HANKEL DETERMINANTS OF SECOND AND THIRD ORDER FOR THE CLASS \mathcal{S} OF UNIVALENT FUNCTIONS

Milutin Obradović* - Nikola Tuneski**, c
(Communicated by Stanistawa Kanas)

ABSTRACT. In this paper we give the upper bounds of the Hankel determinants of the second and third order for the class \mathcal{S} of univalent functions in the unit disc.

Mathematical Institute
Slovak Academy of Sciences

Let \mathcal{A} be the class of functions f that are analytic in the open unit disc $\mathbb{D}=\{z:|z|<1\}$ of the form $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ and let \mathcal{S} be the class of univalent functions in the unit disc \mathbb{D}. Let \mathcal{S}^{\star} and \mathcal{K} denote the subclasses of \mathcal{A} which are starlike and convex in \mathbb{D}, respectively, and let \mathcal{U} denote the set of all $f \in \mathcal{A}$ in \mathbb{D} satisfying the condition

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<1 \quad(z \in \mathbb{D})
$$

(see $[5-7]$).
The q th Hankel determinant for a function f from \mathcal{A} is defined for $q \geq 1$, and $n \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right|
$$

Thus, the second Hankel determinant is

$$
\begin{equation*}
H_{2}(2)=a_{2} a_{4}-a_{3}^{2} \tag{1}
\end{equation*}
$$

and the third is

$$
H_{3}(1)=\left|\begin{array}{ccc}
1 & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4} \\
a_{3} & a_{4} & a_{5}
\end{array}\right|=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right)
$$

The concept of Hankel determinant finds its application in the theory of singularities (see [1]) and in the study of power series with integral coefficients.

For some subclasses of the class \mathcal{S} of univalent functions the sharp estimation of $\left|H_{2}(2)\right|$ are known. For example, for the classes \mathcal{S}^{\star} and \mathcal{U} we have that $\left|H_{2}(2)\right| \leq 1$ (see 3, 8), while $\left|H_{2}(2)\right| \leq \frac{1}{8}$ for the class $\mathcal{K}(3)$. Finding sharp estimates of the third order Hankel determinant turns out to be more complicated, so very few are known. An overview of results on the upper

[^0]
M. OBRADOVIĆ - N. TUNESKI

bound of $\left|H_{3}(1)\right|$ can be found in [10], while new non-sharp upper bounds for different classes and conjectures about the sharp ones are given in 9 .

In this paper we give an upper bound of $\left|H_{2}(2)\right|$ and $\left|H_{3}(1)\right|$ for the class \mathcal{S}. Namely, we have:
Theorem 1. For the class \mathcal{S} we have

$$
\left|H_{2}(2)\right| \leq A, \quad \text { where } \quad 1 \leq A \leq \frac{11}{3}=3,66 \ldots
$$

and

$$
\left|H_{3}(1)\right| \leq B, \quad \text { where } \quad \frac{4}{9} \leq B \leq \frac{32+\sqrt{285}}{15}=3.258796 \ldots
$$

Proof. In the proof of this theorem we will use mainly the notations and results given in the book of N. A. Lebedev (4).

Let $f \in \mathcal{S}$ and let

$$
\log \frac{f(t)-f(z)}{t-z}=\sum_{p, q=0}^{\infty} \omega_{p, q} t^{p} z^{q}
$$

where $\omega_{p, q}$ are called Grunsky's coefficients with property $\omega_{p, q}=\omega_{q, p}$. For those coefficients we have the next Grunsky's inequality $(\sqrt{2}, 4)$:

$$
\begin{equation*}
\sum_{q=1}^{\infty} q\left|\sum_{p=1}^{\infty} \omega_{p, q} x_{p}\right|^{2} \leq \sum_{p=1}^{\infty} \frac{\left|x_{p}\right|^{2}}{p} \tag{2}
\end{equation*}
$$

where x_{p} are arbitrary complex numbers such that last series converges.
Further, it is well-known that if

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots \tag{3}
\end{equation*}
$$

belongs to \mathcal{S}, then also

$$
f_{2}(z)=\sqrt{f\left(z^{2}\right)}=z+c_{3}+c_{5} z^{5}+\ldots
$$

belongs to the class \mathcal{S}. Then for the function f_{2} we have the appropriate Grunsky's coefficients of the form $\omega_{2 p-1,2 q-1}^{(2)}$ and the inequality (2) has the form

$$
\begin{equation*}
\sum_{q=1}^{\infty}(2 q-1)\left|\sum_{p=1}^{\infty} \omega_{2 p-1,2 q-1}^{(2)} x_{2 p-1}\right|^{2} \leq \sum_{p=1}^{\infty} \frac{\left|x_{2 p-1}\right|^{2}}{2 p-1} \tag{4}
\end{equation*}
$$

As it has been shown in [4: p. 57], if f is given by (3) then the coefficients a_{2}, a_{3}, a_{4} and a_{5} are expressed by Grunsky's coefficients $\omega_{2 p-1,2 q-1}^{(2)}$ of the function f_{2} given by (3) in the following way (in the next text we omit upper index 2 in $\omega_{2 p-1,2 q-1}^{(2)}$):

$$
\begin{align*}
a_{2} & =2 \omega_{11} \\
a_{3} & =2 \omega_{13}+3 \omega_{11}^{2} \\
a_{4} & =2 \omega_{33}+8 \omega_{11} \omega_{13}+\frac{10}{3} \omega_{11}^{3} \tag{5}\\
a_{5} & =2 \omega_{35}+8 \omega_{11} \omega_{33}+5 \omega_{15}^{2}+18 \omega_{11}^{2} \omega_{13}+\frac{7}{3} \omega_{11}^{4} \\
0 & =3 \omega_{15}-3 \omega_{11} \omega_{13}+\omega_{11}^{3}-3 \omega_{33}
\end{align*}
$$

Now, from (1) and (5), we have

$$
\begin{aligned}
H_{2}(2) & =4 \omega_{11} \omega_{33}+4 \omega_{11}^{2} \omega_{13}-4 \omega_{13}^{2}-\frac{7}{3} \omega_{11}^{4} \\
& =4 \omega_{11} \omega_{33}-\frac{4}{3} \omega_{11}^{4}-\left(2 \omega_{13}-\omega_{11}^{2}\right)^{2}
\end{aligned}
$$

and from here

$$
\begin{equation*}
\left|H_{2}(2)\right| \leq 4\left|\omega_{11}\right|\left|\omega_{33}\right|+\frac{4}{3}\left|\omega_{11}\right|^{4}+\left|2 \omega_{13}-\omega_{11}^{2}\right|^{2} \tag{6}
\end{equation*}
$$

Since for the class \mathcal{S} we have $\left|a_{3}-a_{2}^{2}\right| \leq 1$ (see 2) and since from (5)

$$
\left|2 \omega_{13}-\omega_{11}^{2}\right|=\left|a_{3}-a_{2}^{2}\right|
$$

then

$$
\begin{equation*}
\left|2 \omega_{13}-\omega_{11}^{2}\right| \leq 1 \tag{7}
\end{equation*}
$$

On the other hand, from (4) for $x_{2 p-1}=0, p=3,4, \ldots$, we have

$$
\begin{equation*}
\left|\omega_{11} x_{1}+\omega_{31} x_{3}\right|^{2}+3\left|\omega_{13} x_{1}+\omega_{33} x_{3}\right|^{2} \leq\left|x_{1}\right|^{2}+\frac{\left|x_{3}\right|^{2}}{3} \tag{8}
\end{equation*}
$$

From (8) for $x_{1}=1, x_{3}=0$ and since $\omega_{31}=\omega_{13}$, we have

$$
\left|\omega_{11}\right|^{2}+3\left|\omega_{13}\right|^{2} \leq 1
$$

which implies

$$
\begin{equation*}
\left|\omega_{13}\right|^{2} \leq \frac{1}{3}\left(1-\left|\omega_{11}\right|^{2}\right) \tag{9}
\end{equation*}
$$

Also, for $x_{1}=0, x_{3}=1$ we obtain

$$
\left|\omega_{31}\right|^{2}+3\left|\omega_{33}\right|^{2} \leq \frac{1}{3}
$$

and so

$$
\begin{equation*}
\left|\omega_{33}\right| \leq \frac{1}{3} \sqrt{1-3\left|\omega_{31}\right|^{2}} \leq \frac{1}{3} \tag{10}
\end{equation*}
$$

Finally, from (6), (7), (9) and (10), we have

$$
\left|H_{2}(2)\right| \leq \frac{4}{3}\left|\omega_{11}\right|+\frac{4}{3}\left|\omega_{11}\right|^{4}+1 \leq \frac{11}{3}
$$

because from (5) we have that

$$
\left|a_{2}\right|=\left|2 \omega_{11}\right| \leq 2 \Longrightarrow\left|\omega_{11}\right| \leq 1
$$

Since \mathcal{S}^{*} and \mathcal{U} are both subsets of \mathcal{S} with 1 as a sharp upper bound of $\left|H_{2}(2)\right|$, we have that on the class $\mathcal{S},\left|H_{2}(2)\right| \geq 1$.

As for Hankel determinant of the third order, by using (5), we can write

$$
\begin{aligned}
H_{3}(1)= & a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right) \\
= & -8 \omega_{13}^{3}+2 \omega_{11}^{4} \omega_{13}+\frac{8}{3} \omega_{11}^{3} \omega_{33}-4 \omega_{33}^{2}-\frac{4}{9} \omega_{11}^{6} \\
& +4 \omega_{13} \omega_{35}+10 \omega_{13} \omega_{15}^{2}-5 \omega_{11}^{2} \omega_{15}^{2}-2 \omega_{11}^{2} \omega_{35} \\
= & -2 \omega_{13}\left(4 \omega_{13}^{2}-\omega_{11}^{4}\right)-\left(2 \omega_{33}-\frac{2}{3} \omega_{11}^{3}\right)^{2}+\left(2 \omega_{35}+5 \omega_{15}^{2}\right)\left(2 \omega_{13}-\omega_{11}^{2}\right)
\end{aligned}
$$

M. OBRADOVIĆ - N. TUNESKI

and from here

$$
\begin{aligned}
\left|H_{3}(1)\right| & \leq \underbrace{2\left|\omega_{13}\right|\left|4 \omega_{13}^{2}-\omega_{11}^{4}\right|}_{B_{1}}+\underbrace{\left|2 \omega_{33}-\frac{2}{3} \omega_{11}^{3}\right|^{2}}_{B_{2}}+\underbrace{\left|2 \omega_{35}+5 \omega_{15}^{2}\right| \mid\left(2 \omega_{13}-\omega_{11}^{2} \mid\right.}_{B_{3}} \\
& =B_{1}+B_{2}+B_{3} .
\end{aligned}
$$

By using the relations (7) and (9), we obtain

$$
\begin{aligned}
B_{1} & =2\left|\omega_{13}\right|\left|2 \omega_{13}-\omega_{11}^{2}\right|\left|2 \omega_{13}+\omega_{11}^{2}\right| \\
& \leq 2\left|\omega_{13}\right|\left|2 \omega_{13}+\omega_{11}^{2}\right| \\
& \leq 2\left|\omega_{13}\right|\left(2\left|\omega_{13}\right|+\left|\omega_{11}\right|^{2}\right) \\
& =4\left|\omega_{13}\right|^{2}+2\left|\omega_{13}\right|\left|\omega_{11}\right|^{2} \\
& \leq \frac{2}{3}\left[2\left(1-\left|\omega_{11}\right|^{2}\right)+\sqrt{3}\left|\omega_{11}\right|^{2} \sqrt{1-\left|\omega_{11}\right|^{2}}\right] \\
& =: \frac{2}{3} \varphi\left(\left|\omega_{11}\right|^{2}\right)
\end{aligned}
$$

where

$$
\varphi(t)=2(1-t)+\sqrt{3} t \sqrt{1-t}, \quad 0 \leq t \leq 1
$$

It is easily to show that the function φ decreases on $(0,1)$ and has maximum $\varphi(0)=2$, which implies

$$
\begin{equation*}
B_{1} \leq \frac{2}{3} \varphi(0)=\frac{4}{3} \tag{11}
\end{equation*}
$$

From the last equation in the relation (5), we have

$$
2 \omega_{33}-\frac{2}{3} \omega_{11}^{3}=2 \omega_{15}-2 \omega_{11} \omega_{13}
$$

and from here

$$
\begin{equation*}
\left|2 \omega_{33}-\frac{2}{3} \omega_{11}^{3}\right| \leq 2\left|\omega_{15}\right|+2\left|\omega_{11}\right|\left|\omega_{13}\right| \tag{12}
\end{equation*}
$$

Similarly as in 8), we have

$$
\begin{equation*}
\left|\omega_{11} x_{1}+\omega_{31} x_{3}\right|^{2}+3\left|\omega_{13} x_{1}+\omega_{33} x_{3}\right|^{2}+5\left|\omega_{15} x_{1}+\omega_{35} x_{3}\right|^{2} \leq\left|x_{1}\right|^{2}+\frac{\left|x_{3}\right|^{2}}{3} \tag{13}
\end{equation*}
$$

If we put $x_{1}=1$ and $x_{3}=0$, then we get

$$
\left|\omega_{11}\right|^{2}+3\left|\omega_{13}\right|^{2}+5\left|\omega_{15}\right|^{2} \leq 1
$$

and so

$$
\begin{equation*}
\left|\omega_{15}\right| \leq \frac{1}{\sqrt{5}} \sqrt{1-\left|\omega_{11}\right|^{2}-3\left|\omega_{13}\right|^{2}} \tag{14}
\end{equation*}
$$

From $\sqrt{12}$ and $\sqrt{14}$, we have

$$
\begin{aligned}
\left|2 \omega_{33}-\frac{2}{3} \omega_{11}^{3}\right| & \leq \frac{2}{\sqrt{5}}\left(\sqrt{1-\left|\omega_{11}\right|^{2}-3\left|\omega_{13}\right|^{2}}+\sqrt{5}\left|\omega_{11}\right|\left|\omega_{13}\right|\right) \\
& =: \frac{2}{\sqrt{5}} \psi\left(\left|\omega_{11}\right|,\left|\omega_{13}\right|\right)
\end{aligned}
$$

where

$$
\psi(t, s)=\sqrt{1-t^{2}-3 s^{2}}+\sqrt{5} t s, \quad 0 \leq t \leq 1, \quad 0 \leq s \leq \frac{1}{\sqrt{3}} \sqrt{1-t^{2}}
$$

It is an elementary fact to find that in cited domain $\max \psi=1$ attained for $t=s=0$, which implies

$$
\begin{equation*}
B_{2}=\left|2 \omega_{33}-\frac{2}{3} \omega_{11}^{3}\right|^{2} \leq\left(\frac{2}{\sqrt{5}}\right)^{2}=\frac{4}{5} \tag{15}
\end{equation*}
$$

From relation 13 we also have

$$
5\left|\omega_{15} x_{1}+\omega_{35} x_{3}\right|^{2} \leq\left|x_{1}\right|^{2}+\frac{\left|x_{3}\right|^{2}}{3}
$$

If we put in the previous relation $x_{1}=5 \omega_{15}, x_{3}=2$, and then use 14 we receive

$$
\left|2 \omega_{35}+5 \omega_{15}^{2}\right|^{2} \leq 5\left|\omega_{15}\right|^{2}+\frac{4}{15} \leq 1-\left|\omega_{11}\right|^{2}-3\left|\omega_{13}\right|^{2}+\frac{4}{15} \leq \frac{19}{15}
$$

which finally gives

$$
\begin{equation*}
B_{3}=\left|2 \omega_{35}+5 \omega_{15}^{2}\right| \cdot\left|2 \omega_{13}-\omega_{1}^{2}\right| \leq \sqrt{\frac{19}{15}} \tag{16}
\end{equation*}
$$

(in the last step we have used the relation (7). By using relations (11), 15) and (16), we obtained

$$
\left|H_{3}(1)\right| \leq B_{1}+B_{2}+B_{3} \leq \frac{4}{3}+\frac{4}{5}+\sqrt{\frac{19}{15}}=\frac{32+\sqrt{285}}{15}
$$

The function defined by $\frac{z f^{\prime}(z)}{f(z)}=\frac{1+z^{3}}{1-z^{3}}$ where $a_{2}=a_{3}=a_{5}=0, a_{4}=\frac{2}{3}$ is starlike (thus univalent) and $H_{3}(1)=-\frac{4}{9}$. Therefore on the class \mathcal{S},

$$
\left|H_{3}(1)\right| \geq \frac{4}{9}
$$

REFERENCES

[1] DIENES, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable, New York-Dover: Mineola, NY, USA, 1957.
[2] DUREN, P. L.: Univalent Function, Springer-Verlag, New York, 1983.
[3] JANTENG, A.-HALIM, S. A.-DARUS, M.: Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1(13) (2007), 619-225.
[4] LEBEDEV, N. A.: Area Principle in the Theory of Univalent Functions, Nauka, Moscow, 1975 (in Russian).
[5] OBRADOVIĆ, M.-PONNUSAMY, S.: New criteria and distortion theorems for univalent functions, Complex Variables Theory Appl. 44 (2001), 173-191.
[6] OBRADOVIĆ, M.-PONNUSAMY, S.: On the class \mathcal{U}, Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application, 2011, pp. 11-26.
[7] OBRADOVIĆ, M.-PONNUSAMY, S.-WIRTHS, K. J.: Geometric studies on the class $\mathcal{U}(\lambda)$, Bull. Malays. Math. Sci. Soc. 39(3) (2016), 1259-1284.
[8] OBRADOVIĆ, M.—TUNESKI, N.: Some properties of the class \mathcal{U}, Ann. Univ. Mariae Curie-Skłodowska Sect. A 73(1) (2019), 49-56.
[9] OBRADOVIĆ, M.-TUNESKI, N.: New upper bounds of the third Hankel determinant for some classes of univalent functions, submitted, https://arxiv.org/abs/1911.10770
[10] SHI, L.—SRIVASTAVA, H. M.-ARIF, M.-HUSSAIN, S.-KHAN, H.: An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry 11 (2019), 598.

Received 20. 1. 2020
Accepted 14. 9. 2020

* Department of Mathematics

Faculty of Civil Engineering
University of Belgrade
Bulevar Kralja Aleksandra 73
11000, Belgrade
SERBIA
E-mail: obrad@grf.bg.ac.rs
** Department of Mathematics and Informatics
Faculty of Mechanical Engineering
Ss. Cyril and Methodius University in Skopje Karpoš II b.b., 1000 Skopje
REPUBLIC OF NORTH MACEDONIA
E-mail: nikola.tuneski@mf.edu.mk

[^0]: 2020 Mathematics Subject Classification: 30C45, 30C50, 30C55.
 Keywords: univalent, Hankel determinant of second order, Hankel determinant of third order.
 ${ }^{\mathrm{c}}$ Corresponding author.

