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Abstract
Microbial populations generally evolve in volatile environments, under conditions fluctuating
between harsh and mild, e.g. as the result of sudden changes in toxin concentration or nutrient
abundance. Environmental variability (EV) thus shapes the long-time population dynamics,
notably by influencing the ability of different strains of microorganisms to coexist. Inspired by the
evolution of antimicrobial resistance, we study the dynamics of a community consisting of two
competing strains subject to twofold EV. The level of toxin varies in time, favouring the growth of
one strain under low drug concentration and the other strain when the toxin level is high. We also
model time-changing resource abundance by a randomly switching carrying capacity that drives
the fluctuating size of the community. While one strain dominates in a static environment, we
show that species coexistence is possible in the presence of EV. By computational and analytical
means, we determine the environmental conditions under which long-lived coexistence is possible
and when it is almost certain. Notably, we study the circumstances under which environmental and
demographic fluctuations promote, or hinder, the strains coexistence. We also determine how the
make-up of the coexistence phase and the average abundance of each strain depend on the EV.

1. Introduction

Microbial communities evolve in volatile environments that often fluctuate between mild and harsh
conditions. For instance, the concentration of toxin and the abundance of nutrients in a community can
suddenly and radically change [1–4]. This results in environmental variability (EV) that shapes the
population evolution [5–13]. In particular, EV greatly influences the ability of species to coexist [14–19],
which is a characteristic of key importance in biology and ecology, with direct applications in subjects of
great societal concern [20–25] like the maintenance of biodiversity in ecosystems [26–34] and the evolution
of antimicrobial resistance (AMR) [35–40].

In the absence of detailed knowledge about the time-variation of external factors, EV is generally
modelled by means of noise terms affecting the species growth and/or death rates [26, 41–66]. Demographic
noise (DN) is another important source of fluctuations: it can lead to fixation, which is the phenomenon
arising when one strain takes over the entire community. The effect of DN is significant in communities of
small size, and becomes negligible in large populations [41, 42, 67–69]. Significantly, the time development
of the size and composition of populations are often interdependent [70–78], with fluctuations of the
population size modulating the strength of DN [57, 61–63, 65, 66, 79]. The interplay between EV and DN is
crucial in shaping microbial communities, but the quantitative effects of their coupling are as yet still mostly
unknown.

Environmental and demographic fluctuations play a crucial role in the evolution of AMR [13, 38, 40, 60,
64]. When treatments reduce a microbial community to a very small size, but fail to eradicate the
microorganisms resistant to the drugs, resistant cells may replicate and restore infection, hence possibly
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leading to the spread of antibiotic resistance. Moreover, within a small population, demographic fluctuations
may also lead to the extinction of resistant cells. Understanding how the coexistence of cells resistant and
sensitive to antibiotics is affected by the joint effect of EV and demographic fluctuations, and how the
fraction of resistant cells varies with environmental conditions with the possibility of eradication, are thus
central questions in the effort to understand the evolution of AMR [13, 36, 38, 40, 79].

It is worth noting that considerable efforts have recently been dedicated to study the mechanisms
underpinning the coexistence of competing species under various scenarios, see e.g. [31, 32, 34, 65]. The
influence of different kinds of variability (e.g. quenched disorder, heterogeneous rates, ‘spillover protection’)
on species coexistence in ecosystems exhibiting cyclic dominance [59, 80] has notably been investigated in
[47, 81–85]. Here, inspired by the AMR evolution in a chemostat setup [19, 65], we study the
eco-evolutionary dynamics of an idealised microbial community consisting of two competing strains subject
to a time-varying level of toxin, with the growth of one strain favoured under low toxin level and a selective
advantage to the other strain under high toxin level. We also assume that the resource abundance varies
according to a time-switching carrying capacity that drives the fluctuating size of the community. In most of
previous works, EV is either encoded in fluctuating growth rates, with the size or carrying capacity of the
population kept constant [26, 41–45, 47–51, 53–56, 58, 60, 64, 86], or EV is modelled by a time-varying
carrying capacity that affects the species death rates and drives the population size [57, 61–63, 66] (see also
[65]). The distinctive feature of this study is therefore the twofold EV accounting for fluctuations stemming
from the variation of the toxin level and the switches of the carrying capacity resulting in the coupling of DN
and EV; see figure 1.

As main results, we obtain the fixation-coexistence diagrams of the system, and these allow us to
determine the environmental conditions under which long-lived coexistence of the strains is possible or
certain, and when one strain dominates the other. We also analyse the make-up of the population when the
strains coexist, and their average abundance.

The organisation of the paper is as follows: the model is introduced in section 2. Section 3 is dedicated to
the study of the case with a constant carrying capacity (subject to a static or varying toxin level) by means of
a mean-field (MF) analysis and a mapping onto a suitable Moran process. The twofold influence of
time-varying fitness and carrying capacity on the coexistence and fixation of the species is analysed in
section 4. Section 5 is dedicated to the influence of the EV on the make-up of the coexistence phase and
strains abundance. We present our conclusions in section 6. Additional technical details are given in the
supplementary material (SM) [87].

2. Model

We consider a well-mixed population of fluctuating size N(t) = NR(t)+NS(t) which, at time t, consists of NR

bacteria of strain R and NS of type S, which compete for the same resources. The former refers to a strain that
pays a metabolic cost to be resistant to a certain toxin, and the latter to microorganisms sensitive to that
toxin. Based on mounting evidence showing that microbial communities generally evolve in volatile
environments [5, 6, 9, 12, 25], we study the eco-evolutionary dynamics of this population under twofold EV :
external conditions fluctuate between harsh and mild, and affect the level of toxin and resources that are
available in the population; see figure 1.

For concreteness, we assume that the toxin is biostatic and reduces the growth rate of the sensitive strain,
but does not affect the resistant bacteria [88–90].2 In this setting, resistant R bacteria have a constant fitness
fR, whereas the sensitive S bacteria have an environment-dependent fitness fS(ξT), where ξT(t) is a
time-varying environmental random variable encoding the toxin level: ξT > 0 for the low toxin level and
ξT < 0 for the high toxin level. As in previous studies [29, 30, 92–94], we here consider

fR = 1 and fS = exp(sξT) ,

where s> 0 denotes the selection bias favouring the strain S when ξT > 0, and strain R when ξT < 0. The
parameter s therefore encodes both the selection and strength of the environmental variability associated
with the changes in toxin level (T-EV). As in many recent theoretical studies [56, 57, 61–63, 65, 92, 95],
T-EV is here modelled by coloured dichotomous Markov noise (DMN) [96–98], so that ξT ∈ {−1,1}; see
below. DMN is an important example of bounded noise [56, 61–63, 65, 95–98], with finite correlation time,
which allows us to efficiently model suddenly changing conditions occurring in bacterial life [8, 19, 71, 72,
86], like the environmental stress resulting from exposure to antibiotics [10, 11, 75]. In this context, DMN,

2 The case where the toxin increases the death rate of the strain S corresponds to a biocidal toxin, and is not directly considered here. This
is not particularly limiting since the same drug can often act as a biostatic or biocidal toxin at low/high concentration [91].
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Figure 1. Cartoon of the model characterised by twofold EV. A microbial community consisting of two strains, denoted by R
(resistant, blue (charcoal), fitness fR) and S (sensitive, red (grey), fitness fS), evolves in a time-varying environment, as illustrated
by the arrows: the level of toxin, ξT, stochastically switches with rates ν±T (vertical arrows) between low (ξT =+1) and high

(ξT =−1), and the amount of available resources, modelled by the carrying capacity K(t), stochastically switches with rates ν±K
(horizontal arrows) between scarce and abundant. The strain R fares better than S under high toxin level (fR > fS), while S grows
faster under low toxin level (fR < fS). The carrying capacity K(t) = K+ when there are abundant resources, while
K(t) = K− < K+ when available nutrients are scarce. The four environmental states characterising the twofold EV are indicated
by the coloured background: striped / solid green (light grey) refers to low toxin level and scarce / abundant resources, while
striped / solid red (grey) indicates high toxin level with scarce / abundant resources. See the text for the greyscale coding, and the
table in section SM1 of [87] for detailed notations and definitions..

that is easy to simulate accurately and whose relationships with more complex forms of noise have been
studied (see section SM4 in [87] and [66, 96, 97]), provides us with mathematically-amenable models that
can be regarded as the theoretical counterparts of commonly-used laboratory experimental chemostat
set-ups [8, 11, 13, 19].

The environmental effect on the level of nutrients (K-EV), fluctuating between scarcity and abundance,
is modelled by a binary switching carrying capacity K(t) ∈ {K−,K+} that is driven by the binary random
variable (also following a DMN process) ξK(t) ∈ {−1,1}. The state ξK =−1 thus corresponds to a harsh
state with scare resources, where the carrying capacity is K−, whereas nutrients are abundant in the mild
state ξK =+1 where the carrying capacity is K+ > K− ≫ 1. As in [57, 61–63, 65, 66], this is encoded in the
time-switching carrying capacity

K(t) =
1

2
[K+ +K− + ξK (t)(K+ −K−)] , (1)

which, with K0 ≡ K++K−
2 and γ ≡ K+−K−

2K0
, can conveniently be written as

K(t) = K0 [1+ γξK (t)] .

This randomly switching carrying capacity drives the population size N(t) and is hence responsible for its
fluctuations, with K(t)≫ 1 ensuring that the population dynamics is never solely dominated by
demographic fluctuations. It is worth noting the choice of ξK as a DMN ensures that the carrying capacity is
always bounded and physical, i.e. K(t) ∈ {K−,K+} and K(t)> 0, which is not the case if EV is modelled by
unbounded (e.g. Gaussian) noise, see section SM4 in [87].

The population thus evolves under twofold EV encoded in the environmental states ξT(t), ξK(t), see
figure 1, subject to time switching according to the reactions

ξα =+1
ν+
α−−→−1 and ξα =−1

ν−
α−−→+1,

where ν±α are the switching rates of the α-DMN, with α ∈ {T,K} indicating the relevant environmental
noise. It is also useful to define the average switching rate να and switching bias δα for each α-DMN as

να ≡ ν−α + ν+α
2

and δα ≡ ν−α − ν+α
2να

,

3
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such that ν±α ≡ να(1∓ δα). This means that δT > 0 corresponds to a bias towards low toxin level (mild T
state, ξT =+1) favouring the S strain, whereas δT < 0 indicates a bias towards high toxin level (harsh T state,
ξT =−1) where the growth of S is hampered and the spread of R is favoured, see figure 1. Similarly, δK > 0
corresponds to bias towards the environmental state rich in nutrients (where K= K+), while δK < 0 is
associated with a bias towards an environment where nutrients are scarce (K= K−). In all cases, we consider
α-DMN at stationarity, where ξα =±1 with probability (1± δα)/2, yielding the average ⟨ξα⟩= δα and
autocovariance (autocorrelation up to a constant) ⟨ξα(t)ξα(t ′)⟩= (1− δ2α)exp(−2να|t− t ′|), where ⟨·⟩
denotes the α-DMN ensemble average. We notice that the correlation time of the α-DMN, 1/(2να), is half of
the inverse of the average switching rate of ξα [96–98]. From equation (1), we find that the average carrying
capacity is ⟨K⟩= K0(1+ γδK) and the variance of K(t) is (K0γ)

2(1− δ2K), with the amplitude of K-EV thus
scaling as K0γ, while the variance and amplitude of the T-EV increase with s; see section SM2 in [87].

For concreteness, we here assume that ξT and ξK are totally uncorrelated. In our motivating example, this
corresponds to the reasonable assumption that nutrient and antibiotic uptake are independent processes.
The case where ξT and ξK are fully correlated or fully anti-correlated, with ξT = ξK = ξ or ξT =−ξK = ξ,
where ξ is a single DMN process, is briefly discussed in section SM8 of [87].

The system considered here best translates to a chemostat setup whereby toxin and nutrient levels can be
maintained at a constant level through time and switched via changing concentrations of medium coming
into the system [19, 65]. The switch ξT →−ξT with ξT =−1 can thus be envisioned as corresponding to
switching the concentration of an antibiotic drug from above the minimum inhibitory concentration (MIC),
where the growth of the sensitive strain is hampered, to a concentration below the MIC where the S strain
can spread at the expense of R [36, 38, 64].

At time t the fraction of R-types in the system is x(t)≡ NR(t)
N(t) and the average population fitness is

f(x, ξT)≡ x+(1− x)exp(sξT), which depends on the population composition x and the toxin state ξT,. We
assume that mutation rates between strains are negligible, and seek to characterise the population dynamics
by the evolution of its size and composition according to the multivariate birth–death process [99–101]

NR/S

T+
R/S−−→ NR/S + 1 and NR/S

T−
R/S−−→ NR/S − 1, (2)

where the time-dependent birth and death transition rates are respectively

T+
R/S =

fR/S

f
NR/S and T−

R/S =
N

K
NR/S. (3)

The per-capita birth rates fR/S/f (where we normalise with f in line with the standard Moran process [41,
67–69, 102]) thus vary with the toxin level and population composition, while the logistic-like per-capita
death rate N/K varies with nutrient level and population size. With N≡ (NR,NS), the master equation
giving the probability P(N, ξT, ξK, t) for the population to consist of NR and NS bacteria of type R and S,
respectively, in the environmental state (ξT, ξK) at time t is

∂P(N, ξT, ξK, t)

∂t
=
(
E−
R − 1

)[
T+
R P(N, ξT, ξK, t)

]
+
(
E−
S − 1

)[
T+
S P(N, ξT, ξK, t)

]
+
(
E+
R − 1

)[
T−
R P(N, ξT, ξK, t)

]
+
(
E+
S − 1

)[
T−
S P(N, ξT, ξK, t)

]
+ ν−ξT

T P(N,−ξT, ξK, t)

− νξTT P(N, ξT, ξK, t)+ ν−ξK
K P(N, ξT,−ξK, t)− νξKK P(N, ξT, ξK, t) , (4)

where E±
R/S are shift operators such that E±

R f(NR,NS, ξT, ξK, t) = f(NR ± 1,NS, ξT, ξK, t), and νξαα ≡ ν±α when

ξα =±1. We note that P(N, ξT, ξK, t) = 0 whenever NR < 0 or NS < 0, and the last two lines on the
right-hand-side of equation (4) account for the random environmental switching of toxin (ξT →−ξT) and
carrying capacity (ξK →−ξK). The dynamics encoded by the multivariate master equation (4) can be
simulated exactly by a stochastic algorithm as explained in [103, 104], see Sec. SM4 in [87]. Since T±

R/S = 0
whenever NR/S = 0, there is extinction of R and fixation of S (NR = 0,N= NS), or fixation of R and
extinction of S (NS = 0,N= NR). When one strain fixates and replaces the other, the population
composition no longer changes while its size continues to fluctuate3. Fixation of one strain and extinction of
the other is expected when strains compete for the same resources (competitive exclusion principle), and
always occur in a finite population even when its size fluctuates [57, 61, 63]. In stark contrast, here we show

3 Finally, the population will settle in the absorbing stateNR = NS = 0 corresponding to the eventual extinction of the entire population.
This occurs after a time that grows exponentially with the system size [57, 61, 63, 105]. This phenomenon, irrelevant for our purposes
(since we always have K(t)≫ 1), is not considered here.
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that environmental fluctuations can lead to the long-lived coexistence of competing species and nontrivially
shape the abundance distribution of both strains.

The notation and definitions of the model parameters and physical quantities of interest are conveniently
summarised in the table of section SM1 in [87].

3. Constant carrying capacity: mean-field analysis andMoran process

Since ξT and ξK are independent, it is useful to first consider the case of a constant carrying capacity, with EV
stemming only from the fluctuations of the toxin level in the birth rates of equation (3).

In this section, we thus assume that the carrying capacity is constant and large: K(t) = K0 ≫ 1. After a
short transient the population size fluctuates about K0, with N≈ K0. When K0 ≫ 1, we can approximate the
population size by N= K0 and make analytical progress by using the well-known results of the Moran
process [41, 67–69, 102]. In this approximation, the population is kept constant, which requires the
simultaneous birth and death of individuals of either species, and the population evolves according to a
fitness-dependent Moran process [57, 61–63], defined in terms of equations (2) and (3) by the reactions

(NR,NS)
T̃+
R−−→ (NR + 1,NS − 1) ,

(NR,NS)
T̃−
R−−→ (NR − 1,NS + 1) ,

(5)

corresponding, respectively, to the simultaneous birth of an R and death of an S with rate T̃+
R , and death of

an R and birth of an S with rate T̃−
R , where

T̃+
R ≡

T+
R T

−
S

N
= Nx(1− x)

fR
f(t)

,

T̃−
R ≡

T−
R T

+
S

N
= Nx(1− x)

fS (t)

f(t)
.

(6)

3.1. Mean-field analysis
We now consider the case where N= K0 →∞, and thus ignore demographic fluctuations. In this case, the
population composition evolves according to the MF equation [99]:

ẋ=
T̃+
R − T̃−

R

N
= x(1− x)

(
1− esξT

x+(1− x)esξT

)
, (7)

where the dot denotes the time derivative. It is important to notice that, owing to environmental noise ξT,
equation (7) is a MF stochastic differential equation that defines a so-called ‘piecewise deterministic Markov
process’ (PDMP) [56, 57, 61, 63, 106]. According to this PDMP, after a switch to an environmental state ξT, x
evolves deterministically with equation (7) and a fixed value of ξT, until a switch ξT →−ξT occurs, see
section 5.1.

We consider equation (7) in the regimes of (i) low, (ii) high, and (iii) intermediate switching rate νT:
(i) Under low switching rate, νT → 0, the population settles in its final state without experiencing any

T-switches. In this regime, the population reaches its final state in its initial toxin level ξT(0), i.e.
ξT(0) = ξT(∞) =±1 with probability (1± δT)/2. In this regime, equation (7) thus boils down to

ẋ=

− x(1−x)(es−1)
x+(1−x)es with probability 1+δT

2 ,

x(1−x)(1−e−s)
x+(1−x)e−s with probability 1−δT

2 .

Since s> 0, with a probability (1+ δT)/2 we have ξT(0) = ξT(∞) = +1 and x→ 0 (R vanishes), while with a
probability (1− δT)/2 we have ξT(0) = ξT(∞) =−1 and x→ 1 (S vanishes). In either case, the MF
dynamics are characterised by the dominance of one of the strains. Therefore, in the absence of demographic
fluctuations, there is never long-lived coexistence of the strains R and S under low switching rate of the toxin level.

(ii) Under high switching rate, νT ≫ 1, the population experiences a large number of T-switches before
relaxing into its final state; see below. In this case the T-DN self-averages [29, 53, 57, 61, 63, 66] and we are

left with a Moran process defined by the effective rates T̃±
R →

〈
T̃±
R

〉
obtained by averaging ξT over its

stationary distribution, yielding

5



New J. Phys. 25 (2023) 123010 M Asker et al

〈
T̃+
R

〉
=

Nx(1− x)

2

(
1+ δT

x+(1− x)es
+

1− δT
x+(1− x)e−s

)
,〈

T̃−
R

〉
=

Nx(1− x)

2

(
(1+ δT)es

x+(1− x)es
+

(1− δT)e−s

x+(1− x)e−s

)
.

(8)

When N→∞, the MF rate equation associated with this effective Moran process thus reads [68, 99, 100]:

ẋ=

〈
T̃+
R

〉
−
〈
T̃−
R

〉
N

=
x(1− x)

2

[
(1+ δT)(1− es)

x+(1− x)es
+

(1− δT)(1− e−s)

x+(1− x)e−s

]
, (9)

where the right-hand-side (RHS) can be interpreted as the RHS of equation (7) averaged over ξT. In addition
to the trivial fixed points x= 0,1, equation (9) admits a coexistence equilibrium

x∗ =
1

2
− δT

2
coth

s

2
, (10)

when− tanh s
2 < δT < tanh s

2 . This equilibrium stems from the T-DMN and thus is a fluctuation-induced
coexistence point. In the case of large s we have that coth s

2 → 1, and x∗ exists (0< x∗ < 1) for all values of δT.

Since dẋ
dx

∣∣
x∗

=− 4
1−δ2T

tanh2
(
s
2

)
(1− x∗) is always negative, linear stability analysis reveals that x∗ is the sole

asymptotically stable equilibrium of equation (9) when it exists (x= 0,1 are thus unstable). When s≪ 1,
coth s

2 →
2
s , and x

∗ exists only for− s
2 < δT <

s
2 . This means that for s≪ 1, coexistence is essentially possible

only under symmetric switching (δT = 0), see section SM2 in [87]. In what follows, we focus on the less
restrictive case s=O(1), for which coexistence is possible for a broad range of parameters (νT, δT).

(iii) In the regime of intermediate switching rate, where νT ∼ 1, the population experiences a finite
number of T-switches prior to settling in its final state. Depending on this number, as well as the selection
strength s and the population size, the dynamics may be closer to either the low or high νT regime, with
dominance or coexistence possible but, in general, not certain; see figure 3 below.

3.2. Finite populations—fixation and long-lived coexistence
From the MF analysis, we have found that when N→∞ species coexistence is feasible under fast T-EV
switching, whereas only R or S dominance occurs under slow switching. We now study how these results
nontrivially morph when the population is fixed and finite.

Since the model is defined as a finite Markov chain with absorbing boundaries, see equations (5) and (6),
its final state unavoidably corresponds to the fixation of one strain and the extinction of the other, i.e. the
population eventually ends up in either the state (NR,NS) = (N,0) or (NR,NS) = (0,N) [41, 68, 101, 102].
This means that, strictly, the finite population does not admit stable coexistence: when it exists, x∗ is
metastable [107–109]. In fact, while it is guaranteed that eventually only one of the strains will finally
survive, fixation can occur after a very long time and can follow a long-term coexistence of the strains, as
suggested by the MF analysis of the regime with νT ≫ 1. It is thus relevant to study under which
circumstances there is long-lived coexistence of the strains.

The evolutionary dynamics is characterised by the fixation probability of the strain R, here denoted by ϕ.
This is the probability that a population, consisting initially of a fraction x0 of R bacteria, is eventually taken
over by the strain R.

A related quantity is the unconditional mean fixation time (MFT), here denoted by τ , which is the
average time for the fixation of either species to occur.

In what follows, we study how the R fixation probability ϕ(νT) and the MFT τ(νT) vary with the average
switching rate of the T-EV for different values of K0, δT, and s (treated as parameters), and determine when
there is long-lived coexistence of the strains.

In the limits νT → 0,∞, we can use the well-known properties of the Moran model [41, 69, 102] to
obtain ϕ(νT) and τ(νT) from their Moran approximation (MA) counterparts, denoted by ϕMA(N) and
τMA(N), which are respectively the R fixation probability and MFT in the associated Moran process for a
population of constant size N; see section SM3 in [87].

For a given initial resistant fraction4, the fixation probability in the slow-switching regime, ϕ(νT → 0) is
obtained by averaging ϕMA(N)

∣∣
ξT
, denoting the R fixation probability in the realm of the MA in static

environment ξT, over the stationary distribution of ξT [57, 61, 63, 66]:

ϕ(νT → 0) =

(
1+ δT

2

)
ϕMA (N)

∣∣
ξT=+1

+

(
1− δT

2

)
ϕMA (N)

∣∣
ξT=−1

. (11)

4 In all our examples we set x0 = 0.5.
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When N≫ 1 and ξT =+1 the strain S is always favoured and ϕMA(N)
∣∣
ξT=+1

≈ 0, whereas R is favoured

when ξT =−1 and in this case ϕMA(N)
∣∣
ξT=−1

≈ 1. Since ξT(0) =−1 with probability (1− δT)/2, this

coincides with the R fixation probability: ϕ(νT → 0)≈ (1− δT)/2. The probability that S fixates when
νT → 0 is thus 1−ϕ(νT → 0)≈ (1+ δT)/2

In the fast-switching regime the fixation probability is that of the Moran process defined by the effective
rates in equation (8). Using equation (8) with x= n/N, we thus find [41, 102]:

ϕ(νT →∞) =
1+

∑Nx0−1
k=1

∏k
n=1

⟨T̃−
R (n/N)⟩

⟨T̃+
R (n/N)⟩

1+
∑N−1

k=1

∏k
n=1

⟨T̃−
R (n/N)⟩

⟨T̃+
R (n/N)⟩

; (12)

see section SM3.A in [87]. A similar analysis can also be carried out for τ , see section SM3.B in [87]. Results
reported in figure 2 show that equations (11) and (12) accurately capture the behaviour of ϕ in the limiting
regimes νT → 0,∞, see figure 2(a). Figure 2(b) shows that the predictions for τ when νT → 0,∞, are also in
good agreement with simulation results, with a much larger MFT under high νT than under low switching
rate (at fixed δT). In figure 2(b), the MFT when νT ≫ 1 for δT = 0 is significantly larger than under δT ̸= 0.
This stems from x∗ = x0 = 1/2 being the attractor of equation (9) when δT = 0, but not being an
equilibrium when δT = 0.3 or δT = 0.5. Figures 2(a) and (b) also illustrate the excellent agreement between
the predictions of the MA with N= K0 and those obtained from stochastic simulations with K= K0

constant. Note that typical error bars are shown for δT = 0 in figure 2(b). These are found to be small and
almost coincide with the markers. For the sake of readability, we have thus omitted similar error bars from
the other panels and figures.

The MF analysis and results of figure 2 suggest that under sufficiently high switching rate νT there is
long-lived coexistence of the strains. We can rationalise this picture by noting that in the regime of
dominance of one strain the MFT scales sublinearly with the population size N, while the MFT grows
superlinearly (exponentially when N= K0 ≫ 1, see figure 2(c)) in the regime of long-lived coexistence [82,
102, 110, 111]. The dominance and long-lived coexistence scenarios are separated by a regime where the
MFT scales with the population size, i.e. τ ∼ N, where the dynamics is governed by random fluctuations.
This leads us to consider that long-lived coexistence of the R and S strains arises whenever the MFT exceeds
2⟨N⟩, i.e. when τ > 2⟨N⟩, where ⟨N⟩ is the mean population size at (quasi-)stationarity; see below5. This is
illustrated in the provided videos of [112] commented in section SM7 of [87]. When, as in this section,
N= K0 or N fluctuates about the constant carrying capacity K0 (N≈ K0), we simply have ⟨N⟩= K0. The
criterion τ > 2⟨N⟩= 2K0 thus prescribes that long-lived coexistence occurs when the MFT scales
superlinearly with K0 and hence exceeds the double of the average population size, 2K0 ≫ 1.

The conditions under which the long-lived coexistence criterion, τ > 2⟨N⟩, is satisfied can be estimated
by noting that, from the MF analysis, we expect coexistence to occur when ξT self-averages under sufficiently
high switching rate νT. Since the average number of T-switches by t= 2⟨N⟩ scales as νT⟨N⟩, self-averaging
occurs when νT⟨N⟩ ≫ 1. We thus consider that there is fast T-EV switching when νT ≫ 1/⟨N⟩, while
νT ≪ 1/⟨N⟩ corresponds to the slow T-EV regime. To ensure long-lived coexistence, the necessary condition
νT ≫ 1/⟨N⟩ is supplemented by the requirement that s∼ 1. This ensures enough EV and a regime of
coexistence where the MFT is generally τ ∼ ec⟨N⟩ (where c is some positive constant) when s=O(1) [41, 42,
102, 108–110, 113] guaranteeing τ > 2⟨N⟩.

Hence, the expected conditions for long-lived coexistence are νT ≫ 1/⟨N⟩ (fast T-switching) and
s=O(1) (enough EV), which are satisfied in the examples considered here when νT ∼ 1, s∼ 1 or greater,
and ⟨N⟩ ≫ 1.

We have studied the influence of T-EV on the fixation and coexistence properties of the model with
constant carrying capacity K= K0 and selection strength s by running a large number of computer
simulations up to a time t= 2K0 across the νT − δT parameter space. When just after t= 2K0 both species are
present, the run for (νT, δT, s) is characterised by long-lived coexistence which is RGB coded (0,1,0). There is
no long-lived coexistence for the run (νT, δT) if one of the species fixates by t⩽ 2K0: either the strain R,
which is RGB coded (1,0,0), or the strain S, which is coded by (0,0,1). This procedure is repeated for 103

realisations for different (νT, δT) and, after sample averaging, yields the RGB-diagram of figures 3(a)–(c); see
section SM4 in [87]. In greyscale, the RGB coding translates into red→ grey, blue→ charcoal, and green→
light grey. In what follows, the crossover regimes are coded in magenta and faint green with dark grey and
faint light grey as their respective greyscale counterparts, see below.

5 The factor 2 has been chosen arbitrarily to prevent τ ∼ ⟨N⟩ from appearing as coexistence. Other choices are of course possible, and
would have only modest effects on the crossover regime between the phases of dominance and coexistence.
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Figure 2. R fixation probability ϕ and MFT τ under constant carrying capacity and T-EV. Symbols are from stochastic
simulations (103 realisations) with carrying capacity K0 (and non-constant N), and full black lines are for the Moran
approximation with N= K0, based on equation (13) (a) and equation (14) (b), (c). (a) ϕ against νT, for δT =−0.9 (×),
−0.5(⃝), 0 (▽), 0.5(△), 0.9 (♢), from top to bottom, with s= 0.3 and K0 = 50. Red dashed lines are predictions of
equations (11) and (12). (b) τ against νT, for δT = 0 (▽), 0.3(□), 0.5 (△) from top to bottom, with s= 0.1 and K0 = 500. Any
bias δT ̸= 0, reduces τ . Error bars (dark grey) are overlaid for the case δT = 0 and almost indistinguishable from the symbols; see
text and SM4 in [87]. Red dashed lines are analytical predictions in the limiting regimes νT → 0,∞ (equation (S4) in [87] with
same time-averaging process of rates as in section 3.1). (c) τ against K0 under fast T-EV in the coexistence regime for δT = 0,
s= 0.1 (△) and s= 0.3 (△). Here, there is long-lived coexistence of the strains at the (meta-)stable equilibrium x∗ = x0 = 0.5
prior to fixation. The MFT grows exponentially when K0s2 ≫ 1, see section SM2 in [87]. Red dashed lines show the analytical
predictions for the MFT when νT →∞ (equation (S4) in [87] with equation (8)), compared with the predictions of
equation (14) (black lines) and simulation results (markers) for νT = 100.

It is also useful to study the effect of the T-EV in the realm of the MA by means of numerically exact
results. For this, with the transition rates equation (6), we notice that when N= K0 is constant and there are
initially n cells of type R, the R-strain fixation probability, ϕξT

n , in the environmental state ξT satisfies the
first-step analysis equation [53, 99, 101](

T̃+
R (n)+ T̃−

R (n)+ νξTT

)
ϕξT
n = T̃+

R (n)ϕξT
n+1 + T̃−

R ϕ
ξT
n−1 + νξTT ϕ−ξT

n , (13)

subject to the boundary conditions ϕξT
0 = 0 and ϕξT

N = 1. The MFT in the environmental state ξT, τ ξTn ,
satisfies a similar equation:(

T̃+
R (n)+ T̃−

R (n)+ νξTT

)
τ ξTn = 1+ T̃+

R (n)τ ξTn+1 + T̃−
R (n)τ ξTn−1 + νξTT τ−ξT

n , (14)

with boundary conditions τ ξT0 = τ ξTN = 0. Equations (13) and (14) are thus solved numerically, and the
fixation probability and MFT are obtained after averaging over the stationary distribution of ξT, yielding

ϕn =

(
1+ δT

2

)
ϕ+
n +

(
1− δT

2

)
ϕ−
n , and

τn =

(
1+ δT

2

)
τ+n +

(
1− δT

2

)
τ−n .

(15)
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Figure 3. Fixation/coexistence diagrams under T-EV in the (νT, δT) parameter space for a small system of constant carrying
capacity K0 = 50, with selection bias s= 0.1 (a) and (d), s= 1 (b) and (e), and s= 10 (c) and (f), after a time t= 2K0. (a)–(c):
phase diagrams obtained from stochastic simulations of the model with a constant K0 (N fluctuates about K0) over 103

realisations and coded according to the RGB colourmap of panel (g): red / blue (grey / charcoal) corresponds to the likely fixation
of S/R (red (grey): S dominance; blue (charcoal): R dominance), regions indicated as ‘S/R fixation’ in panel (a); magenta (dark
grey) indicates where fixation of R or S is likely, area between ‘S/R fixation’ regions in panel (a); green (light grey) indicates where
long-lived coexistence is most likely, area highlighted as ‘S+R coex.’ in panel (c). (d)–(f): same as in (a)–(c) but from numerically
exact solutions of equation (15) for the corresponding Moran process with a constant population size N= K0, see text.

In our examples, we always consider x0 = 1/2, and henceforth write ϕMA(N)≡ ϕN/2 for the R-fixation
probability and τMA(N)≡ τN/2 for the MFT in the realm of the MA. For each triple (νT, δT, s), we numerically
solved equation (14) and, in the region of the the parameter space where τMA(N)> 2K0, there is long-lived
coexistence, which is coded by (0,1,0) in the RGB-diagram of figures 3(d)–(f). When τMA(N)⩽ 2K0, there is
dominance of one of the species, characterised by the fixation probabilities ϕMA(N) and 1−ϕMA(N) of R
and S, respectively, obtained from equation (13) and coded by (ϕMA(N),0,1−ϕMA(N)) in figures 3(d)–(f).

Exact numerical results for the MA with N= K0 in figures 3(d)–(f) are in excellent agreement with those
of simulations obtained for K= K0 in figures 3(a)–(c). In line with the MF analysis, we find that long-lived
coexistence, occurs for T-EV of sufficiently large magnitude, i.e. s∼ 1 or higher, and under high enough
switching rate, i.e. νT ∼ 1 or higher, shown as green (light grey) areas in figure 3. The region of
coexistence separates regimes dominated by either species, especially at high νT when ϕ ≈ 0 where δT > 0
while ϕ ≈ 1 when δT < 0. In figure 3, the boundaries between the regimes of R/S dominance, coded in blue
(charcoal) / red (grey), and coexistence, areas in green (light grey)), are interspersed by crossover regimes
where both species are likely to fixate (magenta (dark grey) in figure 3), or coexist with probability between 0
and 1 (faint green (faint light grey) in figure 3), as coded in figure 3(g).

4. Twofold environmental variability: coexistence and fixation under time-varying
fitness and switching carrying capacity

We have seen that under a constant carrying capacity, long-lived coexistence of the strains is feasible when s
and νT are of order 1 or higher (enough T-EV and fast T-switching). We now study how this picture morphs
when, in addition to the time-variation of fS and f, the carrying capacity K(t) switches according to
equation (1) and drives the fluctuating population size N. EV is thus twofold, and the population evolves
under the joint effect of T-EV and K-EV.

We consider K(t) ∈ {K−,K+} with 1≪ K− < K+, and in the first instance assume that N is always
sufficiently large to allow us to neglect the DN, yielding [57, 61–63, 66, 99, 106]

Ṅ= T+
R −T−

R +T+
S −T−

S = N

(
1− N

K

)
, (16a)

ẋ=
T+
R −T−

R

N
− x

Ṅ

N
= x

(
fR
f
− 1

)
, (16b)
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Figure 4. Long-time average population size ⟨N⟩ versus the K-EV average switching rate νK. Symbols are from simulations
(averaged over 103 realisations at time t= 2⟨K⟩), the solid black line shows the PDMP prediction equation (18). For fixed δK,
⟨N⟩ decreases with νK, and ⟨N⟩ ≈ ⟨K⟩= K0(1+ γδK) when νK ≪ 1 while ⟨N⟩ ≈ K when νK ≫ 1 (red horizontal dashed lines).
Insets show the PDMP PDF equation (17) under low switching rate νK (left) and for νK ≫ 1 (right); dashed vertical lines are
eye-guides indicating the corresponding values of νK, where for low νK the PDMP PDF is indistinguishable in either case.
Parameters are: K0 = 1000, γ = 0.5, and δK = 0.0. See text for details.

where N is independent of s and affected only by K-EV via ξK in equation (1), while the evolution of x in
equation (16b) is impacted by ξK, ξT, and s via x= NR/N and f(t) = x+(1− x)exp(sξT). The population
composition is hence coupled to the evolution of the population size (eco-evolutionary dynamics), while the
statistics of N, like its average, denoted by ⟨N⟩, are obtained by ensemble averaging over ξK. The stochastic
logistic differential equation equation (16a) defines an N-PDMP whose properties allow us to characterise
the distribution of N [56, 57, 61, 106].

As discussed in [57, 61–63], the (marginal) stationary probability density function (PDF) p(N) of the
N-PDMP equation (16a), while ignoring DN, provides a useful approximation of the actual quasi-stationary
population size distribution (QPSD). Here, the stationary PDF is [57, 61–63, 96–98]

p(N) =
Z
N2

(
K+ −N

N

)νK(1−δK)−1(N−K−

N

)νK(1+δK)−1

, (17)

of support [K−,K+], with the normalisation constant Z ensuring that
´ K+

K−
p(N) dN= 1.

4.1.N-PDMP approximation
The PDF p(N) captures well the main effects of the K-EV on the QPSD, which is bimodal under low νK and
becomes unimodal when νK ≫ 1, see figure 4. In the realm of the N-PDMP approximation, p(N) aptly
reproduces the location of the QPSD peaks and the transition from a bimodal to unimodal distribution as νK
increases: The distribution is sharply peaked around N≈ K± when νK → 0 (with probability (1∓ δK)/2),
flattens when νK ∼ 1, and then sharpens about N≈K ≡ K0(1− γ2)/(1− γδK) when νK →∞. Since p(N)
ignores DN, it cannot capture the width of the QPSD about the peaks, but it provides an accurate description
of the mean population size, see figure 4, that is well approximated by

⟨N⟩=
ˆ K+

K−

Np(N) dN, (18)

with ⟨N⟩ ≈ K0(1+ γδK) when νK ≪ 1 and ⟨N⟩ ≈ K when νK ≫ 1 [57, 61–63], as shown in figure 4.
The PDF p(N) is particularly useful to obtain the fixation/coexistence diagrams under the effects of both

T-EV and K-EV. Theoretical/numerical predictions of the fixation and coexistence probabilities can indeed
be derived in the vein of [57, 61–63, 66] by focusing on situations where coexistence occurs when x and N
relax on similar timescales. Long-lived coexistence of the strains thus arises when s∼ 1, with fixation
typically occurring after N has settled in the QPSD, see section SM7 in [87] and videos in [112]. Hence, for
the analytical description of the fixation/coexistence diagrams, the R fixation probability (with x0 = 1/2) can
be suitably approximated by averaging ϕMA(N) over p(N) as follows:

ϕ ≃
ˆ K+

K−

ϕMA (N)p(N) dN, (19)
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where ϕMA(N) is obtained from solving the corresponding equation (13) for the R fixation probability of the
associated Moran process, as seen in section 3.2.

We can use the PDF p(N) and the results for the MFT τMA(N), obtained from solving equation (14), to
determine the probability of coexistence in the realm of the N-PDMP approximation. For this, we first solve
equation (14) for τMA(N∗) = 2⟨N⟩, where ⟨N⟩ is given by equation (18). Since τMA is an increasing function
of N, see figure 2(c), we have τMA(N)> 2⟨N⟩ for all N> N∗, which is the long-lived coexistence condition.
Within the N-PDMP approximation, the lowest possible value of N∗ is K− (since N ∈ [K−,K+]). We then
determine the probability η that this condition is satisfied by integrating p(N) over [max(N∗,K−),K+]:

η ≡ Prob.{τMA (N)> 2⟨N⟩}=
ˆ K+

max(N∗,K−)

p(N) dN, (20)

where N∗ depends on both T-EV and K-EV (via ⟨N⟩), while the integrand depends only on K-EV. Clearly,
η → 1 when N∗ → K−. Hence, long-lived coexistence is almost certain when N∗ ≈ K−, i.e. whenever the
mean-fixation time of the population of fixed size N= K− exceeds 2⟨N⟩. Based on the results of section 3.2,
η increases with νT and s, and thus for sufficiently large νT and s (but not too large |δT|), we expect N∗ → K−
and η → 1.

4.2. Fixation/coexistence diagrams under T-EV andK-EV
The fixation/coexistence diagrams under joint effect of T-EV and K-EV are obtained as in section 3.2, with
the difference that long-lived coexistence arises when t> 2⟨N⟩, a condition that depends on (νK, δK), see
figure 2(c). In our simulations, we considered different values of νK (letting δK = 0 for simplicity), and ran
simulations until t= 2⟨N⟩. Each run in which both species still coexist just after t= 2⟨N⟩ are RGB
(greyscale) coded (0,1,0), whereas those in which R or S fixates by t⩽ 2⟨N⟩ are respectively RGB (greyscale)
coded (1,0,0) or (0,0,1). The RGB (greyscale) fixation/coexistence diagrams of figures 5(a)–(c) are obtained
after sample-averaging the outcome of this procedure, repeated 103 times for each pair (νT, δT) and different
values of νK.

Theoretical RGB (greyscale) diagrams are obtained from the N-PDMP based approximation built on
equations (19) and (20): for a given νK, we allocate the RGB (greyscale) value ((1− η)(1−ϕ),η,(1− η)ϕ)
obtained for each pair (νT, δT) of the diagram, see figures 5(d)–(f). This triple corresponds to the probability
of having, by t= 2⟨N⟩, either no long-lived coexistence (with probability 1− η) and fixation of R or S (with
respective probabilities ϕ and 1−ϕ), or long-lived coexistence (with probability η). In practice,
equations (19) and (20) have been used for relatively small systems whereas an equivalent, but more efficient,
method was used for large systems, see section SM4 in [87].

The comparison of the top and bottom rows of figure 5 shows that the theoretical RGB (greyscale)
diagrams quantitatively reproduce the features of those obtained from simulations. In general, we find that
coexistence regions are brighter in diagrams obtained from N-PDMP based approximation than in those
stemming from simulations. This difference stems from former ignoring demographic fluctuations which
slightly broaden the crossover (magenta (dark grey) and faint green (faint light grey)) regimes in the latter.

The regions of figure 5 where |δT| → 1 are characterised by dominance of one of the strains, and
essentially reduces to the model studied in [57, 61, 63], and we can therefore focus on characterising the
coexistence phase.

When K0 is large, under sufficient EV (s= 0.5, γ = 2/3 in figure 5), the joint effect of T-EV and K-EV on
the phase of long-lived coexistence in the RGB (greyscale) diagrams of figure 5 can be summarised as follows:
(i) when νK → 0, a (bright green) region where η ≈ 1 and coexistence is almost certain is surrounded by a
faint green (faint light grey) ‘outer shell’ where coexistence is possible but not certain (0< η < 1), see
figures 5(a) and (d); (ii) at low, but non-vanishingly small, values of νK, the outer-shell where 0< η < 1
fades, and there is essentially only a bright green (bright light grey) region of coexistence where η ≈ 1, see
figures 5(b) and (e); (iii) when νK ≫ 1, the coexistence region corresponds essentially to η ≈ 1 (bright green
/ bright light grey) and is broader than under low νK, figures 5(c) and (f). In all scenarios (i)–(iii), η increases
with νT ≳ 1 (for not too large |δT|) and hence all the green (bright and faint light grey) coexistence phases in
figure 5) become brighter as νT is raised and η → 1.

These different scenarios can be explained by the dependence of the QPSD on νK, well captured by the
PDF equation (17). In regime (i) where νK ≪ 1/K0, the QPSD and p(N) are bimodal, N≈ K± with
probability (1± δK)/2, and any K-switches by t= 2⟨N⟩ ∼ K0 are unlikely, yielding the faint green (faint light
grey) outer shell of figures 5(a) and (d) corresponding to long-lived coexistence arising only when N≈ K+,
with a probability η ≈ (1+ δK)/2. In regime (ii), where 1/K0 ≪ νK ≪ 1, the QPSD and p(N) are still
bimodal but some K-switches occur by t∼ K0, resulting in long-lived coexistence arising almost only when
νT is high enough to ensure η ≈ 1 when N≈ K−. In regime (iii), where νK ≫ 1 the QPSD and p(N) are
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Figure 5. Fixation/coexistence diagrams under T-EV and K-EV in the (νT, δT) parameter space showing the influence of
K-switching rate νK on the fixation and coexistence probabilities, for νK = 5× 10−6 (a) and (d), νK = 5× 10−3 (b) and (e), and
νK = 5 (c) and (f). Other parameters are K0 = 1200, s= 0.5, γ = 2/3, δK = 0. (a)–(c): phase diagrams obtained from stochastic
simulations data collected at t= 2⟨N⟩ over 103 realisations. (d)–(f): same as in (a)–(c) but from the theoretical predictions based
on equations (19) and (20), see text for details. All diagrams are colour-coded (greyscale-coded) as in figure 3.

unimodal with average ⟨N⟩ ≈ K ⩾ K−, which results in a long-lived coexistence region where η ≈ 1 that is
broader than in (i) and (ii), figures 5(c) and (f). The size of the coexistence region in regime (iii) actually
depends nontrivially on νK, as revealed by the modal value of the PDF equation (17) when νK(1− |δK|)> 1,
which reads

N̂=
K0

2

(
[1+ νK (1− γδK)]−

√
(1+ νK (1− γδK))

2 − 4νK (1− γ2)

)
, (21)

with limνK→∞ N̂= ⟨N⟩=K. We notice that N̂ is an increasing function of νK when γ > δK, and it decreases
if γ < δK (remaining constant when γ = δK). As a consequence, the long-lived coexistence region under high
K switching rate grows with νK when γ > δK, as in figures 5(c) and (f), and, when γ < δK, shrinks as νK is
increased, see section SM6 figure (S3) in [87].

4.3. Influence of theK-EV amplitude on coexistence
We have seen that increasing the selection bias s, raises the amplitude of the T-EV and facilitates the
emergence of long-lived coexistence. Here, by keeping K0 constant, we investigate the influence of the
parameter γ, which controls the amplitude of K-EV, on the fixation/coexistence diagrams. When γ → 1 and
K0 ≫ 1, there is K-EV of large amplitude, with the population subject to a harsh population bottleneck
(K− → 0) accompanied by strong demographic fluctuations. The latter facilitate fixation of either strain and
counter the effect of T-EV that drives the community to coexistence. Results of figure 6 illustrate the
influence of γ under low and high K-switching rate (δK = 0):

— Under low νK, the probability of long-lived coexistence η decreases together with the value of
K− = K0(1− γ) when γ is increased (all other parameters being kept fixed). As a consequence, the
bright green (bright light grey) region in figure 6(a) where long-lived coexistence is almost certain
(η ≈ 1) shrinks with γ and is gradually replaced by a faint green (faint light grey) area where coexistence
occurs with a lower probability (η = (1+ δK)/2< 1), see figures 6(b) and (c).
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Figure 6. Fixation/coexistence diagrams under T-EV and K-EV in the (νT, δT) parameter space showing the effect of the
amplitude of K-EV γ, on the fixation and coexistence probabilities when K0 = 500 is kept fixed, for γ = 0.65
(K− = 175, K+ = 825) (a) and (d), γ = 0.8 (K− = 100,K+ = 900) (b) and (e), and γ = 0.95 (K− = 25,K+ = 975) (c) and
(f). Other parameters are s= 1, δK = 0, νK = 10−3 in (a)–(c) and νK = 10 in (d)–(f). Phase diagrams obtained from stochastic
simulations data collected at t= 2⟨N⟩ over 103 realisations. All diagrams are colour-coded (greyscale-coded) as in figure 3.

— Under high νK, we have N≈K and the effect of γ is encoded in the expression of
K = K0(1− γ2)/(1− γδK). When δK ⩽ 0, K and η decrease with γ, and as a result the bright green
(bright light grey) region in figure 6(d) shrinks and is eventually replaced by a smaller faint green (faint
light grey) region where coexistence is possible but not certain (0< η < 1), see figures 6(e) and (f).
When δK > 0, there is a bias towards K= K+ and K increases with γ until γ = γ̄ ≡ (1−

√
1− δ2K)/δK

and then decreases, with K < K0, when γ > δK. This results in a non-monotonic dependence of the
coexistence region where η ≈ 1: under νK ≫ 1 and δK > 0, the long-lived (bright-green) coexistence
region grows with γ up to γ̄ and shrinks when γ > γ̄.

We have thus found that the environmental fluctuations have opposite effects on the species coexistence:
increasing the amplitude of T-EV (by raising s) prolongs the coexistence of the strains and expands the
coexistence region, but raising the amplitude of K-EV (by raising γ) can significantly reduce the probability
of long-lived coexistence for all values of νK.

5. Make-up of the coexistence phase and strains average abundance

Having characterised in detail the conditions under which long-lived coexistence and fixation occur, we now
study the make-up of the coexistence phase and then use this result to determine the stationary average
abundance of each strain.

5.1. Coexistence phase make-up
We are interested in the characteristic fraction of the resistant strain R in the coexistence phase, here defined
as x∗. This is the fraction of R expected, given that we have coexistence at t= 2⟨N⟩. According to the MF
theory, the fraction of the strain R in the coexistence phase is given by the expression equation (10) of x∗. It
turns out that deep into the coexistence region whereby η ≈ 1 and νT is sufficiently high, there is good
agreement between theory and simulations, see figures 7(a) and (b). In addition, even when η < 1, the MF
prediction x∗ remains remarkably close to the value of fraction of Rmeasured in the coexistence state
obtained in simulations, with small deviations arising as η approaches 0. We notice that the characteristic
fraction of R, for given δT, is almost independent of νT.

We can also predict the fraction of R regardless of coexistence or fixation, here denoted by ⟨x⟩. The
quantity ⟨x⟩ thus characterises the fraction of R in the coexistence, fixation, and crossover regime where both
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Figure 7.Make-up of the coexistence state: fraction of the resistant strain R in the coexistence phase as function of νT and δT; from
simulation results (a) and predictions of equations (10) and (20) in (b), respectively for x∗ and η. The colourbar (brightness bar)
gives the characteristic fraction of the R strain in the region of the νT − δT parameter space where η > 0.01. Simulation results
have been obtained just after t= 2⟨N⟩ and averaged over 104 realisations. Parameters are K0 = 500, γ = 0.5, νK = 100, and s= 1.

coexistence and fixation are possible, with respective probabilities η and ϕ, but neither is certain. Making use
of equations (10), (19) and (20) we thus define ⟨x⟩ as

⟨x⟩= ηx∗ +(1− η)ϕ. (22)

This captures well the dependence of ⟨x⟩ on νT and reduces to the fraction of R in the coexistence phase,
⟨x⟩= x∗, when η ≈ 1 and long-lived coexistence is almost certain (see SM5, figure S2). As shown in
section SM5 of [87], a closed-form alternative to ⟨x⟩ is provided by the modal value of the stationary PDF of
the PDMP defined by equation (7), which, while less accurate than ⟨x⟩, matches qualitatively well to
simulations.

5.2. Strain average abundance
In this section, we study the (quasi-)stationary average abundance of the strains R and S, respectively
denoted by ⟨NR⟩ and ⟨NS⟩. Since ⟨NS⟩= ⟨N⟩− ⟨NR⟩, and ⟨N⟩ is well described by equation (18), see figure 4,
we only need to focus on studying ⟨NR⟩.

In fact, while the evolution of N is governed by K-EV and is well-captured by the stochastic logistic
equation (16a) and the corresponding N-PDMP, the dynamics of the abundance of the R strain depends on
both T-EV and K-EV. In the MF limit, where demographic fluctuations are neglected, we indeed have [99]

ṄR = T+
R −T−

R =

(
1

f(t)
− N

K(t)

)
NR

=

(
1

x+(1− x)esξT
− N

K0 (1+ γξK)

)
NR,

which is a stochastic differential equation depending on both ξK and ξT, and coupled to the N- and x-PDMPs
defined respectively by equations (16a) and (16b). In the dominance regimes, ⟨NR⟩ ≈ 0 (S dominance) or
⟨NR⟩ ≈ ⟨N⟩ (R dominance), which can be obtained from equation (18). However, finding ⟨NR⟩ in the
coexistence phase is a nontrivial task. Progress can be made by noticing that, ξK and ξT being independent,
we can write

⟨NR⟩ ≈ ⟨N⟩⟨x⟩ ≡ ⟨N⟩(ηx∗ +(1− η)ϕ) , (23)

where ⟨N⟩ηx∗ is the contribution to ⟨NR⟩ when there is coexistence (with probability η), and ⟨N⟩(1− η)ϕ is
the contribution arising when there is fixation of the strain R (with probability (1− η)ϕ). In our theoretical
analysis, x∗,⟨N⟩ ,ϕ and η are obtained from equations (10) and (18)–(20). Equation (23) thus captures the
behaviour of ⟨NR⟩ in each regime: the dominance regime where η ≈ 0 and we have ⟨NR⟩ ≈ ⟨N⟩ϕ, deep in the
coexistence phase where we have η ≈ 1 and ⟨NR⟩ ≈ ⟨N⟩x∗, and where 0< η < 1 and coexistence is possible
but not certain where we have ⟨NR⟩ ≈ ⟨N⟩⟨x⟩.

In figure 8, we find that the theoretical predictions based on equation (23) agree well with simulation
results over a broad range of νK and νT, and for different values of δK and δT. The dependence of ⟨NR⟩ on νK
reflects that of ⟨N⟩ shown in figure 4: ⟨NR⟩ decreases with νK at fixed δK, see figure 8(a), and we have
⟨N⟩ ≈ K when νK →∞ yielding ⟨NR⟩ ≈ Kx∗ deep in the coexistence phase where νT ≫ 1, and similarly
⟨N⟩ ≈ K0(1+ γδK) when νK → 0 yields ⟨NR⟩ ≈ K0(1+ γδK)x∗. Not shown in figure 8(a) is the case of
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Figure 8. Long-time average R abundance ⟨NR⟩ as function of the average switching rate of the T/K-EV. Solid lines are theoretical
predictions of equation (23) with x∗, ⟨N⟩, ϕ and η given by equations (10) and (18)–(20); symbols are from simulation data. (a)
⟨NR⟩ versus νK for δK = 0.5 (×), δK = 0 (⃝) and δK =−0.5 (▽). Limiting value are plotted for νK → 0,∞ as dotted lines.
Other parameters are: K0 = 500, γ = 0.5, s= 1, νT = 10, and δT = 0.0. (b) ⟨NR⟩ versus νT for (δT,νK) = (−0.2,0.01) (△),
(δT,νK) = (−0.2,10) (△),(δT,νK) = (0.2,0.01) (△), (δT,νK) = (0.2,10) (♢). Limiting value are plotted for νT → 0,∞ as
dotted lines. Other parameters are: K0 = 500, γ = 0.5, s= 1f, and δK = 0.0. Simulations data have been collected and
sample-averaged after t= 2⟨K⟩ over 102 realisations. See text for details.

νT ≪ 1, whereby we have only dominance such that ⟨NR⟩ ≈ ⟨N⟩(1− δT)/2. Figure 8(b) shows that the
dependence of ⟨NR⟩ on νT can be non-monotonic and exhibit an extreme dip (δT > 0) or peak (δT < 0) at
intermediate T-switching rate, νT ∼ 1. This behaviour can be understood by referring to the diagrams of
figure 6: as νT is raised from νT = 0 with δT < 0 kept fixed, the R fixation probability first slowly increases
across the slightly R-dominant phase where coexistence is unlikely (η ≈ 0) and ⟨NR⟩ ≈ ⟨N⟩ϕ. When νT is
increased further and R is the strongly dominant species (blue (charcoal) phases in figure 6), with ϕ ≈ 1 and
⟨NR⟩ ≈ ⟨N⟩ is maximal; coexistence then becomes first possible (0< η < 1, faint green (faint light gray) in
figure 6) and then almost certain (η ≈ 1, bright green (bright light gray) in figure 6) when νT is increased
further, which results in a reduction of the R abundance to ⟨NR⟩ ≈ ⟨N⟩x∗ < ⟨N⟩. A similar reasoning holds
for the S strain when δT > 0 and results in a maximal value ⟨NS⟩ ≈ ⟨N⟩ and therefore a dip of the R
abundance, with a minimal value ⟨NR⟩ ≈ 0, when νT ∼ 1.

The results of this section hence show that the twofold EV has nontrivial effects on the make-up of the
coexistence phase, and on the average number of cells of each strain, as shown by figure 7 and the
nonmonotonic dependence of ⟨NR⟩ on νT in figure 8.

6. Conclusion

Microorganisms live in environments that unavoidably fluctuate between mild and harsh conditions. EV can
cause endless changes in the concentration of toxins and amount of available nutrients, and thus shapes the
eco-evolutionary properties of microbial communities including the ability of species to coexist.
Understanding under which circumstances various microbial species can coexist, and how their coexistence
and abundance vary with environmental factors, is crucial to shed further light on the mechanisms
promoting biodiversity in ecosystems and to elucidate the evolution of AMR.

Motivated by these considerations, and inspired by the AMR evolution in a chemostat setup, we have
studied the eco-evolutionary dynamics of an idealised microbial community of fluctuating size consisting of
two strains competing for the same resources under twofold EV (T-EV and K-EV): the level of toxin and the
abundance of nutrients in the community both vary in time. One of the strains is resistant while the other is
sensitive to the drug present in the community, and both compete for the same resources.

EV is thus assumed to affect the strains growth and death rates, and is modelled by means of binary
randomly time-switching fitness (T-EV) and carrying capacity (K-EV). Under harsh conditions, the level of
toxin is high and resources are scarce, while environmental conditions are mild when the level of toxin is low
and resources are abundant. In this setting, the strain resistant to the drug has a selective advantage under
high toxin-level, whereas it is outgrown by the sensitive strain when the level of toxin is low. Moreover, the
time-switching carrying capacity drives the fluctuating size of the microbial community, which in turn
modulates the amplitude of the demographic fluctuations, resulting in their coupling with the variation of
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the available resources. When the environment is static, there is no lasting coexistence since one species
dominates and rapidly fixates the entire population.

Here, we have shown that this picture changes radically in fluctuating environments: we have indeed
found that long-lived species coexistence is possible in the presence of environmental fluctuations. Using
stochastic simulations and the properties of suitable piecewise-deterministic and Moran processes, we have
computationally and analytically obtained the fixation-coexistence phase diagrams of the system. These have
allowed us to identify the detailed environmental conditions under which species coexist almost certainly for
extended period of times, and the phases where one species dominates, as well as the crossover regimes where
both coexistence and fixation are possible but not guaranteed. We have found that long-lived coexistence
requires sufficient variation of the toxin level, while resource variability can oppose coexistence when strong
K-EV leads to population bottlenecks responsible for large demographic fluctuations facilitating fixation.
More generally, our analysis has allowed us to assess the influence of the population size distribution, whose
shape changes greatly with the rate of K-EV, on the fixation-coexistence phase diagram. We have also
determined how the make-up of the coexistence phase and average abundance of each strain depend on the
rates of environmental change.

EV generally comes about in many forms in a variety of settings throughout biology and ecology, and the
conundrum of coexistence within a system is impacted by it, alongside demographic fluctuations. This leads
to complex eco-evolutionary dynamics. In particular, how microbial communities evolve subject to EV is
vital when considering the issue of AMR, so that the effectiveness of treatments can be maximised, while
minimising the harmful effects. In considering twofold environmental variations, we have shown that these
can have qualitative effects on the population evolution as they can either promote or jeopardise lasting
species coexistence.

In summary, our analysis allows us to understand under which circumstances environmental variability,
together with demographic fluctuations, favours or hinders the long-lived coexistence of competing species,
and how it affects the fraction and abundance of each strain in the community. This work hence contributes
to further elucidate the role of fluctuations on the maintenance of biodiversity in complex ecosystems.

In particular, our findings demonstrate the influence of environmental fluctuations on biodiversity in
microbial communities, and may thus have potential impacts on numerous applications. For instance, the
model studied here is well suited to describe the in vitro evolution of antimicrobial resistance in a chemostat
setup where the level of antibiotics would fluctuate below and above the MIC. In this context, the model is
able to predict, under a broad range of external constraints, the best conditions to avoid the fixation of the
strain resistant to the drug and when both strains coexist. A more realistic model of AMR evolution would
take into account that the drug resistance is often mediated by a form of public goods [36, 79], and that there
may exist more than two competing species and various toxins. The eco-evolutionary dynamics of
communities consisting of multiple species, resources and toxins can generally not be simply inferred from
those of two-species eco-systems, even though in some cases simple models can be illuminating [65].
Another potential application of the model considered here, with varying drug levels, concerns the so-called
adaptive therapy used in cancer treatment to prevent or delay the cancer from becoming completely drug
resistant [114].
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