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Renormalization group flows from the Hessian geometry of quantum effective actions
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We explore a geometric perspective on quantum field theory by considering the configuration
space, where all field configurations reside. Employing n-particle irreducible effective actions con-
structed via Legendre transforms of the Schwinger functional, this configuration space can be associ-
ated with a Hessian manifold. This allows for various properties and uses of the n-particle irreducible
effective actions to be re-cast in geometrical terms. In particular, interpreting the two-point source
as a regulator, this approach can be readily connected to the functional renormalization group.
Renormalization group flows are then understood in terms of geodesics on this Hessian manifold.

CONTENTS

I. Introduction 1

II. The nPI Effective Actions 2

III. Associated Hessian manifolds 3

IV. 2PI Effective Action as a Renormalization
Group 5
A. Renormalization Group as Geodesics 6
B. Surfaces of Constant RG Scale 7
C. RG Flow 8
D. 1PI Effective Action 9

V. Conclusions 10

Acknowledgments 10

Data Access Statement 10

A. Hesse–Koszul Flow 11

B. Closing the 2PI RG 11

C. Commutation of Derivatives 12

References 12

I. INTRODUCTION

Understanding physical concepts within a geometric
framework has demonstrated its utility across various do-
mains of physics. The most prominent example might be
Einstein’s general theory of relativity, wherein gravity is

∗ yannick.kluth@manchester.ac.uk
† peter.millington@manchester.ac.uk
‡ paul.saffin@nottingham.ac.uk

described in terms of the geometry of spacetime. How-
ever, geometrical ideas have also been applied to other
areas of physics, including quantum field theory (QFT).

QFT operates within an infinite-dimensional configu-
ration space that encompasses all conceivable field config-
urations. The pursuit of non-trivial geometric structures
in this space has been a longstanding endeavor, exempli-
fied by the Vilkovisky–DeWitt connection [1, 2], which
allows the definition of a covariant derivative within this
configuration space. Extensions of this framework then
allow to write the path integral in a form that is mani-
festly invariant under both spacetime and field-space dif-
feomorphisms [3–5]. More recently, the introduction of
a covariant structure has also been used to show the in-
variance of field-theoretic observables under field redefi-
nitions [6].

In statistical mechanics, geometric approaches have a
long history, going back to the work of Ruppeiner [7],
building on that of Weinhold [8–11], on the represen-
tation of thermodynamic systems by Riemannian mani-
folds. Therein, the metric can be defined in terms of the
Hessian of the entropy with respect to the extensive state
variables [12], viz., the two-point correlation functions.
Such considerations then lead naturally to the applica-
tion of information theoretic techniques to the renormal-
ization group (RG) (for a comprehensive discussion of
information-geometrical approaches to QFT, see [13]).

In this context, the importance of considering the ge-
ometry of the theory space is perhaps epitomized by
Zomolodchikov’s C-theorem [14], and the study of in-
formation loss along RG flows in the space of couplings
has attracted much attention [15–22]. Here, the Fisher
information metric plays a key role [23], and one can
make connection between the relative entropy and the
one-particle irreducible (1PI) effective action [24]. The
geometrical interpretation of renormalization is then such
that the couplings (viz. one-point sources) are under-
stood as coordinates and the associated composite op-
erators as tangent vectors on the manifold of the theory
space [25]; the RG equations describe the transport gen-
erated by the beta functions [26].

In this work, we take a different approach: Rather than
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the space of couplings, we use a geometrical framework
on the configuration space of QFT — the space of all
field configurations — which includes n-point sources,
i.e., sources that depend on n spacetime coordinates.
A crucial feature is the emergence of an apparent dual
structure present in any QFT. This duality emerges
through Legendre transforms that link the Schwinger
functional to various quantum effective actions. Sources
in the Schwinger functional are mapped to expecta-
tion values, both of which fully characterize the config-
uration space. Geometrically, these structures can be
elegantly implemented through information-geometrical
manifolds [13, 27–31]. The configuration space of QFT
can then be conceived as a Hessian manifold [32–35],
where the metric is given by the Hessian of a potential.
This potential aligns with the Schwinger functional, and
the metric with the two-point functions of all composite
operators to which the sources couple. Furthermore, the
inverse two-point functions are obtained from the Hessian
of a dual potential — the quantum effective action.

We use these geometrical insights to examine the n-
particle irreducible (nPI) and related quantum effective
actions. These involve sources not only for the bare quan-
tum field in the Schwinger functional but also for up to
the n-point function. Going beyond local sources in this
way, cf. [25], this naturally relates to the functional renor-
malization group (FRG), where the source for the two-
point function acts as a regulator [36–41]. By incorporat-
ing this structure within the Hessian manifold, we gain a
novel interpretation of the resulting RG flow from a geo-
metric standpoint. In fact, RG trajectories can be shown
to correspond to certain geodesics that arise naturally on
the Hessian manifold.

This article is structured as follows. In Sec. II, we
set up our notation for the nPI effective actions, before
introducing the associated Hessian manifolds and their
structures in Sec. III. We subsequently employ the Hes-
sian geometry to construct RG flows in Sec. IV, making
connections with other formulations of the FRG. Sec-
tion V provides our concluding remarks. Further techni-
cal details are provided in the appendices. Appendix A
reviews the Hesse–Koszul [42, 43] flow of the metric of
the Hessian manifold, which bears some similarity to
the Wetterich equation [37–39]. The closure of the 2PI
RG is described in App. B, and subtleties related to the
non-commutativity of various derivatives are described
in App. C

II. THE nPI EFFECTIVE ACTIONS

In this section, we define the family of nPI effective
actions and introduce our notation. We start with the
definition of the partition function and consider a QFT
with a single scalar field Φ, but all expressions below can
be readily generalized by the addition of a contracted
multi-index that accounts for other degrees of freedom
or quantum numbers.

To define the partition function suitable for the nPI
effective action, we start with n-point sources

J (n) = Jn(x1, x2, . . . , xn) . (1)

Each of these sources couples in the path integral to com-
posite operators of the form

Φ(n) = Φ(x1)Φ(x2) · · ·Φ(xn) . (2)

The partition function can then be defined by

Z[{J}n] =
∫

DΦ exp

{
−S[Φ] +

n∑
i=1

J (i) · Φ(i)

}
, (3)

where the “·” represents integration over spacetime vari-
ables included in the sources and field variables, and
we use ℏ = 1. The notation “{J}n” indicates that
we consider the generating functional with up to n-
point sources. Starting from the partition function, the
Schwinger functional is given by

W[{J}n] = lnZ[{J}n] . (4)

The effective action can be obtained from the
Schwinger functional by a Legendre transform. Here, we
allow for generalized effective actions that are obtained
by Legendre transforms with respect to not necessarily
all sources J (n) of the Schwinger functional, but only a
subset of them. The resulting family of effective actions
can be denoted by

Γ[{∆(i)|i ∈ I}; {J (j)|j /∈ I}] = Γ[∅; {J}n]+
∑
i ∈ I

J (i)·∆(i) ,

(5)
wherein we identify

Γ[∅; {J}n] = −W[{J}n] . (6)

In (5), the Legendre transform is with respect to all
sources J (i) of the Schwinger functional that are included
in the set I ⊂ {1, 2, . . . , n}. Sources J (i) that are not in-
cluded remain as arguments of the effective action. We
denote this in (5) by a semicolon that separates variables
that were included in the Legendre transform from vari-
ables that were not. Excluding I = ∅, we find 2n − 1 dif-
ferent effective actions depending on which sources are in
included in the Legendre transform. Any i-point source
J (i) that is included in the Legendre transform is elimi-
nated in favour of the disconnected i-point function ∆(i)

in the effective action, with

∆(i) = ∆(x1, x2, . . . , xi) ≡ ⟨Φ(x1) Φ(x2) . . .Φ(xi)⟩ , (7)

such that ∆(1) = ⟨Φ(x1)⟩ is the one-point function. In
this notation, the nPI effective action is

Γ[{∆(i)}n; ∅] = Γ[∅; {J}n] +
n∑

i=1

J (i) ·∆(i) . (8)
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Let us consider the case n = 2 more specifically. Start-
ing with the partition function, we introduce sources
J (1) = J and J (2) = K for the one- and two-point func-
tion, respectively, writing

Z[J,K] =

∫
DΦae−S[Φa]+JaΦ

a+ΦaKabΦ
b

. (9)

Herein, lower-case Latin characters are DeWitt indices,
which, in general, include both a spacetime coordinate
and discrete indices. The continuum components of re-
peated DeWitt indices are integrated over spacetime, and
discrete components are summed over. In the following,
we also introduce the convention that Greek letters cor-
respond to pairs of lower-case Latin indices, i.e.,

Kα = Kab . (10)

The resulting Schwinger functional from (9) is given by

W[J,K] = lnZ[J,K] . (11)

The inclusion of a source for the two-point function is
particularly useful for the studies of the FRG on which
this work will focus later. Namely, the Kα can be as-
sociated with a regulator term. Varying the size of this
regulator, we can then obtain a flow for the action at
different RG scales k induced by Kα. Slices of constant
Kα then correspond to configurations of equal RG scale.
At any given value of Kα, the coordinates encoded by Ja
are related to connected n-point functions (denoted by a
subscript c) evaluated at a given RG time by

⟨ϕa1 . . . ϕan⟩c ≡
δ

δJa1

. . .
δ

δJan

W[J,K] . (12)

The family of n = 2 effective actions arising from (5)
contains four functionals:

Γ[∅; J,K] = −W[J,K] , (13a)

Γ[ϕ;K] = −W[J,K] + Jaϕ
a , (13b)

Γ[∆; J ] = −W[J,K] +Kα∆
α , (13c)

Γ[ϕ,∆; ∅] = −W[J,K] + Jaϕ
a +Kα∆

α , (13d)

where the disconnected n-point functions are denoted by
∆(1) = ϕ, and ∆(2) = ∆. The Schwinger functional is
given by Γ[∅; J,K], and Γ[ϕ,∆; ∅] is the 2PI effective ac-
tion of Cornwall, Jackiw and Tomboulis [44]. The func-
tionals Γ[ϕ;K] and Γ[∆; J ] are akin to the Routhian in
classical mechanics in which not all sources are included
in the Legendre transform.

Figure 1 shows this family of four functionals. Each
edge of this square represents a potential that depends
on a different set of variables. The potentials on each
edge are connected to nearby edges by single Legendre
transforms, i.e., a Legendre transform with respect to one
of ϕ or ∆. This picture generalizes to larger n, although
there are, in these cases, multiple Routhians that can
be constructed by Legendre transforming with respect to
only some of the sources in the Schwinger functional.

FIG. 1. The four potentials from (13) for the case n = 2
and the Legendre transforms that connect them. The arrows
indicate the coordinate with respect to which the Legendre
transform is taken. Opposing sides of the square are con-
nected by a double Legendre transform.

III. ASSOCIATED HESSIAN MANIFOLDS

Consider a functional Γ that depends on m sources
J (i) and n − m i-point functions ∆(i). An example for
this is the Schwinger functional depending on n i-point
sources and zero i-point functions. However, all fol-
lowing considerations can also be applied to functionals
which have been obtained by Legendre transforms in the
spirit of (5). In any case, the configuration space is an
infinite-dimensional manifold spanned by the m sources
and n−m i-point functions. Each point is associated to a
specific value of this set of i-point functions and sources.
It will prove convenient to arrange these into a “coor-
dinate” QA, whose elements are of different dimensions.
By convention, we choose this to be

QA =



J (I1)

...
J (Im)

∆(I∁
1 )

...

∆(I∁
n−m)


, (14)

where I∁ is the complement of I. The upper-case Latin
indices are such that they run over all components of QA.
Without loss of generality, we assume that QA includes
the one-point source J (1) in its first component. As we
will see below, this assumption is still general enough to
include all possible geometrical structures that can be
constructed using a Hessian manifold.
We start by equipping the configuration space with an

affine connection D̄. This connection is defined by the
partial functional derivatives with respect to the coordi-
nates QA; specifically,

D̄AFC1...CN

B1...BN
[QA] ≡

δ

δQA
FC1...CN

B1...BN
[QA] (15)

for any tensor FC1...CN

B1...BN
[QA]. The coordinates QA form

the affine coordinate frame of the connection D̄. In any
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other coordinate frame, the D̄ connection can obtain non-
trivial Christoffel symbols, such that (15) is modified.

With the introduction of the D̄ connection, we have
identified an affine structure on the configuration space.
To identify the configuration space as a Hessian manifold,
it is necessary to specify the metric. We define the inverse
metric gAB as the Hessian of the functional Γ computed
with the affine connection D̄, as follows:

gAB = D̄AD̄BΓ . (16)

In the coordinate frame spanned by QA, this can be ex-
pressed as

gAB =
δ2Γ

δQAδQB
. (17)

With this choice for the metric, the configuration space
becomes a Hessian manifold.

Note that the affine connection D̄ is not metric com-
patible in general, viz.

D̄AgBC ̸= 0 . (18)

However, there is a unique torsion-free and metric-
compatible Levi–Civita connection ∇. To find it, let us
introduce the Amari–Chentsov tensor [27–30]

Γ̂A
BC =

1

2
D̄AgBC . (19)

It can be shown that (19) is fully symmetric once the
index A is lowered. This has wide-ranging implications,
since any connection to which we add a term proportional
to Γ̂A

BC is a new connection. This allows us to define the
so-called α-connections [30]

D̄(α) = D̄ + αΓ̂ ⊗ . (20)

The tensor product denotes that Γ̂ acts on all indices on
which the derivative D̄(α) is acting [45]. In essence, this

shifts the Christoffel symbols included in D̄ by αΓ̂ . The
Levi–Civita connection is found from (20) for α = −1;
that is,

∇ = D̄ − Γ̂ ⊗ 1 . (21)

This is the unique metric-compatible and torsion-free
connection of the Hessian manifold. Note that, even
though D̄ is an affine connection, the Levi–Civita con-
nection ∇ is generally not flat and can give rise to a non-
vanishing Riemann tensor. Moreover, this is just one out
of an infinite family of connections that is implied by
Eq. (20). Another important connection is given by

D = D̄ − 2Γ̂ ⊗ 1 . (22)

In contrast to the Levi–Civita connection ∇, it can be
shown that D is always affine, i.e., always a flat connec-
tion. Thus, we end up with a duality of affine connec-
tions: the D̄ that we started with, and D as defined in

(22). In general, these are the only affine connections
on a Hessian manifold. All other connections induced by
(20) are not affine and induce a non-vanishing Riemann
tensor.
The affine coordinate frame of the D connection is

found from the gradient of the functional Γ, i.e.,

PA ≡ δΓ

δQA
. (23)

By noting that this relation is the familiar coordinate
transformation induced by a Legendre transform, using
(14) in (23), we find that

PA =



∆(I1)

...
∆(Im)

J (I∁
1 )

...

J (I∁
n−m)


, (24)

i.e., i-point sources J (i) are replaced by i-point functions
∆(i) and vice versa. Thus, the affine coordinate frame
of the D̄ connection is given by the QA coordinates, and
the affine coordinate frame of the D connection is given
by the PA coordinates. In that sense, the coordinates
QA and PA both form affine coordinate frames, which
are dual to each other. This duality encoded by (23)
also leads to another relationship between the two affine
structures D and D, which can be found using (17):

D̄A =
δ

δQA
=

δPB

δQA

δ

δPB
= gABDB . (25)

Note that this relation is equivalent to (22).
We can express the metric as well as all other geomet-

rical structures purely in terms of PA instead of QA. To
do so, we have to introduce the dual potential, which we
call Γ. It is related to the Γ functional by a Legendre
transform with respect to all of its variables, such that

Γ[P] = −Γ[Q] +QAPA . (26)

Note that the sum indicated by the repeated DeWitt in-
dices runs over all components of the coordinates in (14)
and (24). It can then be shown that

gAB =
δΓ

δPAδPB
, (27)

where we recall that the PA are the affine coordinates of
D, i.e.,

DA =
δ

δPA
. (28)

Starting from this, we can also derive the Amari–
Chentsov tensor (19) and all other geometrical structures
in terms of PA.
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We are now in a position to justify our previous as-
sumption of QA always containing the one-point source
J (1) in (14). As we have seen, the geometry of the Hes-
sian manifold always includes two affine coordinate sets,
the QA coordinates that we started with in (14), and the
PA coordinates in (24). One of them always includes the
one-point source J (1), while the other one contains the
one-point function ∆(1) instead. Which one of them we
define to be QA does not alter the geometry. Interchang-
ing QA with PA leaves all distances unaffected. Using
that such an interchange would also swap Γ with Γ, we
can then show that

δΓ

δQAδQB
dQAdQB =

δΓ

δQAδQB

δQA

δPC

δQB

δPD
dPCdPD

=
δΓ

δPAδPB
dPAdPB ,

(29)

where we have used that δQA/δPB = gAB . The left-
hand side corresponds to a Hessian manifold constructed
with initial coordinates including the one-point source,
while the right-hand side corresponds to initial coordi-
nates including the one-point function instead. Distances
are the same in both cases.

Let us now consider Γ = W. In that case, we can
compute n-point functions using the D̄ derivative. This
is because they are computed from the Schwinger func-
tional by

⟨ϕa1 . . . ϕan⟩c ≡
δ

δJa1

. . .
δ

δJan

W . (30)

Note that Ja denotes the one-point source. We can co-
variantize this by replacing functional derivatives w.r.t.
the one-point source with the D̄ derivative,

⟨ϕa1 . . . ϕan⟩c = D̄a1 . . . D̄anW . (31)

Here, we use the convention that geometrical objects
evaluated with a lower-case Latin index give their one-
point component, i.e.,

D̄a =
δ

δJa
. (32)

Performing non-trivial transformations of QA, the D̄
derivatives pick up non-trivial Christoffel symbols that
must be taken into account when working in other coor-
dinates than QA.

We remark that the connected n-point function from
(31) can be written in the form

⟨ϕa1 . . . ϕan⟩c = D̄a1 . . . D̄an−2gan−1an . (33)

Notice that the metric incompatibility of the connection
D̄ is, in fact, pivotal to us obtaining non-vanishing higher
n-point functions. The corollary is that only theories
with quadratic actions will have a metric-compatible D̄.
Identifying gan−1an = ∆

an−1an
c — the connected two-

point function — and noting that D naturally acts on

Γ[P; ∅], we can work entirely in terms of the coordinates
ϕa and ∆ab

c = ∆ab − ϕaϕb. The connected n-point func-
tions can then be expressed as

⟨ϕa1 . . . ϕan⟩c =

[
n−2∏
i=1

gaiBiDBi

]
∆an−1an

c . (34)

Note that, since we do not in general have
metric compatibility of the connection D, the
product in (34) is understood to be ordered as
ga1B1DB1

ga2B2DB2
· · · gan−2Bn−2DBn−2

. For the case

n = 2, we write the operator gaBDB explicitly in terms
of the connected two-point function as

gaBDB =
δ2W
δJaδJb

δ

δϕb
+

δ2W
δJaδKβ

δ

δ∆β

= ∆ab
c

[
δ

δϕb
− δ2Γ

δϕbδ∆δ
c

(
δ2Γ

δ∆δ
cδ∆

ϵ
c

)−1
δ

δ∆ϵ
c

]
.

(35)

This operator has been derived previously in the context
of extracting n-point functions directly from the quantum
effective action [46, 47].
In summary, we have implemented the geometrical

structure of a Hessian manifold in the configuration space
of QFTs. Remarkably, this naturally implements a dual
structure by which any potential Γ is related to a dual
potential Γ by a Legendre transform, see (26). In the
case that one of these potentials is the Schwinger func-
tional, the dual potential is the full nPI effective action.
However, we recall from Fig. 1 that already at n = 2
there are four different potentials. These can be con-
structed by applying Legendre transforms with respect
to the i-point sources/functions separately. Two of them
are given by the Schwinger functional and the 2PI ef-
fective action, which form one Hessian manifold. The
other two are given by the 1PI effective action and its
dual potential, given by the double Legendre transform
of the former. This leads to a second, different Hessian
manifold. In general, since a Hessian manifold naturally
includes a dual potential, each Hessian manifold involves
a pair of potentials. For n = 2, this means that Hessian
manifolds connect two sides of the square in Fig. 1.

IV. 2PI EFFECTIVE ACTION AS A
RENORMALIZATION GROUP

In this section, we focus on the Hessian manifold re-
lated to the Schwinger functional W[∅; J,K] and the 2PI
effective action Γ[ϕ,∆; ∅]. Moreover, we generalize to the
case of N fields, such that the DeWitt index in Φa be-
comes a multi-index and contains spacetime and internal
indices of the field. We have

QA =

(
Ja
Kα

)
, and PA =

(
ϕa

∆α

)
(36)
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As before, the upper-case Latin indices are such that they
run first over Ja or ϕa, and then over Kα or ∆α. More-
over, if we evaluate a coordinate with a lower-case Latin
index, we get back a one-point object, i.e.,

Qa = Ja , Pa = ϕa . (37)

Similarly, we employ the convention introduced earlier
that lower-case Greek letters correspond to two-point ob-
jects, i.e.,

Qα = Kα = Kab , Pα = ∆α = ∆ab . (38)

We will now interpret the source for the two-point func-
tion Kα as a regulator term. This means, we specify the
form of Kα such that it can be interpreted as a regula-
tor, either to regularize UV or IR modes. The Schwinger
functional and the quantum effective action then form a
RG, the renormalization scale k is in direct relation to
the regulator Kα.
If the regulator is chosen to regularize UV modes, it

serves as a cutoff such that modes in the deep UV are
cut out from the path integral. To do so, the regulator
Kα must diverge in the UV, with

1

Kα
→ 0 for

p2

k2
→ ∞ , (39)

where p2 is the momentum of the fluctuation modes in
the path integral. In the IR, a UV cutoff should not
induce any effects. Hence, it must fall off for small mo-
menta, with

Kα → 0 for
p2

k2
→ 0 . (40)

If both criteria are fulfilled, we can interpret Kα as a UV
cutoff for the Schwinger functional. Changing the renor-
malization scale k then induces a flow for the Schwinger
functional. This can be encoded in a FRG for the effec-
tive action, such as the Polchinski equation [36].

For many practical purposes, it is useful to consider a
flow equation for the quantum effective action instead of
the Schwinger functional. This can be achieved by in-
troducing an IR regulator into the Schwinger functional.
Such a regulator should induce a mass k2 for low IR
modes. Thus, for an IR regulator we require

Kα → k2 for p2/k2 → 0 . (41)

UV modes should be unaffected by an IR regulator, lead-
ing to the second condition that

Kα → 0 for p2/k2 → ∞ . (42)

The RG flow encoding the change of the effective action
when changing the RG scale is given by the Wetterich
equation [37–39]. In practical calculations, the Wetterich
flow often has favourable properties in terms of conver-
gence when compared to the Polchinski flow.

The RG equations for both, the Polshinski and the
Wetterich flow, are well-understood and can be applied
to perform practical computations. Here, we aim to un-
derstand the RG flow in terms of geometrical structures
provided by the Hessian manifold. For the most part, we
focus on the flow for the quantum effective action.
As discussed above, starting from the Schwinger func-

tional the Hessian manifold implies a natural dual func-
tional, which is given by the 2PI effective action in terms
of the variables ϕa and ∆α. To view this in terms of a
RG, we interpret ∆α as a functional of ϕa and Kα,

∆α = ∆α [ϕ,K] . (43)

The flow of the so-obtained k-dependent effective action
can be given in the implicit form [48]

∂tΓ =
δΓ

δ∆α
∂t∆

α = Kα∂t∆
α , (44)

where the t-derivative is understood as varying Kα while
keeping ϕa fixed. Due to this, (44) is only implicit since
additional information about the relation of ∆α to Kα

is required in order to close the equation. This can be
provided using the convexity of the effective action, as
described in App. B.
The RG is then a coordinate transformation for the 2PI

effective action. Keeping ϕa constant, different values for
the RG scale k imply different values for the two-point
function ∆α via (43). Thus, changing k and keeping ϕa

fixed leads to a vector field in configuration space which
encodes the RG evolution. Complementary to this vector
field there are hypersurfaces of constant RG scale k. Ev-
ery point on such a hypersurface is associated to the same
value for the source Kα but varies in ϕa. The vector field
generated by the RG evolution connects hypersurfaces
with different RG scales. Below, we will see that both of
these geometrical structures have a natural identification
in terms of the geometry of a Hessian manifold.

A. Renormalization Group as Geodesics

The basic idea to understand the RG in terms of geo-
metrical structures is to construct geodesics whose proper
time t is in a linear relation with the two-point sourceKα.
Then, starting from any point in configuration space with
given Kα, such a geodesic moves to a different point in
configuration space, changing the value of Kα linearly.
If we require the change of Kα to be constant along a

trajectory, we must have

dKα

dt
= const , (45)

where t is the proper time parameter of the trajectory.
The implications of this equation can be seen by using
Kα = δΓ

δ∆α and taking a second derivative of (45). Taking
note of (27) and (19), this yields the requirement

gαB

[
dPB

dt2
+ 2ΓB

CD

dPC

dt

dPD

dt

]
= 0 . (46)
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Recalling (22), we see that the factor of 2 in front of
the Levi–Civita Christoffel symbols ΓB

CD tells us that the
equation in the brackets is the geodesic equation for the
connection D̄.1 Thus, requiring the trajectory to have
constant change in Kα, such a trajectory must either be
a geodesic of the connection D̄, or the geodesic equation
must be fulfilled when multiplying with the metric.

In the following, we assume that the trajectory is in-
deed a solution for the D̄ geodesics. Thus,

dPA

dt2
+ 2ΓA

BC

dPB

dt

dPC

dt
= 0 . (47)

Any trajectory subject to (47) leads to a constant change

of Kα. The same holds equivalently for Ja, as both K̇α

and J̇a are conserved quantities along a D̄ geodesic. The
initial values for Kα and Ja as well as their derivatives
can be chosen as integration constants at an initial scale
of the geodesic.

The properties explained above are very useful when
thinking in terms of an RG evolution. In the following,
we will see how the D̄ geodesics can be used

• to construct surfaces of constant RG time.

• to generate an RG flow.

B. Surfaces of Constant RG Scale

Any trajectory within a hypersurface of constant RG
scale k must have the same value for the RG scale ev-
erywhere by definition. Thus, if we parametrize such
surfaces in terms of trajectories, we require that

dKα

dt
= 0 (48)

everywhere on such a trajectory. These trajectories are
found by taking the D̄ geodesics and imposing (48) as an
initial condition. Due to the properties of the D̄ connec-
tion, (48) is conserved along the whole geodesic. Surfaces
of constant Kα can then be constructed by viewing all D̄
geodesics with initial condition (48) together.

While the initial condition (48) is a requirement to lead
to constant Kα, the remaining initial conditions can be
used to parametrize the hypersurface. The value of Kα

specifies the RG scale k. The values for Ja and J̇a specify
the value of ϕa on the trajectory and how it changes
with the proper time parameter t. Note that the relation
between Ja and ϕa is Kα dependent and, in general, non-
linear.

Let us discuss in some more detail how trajectories
subject to (48) can be constructed within the coordi-
nate frame spanned by ϕa and ∆α. The first task is to

1 This result can also be obtained more directly by noting that
(46) implies a straight line in the affine coordinates of D̄. Thus,
it must be a geodesic of the D̄ connection.

FIG. 2. Surfaces of constant K are shown for the zero-
dimensional ϕ4 theory. Bottom lines show the surface at
K = 0 and upper lines at K = 1/4. Blue lines show the exact
result at second order in the coupling. Red dashed lines corre-
spond to the solution of numerically integrating the geodesic
equation.

translate (48) into the ϕa and ∆α frame such that it can
be used as an initial condition for the geodesic. Using
Kα = δΓ

δ∆α , we find

gαA
dPA

dt
= gαa

dϕa

dt
+ gαβ

d∆β

dt
= 0 . (49)

While (49) gives the initial condition to fulfil K̇α = 0,
the value for Kα associated with that trajectory has to
be obtained by evaluating

δΓ

δ∆α
= Kα . (50)

Since this is constant by construction, it is sufficient to
evaluate (50) at the initial point of the trajectory. To-
gether with the remaining initial conditions, the solutions
of (47) then allow us to parametrize complete surfaces of
constant Kα.
As an example for the considerations above, we con-

sider the zero-dimensional QFT of a scalar field ϕ with
a ϕ4 interaction. Zero-dimensional theories have proved
useful elsewhere for illustrating the properties of the ef-
fective action and the FRG [22, 47, 49–52]. The classical
action is given by

S =
1

2
ϕ2 +

λ

4!
ϕ4 . (51)

For this simple case, the Schwinger functional can be
computed explicitly as a perturbative expansion in λ,
giving

W[J,K] = ln

∫
dϕ e−S+Jϕ+Kϕ2

=
1

2

(
J2

K̃
− ln K̃ + ln(2π)

)
− λ

J4 + 6J2K̃ + 3K̃2

24K̃4
+O(λ2) ,

(52)
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where we have defined K̃ = 1− 2K. With this to hand,
all geometrical quantities and the effective action can be
given as an explicit perturbative expansion in λ as well.
To construct geodesics of the D̄ connection, we can

start by deriving expressions for ϕ and ∆ in terms of J
and K. These are obtained by taking derivatives of W
with respect to J and K, yielding

ϕ =
J

K̃
− λ

J3 + 3JK̃

6K̃4
+O(λ2) ,

∆ =
J2 + K̃

K̃2
−

λ
(
2J4 + 9J2K̃ + 3K̃2

)
6K̃5

+O(λ2) .

(53)

While this is the general relation for ϕ and ∆ in terms of
J and K, we can easily transform it into an expression
for a D̄ geodesic. For this, we note that D̄ geodesics are
straight lines in J and K. Thus, we must have

J = J0 + J̇0t ,

K =K0 + K̇0t ,
(54)

with J0, J̇0, K0, and K̇0 the open parameters (initial con-
ditions) of the geodesic. Note that these are not straight
lines anymore in the ϕ and ∆ coordinates. This is due
to the fact that the relationship between the sources and
expectation values is non-linear, see (53). Thus, the D̄
geodesics are straight lines in J and K, but not in ϕ and
∆.

While, for the simple case of a zero-dimensional QFT
field, we can explicitly obtain the relations between ϕ and
∆, the same equations can also be obtained by working
directly in the ϕ and ∆ coordinates following the geodesic
equation (47) with appropriate initial conditions. In our
example, these geodesic equations reduce to two coupled
differential equations for ϕ and ∆ of the form

0 = ϕ̈+ 2ϕ̇
2ϕϕ̇− ∆̇

∆− ϕ2

+ λ
[
−4ϕ2∆̇ϕ̇+ ϕ∆̇2 +

(
5ϕ3 −∆ϕ

)
ϕ̇2

]
+O(λ2) ,

0 = ∆̈ + 2∆̇
2ϕϕ̇− ∆̇

∆− ϕ2
− 2ϕ̇2+

λ
[
− 2ϕ

(
∆+ 3ϕ2

)
∆̇ϕ̇+

(
∆+ ϕ2

)
∆̇2

+
(
−4∆ϕ2 +∆2 + 11ϕ4

)
ϕ̇2

]
+O(λ2) .

(55)

It can be checked explicitly that the general solution is
given by (53), with (54). In more complicated theories
where analytical solutions are not available, such equa-
tions can equally well be solved using numerical integra-
tion once the initial conditions are specified.

To set the initial conditions, we note that the param-
eter K0 is given by the RG scale of the surface, and we
must choose K̇0 = 0 to ensure that the trajectory indeed
gives rise to a constant RG scale. The remaining initial

conditions J0 and J̇0 can be chosen arbitrarily as long as
J̇0 ̸= 0. While, in higher dimensions, these parametrize
different directions on a surface of constant RG scale,
in the case of a zero-dimensional QFT with one scalar
field, such surfaces are one dimensional. Thus, different
choices for J0 and J̇0 lead to the same trajectory.
In Fig. 2, we show RG surfaces at K = 0 and K = 1/4

with λ = 3/100. The blue lines show the known results
obtained at second order in λ, i.e., (53) with (54). The
dashed red line corresponds to the result of solving the
geodesic equation (47) with initial conditions set to fulfil
(49) and (50). Both lines fully agree up to higher-order
effects in the coupling, which become visible for large
values of ϕ.

C. RG Flow

In this section, we show how the RG evolution can be
implemented using the D̄ geodesics. The idea is very sim-
ilar to the construction of the previous section, however,
here we choose the derivative of Kα with respect to the
proper time to be non-vanishing and constant, i.e.,

dKα

dt
= Fα = const . (56)

With (56) as an initial condition, D̄ geodesics generate
an RG flow. Starting from any point where the regula-
tor takes the value Kα, this geodesic connects to a point
with the regulator equal toKα+tFα. Note that the value
for the one-point function ϕa is not conserved along this
trajectory and changes. This is because the D̄ geodesics
conserve J̇a and K̇α but not necessarily ϕ̇a or ϕa. Since
the relationship between Ja and ϕa is non-linear in gen-
eral, it is difficult to deduce general statements on the
variation of ϕa along a D̄ geodesic. However, the cru-
cial point is that the change of Kα along the geodesic
is independent of the position in configuration space. It
only depends on Kα at the initial point and the value for
the proper time. Hence, starting from any point on the
surface with regulator Kα, we must end up on a surface
with regulator Kα + tFα. Even though the value of ϕa

changes along the trajectory, we can reconstruct the full
surface at Kα + tFα by considering the whole surface at
Kα and evolving each point along the D̄ geodesic.
In practice, we can implement (56) as a condition in

the ϕa, ∆α coordinates as well. The initial condition (56)
translates to

gαb
dϕb

dt
+ gαβ

d∆β

dt
= Fα . (57)

One of ϕ̇b and ∆̇β can be chosen freely. We may choose
ϕ̇b = 0, however, note that this is only fulfilled at the
initial point of the D̄ geodesic and not for later proper
times. This is due to the fact that ϕ̇b = 0 is not a con-
served quantity along the D̄ geodesics.
Let us discuss the implementation of this idea for a

single scalar field in a zero-dimensional ϕ4 theory, i.e.,
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FIG. 3. The RG evolution as generated by D̄ geodesics is
shown for a zero-dimensional ϕ4 theory. The grey lines indi-
cate the surfaces of constant RG time at K = 0 and K = 1/4.
Red lines show D̄ geodesics evolving each point from K = 0
to one point on the K = 1/4 surface.

(51). Note that our considerations are readily extended
to more complicated fields, e.g., N scalar fields, using ap-
propriate indices in the following expressions. We take
F = 1 and ϕ̇ = 0 as initial conditions. The initial con-
dition for ∆̇ is inferred from (57). We then start from
a given surface at K = 0 on which ∆ is fixed as a func-
tion of ϕ. For each point on this surface, we construct a
geodesic and evolve it to proper time t = 1/4. This can
be done either numerically or analytically as a perturba-
tive expansion in the coupling.2 The result is shown in
Fig. 3. At the end of each trajectory, we end up with
K = 1/4 forming the surface of K = 1/4. Due to our
choice of initial conditions, the value for ϕ is almost con-
stant along the geodesics. However, small variations are
present when zoomed into the graph. These changes in
ϕ are not originating from neglecting higher orders in
the perturbative expansion. This can be seen from the
analytical solution of ϕ along this family of geodesics

ϕ = ϕini − λ
2t2ϕini

(1− 2t)2
+O

(
λ2

)
. (58)

Already at first order in the coupling, there is a non-
trivial t-dependence. Thanks to our chosen initial con-
dition, this starts at second order in t and the effect is
rather small. Note that the effect is absent altogether for
ϕini = 0.
Let us now switch back to the general case of a finite-

dimensional QFT. We might be wondering whether there
can be a trajectory with a parameter t such that the
derivative of the two-point source Kα by t is constant

2 To obtain analytical results, it is most convenient to work in
the {J , K} coordinates where the D̄ geodesics correspond to
straight lines. Using perturbative relations between the sources
and expectation values, we then obtain the geodesics in the {ϕ,
∆} frame.

along the trajectory and the derivative of the one-point
function ϕa vanishes for all t, i.e.,

dϕa

dt
= 0 . (59)

We can translate the latter into the source coordinates.
Using ϕa = δW

δJa
and gAB = δ2W

δJAδJB
, we have

gab
dJb
dt

+ gaβ
dKβ

dt
= 0 . (60)

Now, we use the second requirement of keeping K̇β =
Fβ = const along the trajectory. Thus, we must fulfil the
relation

gab
dJb
dt

= −gaβFβ . (61)

In general, there is no reason for this to have a solu-
tion with J̇b = const in the interacting case.3 Thus,
constructing a trajectory with K̇β = const and ϕ̇a = 0,

generally leads to J̈a ̸= 0, which means that such a tra-
jectory cannot be a geodesic of D̄, and (47) is violated.
However, the more general condition (46) must still be
fulfilled since it is a direct consequence for any trajectory
with K̇α = const. In fact, trajectories with the properties
(59) and (56) do exist. One way to find such trajectories
is by using the 2PI FRG [48, 50]. However, it is un-
clear how the geometrical meaning of those trajectories
is related to the Hessian manifold analysed here.

D. 1PI Effective Action

The discussion above shows that we can find geodesics
on the Hessian manifold introduced with the affine coor-
dinates (36) to implement an RG flow. However, these
geodesics do not keep the one-point function ϕa invariant.
Starting from a given point in the configuration space,
the RG flow will generally end up at a different value for
ϕa. Although we can formally define trajectories with a
constant change of Kα while keeping ϕa constant, their
interpretation in terms of geometric quantities of the Hes-
sian manifold as set up with (36) is unclear. As we will
show here, a geometrical interpretation of such trajecto-
ries can be provided by constructing a different Hessian
manifold starting from the 1PI effective action Γ[ϕ;K].4

Its natural variables are ϕa and Kα. This is the key
difference to the 2PI effective action introduced above.
The dependence on the two-point function ∆α has been
traded for a dependence on the two-point source Kα by
a Legendre transform; specifically,

Γ[ϕ;K] =Γ[ϕ,∆; ∅]−∆αKα

= −W[J,K] + Jaϕ
a .

(62)

3 We have explicitly checked that (61) is violated in a zero-
dimensional ϕ4 theory.

4 Note that this is the usual 1PI effective action in the presence of
a two-point source Kα.
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Instead of defining a Hessian manifold in the sense of
(36), we can now equally well define a Hessian mani-
fold with (62) as a starting point. In this case, the D
connection, which we call D1PI to avoid confusion with
the connection introduced above, is defined by the par-
tial derivatives in the {ϕa, Kα} frame, and the metric is
defined by the Hessian of Γ[ϕ;K] using the D1PI connec-
tion.

The construction (62) has the advantage that geodesics
of the resulting D1PI connection are straight lines in {ϕa,
Kα}. Thus,

ϕ̇a = const , K̇α = const . (63)

Implementing the RG using the same concepts as in
Sec.IVB and Sec.IVC, the RG flow induced by the D1PI

geodesics can be chosen to keep ϕa constant, while Kα

experiences a constant change. The price to pay for this
construction is a more involved relation to the Schwinger
functional. While the Schwinger functional of the Hes-
sian manifold in Sec. III is a potential for the metric, this
is not the case if we construct a Hessian manifold starting
from (62). The dual potential of (62) is given by the Leg-
endre transform with respect to all of its variables. The
variables dual to ϕa and Kα are found by the derivatives
of Γ[ϕ;K]

Ja =
δΓ[ϕ;K]

δϕa
, ∆̃α ≡ −∆α =

δΓ[ϕ;K]

δKα
. (64)

Employing the Legendre transform, we find the dual po-
tential to be given by

Γ[∆; J ] = −Γ[ϕ;K] +Kα∆̃
α + Jaϕ

a

= W[J,K] +Kα∆̃
α .

(65)

Due to the minus sign in the definition of ∆̃α in (64),
this is a Legendre transform of the Schwinger func-
tional. Thus, in contrast to the construction above, the
Schwinger functional does not arise as one of the po-
tentials for the Hessian manifold anymore, but only its
Legendre transform.

Despite the differences between the Hessian manifolds
constructed from (36) and using (62), the RG flows are
equivalent. In both cases we can construct surfaces with
Kα = const. Since such surfaces are uniquely given by a
value for Kα, they must be the same in both cases. The
RG flow between them, as induced by the geodesics of D̄
or D1PI only, differs in what variables are kept constant.
The former can generally not be chosen to keep ϕ̇a =
const (see (58)), while the latter does. However, the RGs
obtained from both are equivalent and contain the same
information.

V. CONCLUSIONS

In this work, we have implemented the non-
perturbative effective actions of quantum field theory by

means of the geometrical structures of Hessian manifolds.
By associating the metric of the configuration space with
the Hessian of the effective action, a natural relationship
between the Schwinger functional and the effective ac-
tion is established through dual potentials of the Hessian
structure. This duality extends to sources and i-point
functions, which arise as two sets of affine coordinates
related by a Legendre transform. The partial derivatives
of these affine coordinates establish two affine connec-
tions on the manifold.

By extending these insights to the FRG, working
within the 2PI formulation unveils novel interpretations
of the RG in terms of these geometric structures. The
origin of this lies in the fact that RG transformations in
this framework correspond to coordinate changes in con-
figuration space. Surfaces of constant RG scale manifest
as fixed-value surfaces for the two-point source. Since
the value for the two-point source is related to an affine
structure, geodesics can be constructed whose proper-
time parameters have specific properties with respect to
the RG scale. First, geodesics can be constructed that
keep the RG scale constant. These can be used to re-
construct whole surfaces of constant RG scale. Second,
geodesics can be found whose proper-time parameters
are in a one-to-one correspondence with the RG scale.
These can be used to implement RG transformations via
geodesics. Thus, we find that RG information is natu-
rally encoded in geodesics of the Hessian manifold of the
2PI effective action.

We leave for further work the generalisation of these
geodesic flows beyond the case of n = 2 and to higher di-
mensional configuration spaces, involving higher i-point
correlation functions.
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Appendix A: Hesse–Koszul Flow

In [42, 43], a geometrical flow for the metric was con-
structed, which preserves its Hessian property. This was
achieved using the second Koszul form

βab =
1

2

δ2

δϕaδϕb
ln det gcd =

1

2

δ2

δϕaδϕb
Tr ln gcd , (A1)

and the flow was defined by5

∂tgab = βab . (A2)

Commuting the functional derivatives with the functional
trace, we can write this flow in the form

βab = −1

2
gcd

δgde
δϕa

gef
δgfc
δϕb

+
1

2
gcd

δ2gcd
δϕaδϕb

. (A3)

This has some structural similarity with the flow of the
two-point function derived from the Wetterich equation

∂tΓk =
1

2
(∂tRk)ab G

ba , (A4)

with

Gab = gab +Rk,ab , (A5)

and Gab its inverse. Γk is the so-called 1PI effective aver-
age action [53]. Taking two functional derivatives, noting
that Rk is independent of ϕa, this gives

∂tgab =2 (∂tRk)cd G
de δGef

δϕa
Gfg δGgh

δϕb
Ghc

− (∂tRk)cd G
de δ2Gef

δϕaδϕb
Gfc .

(A6)

Note also that the expression for the one-loop effective
action is equivalent to the second Koszul form if we take
two functional derivatives.

Instead of Eq. (A2), we might also consider a flow
for the potential itself using the Monge–Ampére oper-
ator [43]

M[Γ] ≡ det gab . (A7)

The Hesse–Koszul flow is then represented as

∂tΓ =
1

2
lnM[Γ] =

1

2
Tr ln gab =

1

2
Tr ln

δΓ

δϕaδϕb
, (A8)

wherein we note the structural similarity to the one-loop
effective action

Γ(1) =
1

2
Tr ln

δS

δϕaδϕb
. (A9)

5 Compared to [42], this expression differs by a factor of 2, which
has been absorbed into the definition of the flow time t.

Appendix B: Closing the 2PI RG

In this appendix, we review the closure of the 2PI flow
equation based on convexity. We take Γ ≡ Γ[ϕ,∆; ∅] to
be understood as the 2PI effective action to avoid com-
plicating the notation.
If we assume that the configuration space is spanned

by the coordinates {Ja,Kα} and, alternatively, that we
can describe the same configuration space by the classical
fields {ϕa,∆α}, we can use the chain rule to derive

δab =
δϕa

δϕb
=

δϕa

δJc

δJc
δϕb

+
δϕa

δKγ

δKγ

δϕb

=
δ2W
δJaδJc

δ2Γ

δϕcδϕb
+

δ2W
δJaδKγ

δ2Γ

δ∆γδϕb
.

(B1)

Without the latter term, this is the standard relation
used in the derivation of the Wetterich equation. Here,
we need to combine this relation with other identities de-
rived from the remaining variables to close the equations.
With the notation introduced above, the convexity

conditions of the 2PI effective action can be concisely
expressed as

δAB =
δPA

δPB
=

δPA

δQC

δQC

δPB
=

δ2W
δQAδQC

δ2Γ

δPCδPB
. (B2)

Distinguishing one- and two-point objects, (B2) becomes
an operator-valued 2 × 2 matrix. From its four compo-
nents, we identify the four identities (first appearing in
endnote 11 of [44], see also [50])

δab =
δ2W
δJaδJc

δ2Γ

δϕcδϕb
+

δ2W
δJaδKγ

δ2Γ

δ∆γδϕb
,

δαβ =
δ2W

δKαδJc

δ2Γ

δϕcδ∆β
+

δ2W
δKαδKγ

δ2Γ

δ∆γδ∆β
,

0 =
δ2W

δKαδJc

δ2Γ

δϕcδϕb
+

δ2W
δKαδKγ

δ2Γ

δ∆γδϕb
,

0 =
δ2W
δJaδJc

δ2Γ

δϕcδ∆β
+

δ2W
δJaδKγ

δ2Γ

δ∆γδ∆β
.

(B3)

The first equation of (B3) is (B1). However, we might
prefer working directly with (B2).
To find an expression for ∆α and close the flow, we note

that the relation between the two-point function and the
Schwinger functional is

δ2W
δJaδJb

= ∆ab − ϕaϕb . (B4)

We can obtain an expression only involving Γ by noting
that, according to (B2),

δ2W
δQAδQB

= gAB , (B5)

with

gAB =
δ2Γ

δPAδPB
. (B6)



12

This implies,

∆ab − ϕaϕb = gab . (B7)

An explicit expression can be obtained by splitting the
capital Latin indices into one and two-point indices. We
then write (B5) as the inverse of (B6). This boils down to
the inversion of an operator valued 2×2 matrix. Inserting
this into (B2), we find

gab
[

δ2Γ

δϕbδϕc
− δ2Γ

δϕbδ∆δ

(
ξ−1

)δϵ δ2Γ

δ∆ϵδϕc

]
= δac , (B8)

ξαβ =
δ2Γ

δ∆αδ∆β
. (B9)

By using this additional identity, we can indeed close the
flow equation (44).

Taking a t-derivative of (B7) and using the chain rule,
we can derive the following expression involving the t-
derivative of the two-point function:[

1abcd −
δgab

δ∆cd

]
∂t∆

cd = 0 . (B10)

Thus, the t-derivative of the two-point function must be
an eigenvector of the operator in (B10) with vanishing
eigenvalue. Note that this does not fix the t-derivative of
the two-point function, and this is related to the fact that
we can choose different regulators implementing different
RG derivatives for the two-point function.

Appendix C: Commutation of Derivatives

When working with nPI effective actions and consider-
ing derivatives which keep different objects constant, care
should be taken when commuting partial derivatives. For
example, we can work in the natural variables ϕa and ∆α

of the 2PI effective action. Derivatives with respect to
those commute with each other,(

δ

δϕa

)
∆α

(
δ

δ∆α

)
ϕa

=

(
δ

δ∆α

)
ϕa

(
δ

δϕa

)
∆α

≡ δ2

δϕaδ∆α
,

(C1)

where we use brackets to denote explicitly which variables
are kept constant.

A less trivial example is encountered when including a
derivative by Kα that keeps Ja constant. Note that this
derivative encodes the RG derivative in the 2PI effective
action. The commutator of it with δ

δϕa arises, e.g. when
taking ϕa derivatives of the flow equation (44). It can be
shown that the commutator of both only vanishes if(

δ

δϕa

)
∆α

δ∆β

δKα

?
= 0 . (C2)

In general, this is not the case. For example, let us con-
sider a zero-dimensional case with ∆(ϕ,K) = ϕK2. Since
a ϕ derivative of ∆ with ∆ kept fixed is zero, we have(

∂

∂K

)
ϕ

(
∂∆

∂ϕ

)
∆

= 0 . (C3)

However, interchanging the derivatives yields(
∂

∂ϕ

)
∆

(
∂∆

∂K

)
ϕ

= K ̸= 0 . (C4)

Thus, (C2) is not fulfilled and the derivatives do not com-
mute, which we have shown explicitly. More generally, we
expect both derivatives to commute only for special re-
lationships between ∆, ϕ, and K. To make this point
clearer, we translate the condition (C2) to geometrical
objects. Using

Kα =
δΓ

δ∆α
, (C5)

we can derive(
δ∆α

δKβ

)
ϕ

=

(
δ2Γ

δ∆αδ∆β

)−1

. (C6)

Inserting this in (C2), we find(
δ2Γ

δ∆αδ∆β

)−1
δ3Γ

δ∆βδ∆γδϕa

(
δ2Γ

δ∆γδ∆δ

)−1
?
= 0 . (C7)

Assuming the invertibility of the metric in the ∆-∆ sec-
tor, (C2) is equivalent to the vanishing of a part of the
Amari–Chentsov tensor, i.e.,

Γ̂aαβ = 0 . (C8)

While this identity is fulfilled for free QFTs, generic
QFTs will violate (C8) and lead to a non-commutativity
of derivatives through (C2). This subtlety must be taken
into account when applying ϕa derivatives on (44).

[1] G. A. Vilkovisky, The unique effective action in quantum
field theory, Nucl. Phys. B 234, 125 (1984).

[2] B. S. DeWitt, The effective action, in Les Houches School
of Theoretical Physics: Architecture of Fundamental In-
teractions at Short Distances (1987) pp. 1023–1058.

[3] K. Finn, S. Karamitsos, and A. Pilaftsis, Frame covari-
ance in quantum gravity, Phys. Rev. D 102, 045014
(2020), arXiv:1910.06661 [hep-th].

[4] K. Finn, S. Karamitsos, and A. Pilaftsis, Frame covariant
formalism for fermionic theories, Eur. Phys. J. C 81, 572

https://doi.org/10.1016/0550-3213(84)90228-1
https://doi.org/10.1103/PhysRevD.102.045014
https://doi.org/10.1103/PhysRevD.102.045014
https://arxiv.org/abs/1910.06661
https://doi.org/10.1140/epjc/s10052-021-09360-w


13

(2021), arXiv:2006.05831 [hep-th].
[5] V. Gattus and A. Pilaftsis, Minimal supergeometric

quantum field theories, Phys. Lett. B 846, 138234 (2023),
arXiv:2307.01126 [hep-th].

[6] T. Cohen, N. Craig, X. Lu, and D. Sutherland, On-shell
covariance of quantum field theory amplitudes, Phys.
Rev. Lett. 130, 041603 (2023), arXiv:2202.06965 [hep-
th].

[7] G. Ruppeiner, Thermodynamics: A Riemannian geomet-
ric model, Physical Review A 20, 1608 (1979).

[8] F. Weinhold, Metric geometry of equilibrium thermo-
dynamics, The Journal of Chemical Physics 63, 2479
(2008).

[9] F. Weinhold, Metric geometry of equilibrium thermody-
namics. II. Scaling, homogeneity, and generalized Gibbs–
Duhem relations, The Journal of Chemical Physics 63,
2484 (2008).

[10] F. Weinhold, Metric geometry of equilibrium thermo-
dynamics. III. Elementary formal structure of a vector-
algebraic representation of equilibrium thermodynamics,
The Journal of Chemical Physics 63, 2488 (2008).

[11] F. Weinhold, Metric geometry of equilibrium thermo-
dynamics. IV. Vector-algebraic evaluation of thermody-
namic derivatives, The Journal of Chemical Physics 63,
2496 (2008).

[12] L. Diosi, G. Forgacs, B. Lukacs, and H. L. Frisch, Metri-
cization of thermodynamic state space and the renormal-
ization group, Phys. Rev. A 29, 3343 (1984).

[13] S. Floerchinger, Information geometry of Euclidean
quantum fields (2023), arXiv:2303.04081 [hep-th].

[14] A. B. Zamolodchikov, Irreversibility of the flux of the
renormalization group in a 2D field theory, JETP Lett.
43, 730 (1986).

[15] B. P. Dolan, Renormalization group flow and geodesics
in the O(N) model for large N , Nucl. Phys. B 528, 553
(1998), arXiv:hep-th/9702156.

[16] D. C. Brody and A. Ritz, On the symmetry of real
space renormalization, Nucl. Phys. B 522, 588 (1998),
arXiv:hep-th/9709175.

[17] B. P. Dolan and A. Lewis, Renormalization group flow
and parallel transport with nonmetric compatible con-
nections, Phys. Lett. B 460, 302 (1999), arXiv:hep-
th/9904119.

[18] S. M. Apenko, Information theory and renormalization
group flows, Physica A 391, 62 (2012), arXiv:0910.2097
[cond-mat.stat-mech].
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[25] M. Lässig, Geometry of the renormalization group with
an application in two-dimensions, Nucl. Phys. B 334, 652
(1990).

[26] B. P. Dolan, A geometrical interpretation of renormaliza-
tion group flow, International Journal of Modern Physics
A 09, 1261 (1994).

[27] S.-I. Amari, Theory of information spaces: A differential
geometrical foundation of statistics, Post RAAG Reports
(1980).

[28] S.-I. Amari, Differential geometry of curved exponential
families-curvatures and information loss, The Annals of
Statistics 10, 357 (1982).

[29] N. N. Chentsov, Statistical decision rules and optimal
inference, Monog 53 (1982).

[30] F. Nielsen, An elementary introduction to information
geometry, Entropy 22, 1100 (2020), arXiv:1808.08271
[cs.LG].

[31] S. Floerchinger, Exact flow equation for the diver-
gence functional, Phys. Lett. B 846, 138244 (2023),
arXiv:2303.04082 [hep-th].

[32] J.-L. Koszul, Domaines bornés homogenes et orbites de
groupes de transformations affines, Bulletin de la Société
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