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Abstract

Prediction of peptide binding to human leukocyte antigen (HLA) molecules is essential to a wide range of clinical entities
from vaccine design to stem cell transplant compatibility. Here we present a new structure-based methodology that applies
robust computational tools to model peptide-HLA (p-HLA) binding interactions. The method leverages the structural
conservation observed in p-HLA complexes to significantly reduce the search space and calculate the system’s binding free
energy. This approach is benchmarked against existing p-HLA complexes and the prediction performance is measured
against a library of experimentally validated peptides. The effect on binding activity across a large set of high-affinity
peptides is used to investigate amino acid mismatches reported as high-risk factors in hematopoietic stem cell
transplantation.
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Introduction

The human leukocyte antigen (HLA) molecules are highly

polymorphic cell membrane associated glycoproteins encoded in a

cluster of genes located in the short arm of chromosome 6, the

6p21.1–21.3 region. These molecules play a critical role in

adaptive immunity by presenting antigenic peptides to T-cells [1].

T-cells are effector cells of adaptive immunity that have the

capability to differentiate self from non-self antigenic peptides

bound to HLA molecules. Recognition of foreign peptides, such as

those from pathogens or tumors, by T-cells initiates an effector

immune response aimed to eliminate harmful cells. In hemato-

poietic stem cell transplantation (HSCT), immunocompetent

donor T-cells may recognize non-self peptides bound to either

host matched HLA molecules or to host mismatched HLA

molecules and initiate an unwanted immune response against the

host, the deleterious process called graft-versus-host disease

(GvHD) [2,3].

There are two major classes of HLA molecules, the class I

molecules (HLA-A, B, and C) that are expressed on all nucleated

cells and are recognized by CD8+ T-cells and the class II

molecules (HLA-DR, DQ, and DP) that are expressed only on

antigen presenting cells and are recognized by CD4+ T-cells.

Extensive HLA polymorphism, different versions or alleles of each

of the HLA molecules within the population, in an individual

ensures binding of diverse antigenic peptides for presentation to

the immune system [1]. HLA class I ligands are comprised of

proteolysed protein fragments, between 8–12 amino acids in

length, derived from endogenous proteins that are degraded by

cytosolic proteinases. Once bound, the peptide-HLA (p-HLA)

complex is transported to the cell surface and presented for

recognition by the T-cell receptors of CD8+ cytotoxic T-cells.

While nonameric peptides (with amino acid positions defined as

P1–P9) have been shown to bind preferentially, peptides between

8–12 amino acids of length can also bind to HLA class I molecules.

Longer peptides are accommodated in the groove by adopting a

dramatically more bowed conformation.

The HLA class I peptide-binding groove is a well-defined cavity

formed between the a-helices of the a1 and a2 domains and by a

six member anti-parallel b-sheet that comprises the floor. In the

HLA-A*02:01 allele, the binding groove is delineated by 37

residues (residue numbers 5, 7, 9, 26, 45, 58, 59, 62, 63, 66, 67, 69,

70, 73, 74, 77, 80, 81, 84, 97, 99, 114, 116, 123, 124, 133, 143,

146, 147, 152, 155, 156, 159, 163, 164, 167, 171) with varying

degrees of solvent accessibility [4]. The groove cavity spans

approximately 32 Å, providing a physical limitation to the length

of bound peptides. Individual HLA allele sequence variability

results in measurable differences in the groove’s solvent accessible

surface area and volume. As a reference, the surface area and

volume for the HLA-A*02:01 allele (PDB id = 1AKJ [5]) are

425.9 Å2 and 546 4 Å3, respectively [4]. The structure of a HLA-

A*02:01 allele with bound peptide ligand (PDB id = 1AKJ) is

shown in Figure 1.

The polymorphic nature of the HLA molecules ensures that a

wide variety of peptides originating from proteins of invading

pathogens can bind with sufficient affinity to satisfy their role in

the triggering of the immune system response cascade. This is

accomplished through a combination of amino acid sequence

dependent and independent interactions [6]. Structural analysis

of existing p-HLA complexes in the Protein Data Bank (PDB)

have revealed common features of interaction. The most
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notable sequence independent interactions are derived from

hydrogen bonds with the amino and carboxyl groups at the N

and C termini, while sequence dependent interactions are

distributed along the length of the binding groove in pockets

(designated A, B, C, D, E and F) that contribute to allele-

specific peptide recognition and specificity [7,8]. The peptide

primary anchor residues, providing the main contact points, are

located at residue positions P1, P2 and P9. Once fixed at these

positions, the remaining peptide residues assume complementary

positions in the groove, contributing additional, albeit less

significant, interactions.

While HLA polymorphism provides a broad response mecha-

nism, the diversity of candidate peptides capable of binding to

HLA molecules makes exhaustive experimental studies prohibi-

tive. An attractive alternative is an immunoinformatics approach

utilizing computational models to predict p-HLA binding. For

well-characterized HLA alleles, supported by high-quality exper-

imental data, it is possible to computationally predict binding

using the peptide’s amino acid sequence. Initially, sequence motifs

[9,10] and matrix-based models [11,12,13] were used. More

recently, advanced machine-learning techniques utilizing Hidden

Markov Models [8,14,15,16], artificial neural networks [15,17,18]

and support vector machines [19,20,21] have been applied. Many

sequence-based methodologies have excellent predictive abilities

[16], however, their application is strictly limited to alleles with

sufficient experimental training data (e.g., HLA-A*02:01, HLA-

A*01:01, HLA-B*07:02, etc.). Unfortunately, experimental data is

not available for many alleles and new alleles are continuously

being discovered [22]. In addition, these methods do not provide

specific models for interactions that may be critical to understand

peptide binding or to interpret prediction results.

Structure-based binding prediction methods have the potential

to overcome the limitations and challenges of sequence-based

methods [23,24]. There are nearly 400 crystal structures of HLA

molecules available in the PDB (November 8, 2011) [25],

providing high-quality structures as input for modeling. Struc-

ture-based methods, however, confront their own constraints due

to the implementation complexity and the high computational

costs. Search of a large sequence database is typically easily

accomplished but can be impracticable for the structure-based

methods due to the prohibitive runtimes. Structure-based methods

share the need to identify a suitable pose for a peptide molecule

into the HLA molecule, requiring an expensive conformational

space search for both HLA and peptide molecules. Different

approaches have been developed using homology modeling

[23,26,27,28,29], threading [30,31], and docking [23,28]. In

practice, many of these methods combine multiple techniques, for

example Tong et al. [23] and Kumar et al. [28] combined docking

and homology modeling. Once a peptide is posed, a scoring

function is applied to make a quantitative evaluation of the

binding based on the atomic interactions with the HLA molecule.

Scoring functions have been applied based on potential matrix

based pairs [28,32], semi-empirical methods [29,33,34], and

quantitative-structure-activity-relationship methods [35,36]. The

treatment and parameterization of the p-HLA system influence

both the accuracy and runtime. For example, some methods use

solvent in their prediction algorithm [34,37], while others ignore

its role [6,23,38] .

Clearly, there is a need for the development of more accurate

approaches to predict peptide binding in a wide spectrum of

clinical applications from vaccine design to the understanding the

molecular basis of allorecognition in HSCT. For a predictive

Figure 1. Structure of the HLA*A2:01 Molecule. The structure of the HLA-A*02:01 (PDB id = 1AKJ) molecule shown with bound peptide
backbone (chain C, orange). The positions of the five high-risk residues on the HLA molecule are represented by a blue sphere and labeled. The
molecular surface of the molecule is shown in gray.
doi:10.1371/journal.pone.0041710.g001
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method to be broadly applicable, it must reduce reliance on large

sets of experimental data and should be efficient. Here, we

introduce a methodology using robust computational approaches

to model protein-ligand interactions. The method combines

peptide modeling, docking and physics-based scoring within a

highly scalable supercomputing environment. The method is

applied to predict the effect on binding activity across a large set of

high-affinity peptides to investigate non-permissive amino acid

mismatches reported as high-risk-factors in HSCT.

Results

Assessing Structural Conservation and Variability of the
HLA Binding Groove

To explore the structural variations of peptides within the

binding groove, a structural superimposition of 50 HLA-A*02:01

crystal structures in complex with 50 distinct peptides from the

PDB was performed (see Methods). The peptide chains were

excluded from the molecule during the structural alignment

procedure. The mean root mean square deviation (RMSD)

between HLA structures is 0.69 Å for the backbone and 0.72 Å

for the all-atom alignment. Considering only the 37 solvent

accessible residues comprising the binding groove (Figure 1) [4]

the mean RMSD is 0.26 Å for the backbone and 0.27 Å for the

all-atom case.

The pairwise RMSD (backbone) between all 50 structures was

calculated for each binding groove residue position and is

presented as a boxplot in Figure 2a. Across the entire binding

groove, the average RMSD (backbone) at each position is less than

0.83 Å, indicating an extremely high level of structural conserva-

tion of the HLA molecule. The averaged RMSD values are

mapped onto depictions of the HLA model shown in surface

representation and cartoon representation (Figure 2bc). Given that

each structure in the data set has a unique peptide bound, the

HLA molecule affords very limited structural accommodations for

peptide binding. This agrees with the previously reported limited

induced fit of the HLA molecule in response to binding peptides

with different sequences [6,39].

Structural Variability of Bound Peptides
The bound peptide conformations were analyzed by replacing

the peptide chains back into the reference frames of their aligned

HLA counterparts (Figure 3). The pairwise RMSD was calculated

between the backbone atoms at each residue position and the

results are shown as a boxplot in Figure 3a. While the average

RMSD at each position of bound peptide for the different HLA-

A*02:01 molecules is less than 1.0 Å, the range variance observed

for the middle residues is significantly greater. This is in agreement

with the previously reported observations of peptide binding

interactions: the termini and anchoring residues occupy highly

fixed positions, while the interior residues show flexibility that

allow them to lessen unfavorable side chain interactions with the

HLA molecule and solvent [23,38,39,40]. This peptide flexibility

accounts for the canonical ‘‘bow’’ shape seen in several bound

peptide conformations (Figure 3b and 3d).

The set of HLA-bound peptides mainly represents well-

characterized antigens and their sequence bias may explain some

sequence preference and structural conservation. We analyzed the

amino acid sequences of bound peptides (Figure S1) and have

concluded that, with the exception of positions P2 and P9, the

current set of peptides is not significantly biased. Therefore for all

structurally characterized p-HLA complexes, both the main chains

of the HLA-A*02:01 molecule and a bound peptide are highly

structurally conserved.

Modeling Bound Peptides in HLA-A*02:01 and
Benchmarking

The computational complexity required to accurately model

and score bound peptide arises from two components: the vast

conformational space must be adequately sampled to identify a

suitable pose and application of intricate algorithms used to score

poses. Our new procedure overcomes these constraints by

imposing selective structural conservation to reduce the confor-

mational search space and by using highly-scalable methodologies,

implemented in a supercomputing environment, to calculate

binding free energy using the MM-GBSA (molecular mechanics/

generalized Born surface area) method. We utilize a template-

based methodology based on consensus anchoring coordinates

interpolated from structural data (see Methods). A given peptide

backbone can be positioned into the binding groove through an

initial coordination of the termini and anchoring positions (P1, P2

and P9). The side chains are assigned to the backbone using a

multi-scale potential function [41].

We assessed our procedure by ‘‘redocking’’ peptides from p-

HLA crystal structures. For each complex, we extracted the

coordinates of the peptide from the complex and then docked it

back into the HLA-A*02:01 molecule. After the initial place-

ment, the resulting peptide was treated as fully flexible and

underwent a refinement procedure to finalize its pose. The

RMSD measurement was then calculated between the experi-

mental and redocked pose coordinates of the peptide. An RMSD

was also calculated between the overall complex (i.e., the HLA

and peptide molecules) to assess conformational changes in the

HLA molecule. The results for the data set are summarized in

Table 1.

All peptides in our data set could be posed within the 2.5 Å

RMSD threshold for a ‘‘correct solution’’ as proposed by Tong

and collaborators for p-HLA complexes [23]. Our procedure

posed 30 out of 50 peptides within 1.0 Å of the experimental

model. Of the remaining 20 peptides, 19 were less than 1.7 Å of

their experimental models. The only marginal performer at the

2.5 Å cutoff was HA-1Arg peptide (VLRDDLLEA; PDB

id = 3FT4), a non-immunogenic variant of the highly immuno-

genic HA-1His peptide (Text S1). Measuring the overall RMSD

of our docked p-HLA complex to the original experimental

complex, 48 of the 50 complexes were within 2.0 Å distance.

This agreement provides confidence that our docking procedure

is robust and does not require significant rearrangement or

disruption of the HLA molecule and peptide. We conclude that

our method performs at least as well as previously reported p-

HLA redocking studies [23].

Ab Initio Modeling Peptides and Docking to HLA
The high degree of structural conservation observed for bound

peptides (Figure 3) also provides a useful scaffold for ab initio

peptide modeling. This allows for the generation of three-

dimensional peptide models using only a given amino acid

sequence as input, providing the opportunity to probe HLA

interactions with any peptide presented to the human immune

system. Our analysis revealed that accurate docked peptide poses

were highly dependent on the modeling of the N-terminal residue

side chain. That is, if the P1 residue was correctly modeled the

remaining side chains were more likely to be posed correctly.

Therefore, we prepared a series of N-termini specific templates

from the existing p-HLA complex structures to aid modeling (see

Methods).

Our procedure was tested on 50 peptides from p-HLA

complexes with known crystal structures. The all-atom and

backbone RMSDs were measured between the ab initio and the

Modeling HLA Non-Permissive Residue Substitutions
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crystal structure. The backbone RMSDs ranged from

0.2022.21 Å with a mean value of 1.11 Å. For the all-atom

models, the RMSDs ranged from 0.7722.24 Å with a median

value of 1.37 Å. In a few cases, our method was not able to identify

the correct rotamer for each peptide and contributed to the overall

dissimilarity (Figure S2).

Ab initio peptide models derived from exiting p-HLA structures

were used to dock to HLA molecules. The backbone and all-atom

RMSDs were calculated between the peptide from the docked

solution and the original crystal structure. The results are

summarized in Table 1. With the exception of HA-1Arg, all

docked solutions have RMSDs below 1.68 Å for the backbone and

1.96 Å for the all-atom comparisons. Unexpectedly, 15 of the

poses generated from the ab initio peptides had better RMSDs than

those that were simply extracted from the experimental complex

and redocked back in. Upon inspection, some side chains from the

crystal structures were modeled in energetically strained confor-

mations or showed unusual rotamers. Our method’s ability to find

a more favorable side chain arrangement is most likely due to the

flexibility of both the peptide and HLA molecule in our docking

procedure.

Scoring Peptide Binding
The Immune Epitope Database (IEDB) is a repository that

collects and organizes data on major histocompatibility complex

(MHC) binding experiments [42] and has been used to develop

and assess computational methods for predicting peptide binding

to MHC molecules [16,39,43]. The IEDB provides binding

affinity measurements as IC50 (and/or EC50) values.

The subjectivity of threshold selection can make the binding

classification inconsistent, especially when dealing with a combi-

nation of quantitative and qualitative data (see Methods). In

addition, interpreting the influence of weak binding peptides in a

computational model introduces more complexity when trying to

correlate experimental data to computational predictions. We

believe that these difficulties are successfully addressed by

rationalization of a peptide-binding event. As previously noted

by Hou et al. [44], in the context of the peptide recognition

domains, precise, quantitative binding affinity estimates may not

be required to accurately model the systems behavior. The use of a

Boolean ‘‘binding/no-binding’’ classification may be adequate to

infer whether the immune response cascade escalates to T-cell

activation. In the context of our model, this allows us simply to

predict if a peptide would bind or not bind to the HLA molecule.

A subset of the IEDB database was constructed by removing

duplicate entries and data that could not be reconciled (see

Methods) and were divided into two definitive groups: binders

(IC50#500 nm) and non-binders (IC50.500 nm) with 2,660 and

3,294 members, respectively. Ab initio models were generated for

each peptide, docked into HLA-A*02:01, and the binding free

energy of the peptide was calculated. The overall performance of

our prediction methodology is evaluated by the ability to

distinguish binding from non-binding peptides (see Methods),

and is evaluated by a receiver operator characteristic (ROC) curve

Figure 2. Conservation of the HLA Peptide Binding Groove. The structural conservation of the peptide binding groove was measured by
performing a superposition of 50 unique p-HLA complexes from the PDB. The pairwise RMSD was calculated between the backbone atoms at each
solvent accessible residue comprising the binding groove [4]. The results are summarized as a boxplot showing the median, quartiles, maximum and
minimum distances, and outliers (circles) at each residue position. The colors are scaled from green to red (lowest to highest RMSD) with minimum
values of 0.28 Å (residue 9) and maximum of 0.83 Å (residue 58). For contrast, the non-binding groove residues are colored black. The average RMSDs
are color mapped on to the HLA molecule shown as surface representation (b) and cartoon representation (c) from green (low RMSD) to red (high
RMSD).
doi:10.1371/journal.pone.0041710.g002
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(Method S3). The prediction accuracy of our method, as measured

by the area under the ROC curve (AUC), is 0.771 (Figure 4).

Rediscovery of Non-Permissive HLA Residue
Substitutions in HSCT

Our ab initio modeling of peptide and HLA-A*02:01 complexes

depends solely on a peptide sequence as input and should

distinguish binder from non-binder peptides. To assess whether

our method is sensitive to amino acid substitutions between

mismatched patient and donor HLA alleles that are known to be

high-risk, factors in HSCT, we conducted large-scale docking

studies against a pool of high-affinity peptides. To date, five

positions in the HLA-A peptide-binding groove (9, 114, 116, 152,

and 156) have been identified as being high-risk non-permissive

substitutions in HSCT (Table 2) [45,46,47,48]. These positions are

highlighted in Figure 1.

Protein sequences of all known HLA alleles are available

through the International Immunogenetics Information System

(IMGT)/HLA Database (http://www.ebi.ac.uk/imght/) [5]. A

sequence alignment was performed including all HLA-A alleles

Figure 3. Variability of Peptides Bound to HLA Molecules. The structural variability at each residue position for bound nonameric peptides in
p-HLA complexes from the PDB. After a structural alignment of the HLA molecules, the peptide coordinates were extracted. The aligned peptides are
depicted from the side view (b and d) and top (looking down into the binding groove) view (c and e), both with and without side chains. The
backbone-only models are shown in B (side view) and C (top-down view). The alignments with the side chains are shown in D (side view) and E (top-
down view). The Ca atoms are shown as black spheres. The pairwise RMSD was calculated between the backbone atoms at each residue position for
each peptide. The peptides are colored uniquely and, for reference, the Ca atoms from a peptide (PDB id = 1AKJ, chain = C) are shown as black
spheres. The results are summarized as a boxplot showing the median, quartiles, maximum and minimum distances, and outliers (circles) at each
residue position.
doi:10.1371/journal.pone.0041710.g003
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Table 1. Peptide-HLA Molecule Modeling Benchmark.

PDB Resolution Sequence RMSD RMSD

Code Complex Backbone Complex Backbone

1AKJ 2.65 ILKEPVHGV 1.64 0.94 1.61 0.82

1AO7 2.6 LLFGYPVYV 1.64 0.74 1.8 1.14

1B0G 2.5 ALWGFFPVL 1.6 0.8 1.83 1.00

1EEY 2.25 ILSALVGIV 1.54 0.87 1.54 0.94

1EEZ 2.3 ILSALVGIL 1.65 1.18 1.65 1.11

1HHG 2.6 TLTSCNTSV 1.55 0.91 1.69 1.24

1HHI 2.5 GILGFVFTL 1.54 0.76 1.73 1.03

1I1F 2.8 FLKEPVHGV 1.69 1.07 1.69 0.94

1I1Y 2.2 YLKEPVHGV 1.65 0.93 1.71 0.98

1I7R 2.2 FAPGFFPYL 1.66 1 1.89 1.04

1I7T 2.8 ALWGVFPVL 1.63 1.03 1.76 1.04

1I7U 1.8 ALWGFVPVL 1.62 0.91 1.76 1.08

1JHT 2.15 ALGIGILTV 1.51 0.87 1.56 1.06

1QEW 2.2 FLWGPRALV 1.63 0.86 1.86 1.13

1QR1 2.4 IISAVVGIL 1.52 0.88 1.59 1.05

1QRN 2.8 LLFGYAVYV 1.63 0.81 1.83 1.29

1QSE 2.8 LLFGYPRYV 1.72 0.96 1.81 1.24

1QSF 2.8 LLFGYPVAV 1.56 0.68 1.79 1.09

1S8D 2.2 SLANTVATL 1.58 0.98 1.57 1.06

1S9W 2.2 SLLMWITQC 1.67 0.93 1.76 1.17

1S9X 2.5 SLLMWITQA 1.66 0.9 1.74 1.17

1S9Y 2.3 SLLMWITQS 1.65 0.87 1.76 1.14

1T1W 2.2 SLFNTIAVL 1.58 0.85 1.72 1.19

1T1X 2.2 SLYLTVATL 1.65 0.99 1.67 1.10

1T1Y 2 SLYNVVATL 1.6 0.94 1.7 1.10

1T1Z 1.9 ALYNTAAAL 1.58 0.95 1.58 0.99

1T20 2.2 SLYNTIATL 1.64 1.02 1.7 1.17

1T21 2.19 SLYNTVATL 1.6 0.86 1.71 1.18

1TVB 1.8 ITDQVPFSV 1.63 0.84 1.7 1.08

1TVH 1.8 IMDQVPFSV 1.65 0.82 1.72 1.11

2BNQ 1.7 SLLMWITQV 1.71 0.89 1.65 0.98

2GIT 1.7 LLFGKPVYV 1.84 0.84 1.91 0.99

2GTW 1.55 LAGIGILTV 1.64 0.91 1.94 1.53

2GUO 1.9 AAGIGILTV 1.51 0.93 1.58 1.09

2V2X 1.6 SLFNTVATL 1.57 0.76 1.66 1.12

2X4O 2.3 KLTPLCVTL 1.88 1.53 1.74 1.22

2X4R 2.3 NLVPMVATV 1.93 1.66 1.88 1.68

2X4S 2.55 AMDSNTLEL 1.69 1.06 1.67 1.06

3D25 1.3 VLHDDLLEA 1.7 1.09 1.63 1.02

3FQT 1.8 GLLGSPVRA 1.73 1.34 1.79 1.38

3FQW 1.93 RVASPTSGV 1.69 1.18 1.87 1.48

3FT4 1.9 VLRDDLLEA 2.41 2.33 2.34 2.23

3GSQ 2.12 NLVPSVATV 1.65 1.22 1.61 1.18

3GSR 1.95 NLVPVVATV 1.66 1.12 1.69 1.24

3GSU 1.8 NLVPTVATV 1.71 1.25 1.72 1.34

3GSV 1.9 NLVPQVATV 1.71 1.17 1.69 1.16

3GSW 1.81 NLVPMVAAV 2.49 2.46 2.27 2.23

3GSW 1.81 NLVPMVAAV 1.49 1.46 1.27 1.23

3GSX 2.1 NLVPMVAVV 1.72 1.19 1.68 1.16
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(IMGT/HLA Release 3.0.0) and the observed residues at each

non-permissive position were identified (Table 2). For example, at

position 9 the residues threonine (T), serine (S), tyrosine (Y),

phenylalanine (F) and histidine (H) are observed. Homology

models for each observed residue at each position were generated,

resulting in the formation of 35 unique structural models.

For each of the 2,660 high-affinity binding peptide sequences in

the IEDB, we constructed an ab initio model and docked it to the

HLA-A*02:01 reference molecule. Next, we docked the peptide

into each HLA molecule with a non-permissive amino acid

substitution. The difference in the estimated binding free energy

(DDG) between the reference and substituted molecules was

calculated. A negative DDG would have higher predicted binding

affinity resulting from the substitution and vice versa. Using an

established binding threshold, we predicted whether the substitu-

tion would result in loss of binding activity for a peptide.

The distribution of calculated DDG values for each substituted

model is summarized as violin plots in Figure 5. The binding

behavior is summarized as a boxplot, highlighting the percentage

of peptides that are predicted to no longer bind as a result of the

substitution (red) and the percentage of those peptides predicted to

retain their binding activity (gray). It should be noted that a

suitable pose failed to be produced for only 23 peptides across all

93,100 docking simulations. Irreconcilable steric clashing between

the large side chains in the HLA molecule and the consecutive,

extended side chain groups from the peptide, were responsible.

Measuring loss of peptide binding activity due to amino acid

substitution presents structural evidence for the basis of the

reported high-risk behavior. For each position, we observe marked

changes in the ability to bind the same peptides in the pool. The

residue-level resolution of our modeling allows the specific

substitutions resulting in significant loss of predicted binding to

be identified. The most notable being position 9 F-Y (34%),

114 H-T (37%), 116 Y-F (32%), 152 V-W (41%), and 156 L-Y

(42%). As each substitution may represents a different HLA allele,

comparing the repertoire of peptides bound by different alleles

may be useful for assessing histocompatibility between patients and

donors. For example, the 9 F-Y substitution can be directly

mapped to the HLA*02:06 allele, which differs from the

HLA*02:01 allele only by this substitution. As reported by Kawase

et al and Marino et al, the A:02:01–A:02:06 mismatched pair is a

significant risk factor for acute GvHD [47] and death at day 100

post-HSCT [48].

Discussion

Accurate modeling of peptide-protein interactions is a chal-

lenging problem. The majority of well-established docking

methodologies are developed for predicting small-molecule and

protein interactions useful in computer aided drug discovery. As

such, many of them are not parameterized or even applicable to

docking peptides. Immunogenic peptides are significantly larger

Table 1. Cont.

PDB Resolution Sequence RMSD RMSD

Code Complex Backbone Complex Backbone

3H7B 1.88 MLWGYLQYV 1.85 1.36 1.93 1.33

3KLA 1.65 SLLMWITQL 1.79 1.19 1.75 1.21

A set of 50 unique p-HLA complexes from the PDB was used to benchmark our modeling methodology. For each complex, the bound peptides were removed and then
redocked back in to the HLA molecule. The RMSD between our solution and the experimental model is shown for the all-atom complex and the backbone-only atoms.
Using each sequence, an ab initio three-dimensional model of each peptide was constructed. The ab initio peptide was then docked to the HLA molecule. The RMSD
between our solution and the experimental model is shown for the all-atom and backbone-only complexes.
doi:10.1371/journal.pone.0041710.t001

Figure 4. Peptide Binding Prediction Performance. The performance of our docking methodology to predict binding peptides is measured
using a subset of nearly 6,000 peptides from the IEDB repository of HLA-A*02:01 epitope binding affinity data. For our approach, the area under the
ROC curve is 0.771 (A). The prediction accuracy is measured at varying cutoff thresholds of calculated DDG values (B). The distribution densities of the
calculated DDG values for the positive (green) and negative (red) peptides are shown (C).
doi:10.1371/journal.pone.0041710.g004
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and more flexible than ‘‘drug-like’’ compounds, further contrib-

uting to the difficulties in working with them. Despite these

limitations, new methods have been applied to dock peptides into

HLA molecules.

The particular advantage of the p-HLA system is the high

degree of structural conservation in a bound complex. The

peptide’s main chain atoms adopt a similar position within the

groove, which constrains the side chains into a relatively limited

number of positions. This orientation preserves the key hydrogen

bonding interactions at the main chain termini. We have utilized

this conservation to reduce the conformational space search,

simplifying the initial peptide placement. Successful docking is,

therefore, highly dependent on accurately positioning the less-

constrained elements in the complex (e.g., the middle loop and

side chains). Our approach is to construct the peptide in the

presence of a consensus HLA molecule and to assign the

remaining atom position based on hydrogen bond matching and

surface shape complementarity. Once fully constructed, the p-

HLA complex is allowed to be fully flexible for further

minimization and scoring. Benchmarking studies show that our

method can faithfully recreate models for existing nonameric

peptides and reproduce the poses of existing p-HLA crystal

structures from the PDB.

Our choice of the MM-GBSA method for binding free energy

estimation represents a reasonable compromise between runtime

and accuracy. MM-GBSA has the advantage of better conver-

gence properties and has been successfully applied to the study of

major histocompatability complexes [49]. It requires a significant

amount of computation time, but can be implemented in a highly

scalable approach within a supercomputing environment. Our

implementation on the BlueGene/P supercomputer at the

Argonne Leadership Computing Facility (Argonne National

Laboratory, Argonne, IL, USA) has allowed us to conduct one

of the largest applications of MM-GBSA to study p-HLA

interactions to date.

Using binding free energy differences as a predictor of binding

activity, our method was able to correctly predict binding behavior

for 77.1% of a nearly 6,000 peptide dataset. Two other studies

have reported ab initio structure-based predictions for experimental

HLA-A*02:01 binding data [38,39]. Bordner and Abagyan, using

a considerably smaller and less diverse database (304 binders and

304 non-binders), reported an AUC value of 0.830 [38]. This

study is not directly comparable to a pure structured-based

method, as a SVM trained model was included in their approach.

In addition, the non-binder data set was not based on

experimental data, but it was constructed in silico by shuffling the

sequences of the binding peptides. More recently, Kumar and

colleagues reported an AUC of 0.742 for a set of just over 300

nonameric peptides from the IEDB [39]. The better performance

of our prediction is further signified by the 20 fold larger dataset

that we used.

A distinct advantage of our approach is that it was implemented

in a large-scale computing environment allowing for the use of

advanced simulation methods that would be prohibitive to execute

elsewhere. It also allowed us to carry out our study on a large scale,

permitting the inclusion of peptides that may otherwise have been

omitted due to limited resources. For example, the 114 H-T

substitution can be mapped to the rare HLA-A*02:94 allele. Such

a new and/or rare allele may not be tackled using other predictive

methodologies, whereas our approach can provide an accurate

initial characterization. In this case, we directly observe that H-T

substitution results in the most significant loss of binding at

position 114.

In this implementation, we have excluded explicit water

molecules from our modeling procedure. While common practice

in many docking protocols (especially in the p-HLA systems

[6,23,38]), the influence and importance of solvent cannot be

underestimated [50,51]. Decisions on the treatment of solvent will

affect the outcome of simulations and are complicated by the

varying roles that solvent plays mediating and contributing to

interactions in the p-HLA system. Our treatment of solvent is

based on our aim to develop a general methodology applicable to

large-scale peptide libraries for which allele and peptide combi-

nations may not be fully studied by high-resolution X-ray

crystallography, leaving the location and role of water molecules

unresolved. We will continue to evaluate our treatment of solvent

and its affect on performance and runtime in future iterations of

our methodology.

Forward looking, our approach allows for the incorporation of

additional computationally intense tasks to be modularly included

in the computing pipeline. For example, using genome-wide

epitope scans as input into the modeling simulations or extending

the pipeline to model p-HLA interactions with the T-cell receptor.

In concert, these methods may be useful to characterize additional

p-HLA complex interactions that may influence peptide binding in

a wide range of clinical entities such as vaccine development,

immunotherapy against infectious pathogens, HLA associated

diseases, autoimmune diseases, pharmacogenomics, as well as to

further study high-risk amino acid mismatches in HSCT.

Methods

HLA-A*02:01 Structures from the PDB
The sequence of the HLA-A*02:01 allele, identified from the

IEDB and Analysis Resources (http://www.immuneepitope.org)

[42], was used to query all available structures from the PDB

Table 2. Reported High-Risk Amino Acid Residue Substitutions.

Residue Position Groove Location Peptide Contacts Observed Residues Literature Reference

9 Floor P2 YTSFH Kawase, 2007; Kawase, 2008; Marino, 2012

114 Sidewall P5,P6,P7 QHPEDTRSN Marino, 2012

116 Floor P9 YHTFSDNV Ferrara, 2001; Kawase, 2007; Marino, 2012

152 Mouth P7 EVRWMA Marino, 2012

156 Mouth P3 WLQSRAG Marino, 2012

Non-permissive residues between patient and donor HLA antigens or alleles reported to have deleterious outcomes in HCT [45,46,47,48]. The observed residues from all
known HLA-A alleles at each position are listed as along with their relative orientation in the binding groove. The residue types were obtained from sequence
alignments from the IMGHT using A*01:01:01:01 as the reference sequence. The peptide residues in proximity for making contacts to HLA are listed for each residue.
doi:10.1371/journal.pone.0041710.t002
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(April 13, 2010 release). A BLAST (Basic Local Alignment Search

Tool) search identified 113 HLA-A*02:01 structures. Of those,

111 were solved with bound peptides fragments varying in length

from 8 to 10 amino acids. After removing molecules containing

gapped peptides (i.e., missing residues), unnatural (modified)

residue substitutions, or incompletely modeled side chains, 96

complexes remained. Our final data set was reduced to 50

complexes after removing duplicate peptides and limiting the

peptide length to 9 amino acids. The final set of HLA-A*02:01

peptide complexes are listed in Table 1.

Structural alignment of HLA-A*02:01 molecules was done

using the PyMOL molecular visualization and modeling software

(The PyMOL Molecular Graphics System, Version 1.3, Schrö-

dinger, LLC). The alignment was conducted by superimposing the

models based on matched atoms between molecules. The bound

peptide chains were excluded from consideration during the

alignment procedure.

IEDB Peptide Binding Data
The IEDB was data mined on April 24, 2010 from IEDB to

extract HLA-A*02:01 binding data [42]. The database was filtered

to remove ambiguity (Method S1) resulting in 3,294 negative and

2,660 positive peptides.

Docking Procedure
The docking procedure takes advantage of the structural

conservation observed in the p-HLA complex in order to identify

an initial pose that will require minimal adjustments. A given

peptide is first positioned into the binding groove by superimpos-

ing the P1, P2, and P9 residues onto a consensus peptide backbone

created by averaging the coordinates of the backbone atoms at

these positions from the available crystallographic models. After

the initial placement, the side chains are then added to template

position utilizing the homology modeling approach to protein side

chain assignment as implemented in the application SCWRL [41].

SCWRL uses a potential function based on a combination of

factors, including a backbone-dependent rotamer library, a fast

anisotropic hydrogen bonding function, a short-range, soft van der

Waals atom-atom interaction potential. In our implementation, we

included a reference frame consisting of an HLA-A*02:01

backbone-only structure for additional steric clashing checks.

Once all side chains are assigned, a fast rigid body position

refinement is conducted to maximize the hydrogen bond

interactions and avoid any large steric hindrance. The displace-

ment during this step is limited to 0.5 Å from the previous

positions, constraining the backbone and preventing the peptide

from losing the dominant binding interactions at the P1, P2, and

P9 positions. A simple scoring function, reflecting mainly van der

Waals interactions is used to evaluate the conformations based on

geometric bond matching described by Luo et al [52] for protein-

ligand docking. Finally, the MM-GBSA procedure is applied

(Method S2), including a conjugate gradient minimization

procedure and a short molecular dynamics (MD) simulation in

which both the peptide and HLA binding groove residues are

allowed to be fully flexible. The free binding energy of the final

position is then calculated.

Constructing Three-Dimensional Peptides from
Sequence

Choosing the highest resolution nonameric peptides structures

bound to HLA-A*02:01 molecules from the PDB, the peptides

were extracted and the side chains atoms at positions 2–9 were

stripped off. This resulted in the creation of 13 unique templates,

each with a unique residue at P1 (A, F, G, I, K, L, M, N, R, S, T,

V, Y). The residues not found in the experimental data (H, D, E,

P, W, Q, C) were mapped to the most structurally similar template

(based on atomic structure and volumes). ab initio peptide models

were then constructed using the SCWRL4 side chain modeling

software by inputting the template corresponding to the P1 residue

[41] and the peptides sequence. In addition, a reference frame

consisting of HLA-A*02:01 backbone atoms was applied to

minimize steric clashes. The resulting peptides were then

minimized using a short conjugate gradient minimization proce-

dure [53].

Establishing a Threshold for Binding Peptides
Binding free energy values computed in the MM-GBSA

procedure provide a qualitative measure of binding, however they

cannot be correlated to quantitative experimental binding

constants. Therefore, it is necessary to establish a binding/non-

binding threshold for the computed values. To accomplish this,

each peptide from our positive and negative peptide pools were

docked into the HLA-A*02:01 molecule. The distribution densities

of the calculated DG values for the positive (green) and negative

(red) peptides are shown in Figure 4c. The significance of the

differences between the means of the distributions was calculated

using Student’s t-test. The p value was estimated at 2.22610216 for

the 95% confidence level, indicating the two distributions are

significantly different. A threshold, representing the mean

difference between the density peaks for each distribution, is

identified as the cutoff. A peptide is considered binding if its DG is

less than the threshold; otherwise it is considered a non-binder.

The accuracy at varying cutoff levels is plotted in Figure 4b.

Modeling Non-Permissive Residue Substitutions
Structural models of HLA molecules were generated for each

observed residue at each non-permissive position, resulting in 35

unique models. The substitutions were manually introduced into a

HLA-A*02:01 starting model [27] using Crystallographic Object-

Oriented Toolkit (COOT) [50]. During modeling, high-frequency

rotamer orientations were accepted, except where significant steric

clashing occurred. A short conjugate gradient minimization was

performed on each mutated model [42].

Supporting Information

Figure S1 The sequence conservation of peptide data-
sets. Sequence logo [54,55] of the conservation of the 50 peptide

data set from the Protein Data Bank (A) and the 5,954 peptide

data set from the Immune Epitope Data Bank (B). The sequence

logo graphic conveys the amount of sequence conservation at each

residue position, with the height of the individual letters

representing the information content at each position. The

Figure 5. Effect of High-Risk Amino Acid Substitutions on Binding Predictions. The distribution of calculated DDG values for each of the 35
structural models from the five non-permissive substitutions are shown as violin plots. The plots are colored according to the Blosum62 amino acid
substitution matrix, typically used for scoring evolutionary divergent protein sequences based on local alignment [52]. The colors are scaled
according to the matrix’s log odds values, with green representing high frequency substitutions and red representing low frequency substitutions.
Each plot highlights the percentage of peptides that are predicted to no longer bind as a result of the substitution in red. Those peptides predicted
to retain their binding activity remain in gray.
doi:10.1371/journal.pone.0041710.g005
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graphic was constructed using the WebLogo webserver (http://

weblogo.berkeley.edu/).

(TIF)

Figure S2 Comparison of crystallographic, ab initio,
and docked peptides. The crystallographic (gray), ab initio

(blue), and docked (orange) models of the HA-1Arg peptide

(VLRDDLLEA; PDB id = 3FT4). The peptide is oriented from the

side (A), N-termini (B), and top-down view (C). Our methodology

utilized an alternate rotamer for the P3 arginine residue that was

determined in the crystallographic model, resulting in the poorest

performer in our benchmarks. Low occupancy and high B-factors

from the experimental data suggest that alternative conformations

may be possible for the complex.

(TIF)

Text S1 Benchmarking Existing p-HLA Complexes.
(DOC)

Method S1 IEDB Binding Data Filtering.
(DOC)

Method S2 Calculating Binding Free Energies for
Peptides Using MM-GBSA.
(DOC)

Method S3 Receiver Operator Characteristic Curve.
(DOC)
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