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Abstract

Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. Here, we have examined
genome-wide DNA methylation profiles of primary infrapatellar fat pad and matched blood samples from 70 osteoarthritis patients
undergoing total knee replacement surgery. Comparing the DNA methylation profiles between these tissues reveal widespread
epigenetic differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of fat pad, and make
the resource available to the wider community. Using two-sample Mendelian randomization and colocalization analyses, we resolve
osteoarthritis GWAS signals and provide insights into the molecular mechanisms underpinning disease aetiopathology. Our findings
provide the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis.
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Introduction

Osteoarthritis is a complex joint disease that affects more than

300million people [1]. In the face of aging populations, the impact

of osteoarthritis on public health systems is estimated to increase

further [1]. Current treatment methods are limited to pain man-

agement and total joint replacement, highlighting the need to

develop novel, personalised treatment strategies. Therefore, it

is important to enhance our understanding of the genetic and

genomic basis of osteoarthritis.

To date, genome-wide association analyses (GWAS) have iden-

tified more than 150 genetic risk loci [2] of osteoarthritis, thus

improving our understanding of its polygenic basis. Large-scale

molecular datasets of relevant, primary cell types of osteoarthritis

patients can reveal molecular mechanisms underlying disease

and provide insights beyond genetic studies. Combining results

from genetic and molecular studies can help pinpoint molecular

mechanisms of disease development and progression, specifically

the likely effector genes through which genetic risk variants exert

their effect on osteoarthritis development in affected tissues.

Whilst a number of studies have investigated genome-wide

molecular profiles of osteoarthritis-affected primary joint tissues

[3, 4] the majority have focused on cartilage [5]. Osteoarthritis

affects all joint tissues, and a small number of genome-wide

molecular studies have extended molecular profiling to other

primary joint tissues, such as the synovium [6, 7] or subchondral

bone [8].

The infrapatellar fat pad, an adipocyte-rich tissue located infe-

rior to the patella in the anterior part of the knee joint [9], has

not been deeply studied in osteoarthritis to date. The fat pad is

located among other joint tissues and protects knee components

(by stabilising the patella) when exposed tomechanical stress, e.g.

during exercise. In osteoarthritis-affected knees, the infrapatellar

fat pad undergoes disease-related alterations, including fibrosis,

inflammation and vascularization. Furthermore, it is traversed by

nerves and therefore constitutes a source of knee osteoarthritis-

related pain.

The fat pad may also interact with other joint tissues dur-

ing osteoarthritis development and progression [9]. For example,

it is proposed that the fat pad secretes pro-inflammatory and

catabolic factors that promote cartilage degeneration and inhibit

repair mechanisms [10]. Studies using chondrocyte cultures and

fat pad-derived fat-conditioned media have provided some first

insights into the potential cross-talk between the fat pad and

cartilage [9].

Furthermore, the fat pad lies adjacent to the synovium,

a connective tissue that lines the joint capsule. Both tissues

undergo similar osteoarthritis-related changes, e.g. develop a

similar immune cell profile [11]. Studies in vitro and in mouse

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/h

m
g
/d

d
a
d
1
9
8
/7

4
2
5
4
4
0
 b

y
 g

u
e
s
t o

n
 1

9
 J

a
n
u
a
ry

 2
0
2
4



2 | Kreitmaier et al.

models suggest interactions between these tissues [12–14]. For

example, Bastiaansen-Jenniskens et al. cultured fibroblast-like

synoviocytes in fat-conditioned medium from fat pad samples

of knee osteoarthritis patients, and suggest that fat pad induces

fibrotic changes in synoviocytes by stimulating collagen synthesis

as well as cell proliferation and migration [14].

Only a small number of studies have examined the profile

of infrapatellar fat pad in osteoarthritis patients. Gandhi et al.

characterised microarray-based gene expression profiles of the

infrapatellar fat pad in 34 (29 and five in late and early stage

knee osteoarthritis, respectively) individuals [15]. Other studies

have investigated the molecular characteristics of osteoarthritis

fat pad in genomic regions of osteoarthritis risk signals [16–18] or

focused on cytokines and extracellular matrix genes [19].

In this study,we focus on DNAmethylation, an epigeneticmark

that refers to the covalent addition of a methyl-group to the DNA.

Methylation is dynamic, tissue-specific, and plays a regulatory

role in gene expression. In general, promoter methylation is neg-

atively correlated with gene expression, whereas methylation in

other parts of the genome, such as the gene body, remain less

understood.

We examine the genome-wide DNA methylation profile of

infrapatellar fat pad adipocytes of osteoarthritis-affected knees.

We (1) compare fat pad and blood methylation profiles matched

from the same patients, (2) generate a genome-wide methylation

quantitative trait loci (mQTL) map in fat pad and (3) resolve

osteoarthritis GWAS signals by integrating omics with genetic

association data.

Results
Distinct epigenetic profiles in blood and fat pad
adipocytes
We investigated global differences in the epigenetic profile

between fat pad and peripheral blood samples for the first time.

We performed PCA integrating infrapatellar fat pad samples

from knee osteoarthritis patients (n=70) and matched blood

samples from a subset of these individuals (n=58). We identified

a separation of fat pad and blood samples along the first principal

component, which was associated with tissue type (logistic

regression p value: 2.7×10∧
−7, beta: −0.013, SE: 0.0026). This

underlines the tissue-specificity of the epigenetic profile on a

global level (Fig. 1A).

To characterise tissue-specificity on the methylation site level,

we performed an epigenome-wide association study (EWAS) of

matched fat pad and blood samples from the same patient (n=58)

and identified 84 973 (of 780 177 tested sites, 10.89%) strongly

differentially methylated sites (DMS) between fat pad and whole

blood samples (P<6.4×10∧
−08, beta > 2, Table S1). Of these,

33 391 and 51582 showed hyper- and hypomethylation in fat

pad tissue, respectively (Fig. 1B). Together, these results highlight

extensive differences in the epigenetic profile of fat pad and

peripheral blood.

Genome-wide mQTL map in fat pad adipocytes
Weperformed cis-mQTL analysis to estimate genetic variants that

are associatedwithmethylation levels of nearbymethylation sites

(<=1 Mb). We identified 35 948 mQTL-targeted methylation sites

(Fig. 2A, Methods), including cg20673407 (Fig. 2B) and cg14016568

(Fig. 2C). Together, this constitutes the first genome-wide mQTL

map of infrapatellar fat pad adipocytes in knee osteoarthritis. The

full summary statistics are publicly available in theMusculoskele-

tal Knowledge Portal (http://mskkp.org).

Osteoarthritis GWAS signal resolution
Next, we integrated the newly-generated fat pad mQTL map

with GWAS results of two osteoarthritis traits, namely knee

osteoarthritis and total knee replacement [2], to determine

methylation sites with a putative causal role in osteoarthritis.

We applied colocalisation to estimate a probability for

methylation mediating the osteoarthritis-promoting effect of risk

variants. In total, we identified 16 methylation sites for which

mQTL signals colocalised with 11 (of 25 tested, 44%) GWAS

signals (Posterior probability for colocalisation > 80%) (Tables 1

and S2). For knee osteoarthritis, we resolved 9 (of 24 tested, 37.5%)

GWAS signals that colocalised with mQTL of 13 methylation sites

(Fig. 3A). Analogously, colocalising mQTL with GWAS results for

total knee replacement resolved 5 (of 10 tested, 50%) GWAS signals

and revealed 7 methylation sites with a potential causal role in

osteoarthritis (Fig. 3B).

Next, we performed causal inference analysis by applying two-

sample Mendelian randomization (MR) to estimate the putative

causal effect of methylation on osteoarthritis. In these MR mod-

els, we used mQTL as instruments as well as mQTL-targeted

methylation sites and osteoarthritis as exposure and outcome,

respectively (Method). Here, we detected 36 methylation sites

with a putative role (P< 7.70×10∧
−07) in osteoarthritis (Fig. 3C),

in total (Fig. S1, Table S3). For knee osteoarthritis, we identified 32

methylation sites, of which 15 and 17 revealed a link of hyper- and

hypomethylation with osteoarthritis, respectively. For total knee

replacement, we identified 15 methylation sites with a putative

causal role (9 and 6 showing hyper- and hypomethylation in

osteoarthritis, respectively). Eleven methylation sites were identi-

fied in both osteoarthritis-relevant traits, for which the direction

of effect was concordant.

MR and colocalisation identified 37 putative causal methyla-

tion sites, in total. Of these, 15 were identified in both approaches,

thus providing two lines of evidence for their respective causal

involvement (Tables 1 and S4). Together, colocalisation and

MR results suggest that these methylation marks mediate

the regulation of genetic risk variants on effector genes in

fat pad.

Annotated genes of the identified 37 methylation sites have

been previously linked to osteoarthritis using causal approaches

on genome-wide mQTL maps of cartilage or synovium. This

includes WWP2 (annotated to fat pad relevant methylation site

cg04703221), a chondrocyte regulator [20] for which methylation

has been causally linked to osteoarthritis in low disease-grade

cartilage and synovium [7]. ALDH1A2 (cg12031962, cg12031962

and cg08668585) has also previously been linked to osteoarthritis

at the methylation [7] (in low-and high-grade osteoarthritis

cartilage as well as synovium) as well as expression [6] (low-

grade osteoarthritis cartilage) levels. Furthermore, we identified

osteoarthritis-linked methylation in the collagen type COL27A1

(cg21771125).

We also identified likely effector genes that were not previously

resolved in molecular QTL maps of primary osteoarthritis

cartilage and synovium [6, 7] including USP8 (cg01701297 and

cg05456662; involved in cell proliferation), TSKU (cg17107561;

encodes development-linked extracellular matrix protein) and

FER1L4 (cg14387502 cg05220160; involved in plasma mem-

brane organization) which can be linked to osteoarthritis-

relevant mechanisms (Discussion). Together, integrating the

fat pad mQTL profile with osteoarthritis GWAS results using

colocalisation and MR identified 37 methylation sites with

a potential causal involvement in osteoarthritis in fat pad

tissue.
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Figure 1.Distinct methylation profiles in blood and fat pad adipocytes.We investigated differences in themethylation profile between fat pad and blood.
(A) On a global level, principal component analysis separates fat pad and blood samples along the first principal component. (B) On the methylation site
level, a volcano plot demonstrates the multitude of differentially methylated sites. Sites with strong, differential methylation levels (beta >2) exceeding
the Bonferroni significance threshold (P< 6.41×10∧

−08, dashed line) are shown in black, otherwise in grey.

Figure 2. The mQTL map in fat pad adipocytes (A) Manhattan plots depicting the negative log of the P value of the most significant association per
methylation site across all variants. QTL targeted methylation sites are shown in blue or dark grey, otherwise in light grey. As examples, the boxplots
illustrate the effect (B) of rs10826861 on cg20673407 (beta=−1.40, SE=0.05, P=4.15×10∧

−33) and (C) of rs10850579 on cg14016568 (beta=−1.20, SE=0.05,
P=1.10×10∧

−28). The boxplots represent 25th, 50th, and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.

Discussion

Osteoarthritis is a common joint disorder with a polygenic archi-

tecture. Genome-wide molecular profiles of affected primary tis-

sues remain understudied and excluded from large molecular

data resources, such as GTEx [21], ENCODE [22] and RoadMap

[23]. In this study, we characterised the first epigenome-wide

profile of osteoarthritis-affected infrapatellar fat pad.We identify

extensive differences from the epigenetic profile of peripheral

blood, generate the first genome-wide mQTL map in fat pad, and

identifymethylation siteswith a likely causal role in osteoarthritis

development and progression.
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4 | Kreitmaier et al.

Table 1. Overview of colocalisation signals. Overview of 16 methylation sites for which fat pad mQTL colocalise with an osteoarthritis
GWAS risk signal for koa and/or tkr (indicated by the column “Coloc GWAS trait”). For 15 of these methylation sites, we also identified a
putative causal effect (column “MR effect”: Positive and negative effects indicate links of hyper- and hypomethylation with
osteoarthritis, respectively) on osteoarthritis using MR (P< 7.70×10∧

−07). Abbreviations: Chr, chromosome (hg38); Pos, position (hg 38);
Msite, methylation site; MR, Mendelian randomization; Coloc PP, posterior probability for colocalization; koa, knee osteoarthritis; tkr,
total knee replacement.

Msite Chr Pos (Msite) Gene (Msite) GWAS

lead snp

Coloc

GWAS trait

Coloc PP MR effect MR pval MR GWAS

trait

cg01030629 5 142 425 831 SPRY4-AS1 rs10038860 koa 0.98 −0.04 1.9×10∧
−08 koa

cg01100316 4 1744 409 TACC3 rs7680647 koa 0.96 0.06 1.5×10∧
−08 koa

rs4865462 tkr 0.86 0.10 4.9×10∧
−09 tkr

cg01150736 1 219 476 017 rs2791549 koa 0.81

cg01701297 15 50 462 696 RNA5SP395

USP8

rs4380013 koa 0.90 −0.05 3.3×10∧
−09 koa

cg04703221 16 69 933 160 MIR140

WWP2

rs34195470 koa 0.94 −0.08 5.7×10∧
−07 tkr

−0.06 1.0×10∧
−11 koa

cg04878480 12 48 012 099 AC004801.4

AC004801.5

rs7967762 koa 0.92 0.04 5.8×10∧
−09 koa

rs7967762 tkr 0.92 0.07 2.2×10∧
−09 tkr

cg05456662 15 50 424 073 USP8 rs4380013 koa 0.93 0.06 3.9×10∧
−09 koa

cg08668585 15 57 955 405 ALDH1A2 rs4144005 tkr 0.86 0.08 3.6×10∧
−10 tkr

cg10169515 12 123 222 989 MPHOSPH9 rs753350451 koa 0.86 −0.03 2.2×10∧
−08 koa

cg10239804 12 48 104 587 PFKM

SENP1

rs7967762 koa 0.92 −0.05 5.8×10∧
−09 koa

rs7967762 tkr 0.92 −0.09 2.2×10∧
−09 tkr

cg12031962 15 58 061 651 ALDH1A2 rs4144005 tkr 0.90 0.07 3.6×10∧
−10 tkr

cg15373332 9 114 173 564 COL27A1 rs72760655 koa 0.99 0.06 4.4×10∧
−10 koa

rs7023177 tkr 0.99 0.10 5.5×10∧
−10 tkr

cg15672022 5 142 426 207 SPRY4-AS1 rs10038860 koa 0.98 −0.08 1.9×10∧
−08 koa

cg16740022 5 142 426 441 SPRY4-AS1 rs10038860 koa 0.98 −0.04 1.9×10∧
−08 koa

cg17669802 20 35 387 551 UQCC1 rs143384 tkr 0.90 −0.08 9.41×10∧
−21 koa

−0.11 2.2×10∧
−14 tkr

cg17729365 19 10 643 944 SLC44A2 rs2163832 koa 0.96 −0.06 1.0×10∧
−08 koa

Comparing fat pad and blood methylation profiles reveals

abundant epigenetic differences underlining the epigenetic

tissue-specificity of blood and joint tissues, thus highlighting the

necessity to investigate disease-affected tissues.

Wepresent the first genome-widemQTLmap for osteoarthritis-

affected infrapatellar fat pad. Colocalising this mQTL map with

osteoarthritis GWAS results resolved eleven genetic osteoarthritis

risk signals, thus providing evidence for methylation mediating

the genetic effect of these GWAS signals on osteoarthritis in

fat pad.

We supplemented these causal insights usingMR and, together

with colocalisation, identified 37methylation sites with a putative

causal role in osteoarthritis in fat pad. Some methylation sites

were close to genes (such as WWP2, ALDH1A2, and COL27A1)

that have been previously causally linked to osteoarthritis using

genome-wide molecular QTL maps of other primary joint tissues

[6, 7], suggesting a disease-relevant role across joint tissues.

We also identify genes that have not been previously resolved

inmolecular QTLmaps of primary osteoarthritis tissues [6, 7] such

as USP8, TSKU and FER1L4. USP8 is involved in epidermal growth

factor receptor regulation [24], a receptor linked to angiogenic and

inflammatory mechanisms. TSKU is an inhibitor of Wnt signaling,

a pathway which has been consistently linked to osteoarthritis

across tissues, e.g. in cartilage, synovium and subchondral bone

[25]. FER1L4 regulates inflammatory factor IL-6 in osteoarthritis-

affected cartilage [26] and is linked to VEGF, an osteoarthritis-

linked angiogenic factor [27].

These signals can be related to signalling pathways that may

contribute to osteoarthritis development in the infrapatellar fat

pad and its interaction with other joint tissues.

For example, methylation-mediated upregulation of cytokines

may be involved. Elevated levels of IL-6 and VEGF have been

previously observed in fat pad samples of osteoarthritis patients

[28]. Both factors are regarded to affect surrounding joint tissues.

IL-6 is linked to protective, but also inflammatory and catabolic

mechanisms in the cartilage [29]. Increased fat padmRNA expres-

sion of VEGF has been associated with higher vascularisation of

the neighbouring synovium [28], suggesting interactions between

these tissues. The identification of a Wnt pathway regulator

(TSKU) may relate to the production of WISP2, a target of the

Wnt pathway, for which increased expression levels have been

identified in osteoarthritis-affected fat pad [30].

Together, we have identified genes linked to processes that are

observed in osteoarthritis-affected fat pad, such as inflamma-

tion or vascularization [28], and suggest an involvement of the

detected methylation sites in disease-related alterations.

In this work, we investigate blood and fat pad methylation

profiles of osteoarthritis patients, which reflect disease processes

that could be cause or effect. The integration of genetic data,

coupled to colocalisation and causal inference analyses, were

all used to deconvolute the role of methylation in osteoarthritis.

Obtaining healthy joint tissue as a control for the osteoarthritis-

affected joint presents a major challenge, as removal of healthy

structural human joint tissue is precluded on ethical and accept-

ability grounds. The fat pad mQTL map provides insights into

genetic effects on infrapatellar fat pad methylation for the first

time. Larger sample sizes will be required to achieve 80% power

to detect mQTLs across the allele frequency spectrum (Fig. S2).

Our findings highlight differences in the epigenetic profile of

fat pad tissue and blood and identify methylation sites that likely
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Figure 3.Osteoarthritis GWAS risk signals colocalise with mQTL two colocalisation events are exemplified in (A) and (B). In (A), we colocalised cis-mQTL
for cg15373332 with a knee osteoarthritis GWAS signal (Posterior probability = 98.8%). Similarly, (B) shows cis-mQTL for cg12031962 colocalising with a
total knee replacement GWAS signal (Posterior probability = 89.8%). (C) Manhattan plot depicting the Mendelian randomization P values to estimate the
putative causal effects of methylation sites in fat pad on knee osteoarthritis or total knee replacement. The line indicates genome-wide significance
applying the Bonferroni correction (P<8.31×10∧

−07).

exert the effect of GWAS risk signals in fat pad, shedding light

on the mechanistically relevant role of fat pad methylation in

osteoarthritis.

Materials and methods
Study participants
We have collected tissue samples from 210 patients undergoing

total joint replacement surgery (111 women, 99 men, age 48–

93 years, mean 71 years). All patients provided written, informed

consent prior to participation in the study. Adipose tissue was

collected from the infra-patellar fat pad by sharp dissection of

the fat tissue from the surface of the patellar ligament to yield

not less than 1cm3 of homogeneous adipose tissue. This work

was approved by Oxford NHS REC C (10/H0606/20, SC/15/0132 and

SC/20/0144), and samples were collected under Human Tissue

Authority license 12 182, South Yorkshire and North Derbyshire

Musculoskeletal Biobank, University of Sheffield, UK. We con-

firmed a joint replacement for osteoarthritis, with no history of

significant knee surgery (apart from meniscectomy), knee infec-

tion, or fracture, and no malignancy within the previous 5 years.

We further confirmed that no patient used glucocorticoid use

(systemic or intra-articular) within the previous 6 months, or

any other drug associated with immune modulation. We also

obtained a peripheral blood sample to extract DNA from all

patients.
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Adipocyte and peripheral blood collection and
processing
Adipose tissue samples were transported in Dulbecco’s modified

Eagle’s medium (DMEM)/F-12 (1:1) (Life Technologies) supple-

mented with 2 mM glutamine (LifeTechnologies), 100 U/ml

penicillin, 100 µg/ml streptomycin (Life Technologies), 2.5 µg/ml

amphotericin B (Sigma-Aldrich) and 50 µg/ml ascorbic acid

(Sigma-Aldrich) (serum free media). Next, the adipose tissue

samples were cut into small pieces (<2mm3) and digested in

3 mg/ml collagenase type I (Sigma-Aldrich) in serum free media

for 1 h at 37◦C on a flatbed shaker and resuspended in 2mls of PBS

and passed through a 100µmcell strainer (Fisher Scientific).Next,

the eluent wasmade up to 10mls in PBS and centrifuged at 23 g for

5 min. Subsequently, the cell pellet was washed twice in PBS and

centrifuged at 323 g for a further 5 min. Cells were counted using

a haemocytometer and the viability checked using trypan blue

exclusion (Invitrogen). The resulting cell pellet was resuspended

in 650 µl of RLT buffer (Qiagen) and DTT Dithiothreitol (20ul

DTT per 1 ml of RLT). The optimal cell number for spin column

extraction from cells was between 4× 106 and 1×107. Cells were

then pelleted and homogenised. DNA extraction was carried out

using Qiagen AllPrep DNA Mini Kit following the manufacturer’s

instructions. Samples were flash frozen in liquid nitrogen and

stored at −80◦C prior to assays. Peripheral blood was extracted

for DNA using a Qiagen QIAamp DNA Blood Maxi kit, according to

manufacturer’s instructions. The whole blood DNA samples were

frozen at −80◦C prior to extraction.

Methylation data preprocessing
Genome-wide DNAmethylationwasmeasured using the Illumina

EPIC array. We preprocessed methylation data using an R pack-

age meffil [31] based preprocessing pipeline (https://github.com/

perishky/meffil/wiki).

We read and preprocessed blood DNA methylation data using

the function meffil.qc, and removed ethnicity outliers, hip sam-

ples, samples with >10% undetected (detection pvalue >0.01)

methylation values, sex outliers (> 5 ∗ sd), methylated/unmethy-

lated signal outliers (> 3 ∗ sd) and control probe signal outlier (>5

∗ sd). We then applied the same procedure (same R functions and

thresholds) on DNA methylation samples from fat pad samples.

Finally,we normalisedmethylation samples of all tissues together

by applying meffil function meffil.normalize.quantiles (using 16

principal components) and meffil.normalize.samples.

We removed methylation sites with more than 10% of samples

low bead number (<3) or undetected methylation values (detec-

tion P<0.01), non-autosomal methylation sites,methylation sites

of cross-reactive probes and in close proximity (within 10 base

pairs) to common SNPs (MAF > 0.05) in European population

[32–34].

We converted initially generated beta values to Mvalues

(beta2m function of R package lumi) [35] which we used for

downstream analyses [36]. Per tissue, we further replaced strong

outliers (>10 ∗ sd from mean) with the methylation site-specific

mean value. Based on a principal component analysis, we

removed two outlier samples. The resulting fat pad methylation

data comprised 780177 methylation sites for 70 patients (46

women, 24 men, age 48–93 years, mean 71 years). For 58 of 70

patients, also methylation blood samples were available.

We used publicly available annotations (https://zwdzwd.

github.io/InfiniumAnnotation/EPIC.hg38.manifest.tsv.gz and

EPIC.hg38.manifest.gencode.v36.tsv.gz) to map probe identifier

to the genomic location (hg38) and genes.

Whole-genome sequencing data generation and
preprocessing
Whole-genome sequencing (WGS) samples were available for 68

of 70 patients with matching fat pad methylation data. They were

measured in two sequencing batches. Of 68 WGS samples, 60

were measured in whole blood samples in the first sequencing

batch. Furthermore, eight of 68 WGS samples were measured

in cartilage samples in the second batch. In both batches, DNA

samples were subjected to standard Illumina paired-end DNA

library construction, amplified, and subjected to DNA sequencing

using the NovaSeq platform.

Generated CRAM files were input into samtools (samtools

conda version 1.14) to create bam files. Subsequently, “bedtools

bamtofastq” (bedtools conda version 2.30.0) was applied to

obtain data in the fastq format. Per sequencing batch, variant

calling was performed using the publicly available pipeline Sarek

from nf-core (version 2.7.1, https://nf-co.re/sarek/2.7.1) with the

additional options “– tools HaplotypeCaller –generate_gvcf”. This

uses the GATK Haplotypecaller (GATK v4.1.7.0) and generates

g.vcf files. For the genome “GRCh38”was used. For the joint variant

calling we adapted a publicly available pipeline (https://github.

com/IARCbioinfo/gatk4-GenotypeGVCFs-nf) and used it with

GATK (docker container broadinstitute/gatk:4.2.5.0). Reference

files for GRCh38 were used from GATK.

For QC on the variant level, we applied Variant Quality Score

Recalibration tool using a tranche threshold of 99.5% for SNPs

and the recommended 99% for INDELs. For SNPs, this produces an

expected false positive rate of 2.5% and an expected sensitivity of

97%.

For QC on the sample-level, we removed strong outlier het

rate (two samples), and non-reference allele concordance when

compared to directly typed genotype data using variants MAF

>0.01 (one sample), and one sample being a moderate outlier in

sequencing depth as well as het rate. No additional sample was

excluded solely based on Ti/Tv or singletons.

Furthermore, we removed one sex mismatch and two samples

to avoid the inclusion of any sample pair with a relatedness

>0.2. We further excluded two ethnicity outliers identified in an

ethnicity check-up using Ancestry and kinship toolkit (based on

1000G data from phase three; https://github.com/Illumina/akt/

tree/master) [37]. In total, we removed nine samples.

We excluded variants with MAF <0.01, Hardy-Weinberg equi-

librium P<10∧
−5 and call rate <=0.99.We then selected samples

of individuals withmatching fat padmethylation data (n=68) and

kept bi-allelic variants with MAF > 0.05. The resulting WGS data

set used for the fat pad mQTL analysis comprised 68 samples and

6395994 variants.

Comparing DNA methylation of blood and fat
pad tissue
We integrated 70 fat pad and 58 blood samples in a principal com-

ponent analysis (PCA) to investigate global epigenetic differences

between these tissue types. We regressed out known technical

batches (slide, row, clinical cohort) by applying Combat from the

R package sva [38] and performed PCA using prcomp function.

To compare methylation profiles on methylation site level,

we performed differential methylation analysis between fat pad

and blood samples paired from the same patients (n=58). We

performed linear modelling using the functions lmFit and eBayes

from limma [39]. We added the patient ID to ensure paired analy-

sis design and included 19 surrogate variables (SVs) to account for

technical variants. These SVs were estimated using the num.sv
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function from the sva package (‘be’-method) by protecting the

tissue information. We highlighted methylation sites that exceed

genome-wide significance threshold (Bonferroni correction with

P < 6.41×10∧
−08 which corresponds to 0.05/780 177 methylation

sites) with strong effect size (beta >2).

Methylation quantitative trait locus analysis
For the methylation quantitative trait locus (mQTL) analysis, we

included whole-genome-sequencing data and fat pad methyla-

tion data matching from the same patients (n=68). We included

6395994 bi-allelic genetic variants with a MAF > 0.05 among

these 68 patients. We further normalised methylation levels

using inverse-normal transformation per methylation site and

estimated PEER factors [40] (R package peer, default parameter

setting) to infer hidden factors which we included to correct for

technical variation. We performed cis-methylation QTL analysis

(cis distance: 1 Mb either side of the tested methylation site)

using FastQTL (https://github.com/francois-a/fastqtl/) [41]. We

first estimated nominal p values for every tested methylation

site-variant pair using linear regression with the following

model:

Methylation values ∼ genotype + age + sex + sequencing_batch

+ row + 10 PEER_factors

Here, row refers to the sample location on the Illumina EPIC

array chip. Since row can influence methylation levels [42], but

did not significantly (ANOVA Bonferroni P <0.05) associate with

any of the ten PEER factors (Table S5), we conservatively added

it to the model. The variable sequencing_batch accounts for WGS

sequencing batches. Of 68 WGS samples, 60 and 8 were extracted

in the first and secondWGS sequencing batch, respectively (meth-

ods section “Whole-genome sequencing data generation and pre-

processing”). To optimise the number of included PEER factors,

we performed mQTL analysis with five, ten and 15 PEER factors

and chose the number that maximises detected mQTL targeted

methylation site (5 PEER factors: 34956 mQTL targeted methyla-

tion sites, 10 PEER factors: 35948, 15 PEER factors: 35808). Secondly,

we applied an adaptive permutation scheme (implemented in

FastQTL, parameter –permute 1000 10 000) to estimate a q value

and nominal P-value threshold per methylation site. Methylation

sites with a q value <5% Storey-Tibshirani FDR are regarded as

mQTL targeted. For each mQTL-targeted methylation site, signifi-

cant QTL were variants with a nominal P value below the nominal

P value threshold for that methylation site. Power analysis for

the methylation QTL analysis was performed using the R package

powerEQTL [43] (function powerEQTL.SLR) across MAF and sam-

ple sizes.

Colocalisation
We colocalised [44] fat pad methylation QTL with GWAS signals

for knee osteoarthritis and total knee replacement [2]. For this

analysis, we applied the coloc.fast function (https://github.

com/tobyjohnson/gtx/blob/526120435bb3e29c39fc71604eee03

a371ec3753/R/coloc.R) using default settings. We considered

mQTL-targeted methylation sites located in the region that

spans 100 kb either side of the GWAS signal index variant. For

the colocalisation analysis, we included all variants that were

included in the cismQTL analysis for the testedmethylation sites.

We considered posterior probabilities (“PP4”) > 80% as indicator

for colocalisation.

Mendelian randomization
To estimate putative causal effects of QTL-targeted methylation

sites in fat pad on osteoarthritis traits, we integrated the fat pad

mQTL map with GWAS results for knee osteoarthritis and total

knee replacement [2].We applied two sample Mendelian random-

ization (MR) using the pipeline of the R package TwoSampleMR

[45]. We considered methylation sites targeted by at least one

mQTL. Per methylation site, we performed clumping (function

clump_data, using the European reference panel and setting the

R2 threshold to 0.01) to identify independent genetic variants

whichwe included as instruments in theMRmodels. Formethyla-

tion sites with one independent instrument, we applied theWald-

ratio, otherwise the inverse variance weighted method.

In total, we applied 64 898 MR models (32 448 and 32450 for

knee osteoarthritis and total knee replacement, respectively) to

estimate the putative causal effect of 32 456 methylation sites.

We applied the Bonferroni method to correct for multiple testing

(P<7.70×10∧
−07).

Acknowledgements

We acknowledge the technical support of Core Facility Genomics

at Helmholtz Munich. We thank Dr Inti Alberto de la Rosa

Velasquez, Dr Peter Lichtner, Susanne Wittmann and Dr Thomas

Walzthöni for help with DNA methylation and whole-genome

sequencing data generation as well as whole-genome sequencing

data preprocessing.

Author contributions

Study design: E.Z., J.M.W.; Clinical collection: J.M.W., D.S.; WGS

data preprocessing: A.G., Y.C.P.; Data analysis: P.K.; Interpretation

of results: P.K., E.Z.; Manuscript drafting: P.K., E.Z.; Manuscript

reviewing and editing: P.K., E.Z., J.M.W., D.S.

Supplementary data

Supplementary data is available at HMG Journal online.

Conflict of interest statement: None declared.

Funding

This work was funded by the Wellcome Trust (206194).

Data availability

Full summary statistics will be made openly available through

the MSK portal (http://mskkp.org) upon manuscript acceptance.

All software used in this study is available from free repositories

or manufacturers as referenced in the Materials and Methods

section.

References

1. Safiri S, Kolahi A-A, Smith E. et al. Global, regional and national

burden of osteoarthritis 1990-2017: a systematic analysis of the

global burden of disease study 2017. Ann Rheum Dis 2020;79:

819–28.

2. Boer CG, Hatzikotoulas K, Southam L. et al. Deciphering

osteoarthritis genetics across 826 690 individuals from 9 popu-

lations. Cell 2021;184:4784–4818.e17.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/h

m
g
/d

d
a
d
1
9
8
/7

4
2
5
4
4
0
 b

y
 g

u
e
s
t o

n
 1

9
 J

a
n
u
a
ry

 2
0
2
4



8 | Kreitmaier et al.

3. Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics

integration in complex disease primary tissues. Trends Genet

2023;39:46–58.

4. Katsoula G, Kreitmaier P, Zeggini E. Insights into the molecular

landscape of osteoarthritis in human tissues. Curr Opin Rheuma-

tol 2022;34:79–90.

5. Katsoula G, Steinberg J, Tuerlings M. et al. A molecular map

of long non-coding RNA expression, isoform switching and

alternative splicing in osteoarthritis. Hum Mol Genet 2022;31:

2090–105.

6. Steinberg J, Southam L, Roumeliotis TI. et al. A molecular

quantitative trait locus map for osteoarthritis. Nat Commun

2021;12:1309.

7. Kreitmaier P, Suderman M, Southam L. et al. An epigenome-

wide view of osteoarthritis in primary tissues. Am J Hum Genet

2022;30:S48.

8. Tuerlings M, van Hoolwerff M,Houtman E. et al.RNA sequencing

reveals interacting key determinants of osteoarthritis acting in

subchondral bone and articular cartilage: identification of IL11

and CHADL as attractive treatment targets. Arthritis Rheumatol

2021;73:789–99.

9. Zeng N, Yan Z-P, Chen X-Y. et al. Infrapatellar fat pad and knee

osteoarthritis. Aging Dis 2020;11:1317–28.

10. Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J. et al.

The infrapatellar fat pad should be considered as an active

osteoarthritic joint tissue: a narrative review. Osteoarthr Cartil

2010;18:876–82.

11. Klein-Wieringa IR, de Lange-Brokaar BJE, Yusuf E. et al. Inflam-

matory cells in patients with endstage knee osteoarthritis: a

comparison between the synoviumand the infrapatellar fat pad.

J Rheumatol 2016;43:771–8.

12. Clements KM, Ball AD, Jones HB. et al. Cellular and histopatho-

logical changes in the infrapatellar fat pad in the monoiodoac-

etate model of osteoarthritis pain. Osteoarthr Cartil 2009;17:

805–12.

13. Eymard F, Pigenet A, Citadelle D. et al. Induction of an inflam-

matory and prodegradative phenotype in autologous fibroblast-

like synoviocytes by the infrapatellar fat pad from patients with

knee osteoarthritis. Arthritis Rheumatol 2014;66:2165–74.

14. Bastiaansen-Jenniskens YM, Wei W, Feijt C. et al. Stimulation

of fibrotic processes by the infrapatellar fat pad in cultured

synoviocytes from patients with osteoarthritis: a possible role

for prostaglandin f2α. Arthritis Rheum 2013;65:2070–80.

15. Gandhi R, Takahashi M, Virtanen C. et al.Microarray analysis of

the infrapatellar fat pad in knee osteoarthritis: relationship with

joint inflammation. J Rheumatol 2011;38:1966–72.

16. Sorial AK, Hofer IMJ, Tselepi M. et al. Multi-tissue epigenetic

analysis of the osteoarthritis susceptibility locusmapping to the

plectin gene PLEC. Osteoarthr Cartil 2020;28:1448–58.

17. Parker E, Hofer IMJ, Rice SJ. et al. Multi-tissue epigenetic and

gene expression analysis combinedwith epigenomemodulation

identifies RWDD2B as a target of osteoarthritis susceptibility.

Arthritis Rheum 2021;73:100–9.

18. Rushton MD, Reynard LN, Young DA. et al. Methylation quanti-

tative trait locus analysis of osteoarthritis links epigenetics with

genetic risk. Hum Mol Genet 2015;24:7432–44.

19. Belluzzi E, Macchi V, Fontanella CG. et al. Infrapatellar fat pad

gene expression and protein production in patients with and

without osteoarthritis. Int J Mol Sci 2020;21:6016.

20. Mokuda S,Nakamichi R,Matsuzaki T. et al.Wwp2maintains car-

tilage homeostasis through regulation of Adamts5.Nat Commun

2019;10:2429.

21. GTEx Consortium. The GTEx consortium atlas of genetic

regulatory effects across human tissues. Science 2020;369:

1318–30.

22. Dunham I, Kundaje A, Aldred SF. et al. An integrated encyclo-

pedia of DNA elements in the human genome. Nature 2012;489:

57–74.

23. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W.

et al. Integrative analysis of 111 reference human epigenomes.

Nature 2015;518:317–30.

24. Berlin I, Schwartz H, Nash PD. Regulation of epidermal growth

factor receptor ubiquitination and trafficking by the USP8·STAM

complex. J Biol Chem 2010;285:34909–21.

25. Wang Y, Fan X, Xing L. et al. Wnt signaling: a promising target

for osteoarthritis therapy. Cell Commun Signal 2019;17:97.

26. He J, Wang L, Ding Y. et al. lncRNA FER1L4 is dysregulated in

osteoarthritis and regulates IL-6 expression in human chondro-

cyte cells. Sci Rep 2021;11:13032.

27. Hamilton JL, Nagao M, Levine BR. et al. Targeting VEGF and

its receptors for the treatment of osteoarthritis and associated

pain. J Bone Miner Res 2016;31:911–24.

28. Favero M, El-Hadi H, Belluzzi E. et al. Infrapatellar fat pad fea-

tures in osteoarthritis: a histopathological and molecular study.

Rheumatology (Oxford) 2017;56:1784–93.

29. Wiegertjes R, van de Loo FAJ, Blaney Davidson EN. A roadmap

to target interleukin-6 in osteoarthritis. Rheumatology (Oxford)

2020;59:2681–94.

30. Conde J, Scotece M, Abella V. et al. Identification of novel

adipokines in the joint. Differential expression in healthy and

osteoarthritis tissues. PLoS One 2015;10:e0123601.

31. Min JL, Hemani G, Davey Smith G. et al.Meffil: efficient normal-

ization and analysis of very large DNA methylation datasets.

Bioinformatics 2018;34:3983–9.

32. McCartney DL, Walker RM, Morris SW. et al. Identification of

polymorphic and off-target probe binding sites on the Illu-

mina Infinium MethylationEPIC BeadChip. Genom Data 2016;9:

22–4.

33. Pidsley R,Zotenko E, Peters TJ. et al.Critical evaluation of the Illu-

mina MethylationEPIC BeadChip microarray for whole-genome

DNA methylation profiling. Genome Biol 2016;17:208.

34. Chen Y, Lemire M, Choufani S. et al. Discovery of cross-reactive

probes and polymorphic CpGs in the Illumina InfiniumHuman-

Methylation450 microarray. Epigenetics 2013;8:203–9.

35. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina

microarray. Bioinformatics 2008;24:1547–8.

36. Du P, Zhang X, Huang C-C. et al. Comparison of Beta-value

and M-value methods for quantifying methylation levels by

microarray analysis. BMC Bioinformatics 2010;11:587.

37. Arthur R, Schulz-Trieglaff O, Cox AJ. et al. AKT: ancestry and

kinship toolkit. Bioinformatics 2017;33:142–4.

38. Leek JT, Johnson WE, Parker HS. et al. The sva package for

removing batch effects and other unwanted variation in high-

throughput experiments. Bioinformatics 2012;28:882–3.

39. Ritchie ME, Phipson B, Wu D. et al. Limma powers differential

expression analyses for RNA-sequencing and microarray stud-

ies. Nucleic Acids Res 2015;43:e47.

40. Stegle O, Parts L, Piipari M. et al. Using probabilistic estimation

of expression residuals (PEER) to obtain increased power and

interpretability of gene expression analyses. Nat Protoc 2012;7:

500–7.

41. Ongen H, Buil A, Brown AA. et al. Fast and efficient QTL mapper

for thousands of molecular phenotypes. Bioinformatics 2016;32:

1479–85.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/h

m
g
/d

d
a
d
1
9
8
/7

4
2
5
4
4
0
 b

y
 g

u
e
s
t o

n
 1

9
 J

a
n
u
a
ry

 2
0
2
4



Epigenomic profiling of the infrapatellar fat pad in osteoarthritis | 9

42. Price EM, Robinson WP. Adjusting for batch effects in DNA

methylation microarray data, a lesson learned. Front Genet

2018;9:83.

43. Dong X, Li X, Chang T-W. et al. powerEQTL: an R package and

shiny application for sample size and power calculation of

bulk tissue and single-cell eQTL analysis. Bioinformatics 2021;37:

4269–71.

44. Giambartolomei C, Vukcevic D, Schadt EE. et al. Bayesian

test for colocalisation between pairs of genetic associa-

tion studies using summary statistics. PLoS Genet 2014;10:

e1004383.

45. Hemani G, Zheng J, Elsworth B. et al. The MR-base platform sup-

ports systematic causal inference across the human phenome.

elife 2018;7:e34408.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/h

m
g
/d

d
a
d
1
9
8
/7

4
2
5
4
4
0
 b

y
 g

u
e
s
t o

n
 1

9
 J

a
n
u
a
ry

 2
0
2
4


	 Epigenomic profiling of the infrapatellar fat pad in osteoarthritis
	 Introduction
	 Results
	 Discussion
	 Materials and methods
	 Acknowledgements
	 Author contributions
	 Supplementary data
	 Funding
	 Data availability


