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Abstract

Population fluctuations are generally attributed to the deterministic consequences of strong non-linear interactions among
organisms, or the effects of random stochastic environmental variation superimposed upon the deterministic skeleton
describing population change. Analysis of the population dynamics of the mussel Mytilus californianus taken in 16 plots over
18-years found no evidence that these processes explained observed strong fluctuations. Instead, population fluctuations
arose because environmental stochasticity varied with abundance, which we term density-linked stochasticity. This
phenomenon arises from biologically relevant mechanisms: recruitment variation and transmission of disturbance among
neighboring individuals. Density-linked stochasticity is probably present frequently in populations, as it arises naturally from
several general ecological processes, including stage structure variation with density, ontogenetic niche shifts, and local
transmission of stochastic perturbations. More thoroughly characterizing and interpreting deviations from the mean
behavior of a system will lead to better ecological prediction and improved insight into the important processes affecting
populations and ecosystems.
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Introduction

Ecologists have long been fascinated by the fluctuations exhibited

by natural populations, and interested in elucidating the mecha-

nisms by which they arise. Early work emphasized stochastic

environmental factors that counteracted density-dependent regula-

tory mechanisms [1]. Subsequently, there has been increased

appreciation that density-dependent mechanisms can also act

through strong feedback pathways [2–7] or time lags [8–10] to

generate strong fluctuations in population dynamics, including

seemingly unpredictable chaotic dynamics. A central question in

population ecology is the degree to which each of these processes

controls population fluctuations. Answering this question might

facilitate prediction of population dynamics for economically

important species and potentially guide management practices

seeking to minimize outbreaks or population crashes.

Stochastic and density-dependent processes have largely been

treated as independent alternative factors both conceptually and in

modeling studies [1,11]. Although past work has considered them as

alternatives, more recent work has synthesized the two, modeling

populations with stochastic additive noise superimposed on a

deterministic skeleton [10,12–16]. Theoretical studies have found

that both processes can contribute to shape population dynamics

[13], and that when the two are combined, substantial shifts in the

characteristics of population dynamics can arise [14,17–20].

An alternative mechanism, which we will refer to as density-linked

stochasticity (DLS), has not been considered in most detailed

descriptions of population dynamics but might also generate strong

non-random patterns of population change [21]. In this case, the

impact of varying environmental factors external to the population,

such as the myriad components of weather or effects of other species,

depends on the density of a population of interest. For example,

impacts of fire on forest trees might depend on density, as it is easier

for fire to spread from one tree to another at higher density [22];

pathogen transmission may behave similarly [23]. Generalist

predators, when their abundance is not strongly controlled by prey

abundance, might act as a stochastic factor on prey that may vary

with prey density due to an aggregative response [21]. When

populations have intrinsic structure, some life stages might be more

susceptible to fluctuating environmental factors than others. When

the composition of these stages varies regularly with population size,

stochastic variation will also vary with population size.

Here we present a detailed analysis of the population dynamics of

the mussel Mytilus californianus that probes the roles of deterministic

non-linear dynamics, additive effects of environmental stochasticity,

and density-linked stochasticity. We find that the former two cannot

generate the strong dynamical patterns that we observed in our data,

but that DLS can. In light of this result, we then explore the

mechanism of this phenomenon and consider its general implications.

Study Site and Methods

Ethics Statement
All necessary permits were obtained for the described field

studies. Specifically, all research was conducted from Makah tribal
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lands, for which we received the written permission required for

access to Tatoosh Island by the Makah Tribal Council.

Data Collection
This study took place in the middle zone of the rocky intertidal

community of Tatoosh Island, Washington, USA (48u239N

124u449W). In this zone, the community is dominated by the

California mussel, M. californianus, with a suite of mobile and sessile

algal and animal species that occupy interstices between individual

mussels or gaps of open space between groups of mussels [24,25].

As the dominant species in this community, mussels strongly alter

the population dynamics of associated species [26–29], hence

understanding the patterns and mechanisms driving mussel

population fluctuations is important for understanding this system.

The qualitative pattern of M. californianus abundance through time

raises the possibility that interesting non-linear dynamics might be

operating: populations go through a cycle of population build up

followed by sharp declines on a seemingly regular basis. Yet a

central factor thought to determine local mussel populations is

physical disturbance by large waves [24], a stochastic external

event. To better understand the basis for the dynamics observed in

this community, we explored the role of deterministic non-linear

dynamics and stochastic impacts on mussel populations.

To explore the community dynamics of this system, we began in

1993 to collect annual data on the early-summer abundance of all

species contained within replicate 60660 cm permanent plots.

Plots were located on wave-exposed rock benches at four sites

scattered around the island in areas dominated by mussels.

Fourteen plots were established in 1993, and another two were

added in 1994. One plot could not be located in 1994, which

generated a gap within its time series. Data from the plots continue

to be collected; the data reported here span 1993 through 2010,

yielding 17–18 year time series. To provide maximal information

on plot dynamics over a range of densities and to allow permanent

plot marking with minimal disruption to the system, we initially

chose plots in spots that tended to have relatively low populations

of mussels. Note that because this study was carried out in the field

and we made no intervention to the natural dynamics of the

system, the dynamics are not experiencing any transient phase as

do most modeling and laboratory studies that use arbitrary starting

conditions. For ten quadrats, mussel abundance was quantified as

the proportion of plot area covered, which was aided by using a

quadrat subdivided into 121 squares. The sampling involved

counting squares exhibiting complete cover of M. californianus, and

integrating mussel cover on an approximately quarter-square basis

for sample squares with incomplete cover. A reasonable discrete

approximation of these data, which is useful for the analyses that

follow, is the presence/absence of M. californianus in each of 484

quarter-squares. For the other six quadrats, sampling involved

recording the presence of a mussel under 100 fixed points created

at the corners of each grid square [30,31]. Measurement error,

which we assessed from repeated sampling of the same plots, was

low (0.48%), so uncertainty in parameter estimates is attributed to

process error.

Analysis and Modeling
We analyzed the time series by exploring relationships between

mussel abundance at a census point as a function of mussel

abundance one or more census points in the past, combined across

all plots, using non-linear regression with maximum likelihood,

and used simulations of the resulting relationships to determine

how well they recreated the dynamical patterns observed in the

data. To match the structure of the data (bounded above and

below), we used the beta-binomial distribution to model error (see

[32,33] and Text S1 for more details).

To explore patterns of mussel dynamics, we first probed the

time series for the order of density dependence (ODD; dependence

on various time-lagged densities) using a non-parametric method

[10,34] that uses cross-validation to assess how well a portion of a

time series projects the rest of the data given a specified order of

density dependence. We carried out this analysis for the time series

of each plot, and standardized the results by setting the lowest

cross-validation error of each plot to 0. We then averaged the

cross-validation index for first through fifth-order density depen-

dence across all plots (a lower average index indicates greater

model support).

To explore the role of deterministic dynamics in generating

mussel population patterns, we used maximum likelihood methods

to fit a fourth-order model of the form:

Nt*Beta Binomial mt, s2, Nmax

� �

mt~I(1{pt{1)zpt{1exp rz
X4

x~1

axpt{1zbxpcx
t{x

 !
, ð1Þ

where Nt is the population size at time t, BetaBinomial is the beta-

binomial distribution (see Text S1), mt is the mean (deterministic)

component of the relationship, pt = Nt/Nmax, I is a term describing

immigration from outside the study plots into space unoccupied by

mussels, r is a density independent rate of growth, ax describes the

effect of linear density dependence at time t-x, bx determines the

strength on non-linear density dependence at time t-x, cx controls

the strength of non-linearity in density-dependence at time t-x,

Nmax is the number of squares sampled for presence/absence of

mussels (484 or 100, depending on plot), and s2 is the variance

around the deterministic component.

The beta-binomial distribution is controlled by two positive-

valued shape parameters (a, b), which define the beta distribution

component, and the sample size (N), which defines the subsequent

binomial component of the distribution. The mean and variance

of the beta portion of the distribution are related to the shape

parameters (Text S1). However, because the variance of the beta

distribution is not independent of its mean, an overdispersion

parameter (i.e., the sum of the shape parameters) can be used to

describe spread (Morris 1997). Hence, we fit models of beta-

binomial distributions given an expected value (e.g., a function

describing predicted mean population size) and rules for the

behavior of the variance of those distributions, based on a function

describing predicted overdispersion (Text S1).

Equation (1) is a modification of the standard Ricker form of

discrete-time population dynamics [16,35], which has the desir-

able features that population size can never be negative and that

complex dynamics, including cycles and chaos, can be generated.

This equation was based on prior mechanistic understanding of

mussel populations, which are open to immigration from

dispersing larvae in the water column [36–38] and dislodged

mussels from other parts of the shore [24,31], subject to strong

competition for space [26–29] and characterized by local increases

in abundance arising from individual growth [24]. The model was

also modified by including non-linear and higher-order terms as

suggested by the ODD determination, and by other models of

sessile marine invertebrates [39]. In light of the literature linking

strongly fluctuating dynamics to time-lagged variables [8,10,12],

and the results of the ODD analysis that suggested fourth-order

models might be plausible (although first order models were

Density-Linked Stochasticity
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deemed more likely), we examined 4th order models to ensure that

we did not miss possible effects of time lags. As the mechanisms

that might lead to higher-order dependency are uncertain, and

therefore specific functional forms to use are unclear a priori, we

adopted an approach that included general exponential terms for

different time lags (e.g., [40]). We also explored simpler versions

that included only a one-year lag (time-dependent subscripts of

parameters dropped):

mt~I(1{pp{1)zpp{1 exp (rzapp{1zbpc
t{1), ð2Þ

These versions were applied to the same data series (i.e., capable

of exploring up to fourth-order terms), and were evaluated for

relative support using AIC analysis [41]. When first-order models

were better supported than fourth-order models, we subsequently

used the entire data series to estimate a best-fitting model.

We did not explore an alternative model of sessile species

population dynamics [39] because it requires accelerating growth

to generate unstable dynamics, but M. californianus exhibits

decelerating growth with age [25, A. Kandur unpubl. data]. As

a two-stage model, it also implies second-order lagged dynamics,

which were not supported by the ODD analysis. We did, however,

explore an alternative, commonly used model [42] that can exhibit

a range of dynamic behavior. As with the Ricker model, we

modified this model to allow outside immigration and extra non-

linearity in the relationship:

mt~I(1{pt{1)z(rpt{1)=(1zapt{1zbpc
t{1)d ð3Þ

Because this model generated nearly identical results to

Equation (2) (Fig. S1), we do not discuss it further.

Alternative mechanisms for generating strong population

fluctuations differ in how stochastic variation is conceptualized.

Therefore we compared models that incorporated stochasticity in

different ways. First, we followed standard approaches in which

stochasticity was modeled as a constant feature in Equations 1–3

(s2 constant). Second, because we suspected that DLS might be

occurring, we also probed models in which stochasticity was a

function of density. There are at least two ways to envision

stochasticity varying with density. Stochasticity might vary

continuously with density if, for example different stages in the

population vary somewhat predictably with density, and are

affected by different stochastic forces of different strength. Hence,

we modeled variance with the following equation, which can take

on multiple patterns of variance with abundance and also

facilitates efficient parameter estimation in the face of model

variance constraints (see Text S1 for further information):

s2
t ~

mt(1{mt)

2zexp({(xzypz
t{1))

ð4Þ

Stochasticity might also be injected by a process that could vary

with abundance, and that creates substantially different dynamics

from baseline conditions (i.e. a disturbance). This case can be

modeled by a separate set of equations describing dynamics under

disturbance conditions [20], with a function describing how the

system shifts from undisturbed to disturbed states (a mixture

function):

Nd,t*Beta Binomial((md , s2
d , Nmax): ð5Þ

Here, disturbed conditions are characterized by a mean post-

disturbance proportional cover (md) and an associated error (s2
d),

assumed to follow a beta-binomial distribution that was con-

strained to be unimodal. Because we suspected that both effects on

stochasticity might be occurring, we incorporated both in our

modeling framework. We combined the likelihoods (L) of the

equations describing disturbed and undisturbed populations, given

our data, using a mixture model to describe disturbance

probability as a function of mussel abundance:

Yd,t~exp(jzkpt{1)=½1zexp(jzkpt{1)�: ð6Þ

Hence the log-likelihood (LL) equation for this model followed

the form:

LL = log((12Yd)L+YdLd).

LL~
X16

q~1

X17

t~1

log
(1{Yd ):Beta(Vq,tzmq,t q,t,Nmax{Vq,tz(1{mq,t) q,t

(Nmaxz1):Beta(Vq,tz1,Nmax{Vq,tz1):Beta(mq,t q,t,(1{mq,t) q,t)

 

z
Yd

:Beta(Vq,tzmd d,q,t,Nmax{Vq,tz(1{md,q,t) d,q,t

(Nmaxz1):Beta(Vq,tz1,Nmax{Vq,tz1):Beta(md,q,t d,q,t,(1{md,q,t) d,q,t)

! ð7Þ

where Vq,t is the observed population size in quadrat q at time t,

and w is the sum of the two shape parameters describing a beta

distribution, which is functionally related to m and s2 (see Figs. S2,

S3).

We compared different model versions using model selection

methods (AIC; [41]), and considered models well supported if their

AIC differed from the model with the highest support (lowest AIC)

by less than 6 and if a simpler nested model did not have a lower

AIC [43]. We also carried out simulations of different model

variants. We compared their dynamic characters to those of the

data by applying spectral analysis [44,45] using the fast Fourier

analysis function in MATLAB (v. 7.5, MathWorks, Natik,

Massachusetts). To mimic the data as closely as possible in this

analysis, we carried out the same number of simulations as we had

data series (16) starting from the initial conditions in each the

different plots, and iterated the models over the same time span as

the data (18 yrs). We also visually compared observed population

change over an annual time step to 95% confidence intervals

expected under different stochastic models by iterating each model

106 times for each 0.002 increment in starting density and plotting

Nt against Nt21.

We checked the robustness of our best-fit models in two ways.

First, we compared our best-fitting first-order mean model with

constant variance to results from non-parametric curve fitting

(distance-weighted least squares) to determine whether the

functional shape deviated substantially, which would indicate that

our model choice or fitting routine was poor. We also compared a

version of the model using a modification of a Hassell-type density-

dependent model as described above (Equation 3).

Second, we also checked for robustness of our best-fitting

density-linked stochastic model using model averaging, in which

parameter estimates for each model considered were combined

using the Akaike weights of each model as a weighting factor,

based on all model variants considered for either first or fourth

order datasets.

(7)

Density-Linked Stochasticity
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Results

General Patterns of Population Dynamics
Plots of mussel abundance over time follow prior qualitative

impressions of temporal dynamics (Fig. 1): mussels generally

increase steadily from low abundance, then drop sharply from

high abundance. Such strong and regular changes are hallmarks of

unstable population dynamics, and suggest underlying determin-

istic processes such as non-linear over compensatory density

dependence or time-lagged density-dependent feedback

[2,5,46,47]. Also, the observed fluctuations were not synchronized

across plots (Fig. 1), in contrast to the pattern expected if they

arose from large-scale environmental forcing.

Testing Deterministic Non-linear Dynamics
The results of an order of density-dependence analysis (Fig. 2)

suggested two possible scenarios: a first-order relationship consid-

ered in most classical analyses of population dynamics [2,16,35]

was most strongly supported, but a fourth-order relationship also

performed fairly well. Hence we fit our mussel data to first and

fourth-order population dynamics models. The most parsimoni-

ous, best fitting model (lowest AIC) was a first-order model with

linear coefficients (Table 1; Fig. 3A). The non-linear model also

received slightly less support than the linear model when the full,

first-order dataset was used (Table 1).

Our model projections (Fig. 3B) provided no evidence that the

observed strong population fluctuations could be explained by the

deterministic components of the model by themselves: the

deterministic skeleton with empirically-derived parameters pre-

dicted that the system should be strongly stable, with 82.9% of

each plot consistently covered by mussels in the best-fitting model.

The predicted dynamics of the non-linear first-order model and

full model also exhibited highly stable dynamics. Furthermore, the

shapes of non-parametric LOESS fits or a Hassell-type model (Fig.

S1) also predicted stable dynamics. In contrast, observed

population dynamics regularly exhibited complete dominance by

M. californianus, and strong fluctuations (Fig. 1). Therefore the

strong fluctuating patterns exhibited by mussel populations did not

appear to arise from deterministic non-linear or time-lagged

dynamics alone.

Constant Stochasticity Model
As would be expected, a model that included constant

stochasticity predicted fluctuations in population size through

time around an attractor rather than convergence to a stable value

as seen in purely deterministic models (Fig. 4). The magnitude of

the fluctuations around the attractor, however, was relatively small

compared to the fluctuations observed in the actual time series.

Spectral analysis of the observed data revealed generally higher

temporal variability (high average spectral power), and long-period

(low frequency) variation in the data (Fig. 5). Although they also

exhibited a relatively dominant low-frequency component, the

data from the simulations of the best-fitting stochastic model failed

to exhibit the strong variability (i.e., high magnitude of spectral

power) of the observed data. Hence the standard approach of

adding constant random fluctuations to a deterministic skeleton

did not capture the observed dynamics. The comparison of annual

population change with confidence intervals generated by the

constant stochasticity model revealed systematic inconsistencies

(Fig. 6A). Specifically, population growth rates exhibited moder-

ately high variability at low abundance (,10% cover), very high

variability at high abundance (.80% cover), and relatively low

variability at intermediate abundance.

Density-Linked Stochastic Model
The model with DLS fit the data much better than one with a

constant stochastic term (Table 2, DAIC = 147.4). The parameters

of the best supported model indicated: a) an increasing disturbance

probability with abundance, as expected in prior disturbance

scenarios [30], b) a declining undisturbed variance with abun-

dance, perhaps because of a diminishing role of recruitment

processes, and c) a positive non linear effect on mean population

growth at very high abundance, indicative perhaps of recruitment

facilitation by adults [26] or mutual support arising from high

interconnection of byssal threads. An alternative model with linear

coefficients was also plausible under the model selection criteria of

Richards et al. [43] (DAIC,6). Further evaluation of potential

positive density dependence at high abundance is merited.

Parameters generated by model averaging of all model forms

considered (Table S1) were similar to those generated by the best-

fitting model (Table 2), indicating that these estimates were robust.

Confidence intervals for parameters involving lags .1 year

encompass null expectations (Table S1), supporting our focus on

first-order models. The best-fitting first-order model using all

available data had parameter estimates that generally fell within

3% of the parameters of the averaged model (Table S1). The first-

order non-linear terms, which are 29% lower than the best

estimate, were an exception, but the confidence intervals were well

away from null expectations and this term had little effect on

model behavior.

Simulated data from the DLS model (Figs. 6B, 7) showed a

pattern similar to the observed data (Fig. 1), suggesting that DLS

was a key process in generating the strong quasi-periodic

fluctuations we observed. This conclusion was confirmed by

spectral analysis, in which the model with DLS effectively captured

the long-period fluctuations observed in the data (Fig. 5). A similar

pattern of DLS was generated in output from a model with locally

transmitted disturbance compared to a non-spatial mean field

model (Fig. S4; Text S2).

Discussion

Our analysis of mussel population dynamics demonstrated a

phenomenon, density-linked stochasticity, which is capable of

generating strong, somewhat periodic fluctuations in populations

through time. In this case, the seemingly predictable pattern of

fluctuations arises because stochastic forces such as wave

disturbance have little effect at moderate abundances, leading to

predictable recovery times, but very strong effects at high

abundance. This situation leads to refractory periods with

characteristic recovery times followed by strong population

declines at less predictable intervals.

The pattern of DLS exhibited by mussels suggests the important

influence of several biologically meaningful processes that need to

be accounted for. First, high variability at high abundance is likely

to be associated with wave disturbance events, which play an

important role in structuring this community [24]. Mussels attach

themselves via byssal threads to hard substrates, including

neighboring mussels. If a large wave dislodges a mussel, that

mussel pulls on any neighboring mussels to which it is attached,

leading in many cases to their dislodgement too. This transmission

of disturbance from one individual to another is more likely at high

abundance, when mussels are more likely to be crowded together

and to attach to each other rather than the rock [30]. Hence a

stochastic force, wave disturbance, is more likely to act on the

population at high rather than low abundance (Text S2).

Second, the relatively high stochasticity at low density is

associated with conditions where outside immigration dominates

Density-Linked Stochasticity

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e75700



per-capita population growth. Recruitment of mussel larvae from

the plankton is responsible for immigration at low densities.

However, planktonic larval recruitment is thought to be highly

variable because of differences in transport, annual conditions

within the water column, and the abundance of other competitor

and facilitator species that occupy potential settlement sites [36–

38,48].

The DLS observed in the mussel time series has several

implications for determining population dynamical patterns. First,

because the stochastic component of population change depends

on abundance, simply adding stochastic terms to population

models is unlikely to capture their essential dynamic character.

Second, standard regression methods generally assume that

deviations from a fitted function are derived from a distribution

that is invariant across the range of the dependent variable (i.e.,

homoscedastic residuals). Clearly, this assumption is violated when

stochastic effects are associated with density. Hence, alternative

theoretical and statistical frameworks are required, as outlined in

Equations 3–6.

Despite the match in density-linked stochastic model dynamics

to observed dynamics, close inspection (Fig. 6B) shows several

outliers at low density, which might reflect inadequate character-

ization of recruitment. These outliers occur in different years,

which is inconsistent with large-scale shifts in ocean conditions

creating recruitment anomalies. Instead, the abundances of the

mussel M. trossulus and of filamentous red algae, two taxa that

facilitate recruitment of M. californianus [49], are positively

associated with outliers and a model including their effects has a

Figure 1. Temporal trajectories of replicated Mytilus californianus populations, Data from 16 repeatedly censused 60660 cm plots on
wave-exposed rock benches of Tatoosh Island, Washington, USA over a 18-year period.
doi:10.1371/journal.pone.0075700.g001

Figure 2. Relative cross-validation scores for models of
different orders (lags) of density dependence applied to the
16 empirical time series. Analysis based on a nonparametric test for
the order of density dependence [34]. Lower cross-validation scores
indicate higher support.
doi:10.1371/journal.pone.0075700.g002

Density-Linked Stochasticity
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significantly better fit (DAIC = 13.8). Including barnacles, which

facilitate recruitment in other mussel species [50], provided no

substantial improvement in fit, in agreement with experimental

manipulations of barnacles at this site [51]. In light of the good

agreement between observed and modeled dynamics (Fig. 5) and

because our focus here is on single species dynamics, we did not

account for these facilitation effects in detail.

The DLS driving our observed dynamics is not well character-

ized by most current explanations of population fluctuation:

complex non-linear deterministic dynamics or external stochastic

forces. We found no evidence for complex deterministic dynamics

generating the fluctuations that we observed; instead, the

underlying deterministic skeleton predisposed the system to

strongly stable dynamics. Although adding a random stochastic

component to the dynamics created fluctuations, these fluctuations

did not produce the strong semi-predictable pattern observed in

the data, but generated a pattern of smaller-amplitude noise

around a deterministic stable point. Hence, exploring the nature of

DLS both empirically and theoretically might be an interesting

avenue of future research. For this to be the case, two questions

need to be answered. First, is DLS regularly present in natural

populations? Second, does the presence of DLS change the

properties of ecological systems in important ways?

We suspect that DLS might have been casually noticed by many

investigators interested in characterizing the dynamics of natural

populations in the form of poorly behaved (heteroscedastic)

residuals observed during model fitting exercises (e.g., Figs. 3,

6A, S1). Indeed, analyses using variance-weighted regression to

address heteroscedasticity are not unusual, but their implications

for population dynamics are usually not explored. Traditionally,

ecologists have focused on characterizing the mean behavior of

systems; hence, heteroscedastic residuals are usually treated as a

nuisance in the process of generating an adequate description of

population dynamics. Our experience with the role that DLS plays

in mussel populations suggests that more explicit characterization

and consideration of the processes underlying patterns of

variability around the mean behavior of ecological dynamics will

be a profitable enterprise leading to biological insight into species

of interest. In the example we provide here, characterizing the

variability allows prediction of more realistic population dynamics

(see also [14,52,53]), and points to the importance of readily

identifiable mechanisms that create this pattern.

We also hypothesize that DLS is a common feature of many

natural populations because several disparate general mechanisms

that affect population dynamics and lead naturally to such patterns

have been described in the literature. The concept of density-

vague population change [11] suggests that many species exhibit

Table 1. Maximum likelihood estimates of parameters for constant-variance models of mussel dynamics.

4-Year Lag Data 1 Year Lag Data

Full Model 1st-Order Non-Linear 1st-Order Linear Non-Linear Linear

I 0.234 0.248 0.250 0.239 0.242

r 0.121 0.100 0.040 0.255 0.122

a1 20.116 20.207 20.130 20.408 20.209

b1 0.011 0.019 0* 0.070 0*

c1 18.89 29.369 1* 8.032 1*

a2 20.038 0* 0* 0* 0*

b2 0.005 0* 0* 0* 0*

c2 0.176 1* 1* 1* 1*

a3 20.021 0* 0* 0* 0*

b3 20.010 0* 0* 0* 0*

c3 0.351 1* 1* 1* 1*

a4 20.004 0* 0* 0* 0*

b4 20.003 0* 0* 0* 0*

c4 0.536 1* 1* 1* 1*

s2
est 0.034 0.037 0.037 0.035 0.036

-LL 1040.46 1042.74 1043.25 1286.03 1287.50

k 15 6 4 6 4

AIC 2110.92 2097.49 2094.49 2584.05 2583.01

DAIC 16.437 2.993 0 1.045 0

wi 0.0002 0.183 0.817 0.372 0.628

ER 3709.182 4.467 1 1.686 1

*parameter fixed a priori.
–LL: Negative log likelihood of model.
k: Number of estimated parameters.
s2

est: Maximum likelihood estimated variance around the mean model.
AIC: Akaike Information Criterion value. The best supporting value has the lowest AIC.
DAIC: Difference between AIC of a candidate model and the best-supported model overall.
wi: The Akaike Weight of a model.
ER: The Evidence Ratio comparing the weight of the lowest AIC model to the weights of other models.
doi:10.1371/journal.pone.0075700.t001
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Figure 3. Analysis of deterministic dynamics under constant variance assumption. A) Ricker diagram plotting Mytilus californianus
population size as proportion of quadrat covered (p) at year t versus population size in the previous year, with best fitting relationship (solid curve)
and steady state line (dashed). B) Deterministic dynamics of best-fitting model to population data. Simulated trajectories start from each of the initial
conditions in the empirical plots.
doi:10.1371/journal.pone.0075700.g003

Figure 4. Graphs of 16 simulations of Mytilus californianus population dynamics. Simulations used the best-fitting deterministic model
skeleton with an added constant stochastic term (Equation 2, Table 1).
doi:10.1371/journal.pone.0075700.g004
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largely stochastic variation over a broad range of intermediate

densities, but that at very high and low densities, deterministic

processes dominate the dynamics to permit population persistence.

Clearly this hypothesis suggests that stochasticity is a function of

density, but of opposite form to the pattern we report here.

Competition for refuges from physical stress has also been

hypothesized to play a strong role in population dynamics,

including the classic work of Andrewartha and Birch [1]. In this

scenario, competition at high abundance forces many individuals

out of refuges, into areas where they are vulnerable to stochastic

fluctuations of the physical environment, but most individuals in

the population are sheltered from these forces when abundances

are low. Demographic stochasticity [54] is expected to be stronger

at low than high population size, potentially generating a density-

dependent pattern.

Our own study suggests several other general mechanisms that

can lead to DLS. Size structure might create DLS both because

the impacts of physical factors can scale with body size [55–57],

and because changes in body size through development are often

associated with ontogenetic niche shifts [58], subjecting different

components of the population to different regimes of environ-

mental conditions. Demographic parameters associated with

different life stages can have strikingly different variabilities and

strengths of density dependence [59–63]. Except in special cases

(when population growth is constant), size or stage structure will

vary with population size. Often size or stage structure will be

related to density, as growing populations starting at low density

are likely to be dominated by small size classes derived from recent

reproduction, whereas more static populations at high abundance

are dominated by large adults [64].

Density-linked stochasticity might also be a hallmark of local

interactions among organisms, particularly when these involve

interactions with the physical environment. The pattern of wave

disturbance transmission exhibited in our mussel bed system has

parallels in other systems. For example, fire is more likely to spread

when trees or shrubs are densely packed together [22,65], and

trees blown down by the wind are likely to knock over neighbors at

high density [66–69]. Periphyton tends to be sloughed off during

floods or strong wave wash at high biomass because of reduced

attachment area relative to biomass and increased basal sediment

accumulation [70–72]. If disease is considered a stochastic factor

external to the system, disease transmission is well known to

increase with density as contact rate increases [23,73,74].

Similarly, aggregative responses of generalist predators would

increase the chances of local predation events [21]. Conversely,

organisms in some situations might facilitate others at high density

Figure 5. Spectral analysis of observed data (Fig. 1) and of
model results both with (Fig. 4) and without (Fig. 7) density-
linked stochasticity. The graph depicts the relative contribution of
trigonometric functions of different recurrence frequencies spanning
the 17-year observation period. Error bars represent one standard error.
doi:10.1371/journal.pone.0075700.g005

Figure 6. Observed distribution of M. californianus abundance at time t as a function of abundance the previous year (black points),
overlaid on the approximate 95% prediction interval (gray points) derived from one million iterations for each 0.002 increment. A)
a standard model with uniform stochasticity, B) a model with density-linked stochasticity. Because the probability distribution for density-linked
stochasticity is multimodal, confidence envelopes were derived by summing bins from highest to lower probability until the sum exceeded 95%.
Note the large number of observed points outside the 95% contour (lower right) and the lack of observed points in large areas inside the 95%
contour for the uniform model.
doi:10.1371/journal.pone.0075700.g006
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by ameliorating physical factors [66,75], thereby reducing

stochastic mortality at high density.

These examples emphasize that the perception of DLS depends

on the level of detailed data available to model population

dynamics. For example, when detailed data on stage structure or

spatial structure are available, models that explicitly include simple

density-independent stochasticity for several detailed processes

might yield DLS when the population is viewed at an aggregated

level [14,30]. While modeling this complexity is often desirable

when adequate data are available, such detailed data are

frequently unavailable for populations of interest. Hence, incor-

porating DLS into population analyses in these situations should

provide more realistic dynamics, and both motivate and target

more detailed data collection to explore processes generating the

dynamics.

Superficially, DLS appears similar to Taylor’s Power Law (TPL

[76,77]) in that density and variability are related. TPL, however,

describes the relationship between the overall time series means of

different species and their temporal departures from the means,

whereas DLS concerns variation in the expected change in a

population given a specific starting population size. Although DLS

might contribute to TPL, sampling effects from bounded

parameters can also cause this pattern and do not constitute

DLS. More generally, DLS implies that the parameters describing

variability in the system are functions of the dependent variable

being modeled (population abundance); it does not refer to

distributions (e.g., simple log-normal, Poisson or binomial) which

have shapes described by constants, but which are well known to

exhibit variance that changes with the mean. In these distribu-

tions, shape parameters do not equate to variance.

The broader ecological implications of DLS are less certain and

deserve further investigation. Our study shows that this phenom-

enon is capable of generating strong fluctuations in populations

through time, and has statistical implications for how models are

parameterized from dynamic population data (see also [10]). How

its effects translate to the broader system are less certain, and will

depend on whether the species affected by the phenomenon

impact other components of the ecosystem in which they exist. If

the affected species interact strongly, then they might serve as key

ecosystem components that amplify or dampen the effects of

Table 2. Maximum likelihood estimates of parameters for linear and nonlinear models of mussel abundance dynamics with
density-linked stochastic terms.

4 year lag data 1 year lag data

Full Model 1st Order Non-Linear 1st Order Linear Non-Linear Linear

I 0.048 0.050 0.053 0.071 0.064

r 0.562 0.546 0.522 0.600 0.593

a1 20.539 20.552 20.524 20.615 20.596

b1 0.007 0.005 0* 0.014 0*

c1 38.625 131.266 1* 28.620 1*

a2 20.010 0* 0* 0* 0*

b2 0.458 0* 0* 0* 0*

c2 5.939 1* 1* 1* 1*

a3 20.006 0* 0* 0* 0*

b3 0.919 0* 0* 0* 0*

c3 0.030 1* 1* 1* 1*

a4 0.006 0* 0* 0* 0*

b4 20.0002 0* 0* 0* 0*

c4 2.944 1* 1* 1* 1*

x 23.053 22.968 22.959 22.570 22.862

y 21.721 21.929 22.023 22.308 22.222

z 11.471 13.701 13.133 8.983 8.434

md 0.399 0.394 0.393 0.392 0.390

s2
d 0.090 0.090 0.090 0.090 0.090

j 23.069 23.115 23.143 23.172 22.920

k 2.155 2.191 2.225 2.288 2.040

–LL 962.36 966.33 967.65 1205.80 1209.03

k 22 12 10 12 10

AIC 1966.73 1956.66 1955.31 2435.60 2438.06

DAIC 11.421 1.356 0 0 2.458

wi 0.002 0.337 0.663 0.774 0.226

ER 302.08 1.97 1 1 3.42

*parameter fixed a priori.
wi and ER include constant variance versions of the models (Table 1).
doi:10.1371/journal.pone.0075700.t002
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environmental stochasticity [27,78,79]. Also, linking stochastic

elements at specific densities might be extremely effective at

promoting spatial asynchrony among populations. Asynchrony is

likely to facilitate coexistence and species persistence at broader

scales through metapopulation and metacommunity mechanisms

[24,80,81]. Aside from the spatial aspect of the effect, if

stochasticity is higher at high densities, as in our example, it

might also facilitate coexistence through temporal storage effect

mechanisms [80,82] by introducing high variability to the system

at a point where competitive displacement is most likely. We

suspect that other ecologically important effects will be uncovered

as the phenomenon is studied in more detail. Regardless of how

the phenomenon of DLS manifests in ecosystems, our results

contribute to the emerging realization in ecology that in order to

understand many dynamic systems, changes in variability must be

modeled in tandem with the associated mean process [83].

Focusing on the development of models for these two components

will allow researchers to more flexibly test and expand their

mechanistic understanding of ecological dynamics.

Supporting Information

Figure S1 Comparison of fits of different functions to
first-order data describing the proportional area cov-

ered by mussels in a plot at time t as a function of the
proportional area covered the previous year, assuming
constant variance. Blue curve: non-parametric LOESS fit,

Green curve: modified Ricker model with linear density-

dependence and outside immigration (Equation 2), Orange curve:

modified Hassell model with immigration and additional non-

linear term (Equation 3).

(TIF)

Figure S2 Examples of probability mass functions of
beta-binomial distributions with different control pa-
rameter values (a, b) for a sample range of 100.

(TIF)

Figure S3 Change in shape of the beta-binomial distri-
bution with fixed variance (s2 = 100) as the mean of the
distribution changes. Note the change in scales for the

different graphs.

(TIF)

Figure S4 Residual deviation of A) observed population
size from mean (uniform stochastic) model predictions
and B) abundance predicted from a spatially explicit
model of the mussel bed [30] compared to a mean field
Markov chain model lacking explicit local interactions

Figure 7. Graphs of 16 simulations of Mytilus californianus population dynamics. Simulations used the best-fitting density-linked stochastic
model (Equations 3, Table 2).
doi:10.1371/journal.pone.0075700.g007
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[31]. Data in B) are abundances from 16 randomly placed

quadrats equivalent to those used to collect empirical data, taken

over 17 time steps (years). Note the expansion of variance around

the relationship at mussel cover .0.8 in the empirically observed

pattern (A) and when spatially localized interactions are modeled

(B).

(TIF)

Table S1 Comparisons of best fitting (first-order, non-
linear, density-linked stochastic) models for first- or
fourth-order data, and parameter estimates derived
from model averaging.
(DOCX)

Text S1 The beta-binomial distribution.
(DOC)

Text S2 Effects of localized disturbance interactions.

(DOCX)
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