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ABSTRACT 
Even though mortality differentials by socio-economic status and educational attainment level have been widely 
examined, this research is often limited to developed countries and recent years. This is primarily due to the absence 
of consistently good-quality inherent data. Systematic studies with a broad geographical and temporal spectrum that 
engage with the link between educational attainment and mortality are lacking. In this paper, we propose a mortality 
rates reconstruction model based on multiple patchy data sources, and provide mortality rates by level of education. 
The proposed model is a hierarchical Bayesian model that combines the strengths of multiple sources in order to 
disaggregate mortality rates by time periods, age groups, sex and educational attainment. We apply the model in a 
case study that includes 13 countries across South-East Europe, Western Asia and North Africa, and calculate 
education-specific mortality rates for five-year age groups starting at age 15 for the 1980-2015 time period. Furthermore, 
we evaluate the model’s performance relying on standard convergence indicators and trace plots, and validate our 
estimates via posterior predictive checks. This study contributes to the literature by proposing a novel methodology to 
enhance the research on the relationship between education and adult mortality. It addresses the lack of education-
specific mortality differentials by providing a flexible method for their estimation. 
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1 INTRODUCTION 

There is a growing body of literature showing that education has a direct impact on mortality (Baker et al. 2011). 
Although this relationship has been reported globally (Pradhan et al. 2017; Gakidou et al. 2010; Byhoff et al. 2017), 
nationally (Montez, Hummer, and Hayward 2012; Krueger et al. 2015) and sub-nationally (Bora, Raushan, and Lutz 
2018; Sasson and Hayward 2019), the research to date has focused on specific sub-populations only (e.g., sub-groups 
of the adult population, infants), and has not addressed the systematic reconstruction of age-specific mortality rates 
for adults. Moreover, most previous studies have analysed the association between education and mortality, or have 
quantified the positive effects of education on a population’s health and survival rates, at aggregate levels only. The 
primary obstacle that has constrained the growth of the existing research in terms of both the spatial and the historical 
scope is the incompleteness of mortality data by educational attainment. To the best of our knowledge, there are no 
databases or collections of data sets that provide mortality rates or counts of deaths by educational attainment for a 
large group of countries (including developing countries) and over a long time period (more than 15 years). 
Nonetheless, such data, analysed either in isolation or in combination with other indicators, are needed (1) to 
understand how the interaction of education and mortality evolved for sub-populations in different countries; (2) to 
extend our knowledge of socio-economic disparities in mortality to a broader geography and to longer time periods; 
and (3) to provide more accurate baseline estimates to project multidimensional populations. 

Mortality data broken down by educational attainment have been collected for recent periods only, and typically for a 
few high-income countries in the Global North. This pattern is obvious in Europe, where this information is only 
available from a few national statistical offices (see Figure 1, right panel), in addition to from the recent Eurostat data 
collection (Eurostat 2022). High-quality data are rarely available even for broad age groups. For countries in the Global 
South, which often lack valid civil registration systems, the main sources of demographic data are nationally 
representative surveys such as the Demographic and Health Surveys (DHS) (USAID 2022). However, those surveys 
rarely collect information on adult mortality. Existing estimates rely on indirect estimates such as life tables and the 
sisterhood method for maternal deaths (Graham, Brass, and Snow 1989; United Nations 1983). Globally, the main 
source of comparable mortality data is the United Nations World Population Prospects (UN WPP) (United Nations 
2022). It provides population counts, vital rates estimates and projections between 1950 and 2100 for 235 countries or 
areas. However, these estimates are not broken down by levels of education. The most comprehensive systematically 
verified source of information on population counts and consistent demographic rates (e.g., total fertility rate, age-
specific survival ratio) disaggregated by educational attainment is the Data Explorer of the Wittgenstein Centre for 
Demography and Human Capital (Wittgenstein Centre Data Explorer 2018). While data concerning survival rates 
based on educational achievement levels are available for the reference period (2015-2020) and for future predictions 
under various Shared Socioeconomic Pathways (SSPs) scenarios, the information on survival ratios by educational 
attainment is limited to assumptions for future projections under different Shared Socioeconomic Pathways (SSPs) 
scenarios (Wittgenstein Centre Data Explorer 2018). 
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FIGURE 1: NUMBER OF AGE- AND SEX-SPECIFIC LIFE TABLES AVAILABLE IN THE EUROSTAT DATABASE, WITHOUT 
(LEFT PANEL) AND WITH (RIGHT PANEL) THE EDUCATIONAL ATTAINMENT ATTRIBUTE 

Between 1960 and 2018                                                                           Between 2007 and 2017 

 
 

Source: 
Own calculations based on Eurostat data (Eurostat 2022). 
 
 
In this paper, we propose a probabilistic hierarchical model to estimate past mortality rates by five-year age groups 
and by educational levels between the years 1980 and 2015. We apply the model to a case study that integrates data 
from Eurostat, DHS and UN WPP. Our contribution is two-fold. First, we propose a method that fills the gap in the 
literature on reconstructing multi-dimensional mortality rates with a systematic procedure for constructing inputs 
when data are missing. Second, we apply the method and reconstruct mortality rates by educational levels for a set of 
countries, including measures of uncertainty that take into account the quality of the input data. 
 
 

2 BACKGROUND 
 
Education is primarily acquired at younger ages, and is a fundamental determinant of individual and inter-
generational social mobility that is closely linked to people’s health (Avison 2005). For this reason, the level of education 
has often been used as an indicator of socio-economic status, occupation (Davey Smith et al. 1998; Luy et al. 2019) or 
both (Luy, Giulio, and Caselli 2011). A number of studies have examined the connection between educational 
attainment, health outcomes and mortality (see Baker et al. (2011) for a detailed review). All of these studies, 
irrespective of their geographical and temporal scale, found that higher educated individuals live longer and generally 
healthier lives. Previous studies have also identified connections between educational attainment and health risks, such 
as alcohol consumption (Murakami and Hashimoto 2019; Rosoff et al. 2019), smoking (Assari and Mistry 2018; 
Tomioka, Kurumatani, and Saeki 2020) and an unbalanced diet (Fard et al. 2021). In addition, several studies have 
postulated a connection between cause of death and level of education in numerous countries (Malamud, Mitrut, and 
Pop-Eleches 2018; Clark and Royer 2013; Tjepkema, Wilkins, and Long 2012; Gavurova, Vagasova, and Grof 2017), or 
for specific age groups (Gakidou et al. 2010). Other studies have evaluated the association between education and 
health and mortality, and the causal relationship between them (e.g., Zimmerman and Woolf 2014; Avison 2005). 
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Furthermore, Luy et al. (2019) examined the effects of structural changes in populations due to increasing educational 
levels. This investigation uncovered strong associations between education and the overall health of a population, 
which suggests that educational policies might even be regarded as indirect health policies. Moreover, Lutz and Kebede 
(2018) demonstrated a strong and consistent link between educational attainment and life expectancy improvements 
as well as reductions in child mortality, with the beneficial effect of education being even more significant than that of 
GDP per capita. The analysis of populations and their characteristics broken down by various attributes (level of 
education, marital status, etc.) is often undertaken via multi-state analysis (Keyfitz 1980; Rogers 1980). In demographic 
data reconstructions, the methodological approaches used in multi-state analysis have focused primarily on the study 
of population sizes and compositions (Lutz et al. 2007; Goujon et al. 2016; Wheldon et al. 2013a), rather than of 
demographic rates. As was mentioned above, the most comprehensive multi-state analysis that has addressed the 
relationship between vital rates, population sizes and educational levels stemmed from Lutz and colleagues (2018), but 
it did not estimate past mortality rates by education, and it focused only on future scenarios. Moreover, this study 
relied on several scenarios that did not include any assessment of uncertainty regarding mortality differences by 
educational attainment. Thus, although previous research has established and investigated the connection between 
education and mortality from numerous perspectives, the data describing this relationship in the past are still limited. 
 
Population and vital rates reconstruction is a key research topic in demography (see Wheldon et al. (2013a) for an 
overview). Methods of reconstruction have been developed mainly in two directions, which are distinguished by 
whether they move backwards or forwards in time. The first approach, demographic back projection, attempts to revert 
the relationships between population size and composition and mortality, fertility and migration rates based on the 
Cohort Components Method for Population Projections (CCMPP). Pioneering work on this subject was carried out by 
Wrigley and Schofield (1983). More recently, this approach was employed systematically for multi-state population 
reconstructions by Lutz and colleagues (2007) and by Goujon and colleagues (2016). In the latest work using this 
approach, back projections are available for the 1950-2015 period in five-year steps for 201 countries and six levels of 
education (Lutz et al. 2018; Speringer et al. 2021).   
 
The second approach, inverse projection, was first introduced by Lee (1974), with subsequent work (Lee 1985), 
addressing certain technical inconsistencies associated with the CCMPP inversion used in back projection. Although 
the results obtained with both these techniques were validated using historical data, they are plainly deterministic; 
therefore, uncertainties related to data scarcity and quality and the underlying assumptions are not included in the 
modelling design, and are not embodied in the results. 
 
This issue was explored by another stream of research using Bayesian inference to simultaneously reconstruct 
population sizes and demographic rates (mortality and fertility rates and net migration flows) by combining 
incomplete data sources. Measurement errors were incorporated in a method developed by Wheldon et al. (2013b) to 
estimate missing population counts using fragmentary data. In that paper, the model was employed in a case study 
that aimed to reconstruct the female population of Burkina Faso from 1960 to 2005. This reconstruction approach was 
tested in different data quality environments, and was extended to countries that do not have regular censuses 
(Wheldon et al. 2016). It was subsequently shown that this approach can be employed for two-sex populations as well, 
and that probabilistic estimates of various sex ratio measures can be obtained (Wheldon et al. 2015). While providing 
results that take into account the possible uncertainties in the modelling process, this method is limited to analyses of 
age and sex structures. It has not been applied to multi-state populations, e.g., to populations disaggregated by the 
level of education. 
 
Additionally, Bayesian hierarchical models have been utilised to independently reconstruct fertility rates, distinct from 
other population and vital rates. For instance, Alkema et al. (2012) accounted for deficiencies in data sources to estimate 
total fertility rates (TFR) by combining and adequately weighting observations from DHS, World Fertility Surveys and 
other surveys. They produced estimates for West Africa, and thus for a context characterised by data scarcity. In an 
alternative approach, Schmertmann and Hauer (2019) combined information regarding the age-sex population 
structure and the child-to-woman ratio to infer the TFR. 
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In the study of migration, the absence of data or the fragmented nature of the data is a more pronounced problem (see 
Willekens et al. (2016) for a detailed review). Recently, Bayesian hierarchical models have been developed that aim to 
integrate various types of migration data (Raymer et al. 2013; Wiśniowski 2017; Gendronneau et al. 2019; Wiśniowski 
2021). The statistical framework proposed in these works relies on correcting measurement errors and imputing 
missing information, and it permits the inclusion of information derived from social media. 
 
Finally, Bayesian approaches have been employed to estimate mortality rates. Alkema and New (2014) and Alexander 
and Alkema (2018) dealt with limited data availability and data quality issues in developing countries to estimate 
under-five and neonatal mortality rates, respectively. In these works, the authors used Bayesian regression spline 
models. They took into account data quality issues and various sources of error, as well as the considerable differences 
in data availability across various countries. Their Bayesian hierarchical models permit the borrowing of information 
from multiple countries and over time, and are designed to prevent the over-representation of countries with better 
data, by adjusting the predictive intervals according to the amount and the quality of the available information. A 
similar approach based on borrowing from other data sources was proposed in Alexander, Zagheni and Barbieri (2017). 
They addressed the problem of sample sizes in sub-populations (the population of the U.S. split up at the county level) 
by sharing information across different geographical levels. They did so by using the state-level mortality profiles to 
inform their estimates of the mortality rates in counties (small areas) via singular value decomposition (SVD). The SVD 
approach allows for the imputation of missing observations and the correction of measurement irregularities in small-
area data. 
 
The aim of this research is to develop a methodology to estimate age- and education-specific mortality rates that 
integrates data from various sources and produces estimates with measures of uncertainty that take into account 
variability in data quality. Building upon the above-described literature, we propose a multi-dimensional hierarchical 
Bayesian model. It integrates the available population and mortality data drawn from multiple sources, exploits their 
strengths and compensates for their limitations by borrowing information over time and across countries through its 
hierarchical structure. The model also takes into account the uncertainty arising from the variability of the quality and 
the precision of the data, and the uncertainty about the model parameters. The model generates age-specific mortality 
rates for various countries (five-year age groups starting at age 15) by two levels of education: (1) completed primary 
education or less and (2) more than completed primary education. 
 
Our model is similar to that developed by Alexander, Zagheni and Barbieri (2017), as it also uses SVD to extract 
information on mortality age profiles. However, our objective is to reconstruct mortality rates by level of education. 
Hence, the SVD was performed on the estimates of age- and education-specific mortality rates in order to borrow 
information from various countries. The year- and education-specific mortality rates are then shaped by additional 
inputs. These are the estimated age-year-country-education-specific mortality rates for which the estimation requires 
the interaction of several data sources.  
 
The general reconstruction model specification is outlined in section 2. The case study application is presented in 
section 3. In particular, the preparation of two sets of input data – namely, the age- and education-specific principal 
components and the initial age, year- and education-specific log-mortality rates – is described sub-section 3.2.2. This 
process, which requires the combining of information from different data sources, is explained in detail in sub-section 
3.2, and is illustrated in Figure 4. While the proposed methodology can be extended to different geographical regions 
and periods, the input preparation step is specific to our case study, and may be different for other applications. The 
model validation, performance analysis and results are summarised in section 4. Finally, our conclusions are presented 
in section 5.  
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3 THE RECONSTRUCTION MODEL SETUP 

In this section, we introduce the general modelling framework. It is presented in Figure 2, which shows that we are 
reconstructing unknown (latent) mortality rates, 𝑚!,#,$,%, that are specific to age group (a), year (t), country (c) and level 
of education (e), by using a variety of inputs and relying on prior distributions. 

In the context of Bayesian modelling, priors are our initial beliefs about the model parameters before the data have 
been observed. They help us to incorporate prior knowledge into the analysis by influencing the posterior distribution, 
which represents our updated beliefs after the data observation. Priors can be informative, meaning that they can 
strongly guide inference by capturing substantial prior knowledge. Alternatively, priors can weakly guide inference 
or be non-informative, allowing the data to dominate, and resulting in less biased parameter estimates. Priors can play 
a crucial role in striking a balance between relying on prior information and on observed data, and can thus allow for 
a coherent and flexible approach to statistical inference in scientific research. The general formulation and the 
formulation used in the case study are not sex-specific, and have been developed for the female population. However, 
the same modelling technique can be used to produce estimates for the male population or the total population. 
Notably, the data sources employed in this study do not indicate any potential quality degradation for the male 
population, and no additional or different step would be required to apply this modelling technique to the male 
population. 

FIGURE 2: THE MODEL’S GRAPHICAL REPRESENTATION 
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Graphical notation:  
Red Squares: quantities estimated outside of the model that are used as data; Orange Squares: quantities estimated outside of the model 
that are used as hyper-parameters; Circles: random variables. 

In our model, we first assume that the externally estimated log-mortality rates, log	𝑚!,#,$,%
∗, are normally distributed: 

log	𝑚!,#,$,%
∗ ∼ 𝒩(log𝑚!,#,$,% , 𝜎'()*∗ )        (1)

with an expectation being a key quantity of interest, that is, unobserved (reconstructed) log-mortality rates log	𝑚!,#,$,%. 
Throughout the paper, asterisk * is used in the superscript to denote a fixed quantity rather than a model parameter. 
The initial rates are broken down by age and education, and need to be estimated for each year and country. 
Consequently, uncertainty due to modelling or due to measurement errors in data sources needs to be taken into 
account. In equation 1, parameter 𝜎'()*∗  denotes the standard deviation reflecting the uncertainty around log(𝑚!,#,$,%) 
that can be derived from one or more data sources. 

Next, the unobserved mortality rates are reconstructed by using information derived from various data sources (Eq. 
2). In this reconstruction, we assume that the reconstructed mortality rates are informed by three age- and education-
specific principal components )𝑌!,%,+ , 𝑗 ∈ {1,2,3}3 that provide a time-independent basic structure of the mortality 
curves together with their time-dependent loads (𝛽!,#,%,+), and a set of random effects: 

log𝑚!,#,$,% ∼ 𝒩+, 𝛽!,#,%,+ ∗ 𝑌!,%,+ +	𝑢!,$,% + 𝑣#,% ,
,

+-.
	𝜎/$0∗ 3        (2)

The random effects denoted as 𝑢!,$,%	capture deviations from the education-specific profiles described by the principal 
components for each country (Eq. 3), and are informed by the data through weakly informative uniformly distributed 
hierarchical priors for their variance 𝜎!,%,  (Eq. 4): 

𝑢!,$,% ∼ 𝒩40, 𝜎!,%1 6        (3)

	𝜎!,%1 ∼ 𝒰[0,40] 
       (4)

Standard deviation 𝜎-$.∗  accounts for the potential variation resulting from the selection of the curves1 employed in the 
SVD, which are used to derive principal components. Furthermore in Equation 2, we assume that random effects 𝑣#,% 
depend on the available data through a hyperparameter 𝜇/, 

𝑣#,% 	~	𝒩40, 𝜇2	#,%6	       (5)

The mean of the normal distribution in Equation 2 is derived from an expansion of the principal components structure 
outlined in Alexander, Zagheni and Barbieri (2017). The most notable difference from the original formulation is the 
education-specific formulation of the principal components. We have chosen to use this specification because the 
mortality profiles differ for various educational attainments. Aside from that, we follow the specification of the 
hierarchical prior distribution for the factor loading (Eq. 5), as in Alexander, Zagheni and Barbieri (2017) (Eqs. 6-9): 

1 Hereinafter, a mortality curve refers to an age-specific mortality profile. 
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𝛽!,#,%,+ ∼ 𝒩=𝜇#,%,+
4 , 𝜎#,%,+

4 >       (6)

𝜎#,%,+
4 ∼ 𝒰[0,40] (7)

?
𝜇#,%,+
4 ∼ 𝒩40, 𝜎%,+

5 6

𝜇#,%,+
4 ∼ 𝒩=2 ∗ 𝜇#6.,%,+

4 − 𝜇#67,%,+
4 , 𝜎%,+

5 >

       (8) 

       (9)

𝜎%,+
5 ∼ 𝒰[0,40]      (10)

Where 2 ∗ 𝜇#01,%,+
2 − 𝜇#03,%,+

2  denotes a random walk specification of the time effects over time. The priors for the variance
parameters are weakly informative, leaving the posteriors unconstrained and leveraging the data to shape the posterior 
distribution. 

4 CASE STUDY AND DATA 
4.1 CASE STUDY SETTING 
In our case study, we apply our model to a group of countries, which have been selected to represent a wide range of 
geographical locations, socio-economic development levels, and levels of data quality and availability. The countries 
have been chosen in a supplementary step of the reconstruction procedure, which ensures the efficient borrowing of 
information across countries and over time. The case study is exclusively focused on the female population. However, 
it is important to note that the same methodology can be applied to the male population or to the total population of 
the included countries. 

In order to demonstrate the borrowing of information between Eurostat and DHS, we have selected a macro-region 
comprising countries in Southern Europe, Western Asia and Northern Africa. By employing a hierarchical clustering 
algorithm (Nielsen 2016), the countries within this macro-region have been arranged into five clusters. Each cluster 
contains countries that have similarities, as measured through variables such as socio-economic status, mortality and 
schooling trends. Details of the geographical setting and the clustering procedure are presented in Appendix A-1. 
Figure 3 shows the countries included in our case study and the number of DHS waves available for each of them. In 
the rest of this paper, we focus on the female population for the countries belonging to cluster 1, which are Albania 
(ALB), Armenia (ARM), Azerbaijan (AZE), Bosnia and Herzegovina (BIH), Egypt (EGY), Georgia (GEO), Jordan (JOR), 
Lebanon (LBN), Montenegro (MNE), North Macedonia (MKD), State of Palestine (PSE), Tunisia (TUN) and Turkey 
(TUR). These countries have a noteworthy range of data availability in relation to DHS, and are distributed across 



10 

various geographical locations within the group of countries comprising our study region. The same analysis can be 
replicated for the other clusters, as well as for the male population. 

FIGURE 3: CLUSTERING RESULTS AND INFORMATION ABOUT DHS DATA AVAILABILITY FOR CLUSTER 1 

Source:  
Authors’ own calculations and DHS. 

Note:  
Solid colours represent the availability of DHS rounds or Eurostat data. More information about the DHS data is available in Appendix 
A-6.

4.2 DATA SOURCES AND MODEL INPUTS 
Given the scarcity of data on mortality disaggregated by level of education, such as death counts or mortality rates, we 
borrowed and combined information from various sources. Considering the systematic nature of our approach and 
our desire to ensure replicability in different country clusters, we have used the data sources that are available for 
different regions of the world. The Bayesian inferential framework facilitates the data integration in our study, while 
taking into account possible concerns about their quality and the uncertainty generated by their integration. 

The two main data inputs for our model are the age- and education-specific principal components and the age-, year- 
and education-specific log-mortality rates. We schematically describe the construction of inputs, starting from the data 
sources until the principal components, 𝑌!,%,+, and the multi-dimensional log-mortality rates (log𝑚!,$,#,%

∗ ). Figure 4 
depicts the data sources used in our case study and a schematic approach to their integration to generate input to the 
model.   
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FIGURE 4: THE INPUT CONSTRUCTION SCHEME 

Note:  
This scheme presents a schematic workflow for the construction of the model’s inputs. The different components are visualised as 
follows: 
Purple Squares: data sources; 
Green Squares: uncertainty estimations and intermediate estimation steps; 
Red Squares: estimated inputs; 
Green Oval: additional model for input estimation. 

4.2.1 DATA SOURCES 

For our case study, the data sources and the information taken from them include: 

1. Eurostat Database: life expectancy by age, sex and level of education for 19 countries2, between 2007 and 2017
(Eurostat 2021).

2. United Nations World Population Prospects (UN WPP): mortality rates by age, sex, period and country. These
are collected for the Cluster 1 countries, and are available for five-year intervals from 1980 to 2015 (United
Nations 2022).

3. Demographic and Health Surveys (DHS): infant mortality rates by mother’s level of education (USAID 2022).
A detailed description of the DHS data is presented in Appendix A-6.

4. Wittgenstein Centre for Demography and Global Human Capital (WIC): population counts by five-year age
group, sex, country, five-year period and educational attainment, and mean years of schooling for the
population aged 15+ by sex, country and period (Wittgenstein Centre Data Explorer (WCDE) 2018).

5. United Nations Educational, Scientific and Cultural Organization (UNESCO): the duration of study cycles in
different countries (e.g., for Georgia, six years for primary education and a further six years for secondary
education) (UNESCO Institute for Statistics (UIS) (2023)).

2 Bulgaria, Croatia, Czechia, Denmark, Estonia, Finland, Greece, Hungary, Italy, Malta, Norway, Poland, Portugal, 
Romania, Serbia, Slovakia, Slovenia, Sweden, Turkey. 
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6. World Bank Data Base: multiple indicators regarding education, mortality and health at the national level.
These indicators have been employed to cluster countries in the initial step (see section 3.1) (The World Bank
2022).

4.2.2 MODEL INPUTS 

Considering the temporal coverage of the DHS waves and the recall period of 10 years3 before each survey date, we 
focus on the 1980-2015 period. Here we explain the key assumptions and methodological steps for the construction of 
the inputs: that is, the variables with an asterisk ∗ in Figures 2 and 4, which are employed either as hyperparameters 
defining the distributions or as data informing them. A detailed explanation of the procedure for the estimation of 
other necessary quantities – i.e., the reconstruction curves and the mortality rates for the 15-19 age group – can be found 
in Appendices A-2 and A-3, and the inputs are described in more detail in Appendix A-3. Consistent with the notation 
introduced in section 2 in this section, we introduce an additional notation. Superscript UN is used for quantities that 
stem from the UN WPP and UNESCO data, while 𝐿𝑜𝑔𝐿𝑖𝑛 denotes the outputs from the Bayesian log-linear model that 
is used to estimate the log-mortality rates for the 15-19 age group. Superscript DHS marks the quantities obtained from 
the DHS data. The inputs are summarised as follows: 

1. log𝑚!,$,#,%: log-mortality rates resulting from the application of the region-specific reconstruction curves to
the estimated starting points log𝑚#,$,%

14015	∗, which is the log-mortality rate for 15-19 age group resulting from
the log-linear model estimation (Appendix A-2). The reconstruction curves are obtained following a
procedure developed by Sauerberg (2021). More specifically, log𝑚!,$,#,%

∗ 	are based on data stemming from 18
European countries, which we have grouped into four regions4. In our case study, we use the reconstruction
curves for Central-Southern Europe (see Figure A-5 and Appendix A3.2), given the geographical location of
the countries in cluster 1. These profiles are applied to the log-mortality rates for the 15-19 age group by
mother’s level of education, which are obtained via Bayesian log-linear modelling (for details, see Appendix
A-2). Then, using the WIC and UN WPP data, we ensure that the results are coherent with the aggregated
mortality rates. We obtain log-mortality rates for all 13 countries in cluster 1. These rates are the key inputs
for disaggregating mortality schedules by the level of education, and rely on multiple sources: DHS, Eurostat,
UN WPP and WIC (see Figure 4).

In Figure 5, we present the inputs for the year 1980 for all countries in our case study. As shown in the figure, 
our reconstruction method defines sets of mortality profiles that are country- and year-specific. Utilising the 
complete mortality schedules, we can harness the information provided by UN WPP as the foundational 
framework for our reconstruction. By displaying the total mortality rates in one figure, we demonstrate that 
our method effectively exploits the information on population size by period and level of education. As 
expected, the mortality profiles referring to the most represented level of education in the population are those 
that are most similar to the total profile (for population composition, see Figure A-11 in Appendix A-7). For 
example, Tunisia’s mortality curve is very close to the curve for the Tunisian population with no or primary 
education, who make up a large majority of the country’s total population. Our model takes the uncertainty 
of this input construction into account. We present details of the construction of 𝑚!,#,$,%

∗  in Appendix A-3. 

3 The values provided by DHS are derived from inquiries that solicit information pertaining to both the current year and the preceding 
decade from the date of survey administration.
6 North: DNK, EST, FIN, NOR, SWE. South: ITA, GRC, PRT, MLT. Central East: BGR, HUN, POL, ROU, SVN, SVK. Central South: 
SRB, HRV, TUR.
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2. 𝑌!,%,+∗ : principal components extracted from the collection of mortality rates referring to the relevant time span
and region. We utilise female population life tables from the UN WPP database for the case study countries
for the 1980-2015 period. We combine these data with information from the WIC Data Explorer on mean years
of schooling and primary education duration in years from UNESCO to separate the mortality curves into
two groups. One group comprises year-country combinations in which the average years of schooling exceed
the duration of primary school (country-specific), and the other group includes instances in which the average
years of schooling fall below this threshold. Because the information is available for different time intervals,
we performed one-year interval interpolations of the values prior to this step, which resulted in datasets that
could be combined. The principal components were obtained via SVD of these two distinct collections of
education-specific (log-)mortality curves to effectively represent their key characteristics. Essentially, age-
specific mortality rates over time can be decomposed into a linear combination of principal components. The
approach is conceptually similar to the Lee-Carter approach (Lee and Carter 1992). In our case, the principal
components depict how the log-mortality curves develop in a given set of countries (Cluster 1) over a specified
time interval (1980-2015) according to the estimated average level of education. Further details of their
derivation can be found in Appendix A-4.

3. 𝜎!,%78∗: standard deviations derived from the estimated distribution of age- and education-specific log-
mortality rates obtained through the estimation steps performed for the 𝑌!,%,+∗  (Appendix A-4).

4. 𝜎#,$,%9:;∗: standard deviations obtained from the confidence intervals published by DHS concerning estimates of
infant mortality by mother’s level of education.

5. 𝜎#,$,%
<*=<'(∗: standard deviations retrieved from the log-linear component of our model. This is used to derive

starting points, i.e., mortality rates for the 15-19 age group by level of education and over time, and for the
reconstruction over all years and countries in our case study (Cluster 1). The model is estimated within the
Bayesian inferential framework, which permits us to learn about the uncertainty of the resulting estimates.
Details on the model specification can be found in Appendix A-2.
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FIGURE 5: EDUCATION-SPECIFIC LOG-MORTALITY RATES, CLUSTER 1, 1980, FEMALE POPULATION 

Source: 
Authors’ own calculations based on DHS, Eurostat, WIC and UN WPP data. 

4.2.3 CASE STUDY MODEL SPECIFICATION 

In this chapter, we describe in detail the specification of the case study model, according to the model outlined in 
chapter 2. A graphical representation of the model, enriched with a full set of uncertainty measures derived from the 
inputs’ reconstruction, is provided in Figure A-9 in the Appendix. In our case study, the age-, year-, country- and 
education-specific log-mortality rates log𝑚!,$,#,%

∗ ,	that rely on information from other countries and various sources are 
constructed by applying the mortality profiles to the 15-19 log-mortality estimates, which are the result of a log-linear 
model implemented outside of the principal model. That is, we assume they are normally distributed (as in equation 
1): 

log	𝑚!,#,$,%
∗ ∼ 𝒩(log𝑚!,#,$,% , 𝜎#,$,%

8*98'(∗) (10)

where 𝜎#,$,%
<*=<'(∗ is the standard deviation referring to the credible interval estimated with the aforementioned log-linear

model. The inclusion of this uncertainty is necessary given the role played by the starting point in the reconstruction 
steps. The result of the log-linear model influences the development of the entire schedule. 

The reconstructed mortality rates are then assumed to follow a normal distribution that borrows information from the 
countries that have reliable data through principal components (𝛽 and 𝑌∗), random effects (𝑢) capturing country-
specific deviations from age-education profiles and period-education effects based on infant mortality by mother’s 
education (𝜈) derived from DHS: 

log𝑚!,#,$,% ∼ 𝒩+, 𝛽!,#,%,+ ∗ 𝑌∗!,%,+ +	𝑢!,$,% + 𝑣#,% ,
,

+-.
	𝜎!,%:;∗3 (11)
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Principal components have been derived for two education-specific mortality profiles separately and independently. 
Thus, the	𝜎-$.∗  becomes 𝜎!,%78∗. Random effects 𝑣#,%~	𝒩(0, 	𝜇/	#,%9:;), with 𝜇/	#,%9:; 	being the standard deviation associated with 
the DHS mortality estimates. These are informed by the standard deviations extracted from the DHS confidence 
intervals (Figure A-2) sourced from the STATcompiler website5: 

𝜎#,$,%<=>∗ ∼ 𝒩 =𝜇2<=>#,% , 𝜎:
<=>

#,%> (12)

The inclusion of 𝜇/9:;#,%	captures the uncertainty of the survey-based estimates (such as sampling or recall period 
errors). The hyperparameters of the prior in our case study ensure that practically, the resulting prior is positive. Priors 
for the parameters that capture variation in the DHS are weakly informative: 

𝜇2<=>#,% ∼ 	𝒰[0,0.5] (13)

𝜎:<=>#,% ∼ 	𝒰[0,1] (14)

The rest of the model is structured in the same way as described in section 2. We sample from the posterior distributions 
of the model parameters by using Markov Chain Monte Carlo within JAGS software (Plummer 2003), implemented in 
package rjags in the R environment. For the convergence checks, we relied on indicators such as the Gelman and Rubin 
diagnostic (Gelman and Rubin 1992), 𝑅D statistic and the visual inspection of trace plots. 

5 RESULTS 
Our results are a set of age-, year- and education-specific reconstructed mortality rates for females in Albania, Armenia, 
Azerbaijan, Bosnia and Herzegovina, Egypt, Georgia, Jordan, Lebanon, Montenegro, North Macedonia, State of 
Palestine, Tunisia and Turkey, which are the countries in our cluster 1 for 1980-2015. In Figure 6, we present posterior 
medians of log-mortality rates for Albania. These estimates are shaped by the country-level mortality rates during the 
specified period, and are sensitive to shifts in the educational composition of the population (Figure A-12 in Appendix 
A-7). In greater detail, the coherence between the results and the overall mortality rates at the country level is achieved
by incorporating the known information regarding the age-education composition of the population and the age-
specific total mortality rates. These data are utilised to refine the estimated log-mortality rates employed as inputs in
the model.

5 https://www.statcompiler.com/en/ 

https://www.statcompiler.com/en/
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FIGURE 6: LOG-MORTALITY RATES BY LEVEL OF EDUCATION, AGE GROUP AND TIME, ALBANIA, FEMALE 
POPULATION 

Remark:  
The solid lines present the estimated medians, while the 80% credible intervals are visualised via shaded areas. The dots represent 
the inputs to our model. 

In Figure 7, we present the estimated mortality rates for all countries in cluster 1 for the year 2000. While the common 
features derived from the principal components are maintained, the mortality rates are differentiated for each country 
under consideration. We observe common features: for example, a higher level of education is typically associated with 
a lower level of mortality. Specifically, in former Yugoslavian countries such as Albania, Montenegro, North 
Macedonia, and Bosnia Herzegovina, relatively small differences in mortality rates are observed across different 
educational levels. In contrast, Tunisia, Turkey, and Egypt stand out as having large differentials in mortality rates 
across educational strata. While investigating the specific causes of these variations at the country level falls outside 
the scope of our study, we can offer some suggestions regarding potential contributing factors. The countries with 
narrower differentials may have more equitable access to healthcare and education, resulting in a relatively 
homogeneous distribution of health outcomes. Conversely, in countries with wider education differentials, disparities 
in socio-economic status and access to healthcare may be more pronounced, leading to significant variations in 
mortality rates. Additionally, cultural and societal factors can play a role, influencing health behaviours and healthcare-
seeking patterns across educational levels. 
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FIGURE 7: LOG-MORTALITY RATES BY LEVEL OF EDUCATION, AGE GROUP AND TIME, 2000, FEMALE POPULATION 

Remark:  
The solid lines present the estimated medians, while the 80% credible intervals are visualised via shaded areas. The dots represent 
the inputs to our model. 

5.1 MODEL PERFORMANCE 
Due to the aforementioned lack of data, we do not have a gold standard against which we can evaluate our estimates. 
Furthermore, the measurement of goodness-of-fit is complicated by the fact that the inputs to the model are derived 
from a variety of data sources. Hence, we assess the performance of the model and the robustness of resulting estimates 
first by applying posterior predictive checks, that is, by generating new data from the model. Then, we test the 
sensitivity of the results when the inputs are partially removed, both at random and systematically. To externally 
validate our estimates, we also calculate the total mortality resulting from our estimates, and compare it with the data 
available in UN WPP. 

5.1.1 POSTERIOR PREDICTIVE CHECKS FOR MODEL INPUTS 

First, we assess the performance of our model through posterior predictive distributions (PPD) for the model inputs. 
New (predicted) inputs are generated from a posterior predictive distribution (analogous to fitted values). For instance, 
in Figure 8 we present the PPDs for the 𝜇/	#,%9:; 	 as defined in equation 12 for each year along the inputs (i.e., observed 
data). In the plot, the circular markers represent the median values of the posterior predictive distribution, with the 
solid lines indicating credible intervals. The triangular markers depict the model inputs inferred from the DHS data. 
Notably, the credible intervals widen for lower levels of education, mirroring the increased dispersion observed in 
mortality values within this category, and subsequently affecting standard deviation. Conversely, higher education 
levels exhibit less susceptibility to this widening of values. 

We observe that only 8% of the total available observations fall outside of the aggregated PPDs or a given year, all of 
them for the more than primary education level. This suggests that our model reproduces the inputs reasonably well. 
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FIGURE 8: STANDARD DEVIATION ASSOCIATED WITH THE DHS MORTALITY ESTIMATES (𝜇/	#,%9:;)	 

Remark:  
The solid lines present the 60% credible intervals. The circles represent the medians of the posterior predictive distributions. The 
triangles represent the inputs to our model. 

5.1.2 RANDOMISED INPUT REDUCTION 

Next, we randomly remove a portion of the data used to inform the age- and education-specific mortality rates. That 
is, we progressively remove 20%, 50% and 75% of the inputs obtained from the reconstruction of 𝑙𝑜𝑔	𝑚!,#,$,%

∗ , and then 
assess how the reduction of inputs affects the model estimates and the imputation of missing information. 

Figure 9 shows the mortality rates obtained for Montenegro when all the input data are used and when the estimates 
are based on only 50% of the 𝑙𝑜𝑔	𝑚!,#,$,%

∗  inputs. Although the plot shows less regular predictive intervals than those 
obtained from the full input, the model still performs reasonably well. The uncertainty increases where information is 
removed. However, the fundamental structure and the year- and country-specific profiles continue to be clearly 
discernible and distinct, organised in accordance with educational levels. 



19 

FIGURE 9: LOG-MORTALITY RATES BY LEVEL OF EDUCATION, AGE GROUP AND TIME, MONTENEGRO, FEMALE 
POPULATION. ESTIMATES BASED ON 50% OF THE 	𝑙𝑜𝑔	𝑚!,#,$,%

∗ 		INPUTS REMOVED 

Remark:  
The solid lines present the estimated medians, while the 80% credible intervals are visualised via shaded areas. The dots represent 
the inputs to our model. 

Generally, reducing inputs at random does not present major systemic problems for the model. The differences 
between lower and higher levels of education remain unchanged. In Table 1, we present the percentage of inputs 
contained in the 50% credible interval6 (i.e., coverage) according to the percentage of reduced inputs for all estimates. 
We observe that the coverage for the model with full inputs is around 97%, which suggests that our model underfits 
the inputs (i.e., the uncertainty is relatively large). However, the resulting uncertainty is based on the uncertainty about 
the inputs, such as confidence intervals of the DHS data. When the inputs are reduced at random, the width of the CIs 
increases but the coverage decreases, reaching 79% when three-quarters of the inputs are removed. This decrease is 
reasonably small, which suggests that the estimated mortality profiles are stable, and are not overly susceptible to even 
dramatic (removal of 75% of observations) changes in the inputs. This decline is relatively modest, which indicates that 
the estimated mortality profiles are stable, and are resilient to substantial changes in the inputs, even when as much as 
75% of the observations are removed. 

6 In the Bayesian context, utilising a narrower credible interval presents a more stringent and challenging assessment of the model's 
performance.
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TABLE 1 ASSESSMENT OF MODEL PERFORMANCE: PERCENTAGE OF INPUTS FALLING IN THE 50% CREDIBLE 
INTERVAL (CI) 

% Reduced inputs % Contained in the 50% CI 

0 (i.e., full model inputs) 96.9% 

20 95.0% 

50 87.9% 

75 79.3% 

Note: The performance is calculated as the percentage of data falling into the 50% CI according to the amount of inputs employed. 

5.1.3 SYSTEMATIC INPUT REDUCTION 

In addition to randomly reducing the inputs 𝑙𝑜𝑔	𝑚!,#,$,%
∗ , we also test the sensitivity of the model to the removal of 

inputs in a systematic way, for instance, for a given country for specific periods. This assessment evaluates the efficacy 
of our model in performing geographical pooling and temporal smoothing. Additionally, it allows us to assess the 
effectiveness of the model in reconstructing mortality even in the near absence of information about education-specific 
mortality for a given country or year. 

In Figure 10, we present the results for Tunisia from a model with the years 1985, 2000 and 2005 removed for Azerbaijan, 
Georgia, North Macedonia and Tunisia. Even the total absence of information for a designated country does not lead 
to modelling failures (see also Appendix A-10). The new estimates are characterised by increased uncertainty for the 
years in which data are removed, and seem to rely to a greater extent on the mortality profiles derived from other 
countries. This observation indicates that the model tends to utilise information from different countries to a greater 
extent than it does from different time periods. 

FIGURE 10: LOG-MORTALITY RATES BY LEVEL OF EDUCATION, AGE GROUP AND TIME, TUNISIA, FEMALE 
POPULATION 

Remark: 
The solid lines present the estimated medians, while the 80% credible intervals are visualised via shaded areas. The dots 
represent the inputs to our model. 
Note: Inputs for the years 1985, 2000 and 2005 were removed for Azerbaijan, Georgia, North Macedonia and Tunisia. 
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5.1.4 COHERENCY WITH TOTAL MORTALITY RATES 

Another check addresses the coherency of the results with the (only) available data: namely, the overall mortality rates 
(i.e., not differentiating by education). These comparisons assess the consistency of our estimates with total mortality 
after taking into account the uncertainty of our estimates. To do this, we calculate the total mortality rates by sampling 
from the posterior distributions of our education-specific estimates and weighing the components according to the 
available population composition by education. Then, we compare the resulting total mortality rates with those 
published by UN WPP. This is an indirect approach used to externally validate our results. An example of this 
approach is shown in Figure 11, in which the two education-specific mortality rates for Albania are summed up and 
compared with the total mortality rates. We observe that our estimates match the UN WPP estimates well, 
with slight overestimation for the age groups older than 40-44, especially in the 1980s. Similar results are 
obtained for other countries and years. 

FIGURE 11: LOG-MORTALITY RATES BY AGE GROUP AND TIME, ALBANIA, FEMALE POPULATION. 
COMPARISON BETWEEN THE WEIGHTED SUM OF THE ESTIMATES AND THE TOTAL LOG-MORTALITY RATES 
FROM UNWPP

Remark:  
The solid lines present the estimated medians, while the 80% credible intervals are visualised via shaded areas. The dots 
represent the inputs to our model. 
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6 CONCLUSIONS 

Our work makes a methodological contribution by proposing a modelling framework that includes a Bayesian 
hierarchical model and a mechanism for constructing inputs into it. It fills an important research gap in the systematic 
study of mortality differentials by level of education, and of the role of education in determining demographic change 
in particular countries or regions. Our case study application can be easily adapted and extended to other countries 
and periods, and can be used to predict differentials in mortality by other characteristics, such as socio-economic status. 
The model exploits available information on adult and child mortality, and on their relationships with the level of 
education. Given the widespread availability of the DHS and UN WPP data, it would be possible to generalise 
information on education differentials available from Eurostat and other sources to reconstruct estimates of mortality 
by education for all countries. 
 
In our case study, the only information available for several countries (like Albania, Armenia, Azerbaijan, Egypt, Jordan 
and Tunisia) was, to the best of our knowledge, on the link between the mother’s level of education and infant mortality 
obtained from DHS at irregular intervals. For other countries (like Bosnia and Herzegovina, Georgia, Lebanon, North 
Macedonia, Montenegro and State of Palestine), no information on the link between mortality and level of education 
was available, and it was imputed within the model by borrowing information from other countries. Our results thus 
fill a gap in the data. 
 
The results we presented reaffirm, consistent with the established literature, a well-documented relationship between 
education and mortality. Specifically, our analysis underscores that higher educational attainment is closely linked to 
reduced mortality rates. Notably, the differential in education-specific mortality appears to be most pronounced within 
the 20-24 to 45-49 age groups, as the patterns in the graphical representations clearly show. Several different 
mechanisms might contribute to this phenomenon. First and foremost, as outlined in Karlsen et al. 2011, women with 
higher education tend to enjoy improved access to essential health information and healthcare services. This advantage 
facilitates the early detection and more effective management of health issues, particularly during the childbearing 
years. Moreover, higher educational attainment is associated with the adoption of healthier lifestyles, like lower alcohol 
consumption (Murakami and Hashimoto 2019) or smoking rates (Assari and Mistry 2018), and more informed health-
related decision-making, which can influence overall well-being (Luy et al. 2019). Additionally, education is often 
correlated with enhanced socio-economic conditions, which can give women the resources necessary to access better 
healthcare, improved nutrition and safer living environments (Fard et al. 2021). Finally, higher education fosters greater 
awareness of health risks and preventive measures. The level of education seems to have less impact on mortality 
among older age groups, for whom the influence of behavioural risk factors is less pronounced (Cutler et al. 2011; Herd 
2006). 
 
Remarkably, these differentials lessen in older age categories. The diminishing educational differentials in mortality 
observed among older age groups can be attributed to several factors. These include survival bias, as individuals who 
reach older ages may possess certain advantages in terms of health and healthcare access. Additionally, more equitable 
access to healthcare services among older adults, changing cohort effects, cumulative life exposures and the increasing 
influence of age-related factors such as chronic diseases and genetics all contribute to the reduction of educational 
disparities in mortality at older ages.  
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The main limitation of the proposed framework is related to the validation of the estimates, as data on mortality by 
educational attainment are sparse, and are usually limited to developed countries. Therefore, we relied on internal 
model validation through posterior predictive checks and sensitivity analysis. We also analysed how well the model 
predicts total mortality rates (not broken down by education) that are available in UN WPP. Second, the proposed 
model relies on having data available for certain countries that span most of the period of interest. However, it is 
important to note that the model generates significantly higher levels of uncertainty when data for specific years or 
periods are missing Third, the model is compelled to utilise information derived from the European context due to the 
lack of relevant information in the corresponding geographical region. Although this information is adjusted to the 
total mortality rates for the selected countries, it originates from a socio-economic context that differs from that of the 
studied population. Overcoming these gaps in the data would significantly enhance the potential for the widespread 
application of our technique. 

  



 
 
 
 

24 
 
 
 
 

REFERENCES 
 
Alexander, M. and Alkema, L. (2018). Global estimation of neonatal mortality using a Bayesian hierarchical splines 

regression model. Demographic Research 38(15): 335–372. doi:10.4054/DemRes.2018.38.15. 

Alexander, M., Zagheni, E., and Barbieri, M. (2017). A flexible Bayesian model for estimating subnational mortality. 
Demography 54(6): 2025–2041. 
https://EconPapers.repec.org/RePEc:spr:demogr:v:54:y:2017:i:6:d:10.1007_s13524-017-0618-7. 

Alkema, L. and New, J.R. (2014). Global estimation of child mortality using a Bayesian b-spline bias-reduction model. 
The Annals of Applied Statistics 8(4). doi:10.1214/14aoas768.  

Alkema, L., Raftery, A.E., Gerland, P., Clark, S.J., and Pelletier, F. (2012). Estimating trends in the total fertility rate 
with uncertainty using imperfect data: Examples from West Africa. Demographic Research 26(15): 331–362. 
doi:10.4054/DemRes.2012.26.15. 

Assari, S. and Mistry, R. (2018). Educational attainment and smoking status in a national sample of American adults; 
evidence for the blacks’ diminished return. International Journal of Environmental Research and Public Health 
15(4): 763. doi:10.3390/ijerph15040763.  

Avison, W. (2005). Education, social status, and health by John Mirowsky and Catherine E. Ross: Education, social 
status, and health. American Journal of Sociology 110(5): 1511–1513. doi:10.1086/431614. 

Baker, D., Leon, J., Greenaway, E., Collins, J., and Movit, M. (2011). The education´ effect on population health: A 
reassessment. Population and Development Review 37: 307–32. doi:10.1111/j.1728-4457.2011.00412.x. 

Bora, J.K., Lutz, W., and Raushan, R. (2018). Contribution of education to infant and under-five mortality disparities 
among caste groups in India. Vienna Institute of Demography Working Papers 03/2018, Vienna. 
doi:10.1553/0x003ccd42. 

Byhoff, E., Hamati, M.C., Power, R., Burgard, S.A., and Chopra, V. (2017. Increasing educational attainment and 
mortality reduction: a systematic review and taxonomy. BMC Public Health 17(1): 719. doi:10.1186/s12889-
017-4754-1.  

Caldwell, J. and McDonald, P. (1982). Influence of maternal education on infant and child mortality: levels and 
causes. Health Policy and Education 2(3-4): 251—267. doi:10.1016/0165-2281(82)90012-1.  

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and 
Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software 76(1). doi: 
10.18637/jss.v076.i01 

Clark, D. and Royer, H. (2013). The effect of education on adult mortality and health: evidence from Britain. American 
Economic Review 103(6): 2087–2120. doi:10.1257/aer.103.6.2087.  

Cutler, D., Lange, F., Meara, E., Richards-Shubik, S., and Ruhm, C. (2011). Rising educational gradients in mortality: 
The role of behavioural risk factors. Journal of Health Economics 30: 1174–87. 
doi:10.1016/j.jhealeco.2011.06.009. 



 
 
 
 

25 
 
 
 
 

Davey Smith, G., Hart, C., Hole, D., MacKinnon, P., Gillis, C., Watt, G., Blane, D., and Hawthorne, V. (1998). 
Education and occupational social class: which is the more important indicator of mortality risk? Journal of 
Epidemiology & Community Health 52(3): 153–160. doi:10.1136/jech.52.3.153.  

Dubow, E., Boxer, P., and Huesmann, L. (2009). Long-term effects of parents’ education on children’s educational and 
occupational success: Mediation by family interactions, child aggression, and teenage aspirations. Merrill-
Palmer quarterly (Wayne State University. Press) 55: 224–249. doi:10.1353/mpq.0.0030. 

Eccles, J. (2005). Influences of parents’ education on their children’s educational attainments: The role of parent and 
child perceptions. London Review of Education 3: 191–204. doi:10.1080/14748460500372309. 

Eurostat (2021). Life expectancy by age, sex and educational attainment level. 
https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset= demo_mlexpecedu&lang=en. 

Eurostat (2022). Deaths by age, sex and educational attainment level [demo maeduc]. 
https://ec.europa.eu/eurostat/web/products-datasets/-/ demo_maeduc. 

Fard, N.A., Morales, G.D.F., Mejova, Y., and Schifanella, R. (2021). On the interplay between educational attainment 
and nutrition: a spatially-aware perspective. EPJ Data Science 10(1). doi:10.1140/epjds/s13688-021-00273-y. 

Gakidou, E., Cowling, K., Lozano, R., and Murray, C. (2010). Increased educational attainment and its effect on child 
mortality in 175 countries between 1970 and 2009: A systematic analysis. Lancet 376: 959–74. 
doi:10.1016/S0140-6736(10)61257-3. 

Gavurova, B., Vagasova, T., and Grof, M. (2017). Educational attainment and cardiovascular disease mortality in the 
Slovak republic. Economics & Sociology 10: 232–245. doi:10.14254/2071-789X.2017/10-1/17. 

Gelman, A. and Rubin, D.B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 
7(4): 457 – 472. doi:10.1214/ss/1177011136.  

Gendronneau, C., Wiśniowski, A., Yildiz, D., Zagheni, E., Fiorio, L., Hsiao, Y., Stepanek, M., Weber, I., Abel, G., and 
Hoorens, S. (2019). Measuring labour mobility and migration using big data: exploring the potential of 
social-media data for measuring EU mobility flows and stocks of EU movers. Publications Office of the 
European Union. 

Goujon, A., K.C., S., Speringer, M., Barakat, B., Potančoková, M., Eder, J., Striessnig, E., Bauer, R., and Lutz, W. (2016). 
A harmonized dataset on global educational attainment between 1970 and 2060 – an analytical window into 
recent trends and future prospects in human capital development. Journal of Demographic Economics 82(3): 
315–363. doi:10.1017/dem.2016.10. 

Graham, W., Brass, W., and Snow, R.W. (1989). Estimating maternal mortality: The sisterhood method. Studies in 
Family Planning 20(3): 125–135. http://www. jstor.org/stable/1966567. 

Green, T. and Hamilton, T. (2019). Maternal educational attainment and infant mortality in the United States: Does 
the gradient vary by race/ethnicity and nativity? Demographic Research 41(25): 713–752. 
doi:10.4054/DemRes.2019.41.25.  

Herd, P. (2006). Do functional health inequalities decrease in old age?: Educational status and functional decline 
among the 1931-1941 birth cohort. Research on Aging 28(3): 375–392. doi:10.1177/0164027505285845.  

Karlsen, S., Say, L., Souza, JP. et al. (2011). The relationship between maternal education and mortality among women 
giving birth in health care institutions: Analysis of the cross sectional WHO Global Survey on Maternal and 
Perinatal Health. BMC Public Health 11, 606  



 
 
 
 

26 
 
 
 
 

Keyfitz, N. (1980). Multistate demography and its data: A comment. Environment and Planning A: Economy and Space 
12(5): 615–622. doi:10.1068/a120615.  

 Kiross, G., Chojenta, C., Barker, D., Tiruye, T., and Loxton, D. (2019). The effect of maternal education on infant 
mortality in Ethiopia: A systematic review and metanalysis. PLOS ONE 14: e0220076. 
doi:10.1371/journal.pone.0220076. 

Krueger, P.M., Tran, M.K., Hummer, R.A., and Chang, V.W. (2015). Mortality attributable to low levels of education 
in the United States. PLOS ONE 10(7): 1–13. doi:10.1371/journal.pone.0131809.  

Lee, R. (1985). Inverse projection and back projection: A critical appraisal, and comparative results for England, 1539 
to 1871. Population Studies 39(2): 233–248. doi:10.1080/0032472031000141466. PMID: 11620664. 

Lee, R. (1974). Estimating series of vital rates and age structures from baptisms and burials: A new technique, with 
applications to pre-industrial England. Population Studies 28(3): 495–512. 
doi:10.1080/00324728.1974.10405195. PMID: 11630559. 

Lee, R.D. and Carter, L.R. (1992). Modelling and forecasting u. s. mortality. Journal of the American Statistical 
Association 87(419): 659–671. http://www.jstor. org/stable/2290201. 

Li, Q. and Keith, L. (2010). The differential association between education and infant modality by nativity status of 
Chinese American mothers: A life-course perspective. American journal of public health 101: 899–908. 
doi:10.2105/AJPH.2009.186916. 

Ludeke, S., Gensowski, M., Junge, S., Kirkpatrick, R., John, O., and Andersen, S. (2020). Does parental education 
influence child educational outcomes? a developmental analysis in a full-population sample and adoptee 
design. Journal of Personality and Social Psychology 120. doi:10.1037/pspp0000314. 

Lutz, W., Goujon, A., Kc, S., and Sanderson, W. (2007). Reconstruction of population by age, sex and level of 
educational attainment of 120 countries for 1970-2000. Vienna Yearbook of Population Research 5: 193–235. 

Lutz, W., Goujon, A., KC, S., Stonawski, M. and Stilianakis, N., (2018) Demographic and human capital scenarios for 
the 21st century: 2018 assessment for 201 countries. Publications Office of the European Union, Luxembourg. 
doi:10.2760/835878. 

Lutz, W. and Kebede, E. (2018). Education and health: Redrawing the Preston curve: Education and health. Population 
and Development Review 44. doi:10.1111/padr.12141. 

Luy, M., Giulio, P.D., and Caselli, G. (2011). Differences in life expectancy by education and occupation in Italy, 1980–
94: Indirect estimates from maternal and paternal orphanhood. Population Studies 65(2): 137–155. 
doi:10.1080/00324728.2011.568192.  

Luy, M., Zannella, M., Wegner-Siegmundt, C., Minagawa, Y., Lutz, W., and Caselli, G. (2019). The impact of 
increasing education levels on rising life expectancy: a decomposition analysis for Italy, Denmark, and the 
USA. Genus 75: 11. doi:10.1186/s41118019-0055-0. 

Malamud, O., Mitrut, A., and Pop-Eleches, C. (2018). The effect of education on mortality and health: Evidence from a 
schooling expansion in Romania. Working Paper 24341, National Bureau of Economic Research. 
doi:10.3386/w24341.  

Mandal, S., Paul, P., and Chouhan, P. (2019). Impact of maternal education on under-five mortality of children in 
India: Insights from the national family health survey, 2005–2006 and 2015–2016. Death Studies 0(0): 1–7. 
doi:10.1080/07481187.2019.1692970.  



 
 
 
 

27 
 
 
 
 

Montez, J.K., Hummer, R.A., and Hayward, M.D. (2012). Educational Attainment and Adult Mortality in the United 
States: A Systematic Analysis of Functional Form. Demography 49(1): 315–336. doi:10.1007/s13524-011-0082-8.  

Murakami, K. and Hashimoto, H. (2019). Associations of education and income with heavy drinking and problem 
drinking among men: evidence from a population-based study in Japan. BMC Public Health 19(1). 
doi:10.1186/s12889-019-6790-5.  

Murtagh, F. and Legendre, P. (2011). Ward’s hierarchical clustering method: Clustering criterion and agglomerative 
algorithm. arXiv. doi: 10.48550/arXiv.1111.6285 

Nielsen, F. (2016). Introduction to HPC with MPI for Data Science. Springer. 

Plummer, M. (2003). Jags: A program for analysis of Bayesian graphical models using gibbs sampling. 3rd 
International Workshop on Distributed Statistical Computing (DSC 2003); Vienna, Austria 124. 

Pradhan, E., Suzuki, E., Martinez, S., Schaferhoff, M., and Jamison, D. (2017). The Effects of Education Quantity and 
Quality on Child and Adult Mortality: Their Magnitude and Their Value. Washington (DC): The 
International Bank for Reconstruction and Development / The World Bank, 423–440. doi:10.1596/978-1-4648-0423-6 
ch30. 

Raghupathi, V. and Raghupathi, W. (2020). The influence of education on health: an empirical assessment of OECD 
countries for the period 1995–2015. Archives of Public Health 78: 20. doi:10.1186/s13690-020-00402-5. 

Raymer, J., Wiśniowski, A., Forster, J.J., Smith, P.W.F., and Bijak, J. (2013). Integrated modelling of European 
migration. Journal of the American Statistical Association 108(503): 801–819. doi:10.1080/01621459.2013.789435.  

Rogers, A. (1980). Introduction to multistate mathematical demography. Environment and Planning A 12(5): 489–498. 

Rosoff, D.B., Clarke, T.K., Adams, M.J., McIntosh, A.M., Smith, G.D., Jung, J., and Lohoff, F.W. (2019). Educational 
attainment impacts drinking behaviours and risk for alcohol dependence: results from a two-sample 
mendelian randomization study with ˜780,000 participants. Molecular Psychiatry 26(4): 1119–1132. 
doi:10.1038/s41380019-0535-9.  

Sasson, I. and Hayward, M.D. (2019). Association Between Educational Attainment and Causes of Death Among 
White and Black US Adults, 2010-2017. JAMA 322(8): 756–763. doi:10.1001/jama.2019.11330.  

Sauerberg, M. (2021). The impact of population’s educational composition on healthy life years: An empirical 
illustration of 16 European countries. SSM - Population Health 15: 100857. doi: 10.1016/j.ssmph.2021.100857 

Schmertmann, C.P. and Hauer, M.E. (2019). Bayesian estimation of total fertility from a population’s age–sex 
structure. Statistical Modelling 19(3): 225–247. doi:10.1177/1471082X18801450.  

Speringer, M., Goujon, A., KC, S., Potančoková, M., Reiter, C., Jurasszovich, S., and Eder, J. (2019). Global 
reconstruction of educational attainment, 1950 to 2015: Methodology and assessment. Vienna Institute of 
Demography Working Papers 02/2019, Vienna. doi:10.1553/0x003cb434.  

Stan Development Team (2018a). RStan: the R interface to Stan. http://mc-stan. org/9. R package version 2.17.3. 

Stan Development Team (2018b). The Stan Core Library. http://mc-stan.org/9. Version 2.18.0. 

The World Bank (2022). Databank. https://databank.worldbank.org/. 



 
 
 
 

28 
 
 
 
 

Tjepkema, M., Wilkins, R., and Long, A. (2012). Cause-specific mortality by education in Canada: A 16-year follow-up 
study. Health reports / Statistics Canada, Canadian Centre for Health Information = Rapports sur la santé / 
Statistique Canada, Centre canadien d’information sur la santé 23: 23–31. 

Tomioka, K., Kurumatani, N., and Saeki, K. (2020). The association between education and smoking prevalence, 
independent of occupation: A nationally representative survey in Japan. Journal of Epidemiology 30(3): 136–
142. doi:10.2188/jea.je20180195.  

UNESCO Institute for Statistics (UIS) (2023). Sdg global and thematic indicators. http://data. uis.unesco.org/. 

United Nations (2022). World Population Prospects 2022. United Nations. https://www.un-ilibrary.org /content/ 
books/9789210014380. 

United Nations, N.R.C.U. (1983). Indirect techniques for demographic estimation. United Nations New York. 

USAID (2022). Statcompiler: the DHS program. https://www.statcompiler. com/en/. 

Wheldon, M., Raftery, A., Clark, S., and Gerland, P. (2013). Reconstructing past populations with uncertainty from 
fragmentary data. Journal of the American Statistical Association 108: 96–110. doi:10.1080/01621459.2012.737729. 

Wheldon, M.C., Raftery, A.E., Clark, S.J., and Gerland, P. (2015). Bayesian reconstruction of two-sex populations by 
age: estimating sex ratios at birth and sex ratios of mortality. Journal of the Royal Statistical Society. Series A 
(Statistics in Society) 178(4): 977–1007.  

Wheldon, M.C., Raftery, A.E., Clark, S.J., and Gerland, P. (2016). Bayesian population reconstruction of female 
populations for less developed and more developed countries. Population Studies 70(1): 21–37. 
doi:10.1080/00324728.2016.1139164.  

Willekens, F., Massey, D., Raymer, J., and Beauchemin, C. (2016). International migration under the microscope. 
Science 352(6288): 897–899. 

Wiśniowski, A. (2017). Combining labour force survey data to estimate migration flows: The case of migration from 
Poland to the UK. Journal of the Royal Statistical Society. Series A (Statistics in Society) 185–202. 

Wiśniowski, A. (2021). Migration forecasting using new technology and methods. In: McAuliffe, M. (ed.). Research 
Handbook on International Migration and Digital Technology. Edward Elgar Publishing: 376–392. 

Wittgenstein Centre Data Explorer (WCDE) (2018). Wittgenstein centre for demography and global human capital 
(WIC). http://dataexplorer.wittgensteincentre. org/wcde-v2/. 

Wrigley, E.A. and Schofield, R.S. (1983). English population history from family reconstitution: Summary results 
1600-1799. Population Studies 37(2): 157–184. http://www.jstor.org/stable/2173980. 

Zimmerman, E. and Woolf, S. (2014). Understanding the relationship between education and health. NAM 
Perspectives 4. doi:10.31478/201406a.



 
 
 
 

29 
 
 
 
 

APPENDIX 
A-1 CASE STUDY SETTING AND COUNTRIES CLUSTERING 

A-1.1 THE GEOGRAPHICAL SETTING 

The selection of the geographical setting for our case study was heavily influenced by the availability of data. In 
accordance with our adopted strategy and the need to utilise data from multiple sources, we chose a region consisting 
of countries with varying levels of data availability. This was done in order to evaluate the generalisability of our 
methodology, and to provide a means of validating our results against established figures. 

Initially, we narrowed down the potential countries to a macro-region comprising Southern Europe, Western Asia and 
Northern Africa (see Figure A-1). This selection provided us with a group of countries that are vastly different in terms 
of their socio-economic development and average levels of education. Furthermore, variables directly related to 
mortality profiles, such as life expectancy or total mortality by age and sex, also vary greatly across these regions. 

FIGURE A-1: THE MACRO REGION 

 

 
 

The large differences between the countries make it hard for the model to separate out the data correctly. Additionally, 
the area is close to Europe, which make it a good fit for using the data from European countries available in the Eurostat 
database to reconstruct mortality by level of education. Many of the countries in this area have also been included in 
DHS, which can be used to obtain indirect information about the differentials in mortality by level of education. 
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A-1.2 COUNTRIES CLUSTERING 

One key feature of the proposed model is its capacity to share information in order to optimise the use of limited data. 
This means relying first on borrowing information across countries for which a similar mortality development is most 
likely, and second on sharing a mortality structure through Principal Components Analysis. For this purpose, a 
primary grouping based on a hierarchical clustering algorithm was performed to identify clusters of countries with 
similar education-specific mortality schedules. While this initial clustering is not a structural necessity, it is a significant 
alternative to relying on a simple geographical categorisation, given the profound socio-economic differences between 
the sub-regions. 
 
To cluster the countries, we selected variables representing mortality, education and socio-economic status macro 
characteristics for 2010 (which provided a good trade-off between the available variables and the historical focus of our 
study). We had to drop some countries7 because of the excessive amount of missing data. 
 
Mortality variables: 

1. Cause of death, by injury (% of total); 
2. Cause of death, by non-communicable diseases (% of total); 
3. Lifetime risk of maternal death (%); 
4. Life expectancy at birth, total (years); 
5. Mortality rate, neonatal (per 1,000 live births); and 
6. Survival rate from age 15-60. 

 
Education and socio-economic variables: 

1. Access to electricity (% of population); 
2. Adjusted net enrolment rate, primary (% of primary school age children); 
3. Adjusted net national income per capita (annual % growth); 
4. Adolescents out of school (% of lower secondary school age); 
5. Bank capital to assets ratio (%); 
6. Educational attainment, at least bachelor’s or equivalent, population 25+, total (%) (cumulative); 
7. Female share of employment in senior and middle management (%); 
8. Literacy rate, adult total (% of people aged 15 and above); 
9. Literacy rate, youth (ages 15-24), gender parity index (GPI); 
10. Progression to secondary school (%); 
11. Barro-Lee: Average years of primary schooling, ages 15-19, total; 
12. Barro-Lee: Average years of primary schooling, age 50-54, total; 
13. Barro-Lee: Average years of secondary schooling, age 30-34, total; 
14. Government expenditure on education as % of GDP (%); and 
15. Human Capital Index (HCI) (scale 0-1). 

 
 
 
Considering these variables, the Ward’s hierarchical clustering (Murtagh and Legendre 2011) resulted in the clusters 
shown in Table A-1 and Figure 3. 
 
 
 
 

 
7 Syria, Gibraltar, San Marino, Andorra, Sudan, Yemen 
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TABLE A-1: CLUSTERS COMPOSITION 
 

Cluster Countries 

1 ALB, ARM, AZE, BIH, EGY, GEO, JOR, LBN, MKD, MNE, PSE, TUN, TUR 

2 ARE, BHR, KWT, LBY, OMN, QAT, SAU 

3 CYP, ESP, GRC, ISR, ITA, MLT, PRT 

4 DZA, IRQ, MAR 

5 HRV, SRB, SVN 

A-2 THE LOG-LINEAR MODEL 
This modelling step is required to improve the availability of the data on the 15-19 mortality rates. Since the infant 
mortality by mother’s education is available just for the countries and the years represented in DHS, we would have 
been otherwise able to apply the proportional splitting of the 15-19 mortality rates just for these country-year 
combinations. This would have reduced the amount of available information, and it would have prevented us from 
coherently sharing the information between the countries. Therefore, we applied a log-linear models to estimate the 
15-19 log-mortality rates. Log-linear models belong to a family of Generalised Linear Models (GLM) that are often 
applied to analyse contingency tables. 

A-2.1 THE DATA 

For the purposes of our case study, we used the DHS data on infant mortality by mother’s education, as well as the UN 
WPP sex-, country- and year-specific mortality rates interpolated over time for the 15-19 age group. The infant mortality 
rates by mother’s level of education were acquired from the DHS STATcompiler database. These values are based on 
a recall over nine years preceding the year of data collection (see Figure A-2). Two levels of education are reported: less 
than primary education and primary education or more. These two categories were satisfactory to analyse the role of 
education (in this case, the completion of at least one course of study) in the determination and development of 
mortality differentials over time. When there were multiple estimates for the same period, we used the average rates. 
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FIGURE A-4: DHS INFANT MORTALITY RATES BY MOTHER’S EDUCATION 

 
Note: The data are extrapolated and averaged to account for the recall period in the DHS. 
 
We first applied the procedure shown in Figure A-6 to split the 15-19 mortality by education (by using infant mortality by mother’s 
education from DHS) only for countries for which the DHS data were available. Then, we predicted the mortality rates for all countries 
belonging to cluster 1 (Table A-1). 
 

A-2.2 THE MODELLING APPROACH 

To impute missing information on 15-19 mortality, we first introduced an additional geographical layer (dimension) 
based on proximity, so that each country not represented in DHS is linked to a region made up of countries that are 
covered by DHS for each relevant year. This addresses the necessity to have observations for combinations of variables.  
 
The countries are grouped as follows: 

- Region 1: Albania, Bosnia and Herzegovina, North Macedonia, Montenegro 
- Region 2: Armenia, Azerbaijan, Georgia, Turkey 
- Region 3: Egypt, Jordan, Lebanon, State of Palestine, Tunisia  

 
 
Next, to utilise the log-linear modelling setting, the log-mortality rates were transformed by using the population sizes 
to create deaths counts (Poisson model family) and using the logarithmic transformation of the education-, sex-, year- 
and country-specific population sizes as offsets. Then, we proceeded in two steps. 
 

1. Selection of the best-fitting model (frequentist approach) 
 
First, we identified the best-fitting model from a pool of possible model formulations. These were generated by the 
combinations of the available variables and the pairwise interactions of them (i.e., the models contained only main and 
two-way interaction terms). We tested the fitting of all the possible combinations of the elements of the set 
 

𝑒𝑑𝑢. 𝑎𝑡𝑡, 𝑟𝑒𝑔𝑖𝑜𝑛, 𝑦𝑒𝑎𝑟, 𝑠𝑒𝑥, 𝑒𝑑𝑢. 𝑎𝑡𝑡 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛, 𝑒𝑑𝑢. 𝑎𝑡𝑡 ∗ 𝑦𝑒𝑎𝑟, 𝑒𝑑𝑢. 𝑎𝑡𝑡 ∗ 𝑠𝑒𝑥, 𝑟𝑒𝑔𝑖𝑜𝑛 ∗ 𝑦𝑒𝑎𝑟, 𝑟𝑒𝑔𝑖𝑜𝑛 ∗ 𝑠𝑒𝑥, 𝑦𝑒𝑎𝑟 ∗ 𝑠𝑒𝑥 
 
All models were analysed in terms of residual deviance and differences between fitted and observed values. Then, the 
best-performing models was: 
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𝑛. 𝑑𝑒𝑎𝑡ℎ𝑠 ∼ 𝑒𝑑𝑢. 𝑎𝑡𝑡 + 𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑠𝑒𝑥 + 𝑦𝑒𝑎𝑟 + 𝑒𝑑𝑢. 𝑎𝑡𝑡 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑟𝑒𝑔𝑖𝑜𝑛 ∗ 𝑠𝑒𝑥	 (15) 

 
2. Bayesian framing of the best fitting model resulting from the model selection 

 
The best-fitting model was estimated within Bayesian inference. This was done to better reflect the uncertainties 
deriving from the combination of different data sources. It also allowed us to include the predictive uncertainty in the 
hierarchical structure of our main model (where we indicate with the index 𝐿𝑜𝑔𝐿𝑖𝑛	the uncertainty that originated from 
this step). These estimated rates were additionally corrected via the total mortality data from UN WPP before they 
were used as starting values of the reconstruction. 
 
We implemented the model in R software, package rstan (Stan Development Team 2018a; Carpenter et al. 2017; Stan 
Development Team 2018b), which we used to sample from the posterior distribution. We used weakly informative 
normal priors. To check convergence, we relied on the Gelman and Rubin diagnostic (Gelman and Rubin 1992), the 
effective sample size and a visual inspection of trace plots analysis and posterior predictive checks. In Figure A-3, we 
report the scatter plot resulting from the comparison of 5000 posterior predictive draws of the predicted number of 
deaths (x-axis) and the input data (y-axis). We observe that the final model predicts the data well. 
 

FIGURE A-2: LOGLIN ESTIMATIONS SCATTER PLOT 

 

This model was employed to produce annual estimates of the (log-)mortality rates for the 15-19 age group 
differentiated by the level of education. In Figure A-4, the posterior medians (dots) are reported along with the data 
(lines). By using a limited number of inputs, we can gather a set of values for all countries that exhibit a more uniform 
and refined pattern compared to the raw data provided by DHS. Moreover, by using Bayesian inference, the results 
are accompanied by measures of uncertainty. These values, together with those supplied by the DHS database, are 
integrated into our hierarchical reconstruction model. 
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FIGURE A-3: THE LOG-LINEAR MODEL RESULTS 

 
 
Source: Own calculations based on DHS data. 

 

A-3 CONSTRUCTION OF MODEL INPUTS 
The procedure was based on applying country-, education- and time-specific mortality profiles to time- and education-
specific log-mortality rates for the 15-19 age group as starting points. The profiles were extrapolated by applying the 
mortality differentials between the levels of education (based on data obtained from Eurostat8, see Sauerberg 2021) to 
the remaining age groups (from 20-24 to 85+) in the UN WPP total mortality schedules. Their consistency with total 
mortality was ensured by population size weights. The starting values were obtained by exploiting the differences in 
infant mortality by mother’s education, which are available in DHS and are estimated for the countries without DHS 
data with a Bayesian Log-Linear model (Appendix A-2). By applying these profiles to the starting values and then 
correcting for possible discrepancies from total log-mortality, we obtained the age-, time-, country- and age-specific 
log-mortality schedules 𝑙𝑜𝑔	𝑚!,#,$,%

∗  to be used as model inputs. 

Two quantities are necessary for the reconstruction: (1) 15-19 log-mortality rates, and (2) education-specific 
reconstruction curves. We describe details of their construction below. 

 

A-3.1 15-19 MORTALITY RATES 

As described in Appendix A-2, the mortality rates for the 15-19 age group were adopted as starting points of the 
reconstruction for the rest of the age groups. These 15-19 mortality rates by education were estimated by a Bayesian 
log-linear model informed by the DHS data on infant mortality by mother’s education. 

 
8 DNK, EST, FIN, NOR, SWE, ITA, GRC, PRT, MLT, BGR, HUN, POL, ROU, SVN, SVK, SRB, HRV, TUR 
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The procedure for disaggregating the 15-19 mortality by education relies on the DHS data on infant mortality by 
mother’s education. From these data, we calculated the ratio of the mother’s education-specific infant mortality rates 
to the total infant mortality rates. By using these ratios, we disaggregated the sex-, period- and country-specific 
mortality rate for the 15-19 age group. We also used population size weighting such that the resulting average total 
rate equals the total value available in UN WPP for the analogous period. This procedure rests on the assumption that 
the level of education of the mother suffices to differentiate the education-specific mortality for the 15-19 age group. 
This is supported by its coherence with the procedure followed by Eurostat for the definition of life expectancy by age, 
sex and educational attainment, and by the consistent evidence indicating that parents’ education efficiently predicts 
the educational outcomes of their children (Eccles 2005; Ludeke et al. 2020; Dubow, Boxer, and Huesmann 2009), and 
that maternal schooling plays a key role in determining children’s chances of survival (Kiross et al. 2019; Li and Keith 
2010; Green and Hamilton 2019; Caldwell and McDonald 1982; Mandal, Paul, and Chouhan 2019). 

 

A-3.2 EDUCATION-SPECIFIC RECONSTRUCTION CURVES 

The 15-19 mortality by education was a starting point for reconstructing mortality profiles by education for the older 
age groups. They were obtained by exploiting the information from the Eurostat database and from estimates by 
Sauerberg (2021). These were combined with the period-, sex- and country-specific (log-)mortality rates published by 
UN WPP and the period-, sex-, education- and country-specific population sizes from the WIC database to provide the 
reconstruction curves, which were then used as inputs to the model. The methods presented in Sauerberg (2021) were 
employed to obtain a collection of mortality curves for 18 European countries in different years9. By grouping the levels 
of education and the countries into four groups (Figure A-5), we identified profiles for European sub-regions over the 
2007-2017 period for the two levels of education under consideration. 

FIGURE A-5: THE GROUPED EUROPEAN SUB-REGIONAL MORTALITY PROFILES 

 

 
9 Represented countries: BGR, DNK, EST, GRC, HRV, ITA, HUN, MLT, POL, PRT, ROU, SVN, SVK, FIN, SWE, NOR, SRB, TUR. Time 
span (maximum): 2007-2017. 
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Source: Own calculations based on Eurostat data (Eurostat 2021). 
Note: The countries were grouped as follows: 

• North: DNK, EST, FIN, NOR, SWE; 
• South: ITA, GRC, PRT, MLT; 
• Central East: BGR, HUN, POL, ROU, SVN, SVK; and 
• Central South: SRB, HRV, TUR. 

 
We then used ratios of the education-specific mortality profiles and education-specific population sizes to split the total mortality 
rates profile from UN WPP. The splitting operation ensures consistency with the total mortality rate and with the difference between 
the two different mortality levels. 
Figure A-6 illustrates the steps used to achieve an age-, country- and period-specific log-mortality rate for the 30-34 age group for 
Turkey. We applied the same procedure to all other countries and age groups. To explain the procedure, we introduce the following 
notation: 

1. 𝑝𝑟𝑜𝑝<>? and 𝑝𝑟𝑜𝑝@A9:AB:: proportions of population in category up to primary education (LOW) and more than primary    
educated (MIDHIGH) that are attained in a specific country in a specific period (subscripts dropped for the clarity of 
presentation). 

2. 𝑙𝑜𝑔(𝑚!): period-, country- and age-group-specific log-mortality rate as published by UN WPP. 
3. 𝑙𝑜𝑔(𝑚!,<>?) and 𝑙𝑜𝑔(𝑚!,@A9:AB:): age-specific log-mortality rates for the two levels of education. 
4. 𝛼: ratio of lower and mid-higher education log-mortality rates. The ratio was calculated based on the collection of mortality 

curves derived from the Eurostat data. The disaggregation of the total values into education-specific mortality is obtained 
by solving a two equations system with two unknowns: 
 

Q
log)𝑚!,<>?3

log)𝑚!,@A9:AB:3
= 	𝛼

𝑝𝑟𝑜𝑝<>? ∗	 log)𝑚!,<>?3 +	𝑝𝑟𝑜𝑝<>? ∗	 log)𝑚!,<>?3 = 	 log(𝑚!)
 

FIGURE A-6: THE CONSTRUCTION PROCEDURE 
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Source: Authors’ own calculations based on WIC, Eurostat and UN WPP data. 

As a concluding step, for the inputs construction, the values derived from the above procedure were then corrected to 
ensure consistency with the total mortality rates. We thus obtained a collection of country-, period-, age- and education-
specific mortality rates that are consistent with the total mortality rates, when education-specific rates are weighted 
with the population size of a given level of education. An example of outputs for Albania is presented in Figure A-7. 
The approach is easily generalisable to other countries, regions and periods, especially in combination with the log-
linear modelling approach (Appendix A-2) that allows for estimating mortality for countries not covered by the DHS. 

 

FIGURE A-7: THE LOG-MORTALITY PROFILES ESTIMATED FOR ALBANIA 

 
 

A-4 AGE-, SEX-, EDUCATION-SPECIFIC PRINCIPAL 
COMPONENTS 
In this section, we describe in detail the construction of the sex-, age- and education-specific principal components. As 
in the work of Alexander, Zagheni and Barbieri (2017), these components are employed to represent the key 
characteristics, in terms of variation, of a family of mortality curves. Their use is conceptually comparable to the Lee-
Carter approach (Lee and Carter 1992), and it is based on the representation of a set of mortality curves as a combination 
(weighted by loadings) of principal components. Principal Components Analysis (PCA) is a widely known method for 
dimension reduction and the summarising of variability of the data. Principal components can be obtained through a 
Single Value Decomposition (SVD) method. In our case, the decomposed matrices are those containing information on 
how the mortality curves develop in a given space-time region for a given average level of education of the different 
age groups. In particular, we considered the countries belonging to cluster 1 and the 1980-2015 time period. To obtain 
the principal components, we made use of three data sources: 
 

a) The WIC Data Explorer, from which we acquired data regarding the average number of years of schooling 
for the five-year age groups by sex and the five-year period for the countries under consideration; 

b) The UNESCO DataBase, from which we obtained, for the countries and for the period of our interest, the 
average duration of the study cycles to finalise the primary schooling; and 

c) The UN WPP database, from which we obtained the age-, sex- and period-specific mortality tables (and in 
particular the mortality rates), which we then used to populate the two different matrices. 
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By using the 15+ age group in the Wittgenstein Centre database as a reference age group, we obtained the average 
years of schooling of the population aged 15+ (specified by sex, country and period). By cross-referencing this 
information with the precise duration of the different cycles of study in the countries and periods considered, we 
assigned the labels “less than primary” or “primary or more” to all sex-period-country combinations under study. The 
labels refer to the estimated average level of education of the population in that specific year and country in the 15+ 
age group. After doing so, we assigned mortality curves obtained from the UN WPP database to these labels for each 
country-period. Then, we performed PCA for two matrices representing two levels of education and obtained two 
separate sets of principal components vectors specific to the approximate average level of education. As was already 
mentioned in the main body of the paper (section 3.2.2), since the time intervals for which the data were available did 
not coincide, we performed a yearly interpolation of the values before crossing the values (school duration was kept 
integer). 
The visualisation of the labelling outcome is presented in Figure A-8. The density plots for each age-education group 
depict mortality rates for the female population in line with the case study, across all countries falling within cluster 1, 
during the specified time period of interest (1980-2015). In this plot, the reference period is from 1980 to 2015, and the 
countries are those we studied in the case study. It is immediately apparent that for all age groups, the mortality rate 
of the lower educated is higher than that of individuals who have at least completed primary education. It is also 
interesting to note that the differences in mortality (and the reduction of variability of the densities) decrease with age, 
as does the distance between the modes of the distribution. 

FIGURE A-8: APPROXIMATED EDUCATION-SPECIFIC LOG-MORTALITY DISTRIBUTIONS 

Source: Own calculations based on UN WPP, WIC and UNESCO data. 
Note: The mortality curves referring to the countries in cluster 1 for the 1980-2015 period are related to the female population. 
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A-5 THE CASE STUDY MODEL FORMULATION 
FIGURE A-9: THE MODEL: GRAPHICAL REPRESENTATION 

 

Note: 
Graphical notation 
Circle: objects with a distribution. 
Orange Square: uantities estimated outside of the model used as hyper-parameters. 
Red Square: quantities estimated outside of the model used as data. 
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A-6 ADDITIONAL TABLES  
TABLE A-2: AVAILABLE DHS ROUNDS FOR CLUSTER 1 
 

Country DHS Rounds 

Albania 2008-09 (1) 

Armenia 2000, 2005, 2010, 2015-16 (4) 

Azerbaijan 2006 (1) 

Egypt 1988, 1992, 1995, 2000, 2003, 2005, 2008, 2014 (8) 

Jordan 1990, 1997, 2022, 2007, 2009 (5) 

Tunisia 1988 (1) 

Turkey 1993, 1998, 2003, 2008, 2013 (5) 

 
 
TABLE A-3: EDUCATIONAL ATTAINMENTS CONVERSIONS 
 

ISCED (Eurostat) WIC explorer 

ISCED 0-2: 
Early childhood education 
Primary education 
Lower secondary education 

No education, incomplete primary, 
primary, lower secondary 

ISCED 3-4: 
Upper secondary education 
Post-secondary non-tertiary education 

Upper secondary, post-secondary, 
short post-secondary 

ISCED 5-8: 
Short-cycle tertiary education 
Bachelor’s degree or equivalent tertiary 
education level 
Master’s degree or equivalent tertiary 
education level 
Doctoral degree or equivalent tertiary 
education level 

Bachelor’s, master’s and higher 
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A-7 ADDITIONAL FIGURES 
FIGURE A-10: LOG-MORATLITY RATES (80% C.I.). GEORGIA, FEMALE POPULATION 
 

 
 
Note: Reporting results for the selected years 1985, 2000 and 2015. In the first row, we report the results from the model with full 
inputs. In the second row, we report the results from the model with 50% of the inputs removed (of the total amount of inputs), and 
in the last row, we report the results from the model for which all the inputs for Azerbaijan, Georgia, North Macedonia and Tunisia 
were removed. 
 
FIGURE A-11: POP. SIZES 
 

 
 
Source: WIC Data Explorer. 
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FIGURE A-12: POP. SIZES 
 

 
 
Source: WIC Data Explorer. 
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