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ABSTRACT. In this paper we give the upper bounds of the Hankel determinants of the second and
third order for the class S of univalent functions in the unit disc.
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Let A be the class of functions f that are analytic in the open unit disc D = {z : |z] < 1} of the
form f(z) = z + az2% + azz® + -+ and let S be the class of univalent functions in the unit disc D.
Let S* and K denote the subclasses of A which are starlike and convex in D, respectively, and let
U denote the set of all f € A in D satisfying the condition

2
z
— ] fl(z) -1 <1 (z € D).
(75)
(see [5H7)).
The gth Hankel determinant for a function f from A is defined for ¢ > 1, and n > 1 by
(079 an+1 e an+q_1
Ap41 Ap4+2 ... Gp4q
Hy(n) =
Antq—1 Gnyq --- On42¢-2
Thus, the second Hankel determinant is
H2(2) = a2a4 — a§ (1)
and the third is
1 as asg
H3(1)=| as a3 a4 |=asz(azas —a2) — as(ay — asas) + as(as — a3).

az a4 0as

The concept of Hankel determinant finds its application in the theory of singularities (see |1]) and
in the study of power series with integral coefficients.

For some subclasses of the class S of univalent functions the sharp estimation of |Hy(2)| are
known. For example, for the classes S* and U we have that |H2(2)] < 1 (see [3,8]), while
|H2(2)| < & for the class K ([3]). Finding sharp estimates of the third order Hankel determinant
turns out to be more complicated, so very few are known. An overview of results on the upper
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bound of |H3(1)| can be found in [10], while new non-sharp upper bounds for different classes and
conjectures about the sharp ones are given in [9).

In this paper we give an upper bound of |Hz(2)| and |H5(1)]| for the class S. Namely, we have:

THEOREM 1. For the class S we have

11
|Hy(2)| < A, where 1< A< 5 = 3,66...

and

< B — =3.258796. ...

4 32 + /285
9 15

|H5(1)| < B, where

Proof. In the proof of this theorem we will use mainly the notations and results given in the
book of N. A. Lebedev ([4]).

Let f € S and let
log ———— 1) Z wp,qt? 29,

t—=z a0
where wy, ;, are called Grunsky’s coefficients with property wp ; = wq . For those coeflicients we
have the next Grunsky’s inequality (|2L4]):

Zq Z‘*’pqmp

where x,, are arbitrary complex numbers such that last series converges.

|xp‘2
< Z (2)

p=1

Further, it is well-known that if
f(2) =24 ag2® +az2® + ... (3)
belongs to S, then also
fa(2) = VI(2) =z + ez + 52" + ..

belongs to the class §. Then for the function f; we have the appropriate Grunsky’s coefficients of
the form wé?fmwl and the inequality has the form

oo
Z(Qq szp 1,2¢g—1%2p—1

q:l =

<Z|x2p 1| (4)

= 2p—1"

As it has been shown in [4} p. 57], if f is given by then the coefficients as, a3, a4 and as are
expressed by Grunsky’s coefficients wéi)_mq_l of the function f, given by in the following way
(in the next text we omit upper index 2 in wg?_mq_l):

as = 2wy,

agz = 2wz + 30.)%1,

10
a4 = 2wsz + S8wiiwis + gwiﬁ (5)

4
W11

as = 2W35 + 8&)110.)33 + 5&)?5 + ].8(4)%1(4}13 + 3

3
0= 3LU15 — 3w11w13 + Wi — 30.)33.
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Now, from and , we have

7
H2(2) = 4&)11&)33 + 4&)%10013 — 4&)%3 — gwfl

= 4dwiiwsz — %w‘fl — (2w13 — wfl)z,
and from here
F2(2)] < oo+ Shonal* + 2015 — [ (©
Since for the class S we have |az — a3| < 1 (see [2]) and since from
|2w13 — wiy| = |ag — a3,
then
|2w13 — wiy| < 1. (7)

On the other hand, from for 9,1 =0, p=3,4,..., we have

2
T
Jwinay + wanas|” + Blwiss + wazzs|” < |oa|* + % (8)

From for T = 17 Tr3 — 0 and since w31 = w13, wWe have

|wi1]? + 3|wis]? < 1,
which implies

1
wiz]” = (L — |w11|7)-

Also, for z1 = 0, z3 = 1 we obtain

|ws1]? + 3lwssz)? <

w| =

and so
. (10)

1
|wss| < 3V1i- Blwa1]? <
Finally, from @, @, @ and , we have
11

4 4
[H2(2)] < g‘wlﬂ + §|w11|4 tl<+,

Wl =

because from we have that
las] = [2w11] €2 = Jwn1| < 1.

Since 8* and U are both subsets of S with 1 as a sharp upper bound of |H2(2)|, we have that
on the class S, |[Ha2(2)] > 1.
As for Hankel determinant of the third order, by using , we can write
H3(1) = az(agas — a3) — as(ay — azas) + as(as — a3)
8 4
= —8wi’3 + Qwillwlg + gwi’lw;gg — 4w§3 — §w?1

+ 4&)13&)35 + 10&)13&)%5 - 50.)%10.]%5 — 2w%1W35
9 2
= —2w13 (4wf3 — will) — (2&}33 - 3(,0%1) + (20035 + 5(,«}%5)(20.213 — w%l),
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and from here
2

[Ha(1)] < 2|wns] |[4wi; — wiy| + + 2035 + 5wis]| (2013 — wiy

Bl e e 33
Ba

2
20.)33 — g&)%l

= B1 + By + Bs.
By using the relations and @, we obtain
By = 2|wis| |2wis — w%l‘ |2wy3 + wfl‘
< 2wy 3] |2w13 + W%1|
< 2Jwis] (2fwrs] + |w11|2)

= 4|wi3]? + 2|wiz| w11 |

2

< 3 [2 (1 —Jwii]?) + V3w |*V/1 — |w11\2]
2

=: §¢(|w11|2),

where
p(t) =2(1 —t) + V3tv/1 -1, 0<t<1.

It is easily to show that the function ¢ decreases on (0,1) and has maximum ¢(0) = 2, which
implies

2 4
B < —¢(0) = —. 11
1S 390( ) 3 (11)
From the last equation in the relation (f]), we have
2 .
2w33 — §Wf1 = 2w15 — 2w11Wi3,
and from here
2
‘2&.}33 — gwfl S 2|UJ15| + 2|UJ11||UJ13|. (12)
Similarly as in , we have
2
x:
|w11$1 + CU31£L'3|2 + 3‘0.)13%1 + OJ33(E3‘2 + 5|w15x1 + LU35£K3|2 S |(E1‘2 + % (13)
If we put z; = 1 and 3 = 0, then we get
|wi1]? + 3|wis|? + 5lwis|® < 1,
and so )
|wis| < %\/1 — w11 [ = 3|wia]?. (14)
From (|12) and , we have
2 2
2w33 — gwi < 7 (\/1 — |wi1]? = 3lwiz]? + \/5\w11||w13|)

=: %wawll |7 |W13|)7

where

1
Y(t,s) =1 —12—-3s2+bts, 0<t<1, 0<s<—=V1-1t2

V3
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It is an elementary fact to find that in cited domain max = 1 attained for ¢t = s = 0, which
implies
2 2
2 4
<|l—=) =-. 15
B <\/5 > 5 (15)

|23
=

If we put in the previous relation z; = 5wis, 3 = 2, and then use ((14) we receive

2
3
2(.033 - 7(&]11

By = 3

From relation we also have

5lwismy + wssas)? < |z | +

4 4 19
2 5w |2 < 5lwis|? + — <1 -— 2 _3lwis)P+ —= < —
[2ws5 + bwis|” < Blwis|” + T lwi1] lwis]® + S 15
which finally gives
9 9 19
Bg = |2(.J35 + 5w15| . |2¢LJ13 - w1| < T5 (16)

(in the last step we have used the relation @) By using relations , and , we obtained

4 4 19 32+ V285
|H3(1)|<Bl+BQ+B3<++\/;:\/7

3 5 15
’ 3

The function defined by Z}c(g) = }*_‘; where as = a3 = a5 = 0, ay = % is starlike (thus

univalent) and Hjz(1) = —2. Therefore on the class S,

4
[H3(1)] = 5. O

9
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