-
fication techniques [16].

⋆ The authors acknowledge the support of ANR project PHILAE (ANR-18-CE25-
0013) and ACHAR project from LIG. Michael Foster and Neil Walkinshaw are
funded by the EPSRC CITCoM project. Adenilso Simao would like to thank the
CEPID-CeMEAI/ICMC-USP (FAPESP grant 2013/07375-0).
This version of the contribution has been accepted for publication, after
peer review (when applicable) but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The Version of
Record is available online at https://doi.org/10.1007/978-981-99-7584-6 3. Use
of this Accepted Version is subject to the publisher’s Accepted Manuscript
terms of use https://www.springernature.com/gp/open-research/policies/accepted-
manuscript-terms.



2 M. Foster et al.

Despite their value, models can be neglected during development, or may not
exist at all. In such situations, we need to reverse engineer them from existing
systems, and the task of inferring (E)FSM models has been the subject of a con-
siderable amount of research. A popular strategy here is the minimally adequate
teacher framework [3], in which a model is inferred by posing a series of queries
to the system under inference (aka SUL, System Under Learning). However, ex-
isting inference techniques [14, 15, 23, 11] tend to implicitly require the ability to
return the system to some known “initial” state from which to execute a trace,
which is not always feasible. While inference approaches have been developed to
minimise resets [20, 13], these do not give adequate consideration to how data
values affect the behaviour of the SUL.

In this paper, we present the ehW -inference algorithm (the e standing for
“extended”) to infer EFSM models of systems with internal, data-dependent
behaviour without the need for resets. Our main contributions are as follows:
– An extension to the hW -inference algorithm [13] called ehW -inference, which

incorporates the ability to infer internal registers and the constraints and
functions that determine how the data states within the system change in
response to inputs.

– A “proof of concept” demonstration of ehW -inference being applied to a
small example system.
The rest of the paper is structured as follows. Section 2 presents a motivating

example and a brief overview of the relevant background upon which our con-
tribution is based. Section 3 presents our ehW -inference algorithm. Section 4
provides a walk-through of the algorithm, showing how it can be applied to our
motivating example from Section 2. Finally, Section 5 concludes the paper and
discusses potential future work.

2 Background and related work

We first introduce a running example to illustrate the type of model we use and
our inference method. We compare our model and approach with existing work.
We then formally define EFSMs and discuss the semantics of the model and the
operations that can be applied.

2.1 Running example

To illustrate our approach, we use a vending machine, modelled on Figure 1a.
Starting from state s0, a user can select a drink (e.g., tea or coffee), then insert a
coin. The price of a drink is 100 (there are coins of values 20, 50, 100, and 200).
The machine will reject any initial payment less than the value of the drink,
but a user may choose to enter more coins. Every time a coin is accepted, the
running total is displayed. After paying, the user can press a vend button to be
served the selected drink, and the balance in excess of the cost of a drink will
be reset. An example execution is shown in Figure 1b. The formal semantics of
this are detailed in Section 2.3.



Active Inference of EFSMs Without Reset 3

s0 s1 s2

select(i0)/ϵ
[r1 := 0, r2 := i0]

coin(i0)[i0 < 100]/Reject(i0)

coin(i0)[i0 ≥ 100]/
Display(r1 + i0)[r1 := r1 + i0]

coin(i0)/Display(r1 + i0)
[r1 := r1 + i0]

vend()/Serve(r2)

(a) EFSM representing the vending machine.

⟨select(tea)/ϵ, coin(50)/Reject(50), coin(100)/Display(100),
coin(50)/Display(150), vend()/Serve(tea)⟩

(b) An example execution of the simple vending machine, in which an event is denoted
input(parameters)/output(parameters).

Fig. 1: The vending machine EFSM and an example trace.

In Figure 1a, inputs are separated from outputs by a “/” on the label of a
transition. As shown in Figure 1a, our models can have parametric inputs, such
as select, which carries an enumerated type for the choice of drink, or coin, which
carries the integer value of the coin. Outputs can also bear parameters: this is
the case for all three outputs in our model (Reject, Display, and Serve, which
we subsequently abbreviate to R, D, and S). Our models are capable of storing
values in registers, which are typed variables. In our example, r1 will store the
total value of coins inserted and r2 will store the drink that was selected.

Although simple, this example illustrates the various inference challenges that
we are faced with. We are not able to observe the register state when interacting
with the machine. We do not know how many (if any) registers exist, or how
they affect the sequential behaviour and output parameters of the machine. The
only data visible to us are the input and output parameters. There is no “reset”
function. We do not presume the prior existence of some representative set of
example executions from which we can seek to derive the underlying model. The
only thing we know is the signature of the interface (inputs and outputs) so that
we are able to interact with the system.

2.2 Related work

Although there are several existing EFSM inference approaches in the literature,
none of them has the capability of addressing this combined set of challenges. One
technique [10] allows users to provide data abstraction heuristics to facilitate the
introduction of registers during the inference process, but this requires the user
to have a prior understanding of the system, which means that this technique
cannot be applied to truly black-box inference scenarios.

Another technique, MINT [23], uses genetic programming (GP) infer update
functions for variables. However, MINT cannot discover data dependencies be-
tween different transitions, for example, between select and vend in Figure 1a,
nor can it discover internal registers like r1 and r2 in Figure 1a. Work presented



4 M. Foster et al.

in [9, 11] overcomes this by allowing the GP to introduce latent registers to
output expressions and inferring update functions in a second pass of GP.

The above techniques are passive; they infer models from a predefined set
of traces. There are also many active inference techniques in the literature [2, 5,
22], which infer models by querying the SUL, but these techniques only support
updates in the form of simple assignments, or they do not support updates at
all [17]. Register updates in terms of anterior values, such as the coin transitions
in Figure 1a, are beyond them. These techniques also implicitly require that the
SUL can be reset to a known state from which to execute the queries, which
may not always be viable.

Another group of approaches [4, 21] phrase the EFSM inference problem as an
instance of SAT. The solution is then a set of boolean variables, which together
represent the automaton. Unfortunately, these approaches only consider boolean
data values and do not support internal variables, so have limited applicability.

2.3 Definitions

Extended Finite State Machines State machine inference approaches such
as Angluin’s L∗ method [3] infer deterministic automata, which do not incorpo-
rate data. In this paper, we use EFSMs [6], which do.

Definition 1. An EFSM M is a tuple4 M = (S,R, I, O, PI , PO, T ) where S is a
finite set of states, R is a cartesian product of domains, representing the type of
registers. A domain is a set of values, such as int, float or string. I is a finite
set of (abstract) inputs. O is a finite set of (abstract) outputs. PI is a mapping
from I to a product of domains which are the type of parameters of the inputs.
The type can be empty if the input has no parameter. PO is a mapping from O
to a product of domains , which are parameters of the outputs. Outputs may also
have no parameter. T is a finite set of transitions.

Each transition t ∈ T is a tuple (s, x, y,G, F, U, s′) where s, s′ ∈ S, x ∈ I,
y ∈ O, G : PI(x)×R → B is the transition guard, F : PI(x)×R → PO(y) is the
output function that gives the value of the output parameters, U : PI(x)×R → R
is the update function that gives the value of the registers after the transition.

Given an EFSM M as above, its control FSM is the FSM M ′ defined as
M ′ = (S, I,O, T ′) where T ′ = {(s, x, y, s′) | ∃t ∈ T, t = (s, x, y,G, F, U, s′)}.

An EFSM is deterministic iff for any state s and input x, any value of the reg-
isters (r0, ...rk), and any value of input parameters (p0, ...pj), there is at most one
transition t ∈ T such that G((p0, ...pj), (r0, ...rk))) holds. An EFSM is complete
iff under the same conditions there is at least one such transition.

Semantics A trace is a sequence of events, as exemplified in Figure 1b, where
an event is an instance of the observable part of a transition. As in Figure 1b

4 Our definition is more detailed than Cheng and Krishnakumar’s [6] to enable internal
register variables and externally visible data parameters to be distinguished. We also
do not have an initial state as this does not make sense for no-reset inference.



Active Inference of EFSMs Without Reset 5

we denote this as i(v)/o(v′), for example the event coin(100)/Display(100). For
each event, we have i ∈ I, o ∈ O, v ∈ PI(i) and v′ ∈ PO(o). Further, we refer to
i(v) ∈ I, as a parametrized input (or concrete input) for (i, v) ∈ I × PI(i) and
I =

⋃

i∈I {i} × PI(i). Similarly, we call o(v′) ∈ O a parametrized output and
have (o, v′) ∈ O × PO(o) and O =

⋃

o∈O {o} × PO(o). We denote the absence of
an observable output by ϵ, which does not bear parameters.

As an EFSM executes a trace, transitions update registers and move the
model between states. A configuration of an EFSM is a pair (s, r) of a state s
and an n-tuple of values r, representing the values of each register r1, . . . , rn. For
example, when executing the trace in Figure 1b, after performing the select(tea)
event, we have the configuration (s1, (tea, 0)). An execution step of the EFSM

from (s, r), denoted as (s, r)
i(v)/o(v′)
−−−−−−→ (s′, r′), is such that ∃(s, i, o,G, F, U, s′) ∈

T,G(v, r) ∧ v′ = F (v, r) ∧ r′ = U(v, r). An execution of the EFSM from (s, r) is
a sequence of execution steps such that the posterior configuration of each step
is the anterior configuration of the next step.

A configuration (s, r) is reachable from an arbitrary initial configuration
(s0, r0) if there exists an execution ending in (s, r). An EFSM is strongly con-
nected iff, given a reachable configuration (s, r) and a state s′, there exists an
execution from (s, r) ending in state s′.

Depending on the nature of the SUL, certain inputs may be invalid from
a given state (e.g., a button in a GUI might be rendered inactive). For such
systems, the underlying EFSM is inherently incomplete. To denote that input i is
not available from state s, we use a special output symbol Ω, and “complete” the
EFSM with transitions of the form (s, i, Ω,⊤, {}, {}, s), which leave the model
configuration unchanged.

Operations Similar to FSM functions associated with transition triggers (state
and input), we define the output function λ and configuration update δ for an
EFSM as follows.

λ((s, r), (x, v)) =

{

(y, v′), if ∃(s, x, y,G, F, U, s′) ∈ T,G(v, r) ∧ v′ = F (v, r)

Ω, otherwise

δ((s, r), (x, v)) =

{

(s′, r′), if ∃(s, x, y,G, F, U, s′) ∈ T,G(v, r) ∧ r′ = U(v, r)

(s, r), otherwise

These will be lifted to sequences of parametrized inputs in the usual way, and
we also define δs((s, r), (x, v)) as the first element of δ((s, r), (x, v)).

We also define projections that abstract from output parameters. For (o, v) ∈
O × PO(o), π(o, v) = o. Projections are lifted to sequences of parametrized out-
puts. Moreover, we slightly abuse the notation and consider that, when applied
to a parametrized input, π(i, v) = (i, v). Thus, when applied to a trace in (IO)∗,
the projections will result in a trace in (IO)∗.



6 M. Foster et al.

2.4 Inferring Functions with Genetic Programming

When inferring an EFSM, there are two dimensions to the inference challenge.
On the one hand, there is the challenge of inferring the potential sequential
behaviours of the model. On the other hand, there is the task of inferring the
“data-state” of the machine – of inferring the presence of registers, and of how
they and output parameters are updated during execution.

One approach adopted in previous EFSM inference approaches [9, 11, 23] is
Genetic Programming (GP) [19]. Here, a GP engine is supplied with the ele-
mentary components of a function — operators and operands — as well as a
sample of input and corresponding output values. This takes the form of a table
where columns represent the different variables and rows represent different ex-
ecution instances. Candidate functions are typically represented by their parse
tree, which is the representation we use for our technique in Section 3. The GP
engine then searches through different combinations of operators and operands
with the aim of finding one which is able to approximate the given set of data-
points. This search follows the principles of Genetic Algorithms; solutions are
combined and mutated iteratively, and the best solutions are chosen according
to a fitness function, in this case the error-margin between the observed outputs
and the outputs computed by the inferred functions.

3 The ehW -inference Algorithm

Our goal is to infer EFSM models, complete with guards and data transfor-
mations, of black-box systems which we cannot arbitrarily reset. This section
presents our ehW -inference algorithm and the assumptions associated with it.

3.1 Assumptions

EFSMs introduce a particular inference challenge as the same set of behaviours
can be modelled in a variety of ways. For example, conditional behaviour can
either be encoded as guards on states, or can be directly encoded into separate
states. We subsequently assume that the SUL can be modelled by an EFSM that
has the required properties. This constrains the style of EFSM inferred and also
fundamentally assumes that there is a finite state “control” model.

For our investigation of the ehW -inference algorithm, we have started from
a relatively restrictive set of assumptions about the target model. These are col-
lectively intended to ensure that the SUL is controllable, and that its transitions
between different states are observable.
Connectivity The control FSM of the EFSM is strongly connected. In a state

machine without a reset, we assume that the inference process is always able
to reach any state from any other state. Otherwise, we would only be able
to infer a strongly connected component.

Determinism The EFSM is deterministic. This is a classical and essential as-
sumption in inference approaches from traces, to be able to recognize differ-
ent configurations by the fact that they yield different observations.



Active Inference of EFSMs Without Reset 7

Observability An EFSM is observable iff any two distinct transitions t =
(s, x, y,G, F, U, s′) and t′ = (s, x, y′, G′, F ′, U ′, s′′) that share the same start-
ing state and (abstract) input have different (abstract) outputs, i.e. y ̸= y′.

We also introduce two assumptions which allow us to infer guard, output, and
update functions.
Register domain observability Values assigned to registers by update func-

tions should be visible at some point as an input or an output parameter.
This need not occur at the transition where the register assignment occurs.

Guard visibility Guards can only use input parameters of the transition, and
not registers. In other words, registers can only contribute to the computa-
tion of parameter outputs (e.g. to display the total value of coins inserted in
our example). They cannot, however, be used to condition state transitions.
Guard visibility is a limitation of our current ehW -inference algorithm.Where

a system produces outputs that depend on internal stored variables (such as,
counters), the EFSM our algorithm builds would have as many different states
as reachable values of the (vector of) variables. This means that, for the al-
gorithm to infer an EFSM for a system whose decisions are based on internal
variables, the system would need a finite control state space.

3.2 Homing and Characterizing

Since we do not presume the existence of a reset function, the ehW -inference
algorithm must compensate for this during the learning process. We achieve
this with the help of “homing” and “characterizing” sets. Intuitively, a homing
sequence is an input sequence whose tail state is uniquely determined by the
observed output sequence. A characterizing set is a set of input sequences that
provide a unique response for every state in the system, thus enabling each state
to be uniquely identified. Previous work [13] has shown how these notions can be
incorporated into a learning setting to enable the inference of conventional FSMs
without reset functions. To enable this here, we provide definitions of homing
sequences and characterizing sets that are specific to EFSMs.

A sequence h ∈ I∗ is homing iff ∀(s, s′, r, r′) ∈ S2 × R2, π(λ((s, r), h) =
π(λ((s′, r′), h) ⇒ δs((s, r), h) = δs((s

′, r′), h). This means that the sequence of
(non-parametrized) outputs uniquely defines the state reached at the end of
the sequence. Thus, by applying h and observing the outputs, it is possible to
ascertain the state reached at the end of h. A set W ⊂ I∗ is characterizing iff
∀(s, s′) ∈ S2, s ̸= s′, ∃w ∈ W, ∀(r, r′) ∈ R2, π(λ((s, r), w)) ̸= π(λ((s′, r′), w)).
Thus, a state can identified by the (uniquely) response to every sequence in W .

3.3 Inputs and Data Structures

We assume we are given:
– An input set I with associated parameters PI .
– A SUL whose behaviour can be modelled by an EFSM with these inputs,

satisfying the assumptions in Section 3.1, to which we can apply sequences
of parametrized inputs and observe the corresponding parametrized outputs.



8 M. Foster et al.

– A tentative homing sequence h ∈ I∗. This may be empty (ϵ).
– A tentative characterizing set W ⊂ I∗. This may be the empty set.
– For each domain of input parameters, an ordered list of values. We further

require that those values must include all values appearing in h and W , and
that they should appear at the beginning of the lists of their domains. We
denote I1 a set of inputs parametrized with at least the first value in each
domain. And we denote Is the set of all (sampled) parametric inputs that
can be created using the provided list of values.

As we are in the active inference setting, we also require a means of interacting
with the SUL, commonly referred to as a driver [13] or a mapper [2, 1]. This serves
as a bridge between the inference engine and the system, and can be used to
map low level inputs and outputs from the software to more abstract tokens
better suited to the inference process, for example to convert network packets
into a more abstract or readable format in line with the desired modelling style.
It is therefore critical for inference that any such abstractions applied by the
interface fulfil the assumptions set out in Section 3.1 as this is how the inference
engine will perceive the system. However, since this work is more concerned with
establishing the theoretical foundations of ehW -inference, we do not give this
further consideration here.

During learning, the trace observed at any given moment is represented by ω.
This is extended whenever we apply an input and observe the corresponding
output. The algorithm will record deduced information in the following sets:

– Q ⊂ 2W→O+

denote states, defined by their characterization. Each state is
named by traces recording its responses to the input sequences from W .

– ∆ : Q × I → Q and Λ : Q × I → 2O record transitions. With guard
visibility, the abstract output sequence and state reached from a given state
by applying a parametrized input sequence is unique and does not depend
on the value of registers, so ∆(s, (x, v)) = s′ and (y, v′) ∈ Λ(s, (x, v)) iff
∃(s, x, y,G, F, U, s′) ∈ T, ∃r ∈ R, G(v) ∧ v′ = F (v, r). ∆,Λ are lifted to
sequences, and as usual, for an empty input sequence ϵ, the output sequence
is also ϵ and s′ = s.

3.4 ehW -inference Backbone

The ehW -inference algorithm, detailed in Algorithm 1, has four core parts. The
first part, called the backbone, follows what is in-effect the basic hW -inference
backbone algorithm [13]. Our backbone infers an FSM transition structure using
only a single parameter value for each input, so we do not need registers or
transition guards. The second part of the algorithm, sampling, is responsible for
traversing the inferred structure using different parameter values for the inputs,
the aim being to gather data for part three of our algorithm, generalisation,
which infers the registers, output functions, and transition guards within an
EFSM. The final part, counterexample processing, again comes from [13] and
involves searching for inconsistencies between the conjecture model and the SUL.



Active Inference of EFSMs Without Reset 9

Algorithm 1 ehW algorithm

1: Inputs: I, I1 ⊂ Is ⊂ I, h ∈ I∗s , W ⊂ I∗s
2: repeat

3: Q,∆,Λ, q ← ⊥
4: repeat

5: ω,Q,∆,Λ← backbone (I1, h,W,∆,Λ) ▷ Learn the structure
6: for t ∈ ∆, i ∈ Is do ▷ Apply sampling to learn data values for generalisation
7: if π(t(i)) /∈ Λ(t(i)) then
8: break

9: until No inconsistency
10: repeat

11: M ← generalise(ω, h,Q, I,O, PI , PO, ∆, Λ) ▷ Generalise into an EFSM
12: (ω,CE)← getCounterExample(M,SUL)
13: until ¬ (CE is a data CE)
14: if CE found then ▷ Present conjecture to oracle and process resulting counterex.
15: (W, I1, Is)← ProcessCounterexample

16: until no counterexample found
17: return M

Backbone It is the job of the backbone hW -inference algorithm (line 5) to iden-
tify the basic control structure of the model. This is done in the same way as in
[13], but using only one input parameter for each abstract transition. The basic
idea is to learn states by first applying the homing sequence h to reach a known
location and then sequences in W to distinguish the destination state. Transi-
tions are learned by applying (parametrised) events in I and then sequences in
W to discover the destination.

The backbone runs until we end up with a graph structure that contains
a strongly connected component using a single input parameter value for each
transition. Then, we can run sampling, call the generalisation procedure, and ask
the oracle for a counterexample, as explained later. However, this is predicated
on the fact that the h and W sets provided are correct – i.e. that h is genuinely
a homing sequence, and that W is characterizing. If this is not the case, this will
manifest itself through various inconsistencies which, when detected, indicate
that the h or W sets need to be extended and the backbone restarted.

Sampling The main purpose of sampling (lines 6–8) is to enrich the set of values
for each transition so as to be able to generalise concrete values into symbolic
output and update functions (Line 11). The basic idea is to fire every transition
learned by the backbone hW -inference algorithm with every input parameter in
its domain5 and observe the corresponding output. This then forms the training
set for GP. However, in doing this, we may observe inconsistencies between
(abstract) transitions.

5 Variable domains do not have to be finite, although we can obviously only execute
finite samples of infinite domains. Where counterexamples require a data value not



10 M. Foster et al.

For example, in learning the simple drinks machine, the backbone may use
50 as its input to the coin transitions. In this case, the algorithm can only
observe Reject(50) as an output, since the first coin to be input must be 100
or greater. During sampling, we then observe coin(100)/Display(100). This is
inconsistent with what we have observed so far as Reject and Display clearly
represent different output behaviour. Thus, we have discovered an inconsistency
and can return to backbone hW -inference inference with an updated h and W .

Inconsistencies Inconsistencies (line 9) can be detected as soon as we apply
a sequence and observe differing output symbols from those expected from the
partial machine. These can manifest themselves in various ways.

If h is not homing, it is possible that the same response leads to two different
states, which would be considered by the algorithm as a single one. This can
give rise to apparent non-determinism, which we call h-ND inconsistency. h-ND
inconsistencies occur when we have observed previously h/a.β/v.x/y and then
apply h/a′.β/v′.x′/y′ s.t. π(a.v) = π(a′.v′) yet π(y′) ̸= π(y) and (x = x′ or
y = Ω or y′ = Ω).

Since we assume we are learning an observable EFSM satisfying guard visibil-
ity, the difference in outputs implies the control states s and s′ reached after h/a
and h/a′ are different. Thus, h is not homing, and extending it with the prefix
of β up to the first differing output symbol will distinguish two more states.

Similarly, if W is not characterizing, two different control states could be
confused as a single one; the algorithm would associate outgoing transitions and
sequences from those two states to the single reconstructed one.

AW -ND inconsistency occurs when we previously observed h/a.α/u.β/v.x/y
and then observe h/a′.α′/u′.β/v′.x′/y′ (where α, α′ ∈ I∗, β ∈ I∗ and x, x′ ∈ I)
s.t. π(a) ̸= π(a′) or α ̸= α′ but ∆(H(π(a)), α) = ∆(H(π(a′)), α′) , π(v′) = π(v)
and π(x′) = π(x) yet π(y′) ̸= π(y) and (x = x′ or y = Ω or y′ = Ω). In this case,
∆(H(π(a)), α) and ∆(H(π(a′)), α′) can in fact be distinguished by β.x′, so β.x′

can be added to W .
As in the case of the FSM hW -inference algorithm, we can remark that all

states traversed while applying β can be distinguished by some suffix of β. We can
extend W with any such suffix that is not yet in W . However, we would refrain
from adding all suffixes into W as the cardinal of W acts as a multiplicative
factor on the complexity of the learning [13].

Generalisation The role of generalisation (Line 11) is to infer symbolic output
and update expressions which account for the concrete output and update values
observed during the backbone and sampling phases. In essence, we want to take
the collected values for each (i, o) pair of input and output types and infer a
general expression F for that pair. However, a complication is that the output
values may be influenced by the values of unobservable registers. We need our

in the observed sample, the oracle (Section 3.6) is free to include include these, and
they are added to the sampled domain as part of counterexample processing.



Active Inference of EFSMs Without Reset 11

technique to infer this, along with any updates U to the registers to ensure they
evaluate to the correct values. Additionally, where the model contains data-
dependent behaviour, we need to infer symbolic guards to distinguish this. This
enables us to predict how the inferred model might behave when faced with
unseen inputs. To do this, we apply a technique based on GP, similar to in [9,
11]. We present the details of this in Section 3.5.

Counterexamples Once we have found a strongly connected FSM and gener-
alised it to an EFSM, we look for a discrepancy between outputs from the EFSM
and the SUL. We first need to synchronise the EFSM with the SUL which can
be done by re-running the past trace on the EFSM model from the earliest oc-
currence of a homing sequence. The trace can be extended using one of the usual
strategies (such as random walk, bounded model checking) to look for discrep-
ancies. As soon as an output differs between EFSM and SUL, the extended trace
is returned as a counterexample.

3.5 Generalisation

We here lay out the details of our generalisation step described above. The goal
here is take the concrete data values observed in the backbone and sampling
phases and infer symbolic expressions which account for them, thereby enabling
the model to be used to predict the output from the system when executed
with unseen input parameters. We may also need to infer symbolic guards to
distinguish data-dependent behaviour.

To do this, we apply a technique based on GP, similar to in [9, 11]. This is
shown in Algorithm 2, which defines the generalise function from Algorithm 1.
There are five main steps. First, we convert the abstract data structures of
the backbone algorithm into an initial EFSM (line 2). Next, we group together
instances of transitions that we would like to generalise to the same F and U
(line 3). For each group, we use GP to produce an output function which satisfies
the observed input/output pairs (line 5). This may introduce a new register to
the model for which we need to infer updates (lines 7–9) to ensure it holds the
correct value when evaluated. Finally, we drop literal input guards on transitions
(e.g., i0 = 50, line 13) and resolve any resulting nondeterminism (line 14).

EFSM Construction The first step of generalisation, EFSM (line 2), is to
convert the abstract data structures to a concrete EFSM model where transitions
guard for the observed input parameters and produce the observed concrete
outputs. This is a fairly trivial process, except that we must drop all events in ω
before the first occurrence of the current (lastly used) h as we do not know where
we are, meaning we cannot reliably group transitions from before this point.

Transition Grouping We use the name groupTransitions (line 3) to be
consistent with [9, 11], but what we are actually doing here is grouping events



12 M. Foster et al.

Algorithm 2 Outline of our generalisation.

1: function generalise(ω, h, Q,I,O,PI ,PO,∆,Λ)
2: efsm← EFSM(Q, I,O, PI , PO, ∆, Λ, h, ω)▷ Convert the abstract data structures

into a concrete EFSM
3: groups← groupTransitions(Λ, ω)
4: for g1 ∈ groups do

5: fun← inferOutputFun(g1) ▷ Use GP to infer functions that predict out-
puts for each group, introducing registers if required.

6: newEFSM← replaceLitWithFun(efsm, g1, fun) ▷ Replace literal outputs
with inferred functions.

7: for rn ∈ fun.latentV ars do ▷ Infer updates for any new registers.
8: for g2 ∈ groups do

9: newEFSM← inferUpdateFuns(g2,targetValues(newEFSM, rn))
10: if accepts(newEFSM, ω) then ▷ Check that inferred functions are compat-

ible with traces. If not the efsm remains unchanged.
11: efsm← newEFSM
12: efsm← standardise(e) ▷ Unify transition groups split by history.
13: efsm← dropGuards(efsm)
14: efsm← resolveNondeterminism(efsm, ω)
15: return efsm

in ω by their corresponding transition in ∆ as this is known here. These groups
then form the training sets for GP. As in [9, 11], though, there is the additional
need to split groups by their history (the preceding groups) to account for any
side effects of other transition groups on unobserved register values.

Output and Update Inference Output functions are inferred using GP as
detailed in [9, 11]. In short, GP uses a series of crossover and mutation opera-
tions to combine a predefined set of operators and operands into an expression
which maps the observed input parameters to the observed output parameters
as discussed in Section 2.4. This may introduce new registers to the model for
which update expressions must be inferred to ensure that they hold the correct
values when they are evaluated. Details of this process can be found in [9, 11].

Standardisation Where groups are split by their respective histories, the GP
may infer different output and update functions for the separate subgroups.
Because we know these subgroups are in fact instances of the same transition,
we need to unify the output and update expressions of the various subgroups.
This is what standardisation does. Full details of this are published in [9, 11].

Resolution of Nondeterminism Having inferred symbolic output and update
expressions, we can now drop the guards (line 13) which prevent transitions
from responding to unobserved input parameters. As in [9, 11], this leads to
nondeterminism which must be resolved. There are two potential sources of this.
The first is duplicated behaviour, which is introduced to the model when we



Active Inference of EFSMs Without Reset 13

sample different data values for the same (abstract) transition. As in [9, 11], this
can be trivially resolved by merging the offending (concrete) transitions, which
should be identical because of the standardisation step.

The other source of nondeterminism, which is not considered in [9, 11], is
data-dependent behaviour. This cannot be resolved by merging as the behaviours
are different. Algorithm 3 shows how we resolve this by calling GP a third time
to infer guard functions that distinguish pairs of nondeterministic transitions.
For each nondeterministic pair of transitions (line 3), we walk the trace in the
model (lines 6 - 12) recording the input and register values when either transition
is taken (lines 8 and 10). We then call GP to find a boolean guard expression
which evaluates to true for one transition and false for the other.

Algorithm 3 Resolving nondeterminism.

1: function resolveNondeterminism(efsm, ω)
2: while efsm is nondeterministic do

3: t1, t2 ← getNondeterministicPair(efsm)
4: took1, took2 ← ∅, ∅ ▷ Initialise the training sets for each transition
5: state, registers← initialise(efsm)
6: for event ∈ ω do▷ Walk the trace in the model.
7: if correspondsTo(event, t1) then ▷ If we took t1, add the inputs and

registers to the training set for t1.
8: took1 ← took1 ∪ (event.inputs, r)
9: if correspondsTo(event, t2) then ▷ If we took t2, add the inputs and

registers to the training set for t2.
10: took2 ← took2 ∪ (event.inputs, r)
11: r ← updateRegisters(r, event)
12: s← updateState(s, event)
13: guard← inferGuard(took1, took2) ▷ Call GP to infer a guard to distinguish

the two transitions based on the input and register values they were fired with.
14: efsm← addGuardToTransitions(guard, t1, t2)

3.6 Oracle Procedure

With nondeterminism resolved, we can then present the EFSM to the oracle,
which attempts to extend the trace to end with an output from the SUL which
differs from the conjecture EFSM. If the output type is different, then we have
observed an inconsistency as described above, and need to revise the structure of
the control FSM. However, if the difference is only on the output parameter val-
ues, this means the functions computed by the generalisation were incorrect. We
call this a data counterexample. To resolve data counterexamples, we can simply
rerun our generalisation procedure with the new data. As in other approaches
that learn models from unbounded black box systems, only an approximate or-
acle can be implemented. If the oracle cannot find a counterexample, the model
is assumed to be equivalent to the system.



14 M. Foster et al.

Note that our EFSM may not be strongly connected if, during inference,
we get “trapped” in a state. In this case, the oracle may extend the set of
input parameter values (as well as output parameter values) make it possible
to reach states that are not reachable with the current set of values. The oracle
may also extend the sets of input and output parameter values to elicit data
counterexamples which could not be revealed otherwise.

4 Inferring a Vending Machine Controller

We now illustrate the execution of ehW -inference on our running example from
section 2.1. We start with h = ϵ,W = {}, I1 = {coin(50), select(tea), vend}.
As h and W are empty, the backbone will just learn a “daisy” (single state)
automaton with each input X from I1.

(s0, )
︸︷︷︸

h=ϵ
︸︷︷︸

w={}

coin(50)/Ω
−→ 1
︸ ︷︷ ︸

X=coin(50)

(s0, )
︸︷︷︸

w={}

︸︷︷︸

h=ϵ

select(tea)/ϵ
−→ 2
︸ ︷︷ ︸

X=select(tea)

(s1, tea, 0 )
︸︷︷︸

w={}

︸︷︷︸

h=ϵ

vend/Ω
−→ 3
︸ ︷︷ ︸

X=vend

(s1, tea, 0 )
︸︷︷︸

w={}

coin(100)/D(100)
−→ 4
︸ ︷︷ ︸

sampling

(s2, tea, 100 )

We sample with Is = I1 ∪ {coin(100), select(coffee)}. As soon as we apply
coin(100), we spot nondeterminism, leading us to revise h = coin(100), W =
{coin(100)} and I1 = {coin(100), select(tea), vend}. We restart the backbone.

(s2, tea, 100 )
coin(100)/D(200)
−→ 5
︸ ︷︷ ︸

h

(s2, tea, 200 )
coin(100)/D(300)
−→ 6
︸ ︷︷ ︸

w

(s2, tea, 300 )

We now know that applying h with response D leads to q0, characterized by
coin(100) 7→ D, but we have not yet learnt ∆ for (q0, coin(100)), so we need to
home again before proceeding. This leaves us still in q0, so we can now learn a
transition from it, with α = ϵ (no transfer needed), and we use X = coin(100)
as it is used in h and W .

(s2, tea, 300 )
coin(100)/D(400)
−→ 7
︸ ︷︷ ︸

h

coin(100)/D(500)
−→ 8
︸ ︷︷ ︸

X

coin(100)/D(600)
−→ 9
︸ ︷︷ ︸

w

(s2, tea, 600 )

We just learnt ∆(q0, coin(100)) = q0, so we know we remain in q0, and can
continue learning other inputs. Thus, we learn that the transition for select is an
Ω self-loop transition, and vend outputs Serve(tea) and goes to a state where
W gives Ω. Thus we learn a new state q1 = {coin(100) 7→ Ω}. After further
steps to learn all transitions from state q1 and sampling with inputs from Is, we
reach step 25 where we have found a two state machine with q0 (a merged state
of s1 and s2 in the SUL) and q1 (corresponding to state (s0), and transitions on
all inputs from Is. This graph is strongly connected, so the backbone ends with



Active Inference of EFSMs Without Reset 15

q0 q1

coin(50)/R(50)
coin(100)/D(500)

vend()/S(tea)

select(tea)/ϵ
select(coffee)/ϵ

(a) Control FSM with values from Λ.

q0 q1

coin(i0 = 50)/R(50)
coin(i0 ̸= 50)/D(i0 + r1)

vend()/S(tea)

select(i0)/ϵ[r1 = 0]

(b) EFSM after generalisation.

Fig. 2: Conjecture built from ω, h,∆,Λ after 25 steps.

the model in Figure 2a. The generalisation will infer a two state EFSM, shown
in Figure 2b, and the algorithm will ask the oracle for a counterexample.

A simple counterexample is obtained by sending coin(50) to the SUL, which
at this point is in configuration (s2, coffee, 100 ), so will respond with D(150)
whereas the conjecture would respond R(50). Since output types D and R differ,
this is not a data counterexample but W -ND, so we add coin(50) to W and
restart the backbone with h = coin(100) and W = {coin(100), coin(50)}.

As h has not changed, we can implement a dictionary (as proposed in previous
learning methods [18]), viz. the outputs of any input sequence of the form hαXw
that was previously applied (at some point) on the SUL can be assumed to be
valid and can be reused to fill structures without reapplying the input sequence.
However, as W changed, we need to completely re-learn the set of states Q.

Since h is homing and W is now characterizing, this application of the back-
bone will discover all the states of the SUL in 17 extra steps (up to step 43),
and all transitions on inputs from I1 when we reach step 59. Sampling makes it
possible to learn the last transition, coin(50) from state s1 at step 67, leaving
the model shown in Figure 3a.

coin(100)/D(200)
−→ 62
︸ ︷︷ ︸

h

coin(50)/D(250)
−→ 63
︸ ︷︷ ︸

s

vend/S(tea)
−→ 64
︸ ︷︷ ︸

α

select(coffee)/ϵ
−→ 65
︸ ︷︷ ︸

s

coin(50)/R(50)
−→ 66
︸ ︷︷ ︸

X

coin(50)/R(50)
−→ 67
︸ ︷︷ ︸

w2

As before, we can then apply the generalisation procedure to infer a full

EFSM model. This is shown in Figure 3. As can be seen from the two q2
coin
−−−→

transitions, the guard distinguishing them is rather simplistic. Because of this,
our oracle is able to return the counterexample coin(20)/R(20) (step 68). This
brings a new input parameter, 20, into play.

This counterexample differs only in terms of its data values, and there is
no h or W nondeterminism. Thus, it is a data counterexample, indicating we
need only rerun generalisation on the newly extended trace. This gives the same
model as in Figure 3b, but with guards i0 ≤ 50 and i0 > 50 where we previously
had i0 = 50 and i0 ̸= 50, and the output R(i0) instead of R(50). Given the
input domain of coin, this is equivalent to Figure 1a as there is no coin with a
value between 50 and 100. Thus, we learnt an accurate model of our vending
EFSM by executing just 68 events, although this is dependent on the stochastic
outcome of GP. Running the algorithm again using a different random seed for



16 M. Foster et al.

q0 q1

q2

coin(i0 = 50)/D(250), D(50)
coin(i0 = 100)/D(500)

vend()/{S(tea),
S(coffee)}

se
le
ct
(i0

=
te
a)
/ϵ

se
le
ct
(i0

=
co
ff

ee
)/
ϵ

coin(i
0 =

100)/D
(100)

coin(i0 = 50)/R(50)

(a) Control FSM with values from Λ.

q0 q1

q2

coin(i0)/D(r1 + i0)

vend()/S(r2)

se
le
ct
(i0

)/
ϵ

[r1
=
0,
r2

=
i0
]

coin(i
0 ̸=

50)/D
(r
1 +

i
0 )

coin(i0 = 50)/R(50)

(b) EFSM after generalisation.

Fig. 3: Conjecture built from ω, h,∆,Λ after 67 steps.

GP may produce different generalisations to Figures 2b and 3b, so may require
additional steps to infer the target model.

5 Conclusions and Future Work

In this paper we have presented the ehW -inference algorithm. It is based on
the hW -inference algorithm by Groz et al. [13], which enables the inference
of conventional FSMs from systems without a reset functionality. However, we
incorporate into this the GP-driven capability to infer registers and functional
relationships between data-states, based on work by Foster et al. [11].

Our future work will go in two primary directions. Firstly, our approach
currently operates under several relatively restrictive assumptions (Section 3.1).
Some of these assumptions may be relaxed, and our future work will set out to
establish the extent to which this is the case. Secondly, we have so far only pre-
sented a single running example, without delivering any insight into the scalabil-
ity of the approach. This will be investigated in a more comprehensive empirical
study, with models of varying size and complexity.

References

1. Fides Aarts. Tomte : Bridging the gap between active learning and real-world
systems. PhD thesis, Radboud University Nijmegen, 2014.

2. Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen, and Frits Vaan-
drager. Automata learning through counterexample guided abstraction refinement.
In FM 2012: Formal Methods, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

3. Dana Angluin. Queries and concept learning. Machine learning, 2(4), 1988.
4. Igor Buzhinsky and Valeriy Vyatkin. Automatic inference of finite-state plant

models from traces and temporal properties. IEEE Transactions on Industrial
Informatics, 13(4), 2017.

5. Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Learning extended
finite state machines. In Software Engineering and Formal Methods. Springer,
Cham, 2014.



Active Inference of EFSMs Without Reset 17

6. Kwang-Ting Cheng and Avinash S Krishnakumar. Automatic functional test gen-
eration using the extended finite state machine model. In 30th ACM/IEEE Design
Automation Conference. IEEE, 1993.

7. Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of android apps
with minimal restart and approximate learning. Acm Sigplan Notices, 48(10), 2013.

8. Carlos Diego N Damasceno, Mohammad Reza Mousavi, and Adenilso
da Silva Simao. Learning to reuse: Adaptive model learning for evolving systems.
In International Conference on Integrated Formal Methods. Springer, 2019.

9. Michael Foster. Reverse Engineering Systems to Identify Flaws and Understand
Behaviour. PhD thesis, University of Sheffield, September 2020.

10. Michael Foster, Achim D. Brucker, Ramsay Taylor, Siobhán North, and John Der-
rick. Incorporating data into EFSM inference. In Software Engineering and Formal
Methods. Springer International Publishing, 2019.

11. Michael Foster, John Derrick, and Neil Walkinshaw. Reverse-engineering EFSMs
with data dependencies. In IFIP International Conference on Testing Software
and Systems. Springer, 2022.

12. Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive model checking.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2002.

13. Roland Groz, Nicolas Bremond, Adenilso Simao, and Catherine Oriat. hW-
inference: A heuristic approach to retrieve models through black box testing. Jour-
nal of Systems and Software, 159, 2020.

14. Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring canonical
register automata. In International Workshop on Verification, Model Checking, and
Abstract Interpretation. Springer, 2012.

15. Malte Isberner, Falk Howar, and Bernhard Steffen. Learning register automata:
from languages to program structures. Machine Learning, 96(1), 2014.

16. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines-
a survey. Proceedings of the IEEE, 84(8), 1996.

17. Shang-Wei Lin, Étienne André, Jin Song Dong, Jun Sun, and Yang Liu. An efficient
algorithm for learning event-recording automata. In Automated Technology for
Verification and Analysis, pages 463–472. Springer Berlin Heidelberg, 2011.

18. Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis,
University of Dortmund, 2003.

19. Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide
to Genetic Programming. lulu.com, 2008.

20. Ronald L Rivest and Robert E Schapire. Inference of finite automata using homing
sequences. In Proceedings of the twenty-first annual ACM symposium on Theory
of computing, 1989.

21. V. Ulyantsev and F. Tsarev. Extended finite-state machine induction using sat-
solver. In 2011 10th International Conference on Machine Learning and Applica-
tions and Workshops, volume 2, 2011.

22. Frits Vaandrager and Abhisek Midya. A Myhill-Nerode theorem for register
automata and symbolic trace languages. In Theoretical Aspects of Computing.
Springer International Publishing, 2020.

23. Neil Walkinshaw and Mathew Hall. Inferring computational state machine models
from program executions. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2016.


