

Acta Mathematica Scientia, 2019, **39B**(6): 1579–1588 https://doi.org/10.1007/s10473-019-0609-4 ©Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences, 2019

NEW RESULTS FOR A CLASS OF UNIVALENT FUNCTIONS*

Zhigang PENG (彭志刚)[†]

Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China E-mail: pengzhigang@hubu.edu.cn

Milutin OBRADOVIĆ

Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000, Serbia E-mail: obrad@grf.bg.ac.rs

Abstract Let \mathcal{A} denote the family of all analytic functions f(z) in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, normalized by the conditions f(0) = 0 and f'(0) = 1. Let \mathcal{U} denote the set of all functions $f \in \mathcal{A}$ satisfying the condition

$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| < 1 \text{ for } z \in \mathbb{D}.$$

Let Ω be the class of all $f \in \mathcal{A}$ for which

$$|zf'(z) - f(z)| < \frac{1}{2}, \ z \in \mathbb{D}.$$

In this paper, the relations between the two classes are discussed. Furthermore, some new results on the class Ω are obtained.

Key words analytic; univalent; coefficient; Hadamard product

2010 MR Subject Classification 30C45

1 Introduction

Let \mathcal{A} denote the family of all analytic functions f(z) in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, normalized by the conditions f(0) = 0 and f'(0) = 1. Denote by \mathcal{S} the subset of \mathcal{A} which consists of univalent functions. Let \mathcal{S}^* and \mathcal{K} denote the subclasses of \mathcal{S} which are starlike and convex in \mathbb{D} , respectively, and let \mathcal{U} denote the set of all $f \in \mathcal{A}$ satisfying the condition

$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| < 1 \text{ for } z \in \mathbb{D}.$$

^{*}Received July 27, 2018; revised May 16, 2019. The first author was supported by the Key Laboratory of Applied Mathematics in Hubei Province, China. The second author was supported by MNZZS (ON174017, Serbia).

[†]Corresponding author: Zhigang PENG.

It is well known that \mathcal{U} is a subclass of \mathcal{S} [1]. In recent years, many scholars have studied the properties of the family \mathcal{U} [2–6].

In a recent paper, Peng and Zhong [7] introduced the class Ω which consists of functions f in \mathcal{A} satisfying the condition

$$|zf'(z) - f(z)| < \frac{1}{2}, \ z \in \mathbb{D}.$$
 (1.1)

Also, the authors showed that (1.1) is equivalent with

$$f(z) = z + \frac{1}{2}z \int_0^z \varphi(\zeta) \mathrm{d}\zeta, \qquad (1.2)$$

where φ is analytic in \mathbb{D} and $|\varphi(z)| \leq 1$, $z \in \mathbb{D}$. We note that in the same paper it is proved that $\Omega \subset \mathcal{S}^*$.

In this paper we discuss the relations between \mathcal{U} and Ω . Also, we consider the other properties of the class Ω and get some new results.

2 Relations Between \mathcal{U} and Ω

Theorem 2.1 The class Ω is not a subset of the class \mathcal{U} .

Proof Let us consider the function

$$\varphi_1(z) = \frac{z+a}{1+az}, \ 0 < a < 1.$$

Then $\varphi_1 : \mathbb{D} \to \mathbb{D}$, and the appropriate function $f_1 \in \Omega$ given by (1.2) has the form

$$f_1(z) = z + \frac{1}{2}z \int_0^z \frac{\zeta + a}{1 + a\zeta} d\zeta = z + \frac{1}{2a}z^2 - \frac{1 - a^2}{2a^2}z \log(1 + az).$$

From above we have

$$f_1'(z) = 1 + \frac{1}{a}z - \frac{1 - a^2}{2a^2}\log(1 + az) - \frac{1 - a^2}{2a}\frac{z}{1 + az}$$

and so,

$$\left| \left(\frac{z}{f_1(z)} \right)^2 f_1'(z) - 1 \right|_{z=-1} = \left| \frac{2a^2 \left(3a^2 - a - (1-a^2)\log(1-a) \right)}{\left(2a^2 - a - (1-a^2)\log(1-a) \right)^2} - 1 \right| \to 3$$

when $a \to 1$. It means that for the points in \mathbb{D} near to the point z = -1 and for a close to 1 we have

$$\left| \left(\frac{z}{f_1(z)} \right)^2 f_1'(z) - 1 \right| > 1.$$

This implies that $f_1 \notin \mathcal{U}$.

Theorem 2.2 If $f \in \Omega$, then $f \in \mathcal{U}$ in the disc $|z| < \sqrt{\frac{\sqrt{5}-1}{2}} = 0.78615 \cdots$. **Proof** If $f \in \Omega$, then we have the representation (1.2). If we put $\psi(z) = \int_{-\infty}^{z} dz$

Proof If $f \in \Omega$, then we have the representation (1.2). If we put $\omega(z) = \int_0^z \varphi(\zeta) d\zeta$, then $|\omega(z)| \le |z|, \ |\omega'(z)| \le 1$ and

$$f(z) = z + \frac{1}{2}z\omega(z).$$
 (2.1)

By using a result of Dieudonné ([8], pp.198–199), we have the next inequality

$$|z\omega'(z) - \omega(z)| \le \frac{r^2 - |\omega(z)|^2}{1 - r^2},$$
(2.2)

🖄 Springer

where |z| = r and $|\omega(z)| \leq r$. It follows from (2.1) and (2.2) that

$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| = \left| \frac{z}{f(z)} - z \left(\frac{z}{f(z)} \right)' - 1 \right|$$
$$= \left| \frac{\frac{1}{2} (z\omega'(z) - \omega(z)) - \frac{1}{4} \omega^2(z)}{(1 + \frac{1}{2} \omega(z))^2} \right|$$
$$\leq \frac{\frac{1}{2} |z\omega'(z) - \omega(z)| + \frac{1}{4} |\omega(z)|^2}{(1 - \frac{1}{2} |\omega(z)|)^2}$$
$$\leq \frac{\frac{1}{2} \frac{r^2 - |\omega(z)|^2}{1 - r^2} + \frac{1}{4} |\omega(z)|^2}{(1 - \frac{1}{2} |\omega(z)|)^2}.$$

If

$$\frac{\frac{1}{2}\frac{r^2 - |\omega(z)|^2}{1 - r^2} + \frac{1}{4}|\omega(z)|^2}{\left(1 - \frac{1}{2}|\omega(z)|\right)^2} < 1,$$
(2.3)

then we have

 $\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| < 1.$

But the inequality (2.3) is equivalent to

$$|\omega(z)|^2 - 2(1 - r^2)|\omega(z)| + 2 - 3r^2 > 0.$$
(2.4)

Noting that $|\omega(z)| \leq |z| = r$, if we put $|\omega(z)| = t$, with $0 \leq t \leq r$, and consider the function

$$F(t) = t^2 - 2(1 - r^2)t + 2 - 3r^2,$$

then it is an elementary fact to show that the function F is positive for $0 \le r < r_0 = \sqrt{\frac{\sqrt{5}-1}{2}}$, that is, the inequality (2.4) holds when $|z| < r_0$. And therefore, f is in \mathcal{U} in the disc $|z| < r_0$.

3 Estimation of Coefficients

Definition 3.1 ([8], p.151) The logarithmic coefficients γ_n of f in S is defined by

$$\log \frac{f(z)}{z} = 2\sum_{n=1}^{\infty} \gamma_n z^n, |z| < 1.$$

Theorem 3.2 Let $f \in \Omega$ and let $\gamma_1, \gamma_2, \gamma_3$ be its logarithmic coefficients. Then

- (a) $|\gamma_1| \leq \frac{1}{4};$
- (b) $|\gamma_2| \leq \frac{1}{8};$
- (c) $|\gamma_3| \leq \frac{1}{12}$.

All results are the best possible.

Proof We will use the representation (2.1). If we put $\omega(z) = c_1 z + c_2 z^2 + \cdots$, then from $|\omega'(z)| = |c_1 + 2c_2 z + 3c_3 z^2 + \cdots| \leq 1$, we have

$$|c_1| \le 1, \ |2c_2| \le 1 - |c_1|^2, \ |3c_3| \le 1 - |c_1|^2 - \frac{4|c_2|^2}{1 + |c_1|}$$

$$(3.1)$$

🖄 Springer

(see Prokhorov and Szinal [9]). By using (2.1) we have

$$\log \frac{f(z)}{z} = \log \left(1 + \frac{1}{2} \omega(z) \right)$$

= $\log \left(1 + \frac{1}{2} (c_1 z + c_2 z^2 + \cdots) \right)$
= $\frac{1}{2} c_1 z + \frac{1}{2} \left(c_2 - \frac{1}{4} c_1^2 \right) z^2 + \frac{1}{2} \left(c_3 - \frac{1}{2} c_1 c_2 + \frac{1}{12} c_1^3 \right) z^3 + \cdots,$

which implies that

$$2\gamma_1 = \frac{1}{2}c_1, \ 2\gamma_2 = \frac{1}{2}\left(c_2 - \frac{1}{4}c_1^2\right), \ 2\gamma_3 = \frac{1}{2}\left(c_3 - \frac{1}{2}c_1c_2 + \frac{1}{12}c_1^3\right).$$
(3.2)

Combining (3.1) with (3.2), we have

$$|\gamma_1| = \frac{1}{4}|c_1| \le \frac{1}{4}, \ |\gamma_2| \le \frac{1}{8}(2|c_2| + \frac{1}{2}|c_1|^2) \le \frac{1}{8}.$$

Similarly,

$$\begin{aligned} 12|\gamma_3| &= \left| 3c_3 - \frac{3}{2}c_1c_2 + \frac{1}{4}c_1^3 \right| \\ &\leq 3|c_3| + \frac{3}{2}|c_1||c_2| + \frac{1}{4}|c_1|^3 \\ &\leq 1 - |c_1|^2 - \frac{4|c_2|^2}{1 + |c_1|} + \frac{3}{2}|c_1||c_2| + \frac{1}{4}|c_1|^3 \\ &= \psi(|c_1|, |c_2|), \end{aligned}$$

where

$$\psi(x,y) = 1 - x^2 - \frac{4y^2}{1+x} + \frac{3}{2}xy + \frac{1}{4}x^3, (x,y) \in D$$

and D is defined by the conditions: $0 \le x \le 1$, $0 \le y \le 1$, $y \le \frac{1}{2}(1-x^2)$. It is easy to check that the function ψ has only one critical point (0,0) belonging to the boundary of the domain D and that $\psi(x,y) \le 1$ in the domain D. This implies that $|\gamma_3| \le \frac{1}{12}$. If we choose the function φ in (1.2) to be $1, z, z^2$ respectively, then we obtain that all results in this theorem are sharp.

Theorem 3.3 If
$$f(z) = z + \sum_{n=1}^{\infty} a_n z^n \in \Omega$$
 and if the inverse function of f has an expansion
 $f^{-1}(w) = w + A_2 w^2 + A_3 w^3 + A_4 w^4 + \cdots$ (3.3)

near w = 0, then

$$|A_2| \le \frac{1}{2}, |A_3| \le \frac{1}{2}, |A_4| \le \frac{5}{8}.$$

All these results are the best possible.

Proof By using the identity $f(f^{-1}) = w$ and the representations for the functions f and f^{-1} , we can obtain the next relations

$$\begin{cases}
A_2 = -a_2, \\
A_3 = -a_3 + 2a_2^2, \\
A_4 = -a_4 + 5a_2a_3 - 5a_2^3.
\end{cases} (3.4)$$

🖄 Springer

On the other hand, in view of (2.1), if we put $\omega(z) = c_1 z + c_2 z^2 + \cdots$, where $|\omega(z)| \leq |z|$, $|\omega'(z)| \leq 1$, we have

$$f(z) = z + \sum_{n=2}^{\infty} \frac{1}{2} c_{n-1} z^n.$$
(3.5)

Combining (3.4) with (3.5), we obtain

$$\begin{cases}
A_2 = -\frac{1}{2}c_1, \\
A_3 = -\frac{1}{2}c_2 + \frac{1}{2}c_1^2, \\
A_4 = -\frac{1}{2}c_3 + \frac{5}{4}c_1c_2 - \frac{5}{8}c_1^3.
\end{cases}$$
(3.6)

From (3.6) it follows that $|A_2| = \frac{1}{2}|c_1| \le \frac{1}{2}$. Also, by using (3.6) and (3.1), we have

$$|A_3| \le \frac{1}{2}|c_2| + \frac{1}{2}|c_1|^2 \le \frac{1}{4}(1 - |c_1|^2) + \frac{1}{2}|c_1|^2 \le \frac{1}{4} + \frac{1}{4}|c_1|^2 \le \frac{1}{2}.$$

Finally, from (3.6), we obtain that

$$|A_4| = \frac{1}{2} \left| c_3 - \frac{5}{2}c_1c_2 + \frac{5}{4}c_1^3 \right| \le \frac{1}{2} \cdot \frac{5}{4} = \frac{5}{8}$$

by using the result of Prokhorov and Szinal (with $\mu = -\frac{5}{2}$ and $\nu = \frac{5}{2}$)[9]. If we consider the function $w = f(z) = z + \frac{1}{2}z^2$, then we have that

$$z = f^{-1}(w) = -1 + \sqrt{1+2w} = w - \frac{1}{2}w^2 + \frac{1}{2}w^3 - \frac{5}{8}w^4 + \cdots,$$

which means that our results are the best possible.

Theorem 3.4 Let $f \in \Omega$ and let γ_n , $n = 1, 2, 3, \cdots$, be its logarithmic coefficients. Then (a) $\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{1}{4} Li_2\left(\frac{1}{4}\right)$, where $\frac{1}{4} Li_2\left(\frac{1}{4}\right) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{1}{4}\right)^{n+1}$ is the best possible; (b) $\sum_{n=1}^{\infty} n^2 |\gamma_n|^2 \leq \frac{1}{4}$; (c) $|\gamma_n| \leq \frac{1}{2n}, n = 1, 2, \cdots$.

Proof (a) If $f \in \Omega$, then from (2.1) we have

$$f(z) = z + \frac{1}{2}z\omega(z),$$

where $|\omega(z) \leq |z|$ and $|\omega'(z)| \leq 1$. From here we have

$$\frac{f(z)}{z} \prec 1 + \frac{1}{2}z,$$

which implies

$$\log \frac{f(z)}{z} \prec \log \left(1 + \frac{1}{2}z\right),$$

or

$$\sum_{n=1}^{\infty} 2\gamma_n z^n \prec \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n2^n} z^n.$$

By using Rogosinsky's result([8], p.192) we obtain

$$\sum_{n=1}^{\infty} 4|\gamma_n|^2 \le \sum_{n=1}^{\infty} \frac{1}{n^2 2^{2n}} = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{4}\right)^n}{n^2} = Li_2\left(\frac{1}{4}\right).$$

🖄 Springer

From the last equality we have the statement (a) of the theorem. The function $f(z) = z + \frac{1}{2}z^2$ shows that our result is the best possible.

(b) By using the representation (2.1) and the facts for the function ω , we have

$$\log \frac{f(z)}{z} = \log \left(1 + \frac{1}{2}\omega(z)\right). \tag{3.7}$$

From (3.7), after derivation, we get

$$\left(\log\frac{f(z)}{z}\right)' = \frac{\frac{1}{2}\omega'(z)}{1 + \frac{1}{2}\omega(z)}.$$
(3.8)

Noting that $|\omega(z)| \leq 1$ and $|\omega'(z)| \leq 1$, from (3.8) we have that

$$\left| \sum_{n=1}^{\infty} 2n\gamma_n z^{n-1} \right| \le \frac{\frac{1}{2} |\omega'(z)|}{1 - \frac{1}{2} |\omega(z)|} < 1.$$
(3.9)

The last relation (with |z| = r) gives

$$\sum_{n=1}^{\infty} 4n^2 |\gamma_n|^2 r^{2(n-1)} < 1.$$
(3.10)

Letting r tend to 1 in (3.10), we have the statement (b) of the theorem.

(c) From (b) of this theorem we have $n^2 |\gamma_n|^2 \leq \frac{1}{4}$, which implies $|\gamma_n| \leq \frac{1}{2n}$, $n = 1, 2, \cdots$.

Remark 3.5 If we compare the result (c) of Theorem 3.4 with the results of of Theorem 3.2, we conclude that it is not the best possible. We conjecture that $|\gamma_n| \leq \frac{1}{4n}$ for $n = 1, 2, \cdots$. But we don't know how to prove it.

4 Robinson's 1/2-Conjecture and 1/2 Theorem on the Class Ω

Theorem 4.1 Robinson's 1/2-conjecture is valid for the class Ω , i.e., if $f \in \Omega$, then the function

$$F(z) = \frac{1}{2}(f(z) + zf'(z))$$
(4.1)

is univalent in the disc $|z| < \frac{1}{2}$.

Proof If $f \in \Omega$, then by (2.1) we have

$$f(z) = z + \frac{1}{2}z\omega(z),$$

where $|\omega(z)| \leq |z|$ and $|\omega'(z)| \leq 1$ for $z \in \mathbb{D}$. From here we have that the function F defined by (4.1) is equal to

$$F(z) = z + \frac{1}{2}z(\omega(z) + \frac{1}{2}z\omega'(z)) = z + \frac{3}{4}z\omega_1(z),$$

where

$$\omega_1(z) = \frac{2}{3}(\omega(z) + \frac{1}{2}z\omega'(z)).$$

Since $\omega_1(0) = 0$ and

$$|\omega_1(z)| \le \frac{2}{3}(|\omega(z)| + \frac{1}{2}|z||\omega'(z)|) \le \frac{2}{3}(|z| + \frac{1}{2}|z|) < 1, \ z \in \mathbb{D},$$

🖄 Springer

it follows that $|\omega_1(z)| \leq |z| < \frac{1}{2}$ for $|z| = r < \frac{1}{2}$. Also, by the result of Dieudonné, we have

$$|z\omega_1'(z) - \omega_1(z)| \le \frac{r^2 - |\omega_1(z)|^2}{1 - r^2} \le \frac{r^2}{1 - r^2} < \frac{1}{3}$$

for $|z| = r < \frac{1}{2}$. By using all these facts, we finally have

$$\left| \frac{zF'(z)}{F(z)} - 1 \right| = \left| \frac{\frac{3}{4}z\omega_1'(z)}{1 + \frac{3}{4}\omega_1(z)} \right| = \left| \frac{\frac{3}{4}(z\omega_1'(z) - \omega_1(z)) + \frac{3}{4}\omega_1(z)}{1 + \frac{3}{4}\omega_1(z)} \right|$$

$$\le \frac{\frac{3}{4}|z\omega_1'(z) - \omega_1(z)| + \frac{3}{4}|\omega_1(z)|}{1 - \frac{3}{4}|\omega_1(z)|} < \frac{\frac{3}{4} \cdot \frac{1}{3} + \frac{3}{4} \cdot \frac{1}{2}}{1 - \frac{3}{4} \cdot \frac{1}{2}} = 1$$

for $|z| = r < \frac{1}{2}$, which implies that the function F is starlike in the disc $|z| < \frac{1}{2}$.

Theorem 4.2 If $f \in \Omega$, then

$$|f'(z) - 1| < 1, \ z \in \mathbb{D}.$$

Proof From the representation (2.1), we have

$$f'(z) = 1 + \frac{1}{2} (\omega(z) + z\omega'(z))$$

and it follows that

$$|f'(z) - 1| \le \frac{1}{2} \left(|\omega(z)| + |z| |\omega'(z)| \right) \le |z| < 1.$$

Theorem 4.3 If $f \in \Omega$, then the range of f contains the disk $\{w : |w| < \frac{1}{2}\}$. The number $\frac{1}{2}$ is the best possible.

Proof If $f \in \Omega$, then by the results in [7], we have $f \in S^*$ and

$$|f(z)| \ge |z| - \frac{1}{2}|z|^2.$$
(4.2)

Let $\mathbb{D}_r = \{z \in \mathbb{C} : |z| \leq r\}$ for $0 \leq r < 1$. Since f is univalent on \mathbb{D}_r and the image of the circle |z| = r under f is a Jordan curve Γ_r , $f(\mathbb{D}_r)$ is a closed domain bounded by Γ_r . Noting the inequality (4.2), $f(\mathbb{D}_r)$ contains a closed disk $\{w : |w| \leq r - \frac{r^2}{2}\}$. Since $\mathbb{D} = \bigcup_{0 \leq r < 1} \mathbb{D}_r$,

 $f(\mathbb{D}) = \bigcup_{0 \le r < 1} f(\mathbb{D}_r) \supset \{w : |w| < \frac{1}{2}\}.$

If considering the function $f(z) = z + \frac{1}{2}z^2 \in \Omega$, we know that the number $\frac{1}{2}$ is the best possible.

5 Libera Integral Operator

Libera [10] introduced the integral operator

$$L(f) = \frac{2}{z} \int_0^z f(\zeta) \mathrm{d}\zeta,$$

where $f \in \mathcal{A}$. The Libera integral operator has been studied by several authors on different classes [11–14]. In the paper [10] Libera proved that $L(f) \in \mathcal{K}$ if $f \in \mathcal{K}$ and proved that $L(f) \in \mathcal{C}$ if $f \in \mathcal{C}$, where \mathcal{K} and \mathcal{C} are the class of convex functions and the class of close-toconvex functions respectively. For the class Ω we have the same result.

Theorem 5.1 If $f \in \Omega$, then $L(f) \in \Omega$.

Deringer

Proof If $f \in \Omega$, then

$$f(z) = z + \frac{1}{2}z \int_0^z \varphi(\zeta) \mathrm{d}\zeta = z + \frac{1}{2} \int_0^1 z^2 \varphi(zt) \mathrm{d}t,$$

where φ is analytic in \mathbb{D} and $|\varphi(z)| \leq 1, \ z \in \mathbb{D}$.

$$\begin{split} L(f) &= \frac{2}{z} \int_0^z f(\zeta) \mathrm{d}\zeta \\ &= \frac{2}{z} \int_0^z \left(\zeta + \frac{1}{2} \int_0^1 \zeta^2 \varphi(\zeta t) \mathrm{d}t\right) \mathrm{d}\zeta \\ &= z + \frac{1}{2} z^2 \int_0^1 \left(\int_0^1 2\lambda^2 \varphi(z\lambda t) \mathrm{d}t\right) \mathrm{d}\lambda \\ &= z + \frac{1}{2} z^2 \int_0^1 \left(\int_0^1 2\lambda^2 \varphi(z\lambda t) \mathrm{d}\lambda\right) \mathrm{d}t \\ &= z + \frac{1}{2} z^2 \int_0^1 \omega(zt) \mathrm{d}t, \end{split}$$

where $\omega(z) = \int_0^1 2\lambda^2 \varphi(z\lambda) d\lambda$. It is clear that $\omega(z) \in \mathcal{A}$. Since

$$|\omega(z)| = \left| \int_0^1 2\lambda^2 \varphi(z\lambda) d\lambda \right| \le \int_0^1 2\lambda^2 |\varphi(z\lambda)| d\lambda \le \int_0^1 2\lambda^2 d\lambda < 1,$$

we have $L(f) \in \Omega$.

6 Coefficient Multipliers

The Hadamard product, or convolution, of two power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$

convergent in \mathbb{D} is the function h = f * g with power series

$$h(z) = \sum_{n=0}^{\infty} a_n b_n z^n, |z| < 1.$$

It is clear that

$$h(sz) = \frac{1}{2\pi} \int_0^{2\pi} f(s\mathrm{e}^{\mathrm{i}t}) g(z\mathrm{e}^{-\mathrm{i}t}) \mathrm{d}t$$

for |z| < 1 and $0 \le s < 1$.

Let $H^p(0 be the Hardy space consisting of the functions <math>f \in \mathcal{A}$ which satisfies the condition that $M_p(r, f)$ remains bounded as $r \to 1$, where

$$M_p(r, f) = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(r \mathrm{e}^{\mathrm{i}\theta})|^p \mathrm{d}\theta \right\}^{\frac{1}{p}}, \quad 0$$

and

$$M_{\infty}(r, f) = \max_{0 \le \theta < 2\pi} |f(r e^{i\theta})|.$$

The closed unit ball of H^{∞} is denoted by \mathcal{B} , that is,

$$\mathcal{B} = \{\varphi(z) : \varphi(z) \in \mathcal{A}, |\varphi(z)| \le 1\}.$$

🖄 Springer

A complex sequence $\{\lambda_n\}$ is said to be a coefficient multiplier of a family \mathcal{F} of analytic functions into a family \mathcal{G} if $\sum \lambda_n a_n z^n$ belongs to \mathcal{G} for each $f(z) = \sum a_n z^n \in \mathcal{F}$. If we let $g(z) = \sum \lambda_n z^n$, then the sequence $\{\lambda_n\}$ is a coefficient multiplier of \mathcal{F} into \mathcal{G} if and only if $g * f \in \mathcal{G}$ for each $f(z) \in \mathcal{F}$.

Lemma 6.1 If $f \in H^{\infty}, g \in \mathcal{A}$ and h = f * g, then

$$h(z) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) g(ze^{-it}) dt.$$

Proof

$$\begin{aligned} \left| h(sz) - \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it})g(ze^{-it})dt \right| &= \left| \frac{1}{2\pi} \int_{0}^{2\pi} [f(se^{it}) - f(e^{it})]g(ze^{-it})dt \right| \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(se^{it}) - f(e^{it})||g(ze^{-it})|dt \\ &\leq \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(se^{it}) - f(e^{it})||dt \right\} \max_{|\zeta| = |z|} |g(\zeta)| \end{aligned}$$

Since $f \in H^{\infty} \subset H^1$, it follows that([15], p.21)

$$\lim_{s \to 1} \int_0^{2\pi} |f(se^{it}) - f(e^{it})| dt = 0.$$

Therefore

$$\left|h(sz) - \frac{1}{2\pi} \int_0^{2\pi} f(\mathbf{e}^{\mathbf{i}t}) g(z\mathbf{e}^{-\mathbf{i}t}) \mathrm{d}t\right| \to 0$$

as $s \to 1$. This prove that

$$h(z) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it})g(ze^{-it})dt.$$

Lemma 6.2 Suppose $g \in \mathcal{A}$. Then $g * f \in \mathcal{B}$ for any $f \in \mathcal{B}$ if and only if

$$\min_{h \in H^1} \|g(ze^{-it}) - e^{it}h(e^{it})\|_1 \le 1$$
(6.1)

holds for each $z \in \mathbb{D}$.

Proof For any given $z \in \mathbb{D}$, $g(z/\zeta)/\zeta$ is analytic in the region $\{\zeta : |\zeta| > |z|\}$. So it can define a continuous linear functional on H^{∞} as follows:

$$\phi_z(f) = \frac{1}{2\pi i} \int_{|\zeta|=1} f(\zeta) g(\frac{z}{\zeta}) \frac{1}{\zeta} d\zeta.$$

According to Lemma 6.1, for each $z \in \mathbb{D}$

$$\phi_z(f) = (g * f)(z).$$

Thus, $g * f \in \mathcal{B}$ for any $f \in \mathcal{B}$ if and only if $|\phi_z(f)| \leq 1$ for all $f \in \mathcal{B}$ and for each $z \in \mathbb{D}$, or equivalently, if and only if

$$\|\phi_z\| = \sup_{f \in H^{\infty}, \|f\|_{\infty} \le 1} |\phi_z(f)| \le 1.$$

Since([15], p.131)

$$\|\phi_z\| = \sup_{f \in H^{\infty}, \|f\|_{\infty} \le 1} |\phi_z(f)| = \min_{h \in H^1} \|g(ze^{-it})e^{-it} - h(e^{it})\|_1 = \min_{h \in H^1} \|g(ze^{-it}) - e^{it}h(e^{it})\|_1,$$

we complete the proof of the lemma.

Deringer

Theorem 6.3 Suppose $h \in \mathcal{A}$. Then $h * f \in \Omega$ for all $f \in \Omega$ if and only if $h(z) = z + z^2 g(z)$, where $g \in \mathcal{A}$ and

$$\min_{h \in H^1} \|g(ze^{-it}) - e^{it}h(e^{it})\|_1 \le 1$$

holds for each $z \in \mathbb{D}$.

Proof $f \in \Omega$ if and only if there exists a $\varphi \in \mathcal{B}$ such that

$$f(z) = z + \frac{1}{2}z \int_0^z \varphi(\zeta) \mathrm{d}\zeta,$$

or equivalently,

$$f(z) = z + \frac{1}{2} \int_0^1 z^2 \varphi(zt) \mathrm{d}t.$$

Since for any $h(z) = z + z^2 g(z) \in \mathcal{A}$

$$(h*f)(z) = \left(z + z^2 g(z)\right) * \left(z + \frac{1}{2} \int_0^1 z^2 \varphi(zt) dt\right) = z + \frac{1}{2} \int_0^1 z^2 (\varphi * g)(zt) dt,$$

it follows that $h * f \in \Omega$ for all $f \in \Omega$ if and only if $\varphi * g \in \mathcal{B}$ for all $\varphi \in \mathcal{B}$. By Lemma 6.2, we get the conclusion.

References

- Ozaki S, Nunokawa M. The Schwarzian derivative and univalent functions. Proc Amer Math Soc, 1972, 33: 392–394
- [2] Obradović M, Ponnusamy S. Product of univalent functions. Math Comput Modell, 2013, 57: 793–799
- [3] Obradović M, Ponnusamy S. New criteria and distortion theorems for univalent functions. Complex Variables, Theory and Application: An International Journal, 2001, 44(3): 173–191
- [4] Obradović M, Ponnusamy S. Univalence and starlikeness of certain transforms defined by convolution. J Math Anal Appl, 2007, 336: 758–767
- [5] Obradović M, Ponnusamy S. Radius of univalence of certain combination of univalent and analytic functions. Bull Malays Math Sci Soc, 2012, 35(2): 325–334
- [6] Fournier R, Ponnusamy S. A class of locally univalent functions defined by a differential inequality. Complex Variables and Elliptic Equations: An International Journal, 2007, 52(1): 1–8
- [7] Peng Z, Zhong G. Some properties for certain classes of univalent functions defined by differential inequalities. Acta Mathematica Scientia, 2017, 37B(1): 69–78
- [8] Duren P L. Univalent Functions. New York: Springer-Verlag, 1983
- [9] Prokhorov D V, Szynal J. Inverse coefficients for (α, β) -convex functions. Ann Univ Mariae Curie-Skłodowska, 1981, **35**: 125–143
- [10] Libera R J. Some classes of regular univalent functions. Proc Amer Math Soc, 1965, 16: 755–758
- [11] Nunokawa M, Sokol J, Cho N E, et al. Conditions for starlikeness of the libera operator. J Inequal Appl, 2014, 1: 1–9
- [12] Sokol J. Starlikeness of the Libera transform of functions with bounded turning. Appl Math Comput, 2008, 203: 273–276
- [13] Miller S S, Mocanu P T. Libera transform of functions with bounded turning. J Math Anal Appl 2002, 276: 90–97
- [14] Ponnusamy S. On starlikeness of certain integral transforms. Annales Polonici Mathematici, 1992, 56(3): 227–232
- [15] Duren P L. Theory of H^p Spaces. New York: Academic Press, 1970