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Abstract: The use of low-cost sensors (LCSs) for the mobile monitoring of oil and gas emissions is an
understudied application of low-cost air quality monitoring devices. To assess the efficacy of low-cost
sensors as a screening tool for the mobile monitoring of fugitive methane emissions stemming from
well sites in eastern Colorado, we colocated an array of low-cost sensors (XPOD) with a reference
grade methane monitor (Aeris Ultra) on a mobile monitoring vehicle from 15 August through
27 September 2023. Fitting our low-cost sensor data with a bootstrap and aggregated random forest
model, we found a high correlation between the reference and XPOD CH4 concentrations (r = 0.719)
and a low experimental error (RMSD = 0.3673 ppm). Other calibration models, including multilinear
regression and artificial neural networks (ANN), were either unable to distinguish individual methane
spikes above baseline or had a significantly elevated error (RMSDANN = 0.4669 ppm) when compared
to the random forest model. Using out-of-bag predictor permutations, we found that sensors that
showed the highest correlation with methane displayed the greatest significance in our random forest
model. As we reduced the percentage of colocation data employed in the random forest model,
errors did not significantly increase until a specific threshold (50 percent of total calibration data).
Using a peakfinding algorithm, we found that our model was able to predict 80 percent of methane
spikes above 2.5 ppm throughout the duration of our field campaign, with a false response rate of
35 percent.

Keywords: low-cost sensors; oil and gas well emissions; mobile monitoring; model calibration;
quantification; screening tools

1. Introduction

Methane (CH4) is a colorless, odorless, flammable gas that comprises the majority
of natural gas. Methane is typically used for power generation and heating, as well as
fuel for vehicles powered via natural gas. Methane emissions represent the second largest
contributor to climate change, following carbon dioxide (CO2) [1,2]. The annual mass of
methane emissions is only three percent of that associated with CO2; however, the 100-year
global warming potential of methane is 28 times greater than that of CO2, as the radiative
forcing of methane is much greater than CO2 on a per mass basis [3]. Methane concen-
trations have increased dramatically from preindustrial levels of approximately 690 parts
per billion (ppb) to current concentrations of 1850 parts per billion [4,5]. Elevated atmo-
spheric methane concentrations contribute significantly to climate change and tropospheric
ozone. Understanding the scope of methane sources may help forestall further increases in
atmospheric methane.

Fugitive methane emissions arise from a variety of sources, including livestock, land-
fills, coal mining, and oil and natural gas wells. Within the United States, it is estimated
between 50 and 65 percent of total methane emissions originate from anthropogenic ac-
tivities [5]. Of the anthropogenic fraction of US methane emissions, oil and natural gas
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wells account for approximately one-third of the total flux [6]. Well sites are not distributed
evenly throughout the US and are often situated in socioeconomically disadvantaged areas.
This raises environmental justice concerns [7,8]. Leaking wells release not only methane but
also other harmful volatile organic compounds (VOCs), including benzene, toluene, ethyl-
benzene, and xylene (collectively referred to as BTEX). Exposure to BTEX has been linked
to increased incidences of asthma, cancer, and other serious cardiovascular impacts [9,10].
As the production of natural gas has expanded in recent decades with an increase in the
number of wells and the proliferation of new drilling methods, the corresponding share of
methane emissions attributable to oil and gas infrastructure has risen accordingly [11,12].

Accurately assessing methane concentrations is a necessary step in determining the
emission rate of various point sources (such as oil and gas infrastructure) [13]. Commer-
cially available tools used for fence line methane quantification typically rely on optical
measurements to accurately measure methane concentrations. However, these tools are not
without drawbacks, as they require costly equipment that can require extensive training
and expertise to run correctly. Alternatively, over the past decade, studies have pioneered
the use of low-cost sensors (LCS) to accurately quantify methane concentrations in lab
studies [14–16], stationary deployments in urban areas [17–19], and fence line monitor-
ing [20]. Other studies have leveraged the combination of low-cost sensors with machine
learning methods to specify and predict individual VOC concentrations in stationary
laboratory and field experiments with high fidelity [21,22]. Similarly, researchers have
demonstrated the ability of machine learning algorithms for the classification and quan-
tification of individual VOCs [22,23] and CH4 [24]. At a fraction of the cost of regulatory
and research-grade monitors, LCS networks are used to supplement regulatory monitors
by providing high-resolution spatiotemporal pollutant data and to inform local policies to
best mitigate exposure.

Low-cost methane sensors typically fall within one of two classes: electrochemical
(EC) and metal oxide (MOx) sensors. MOx sensors operate via an oxidation or reduction
reaction when exposed to a target gas [25]. Target species interact with the sensor surface,
resulting in the introduction or removal of free electrical charge in the semiconductive
material [25]. This process changes the resistivity of the material, which is then measured
and converted to a gas concentration. The resistivity of MOx sensors is highly dependent
on both temperature and humidity, and sensor performance can degrade with time [26].
MOx sensors designed to react with CH4 as the target gas typically employ SnO2 deposited
on an electrode and an Al2O3 substrate [27]. EC sensors operate via chemical reactions
within a cell, which produce a current proportional to the concentration of the target
gas [28]. However, these sensors are also susceptible to long-term degradation and effects
from temperature and humidity changes [29,30]. The calibration of both MOx and EC
LCS is often difficult due to a combination of sensor cross-sensitivity and performance
degradation over time. Other commonly employed low-cost sensor technologies used for
VOC assessment, such as photoionization detectors (PIDs), are not sensitive to changes in
methane concentrations [31,32].

While the applications of low-cost sensor networks for oil and gas emission monitoring
have been demonstrated in many studies [19,33–35], there is little research on the efficacy of
these sensors for mobile applications. Tracking emissions over a large spatial boundary with
transient sources requires an LCS platform capable of mobile measurements. In stationary
studies, LCSs are deployed at either one or several fixed locations throughout the study
duration, whereas for mobile studies, the sensor package is constantly moving. The use
of LCS for mobile applications requires the consideration of several additional criteria.
Sensors may be exposed to an emission plume for a period of multiple hours in stationary
studies, whereas sensors in mobile monitoring applications may only be exposed to a
source for several seconds. Sensors should be calibrated to collect data at a greater time
resolution to account for the decreased time exposed to an emissions plume. Additionally,
a subset of low-cost sensors interact with both VOCs and carbon monoxide, both of
which are produced from vehicle exhaust. To avoid artifacts stemming from sensors
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responding to vehicle exhaust rather than methane emissions, sensors must be sited on the
monitoring vehicle to minimize exposure to tailpipe emissions; while commercial monitors
have been successfully employed to track these emissions, the cost of these instruments
is often prohibitive [36]. A calibrated LCS device capable of accurately assessing CH4
concentrations may act as a low-cost alternative to costly research-grade equipment for the
identification of CH4 spikes when coupled with an accurate peakfinding algorithm. To our
knowledge, this study represents the first attempt to leverage LCS technology for mobile
CH4 tracking from oil and gas infrastructure.

2. Materials and Methods

LCS data were collected over 16 days from 15 August 2023 to 27 September 2023. Data
were collected using the XPOD monitoring platform—a low-cost sensor package employing
commercially available sensors designed for air quality monitoring developed by the Han-
nigan Lab. Raw XPOD data were collected during monitoring every two seconds. Sensors
employed by the XPOD monitoring platform to assess methane concentrations are shown
in Table 1. Sensors were selected for this study based on a combination of price, sensing
technology, and widespread usage in the relevant literature. Though selected sensors
have differing manufacturer-prescribed sensing ranges and target gases, all sensors (with
the exception of Alphasense VOC-B4, which, to our knowledge, has not been previously
characterized in the literature) have been extensively studied and have been shown to
correlate well with CH4 [16,33,37]. The XPOD monitor was placed within a University
of Chicago emission monitoring vehicle (Figure S1). The average velocity of the vehicle
near O&G facilities was several meters per second. All data collected from the XPOD
and Aeris over the duration of this study were mobile data. The inlet of the XPOD was
connected to the roof of the monitoring vehicle via 8 feet of inert Tygon tubing. Inlet air was
pumped into the XPOD via a micro pump (Sensidyne) calibrated to a flow rate of 2.5 L per
minute. Reference CH4 measurements were provided via a research-grade Aeris Ultra gas
analyzer (Aeris Ultra, Project Canary, Denver, CO, USA). The inlet of the Aeris gas analyzer
was placed adjacent to the XPOD inlet on the roof of the monitoring vehicle to minimize
differences in the gas composition during deployment [38] (Figure S2). The response lags
for pumped gas to enter both instruments were equal for the XPOD and Aeris Ultra.

Table 1. Sensors employed in mobile CH4 monitoring platform.

Sensor Manufacturer Target Gas Sensing Range Aprox. Cost
(USD 2023) Technology

Figaro 2600 Figaro Engineering
(Osaka, Japan)

General VOC/air
pollutants Hydrogen 1–30 ppm 10 MOx

Figaro 2602 Figaro Engineering General VOC/air
pollutants Ethanol 1–30 ppm 10 MOx

Figaro 2611-C00 Figaro Engineering Methane 10,000–250,000 ppm 10 MOx

Figaro 2611-E00 Figaro Engineering Methane 10,000–250,000 ppm 15 MOx

Alphasense VOC

Alphasense (Great
Notley, Braintree,

Essex, United
Kingdom)

General VOCs Gas dependent 150 EC

MQ4

Henan Hanwei
Electronics

(Zhengzhou,
China)

Methane 200–10,000 ppm 5 MOx

Sampling occurred in the Julesburg Basin, a region comprising the area east of the
Rocky Mountains in Colorado and Wyoming that extends to the western portion of Kansas
and Nebraska. The Julesburg Basin produces both oil and natural gas from a combination
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of sand and shale formations [39]. Large-scale commercial oil and gas extraction within
the Julesburg Basin have occurred since the early 1950s, resulting in a large number of
legacy wells [39,40]. With the development of new extraction techniques, including the
combination of horizontal drilling and hydraulic fracturing, new wells have continued to
proliferate within the Julesburg Basin [41] (Figures S3 and S4). Methane leaks from O&G
infrastructure are treated as a point source, and are often analyzed using a Gaussian plume
dispersion model [42]. Many of these wells are in close proximity to large population
centers within this region, including the cities of Greeley, Cheyenne, and Denver. A map
of the Julesburg Basin and the spatial extent of our field monitoring are shown below in
Figure 1.

0 50 10025 Miles

Denver-Julesburg (DJ)
Basin

Major Metro Areas
within DJ Basin

Study Area Boundary

Figure 1. Map of study area. The pink-shaded area represents the Denver-Julesburg Basin, and the
blue-shaded region represents the extent of our study.

XPOD CH4 concentrations were calculated using raw signal from sensors displayed in
Table 1, as well as temperature and humidity. Reference and XPOD data were time-averaged
in 15 s intervals using mean values over each period. To reconstruct CH4 concentrations
from model variables, we applied multilinear regressions, random forest models (RF),
and artificial neural networks (ANN), trained using Aeris reference measurements. We
assessed the performance of these models using 2-fold cross-validation. Training and
evaluation datasets for RF and ANN models were fit according to the methodology outlined
in [43,44], with 80 percent of data used for training and 20 percent used for testing. Prior
to fitting, XPOD sensor warmup periods were removed from deployment data, and the
distribution of reference CH4 data was cleaned and then resampled using five concentration
bins according to the methodology outlined in a study by Furuta et al. [37]. Following
data binning, the training dataset comprised 18 h of data (corresponding to approximately
4300 data points), and the evaluation dataset comprised 4.5 h of data (corresponding to
approximately 1100 data points). Resampling results in an improved balance among the
number of experimental observations at different CH4 concentrations, at the expense of
reducing the size of the overall dataset (Figure S5). The original and resampled reference
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CH4 distributions, as well as model fitting parameters on the original data distribution, are
displayed in Figure S5 and Tables S1–S10.

2.1. Multilinear Regression Model

Multilinear regressions between reference Aeris CH4 concentrations and XPOD sen-
sor signals, as well as temperature and humidity, are the simplest models to employ,
as well as the easiest to interpret. Other authors have used these models during stationary
deployments to accurately assess CH4 concentrations via LCS [17,41]. We produced mul-
tilinear regressions between reference CH4 from the Aeris Ultra monitor and the XPOD,
calculated as

ŷCH4(S2600, S2602, S2611C00, S2611E00, SAlphasenseVOC, SMQ4, Tair, RHair) =

α0 + α1S2600 + α2S2602 + α3S2611C00 + α4S2611E00 + α5SAlphasenseVOC + α6SMQ4 + α7Tair + α8RHair
(1)

where ŷCH4 is the predicted CH4 concentration (in ppm), Sxx represents raw sensor outputs
for respective sensors, Tair is the temperature of the air (in K), and RHair is the relative
humidity of the air (in %).

2.2. Artificial Neural Networks

Recent studies of stationary low-cost sensor networks have shown that artificial neural
network machine learning models are able to accurately translate sensor voltages to CH4
concentrations [19]. ANNs are composed of single units (neurons) ordered in a connected
layer, with weights and an activation function applied to each neuron. Each layer of the
ANN is connected to units in the previous layer. In our ANN, information is propagated
forward through the network from the inputs, through hidden layers and bias functions to
the output. For this model, the hyperbolic tangent function was chosen as the activation
function. Neuron and bias weights in the ANN network were assigned randomly and
iteratively adjusted to minimize a predetermined cost function. The number of hidden
layer neurons were manually tuned to achieve optimal fitting performance. For our ANN,
we employed a Bayesian regularization training function, which applies an additional
term to the cost function that penalizes the network for increased complexity in order
to help prevent overfitting. This regularization algorithm has been previously shown to
perform well for regression applications independent of network architecture [19,45]. Other
commonly used regularization functions, including Levenberg–Marquardt regularization
and gradient decent regularization, displayed poorer fits than Bayesian regularization
(Table S10). More complex ANN architectures were not employed in this study, as more
intricate ANN designs with additional hidden layers and neurons are likely to result in
overfitting in smaller datasets [46]. A visualization of the ANN architecture is shown in
Figure S6, and additional information regarding model hyperparameters and settings is
included in Table S11.

2.3. Random Forest Models

Random forests are a general classification of machine learning ensemble models
consisting of several decision trees used to fit complicated data [47]. Random forests oper-
ate by creating an ensemble of decision trees fit on a training dataset, constructed from a
random subset of predictor variables. Fitting parameters, including the number of leaves,
the number of observed predictors included in the model, and sampling with replacement,
were determined by minimizing the fitting error on testing data (Tables S12–S14). Accord-
ingly, the minimum leaf size in our random forest was set to five, and all eight parameters
were sampled at each node. Data were sampled with replacement, and the prediction was
generated by averaging the outputs of all trees. For this analysis, bootstrap aggregation
(bagging) was employed for RF models due to the low dimensionality of our dataset.
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2.4. Model Performance Evaluation

Optimal model parameters were selected by minimizing the root mean squared devia-
tion (RMSD) between the reference and experimental measurements [48,49]. The RMSD
consists of the sum of squared bias (SB), the difference in magnitude fluctuation (SDSD),
and the lack of positive correlation multiplied by the standard deviation (LCS):

SB = (yCH4 − ŷCH4)
2 (2)

SDSD = (σre f − σmodel)
2 (3)

LCS = 2σre f σmodel(1 − ρ) (4)

RMSD =
√
(SB + SDSD + LCS) (5)

where yCH4 is the mean of the reference data, ŷCH4 is the mean of the model-predicted
data, σre f is the standard deviation of the reference data, σmodel is the standard deviation of
the model-predicted data, and ρ is the Pearson correlation coefficient between the model-
predicted and reference data.

3. Results and Discussion
3.1. Calibration and Model Parameters

In developing a mobile CH4 model, we found a large variation in the efficacy of
specific sensors in quantifying CH4. Alphasense’s electrochemical VOC sensor and MOx
sensors designed with CH4 as a target gas displayed greater correlation with reference CH4
than general VOC MOx sensors (Figure 2). Relative humidity and temperature displayed
significant correlations with reference CH4 concentrations over the duration of our study,
which may be attributed to variable local meteorological conditions. All variables shown
in Figure 2 were employed in calibration models during XPOD deployment to assess
CH4 concentrations.

Figure 2. Scatter plot matrix of the raw sensor signal. The bottom triangle displays pair plots between
individual variables, blue plots along the diagonal display distributions of each variable, and the
upper triangle displays Pearson correlation coefficients for each variable pair.
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MLR and NN models were able to quantify longer-term changes in CH4 baseline
but were unable to process rapid changes in CH4 from fugitive O&G leaks (Figure 3). RF
models were able to quantify both short-term and longer-term fluctuations in CH4 signals
(Figure 3). All three models displayed lower signal variability than the reference data at
high CH4 concentrations due to the large contribution of baseline data during deployment.
We ran each model on training data 100 times to minimize stochastic variation between
runs of the same model, and selected the best-performing models within each model class
for further analysis. Pre-binned data displayed no variation in RMSD from run to run as
model parameters were fit to the same sample dataset. Additional information regarding
model parameters and statistics can be found in Tables S1–S14.

Figure 3. Model comparison over a single day of data acquisition. Individual models are displayed
on the left-side plots, and the full Aeris reference dataset is displayed on the right-side time series.
Additional model comparisons on August 30th are displayed in Figure S7.

Prior to binning, model fits displayed high errors, as the RMSD for pre-binned data
(RMSDMLR = 0.4189, RMSDANN = 0.6917, and RMSDRF = 0.5023) was comparable to the
variation between data points. The distribution of the reference methane concentrations
(Figure S5) is heavily weighted toward baseline concentrations, as the majority of measure-
ments occur at ambient conditions rather than an even distribution across the measured
concentration spectrum. Applying data binning to reduce the inequality across the mea-
sured concentration gradient dramatically reduced fitting errors, as our applied calibration
models provided a greater relative composition of higher concentration methane data.

Following data binning analysis of RMSD on testing data, it was shown that for NN
models, a model consisting of a single hidden layer and 10 neurons minimized errors
(µRMSD = 0.4669 ppm and σRMSD = 0.0737 ppm). NN models displayed high variability
as the number of neurons changed, indicating a sensitivity to tuning parameters. NN model
variability may be attributed to the small sample size of the dataset and the select range of
variables to alter. RMSDs for MLR models ((µRMSD = 0.3652 ppm and σRMSD = 0.0012 ppm)
were lower than machine learning model configurations, but they displayed the lowest
sensitivity to short-term variation in CH4, making these models poorly suited for mobile
monitoring where CH4 spikes may last only several seconds. Larger NN models consist-
ing of additional neurons better fit the training data, but they resulted in nonphysical
interpretations of testing data due to overfitting, thus resulting in greater RMSDs. RF
models most accurately assessed variation in short-term CH4 spikes and captured the
overall trends in baseline variation. The RMSD on testing data showed a lower error for
all RF models than any of the assessed NN models, and a similar magnitude of error to
that of MLR models. RF models displayed significantly lower variability as the model
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inputs (tree number) were changed when compared to NNs. We attribute this diminished
variability to the ensemble bagging process employed by RF models, which aggregates
predictions from multiple trees to inform the final model prediction, thus reducing the
weight of predictions from any single tree. Furthermore, the presence of outlier CH4 spikes
and the high correlation between many of our sensors are well suited for random forest
regression [47]. The optimal RF configuration consists of a forest comprising 100 trees
(µRMSD = 0.3674 ppm and σRMSD = 0.0182 ppm). This model was analyzed in further
detail in the subsequent sections.

3.2. Evaluating the Impact of Additional RF Training Data

For regression applications, machine learning model performance often varies non-
linearly with the amount of training data employed [50]; while reducing the total amount
of training data in machine learning models can lead to overfitting, gains from including
additional training data must be balanced by the cost of data collection [51]. We investigated
the error between reference and model data for different percentages of total training data
(Figure 4). We reduced data in all bins by percentages varying between 5 and 95 percent
and ran 100 RF models on each reduced set of training data. Each 5 percent of binned data
represents approximately 4 h of sampling before any preprocessing functions are applied.
Between 5 and 50 percent of the total training data, the RMSD for testing data decreases,
indicating that additional data points reduce error and further improve the RF model
(Figure 4). A t-test analysis of adjacent data percentages (Table S8) shows that the mean
RMSDs are more likely to be statistically distinct for different amounts of data between
5 and 50 percent (Z1 in Figure 4) than between 50 and 100 percent (Z2 in Figure 4). With
larger percentages of training data, additional data points no longer improve the RMSD,
indicating that a precision XPOD sensor array may limit the predictive power of the RF
model when more data points are used.

Figure 4. Error comparison for various percentages of training data run on 100 RF models. Error bars
represent 1σ of RMSD.

3.3. Assessing RF Model Sensor Performance

Due to the black-box nature of machine learning regression algorithms, it is often
difficult to interpret which variables are contributing to model performance [52]. To quali-
tatively assess which variables are most relevant for RF model performance,we analyzed
the distribution of predictor importance estimates for all model variables by running
our chosen RF model 100 times, removing a specific sensor variable for each set of runs
(Figure 5). We assessed the distribution of error values for our subset model and then
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subtracted the mean baseline error for the full RF model. Variables that, when removed,
resulted in significant increases in model error have greater predictive importance than
those that have a minimal impact. The sensor variables with the highest experimental
correlations (Figure 2) with CH4 (Fig 2600, Fig2611-E00, Alphasense) have the greatest
importance in our RF model, indicating sensor variables that are highly correlated with
methane have greater predictive power. The removal of the Fig-2600 and Fig2611-E00
sensors dramatically increased model error by 25 and 30 percent, respectively. The MQ4
MOx sensor, which displayed a moderate correlation with the reference CH4, had a lower
predictive importance than other sensors with similar correlation coefficients (2611-E00
and Alphasense). We hypothesize that the lower predictive importance of the MQ4 and
Fig-2611 may be attributed to the high correlation between the MQ4 and Fig2611-E00 sen-
sors (r = 0.93) and the Fig2611 and Fig2611-E00 sensors (r = 0.84). Permutations to the MQ4
signal may have diminished the influence on the error metric, as this sensor may provide
redundant data to the model,with the weight of the data accordingly reduced. RF models,
excluding Fig-2602, which displayed a negative correlation with CH4 over the course of
the deployment, marginally reduced the RMSD when it was excluded from the RF model,
indicating that this sensor may have contributed to overfitting during model calibration.

Figure 5. RF model ∆RMSD (ppm) excluding specific sensor signal over 100 runs. ∆RMSD (ppm) is
calculated as the difference in RMSD between the sensor-excluded model and the base RF model.
Error bars represent 1σ of ∆RMSD.

3.4. Utility of RF Model for CH4 Peakfinding

We further investigated the capability of our chosen RF model to assess short-term
spikes in CH4 concentrations. CH4 spikes were determined via a one-dimensional peak-
finding algorithm, whereby a peak was defined as a sample greater than its two nearest
neighbors. We included additional prominence and magnitude constraints in the peakfind-
ing algorithm to assess only the largest methane spikes. Reference CH4 spikes were defined
as CH4 concentrations greater than 2.5 ppm with >0.5 ppm prominence. Throughout
the monitoring campaign, there were a total of 20 peaks that met these criteria (Figure 6).
The CH4 spike criteria for RF model data, which displayed lower variability at elevated
CH4 concentrations when compared to the reference data, were adjusted accordingly. RF
CH4 spikes were defined as points where model CH4 concentrations were greater than
2.05 ppm and model prominence was >0.1 ppm. Using the calibrated RF model, there
were 27 peaks that fit these criteria (Figure 6). Of the 20 peaks defined by the reference CH4,
16 overlapped between reference and calibrated data, 3 peaks for reference CH4 displayed
an increased model CH4 concentration below our target threshold, and 1 peak was missed
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by the RF model, indicating an accuracy of 80 percent for our RF model in determining CH4
spikes. Of the seven extra peaks predicted by the RF model, all but one occurred in regions
with elevated CH4 baselines, as the RF model may have difficulty in predicting additional
elevations to CH4 when baseline concentrations are raised. Increasingly sophisticated
peakfinding algorithms, which employ local concentration and prominence thresholds
rather than global values, may display better predictive value for assessing CH4 spikes.

Figure 6. CH4 spike prediction using reference (orange) and calibrated model (blue) data.

4. Summary and Conclusions

Over a month-long deployment, we employed an array of LCS mounted on a mobile
monitoring platform to reconstruct short- and longer-term fluctuations in CH4 concen-
trations stemming from fugitive oil and gas emissions. For mobile monitoring, specific
MOx sensors targeting CH4 were able to quantify CH4 variations more accurately than
general gas phase VOC sensors. Employing preprocessing functions to equitably sample
CH4 concentrations across the full range of concentration space drastically improved fit-
ting performance. Testing a wide range of models to fit our deployment data, we found
that an RF model outperformed both ANN and MLR. RFs were able to capture longer-
term variation in CH4 concentrations, as well as short-term spikes caused by fugitive
emissions. Additionally, as the percentage of colocation data was reduced, the RF model
performance did not significantly suffer until approximately half of the data were removed,
indicating that, even in data-scarce environments, RF models may achieve high perfor-
mance given a small parameter space from which to sample. Accordingly, even short-term
field campaigns with LCS networks may be sufficient to achieve relatively high fidelity
for CH4 measurements, assuming that measurements within the concentration space
are well distributed.

Using our model, we were able to achieve similar error metrics when compared to
other stationary LCS CH4 quantification studies [17]. Given the transient sampling environ-
ment in which our study occurred, our model may be less likely than stationary studies to
be fit to specific local behavior and may be more generalizable, thus minimizing the risk of
overfitting. However, in our study, we found the distribution of CH4 measurements to be
heavily skewed toward baseline values, which may have caused our model to underpredict
concentrations of CH4 spikes. Finally, the cost associated with generating data for our study
was much greater than stationary monitoring, as the XPOD required active transportation
to different field sites. In the future, extended field campaigns will need to be conducted to
better understand and model longer-term seasonal fluctuations in CH4.



Sensors 2024, 24, 519 11 of 13

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24020519/s1, Figure S1: XPOD low-cost methane sensor config-
uration; Figure S2: Inlet setup atop monitoring vehicle; Figure S3: Oil and gas flaring facility on the
Eastern plains of Colorado; Figure S4: Oil and gas facility on the Eastern plains of Colorado; Figure S5:
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