Acta Mathematica Scientia，2019，39B（6）：1579－1588 https：／／doi．org／10．1007／s10473－019－0609－4
（c）Wuhan Institute Physics and Mathematics， Chinese Academy of Sciences， 2019

NEW RESULTS FOR A CLASS OF UNIVALENT FUNCTIONS＊

Zhigang PENG（彭志刚）${ }^{\dagger}$
Hubei Key Laboratory of Applied Mathematics，Faculty of Mathematics and Statistics， Hubei University，Wuhan 430062，China
E－mail：pengzhigang＠hubu．edu．cn
Milutin OBRADOVIĆ
Department of Mathematics，Faculty of Civil Engineering，University of Belgrade， Bulevar Kralja Aleksandra 73，11000，Serbia
E－mail：obrad＠grf．bg．ac．rs

Abstract Let \mathcal{A} denote the family of all analytic functions $f(z)$ in the unit disk $\mathbb{D}=\{z \in$ $\mathbb{C}:|z|<1\}$ ，normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$ ．Let \mathcal{U} denote the set of all functions $f \in \mathcal{A}$ satisfying the condition

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<1 \text { for } z \in \mathbb{D}
$$

Let Ω be the class of all $f \in \mathcal{A}$ for which

$$
\left|z f^{\prime}(z)-f(z)\right|<\frac{1}{2}, \quad z \in \mathbb{D}
$$

In this paper，the relations between the two classes are discussed．Furthermore，some new results on the class Ω are obtained．

Key words analytic；univalent；coefficient；Hadamard product
2010 MR Subject Classification 30C45

1 Introduction

Let \mathcal{A} denote the family of all analytic functions $f(z)$ in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$ ．Denote by \mathcal{S} the subset of \mathcal{A} which consists of univalent functions．Let \mathcal{S}^{*} and \mathcal{K} denote the subclasses of \mathcal{S} which are starlike and convex in \mathbb{D} ，respectively，and let \mathcal{U} denote the set of all $f \in \mathcal{A}$ satisfying the condition

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<1 \quad \text { for } z \in \mathbb{D}
$$

[^0]It is well known that \mathcal{U} is a subclass of \mathcal{S} [1]. In recent years, many scholars have studied the properties of the family $\mathcal{U}[2-6]$.

In a recent paper, Peng and Zhong [7] introduced the class Ω which consists of functions f in \mathcal{A} satisfying the condition

$$
\begin{equation*}
\left|z f^{\prime}(z)-f(z)\right|<\frac{1}{2}, z \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

Also, the authors showed that (1.1) is equivalent with

$$
\begin{equation*}
f(z)=z+\frac{1}{2} z \int_{0}^{z} \varphi(\zeta) \mathrm{d} \zeta \tag{1.2}
\end{equation*}
$$

where φ is analytic in \mathbb{D} and $|\varphi(z)| \leq 1, z \in \mathbb{D}$. We note that in the same paper it is proved that $\Omega \subset \mathcal{S}^{*}$.

In this paper we discuss the relations between \mathcal{U} and Ω. Also, we consider the other properties of the class Ω and get some new results.

2 Relations Between \mathcal{U} and Ω

Theorem 2.1 The class Ω is not a subset of the class \mathcal{U}.
Proof Let us consider the function

$$
\varphi_{1}(z)=\frac{z+a}{1+a z}, 0<a<1
$$

Then $\varphi_{1}: \mathbb{D} \rightarrow \mathbb{D}$, and the appropriate function $f_{1} \in \Omega$ given by (1.2) has the form

$$
f_{1}(z)=z+\frac{1}{2} z \int_{0}^{z} \frac{\zeta+a}{1+a \zeta} \mathrm{~d} \zeta=z+\frac{1}{2 a} z^{2}-\frac{1-a^{2}}{2 a^{2}} z \log (1+a z)
$$

From above we have

$$
f_{1}^{\prime}(z)=1+\frac{1}{a} z-\frac{1-a^{2}}{2 a^{2}} \log (1+a z)-\frac{1-a^{2}}{2 a} \frac{z}{1+a z}
$$

and so,

$$
\left|\left(\frac{z}{f_{1}(z)}\right)^{2} f_{1}^{\prime}(z)-1\right|_{z=-1}=\left|\frac{2 a^{2}\left(3 a^{2}-a-\left(1-a^{2}\right) \log (1-a)\right)}{\left(2 a^{2}-a-\left(1-a^{2}\right) \log (1-a)\right)^{2}}-1\right| \rightarrow 3
$$

when $a \rightarrow 1$. It means that for the points in \mathbb{D} near to the point $z=-1$ and for a close to 1 we have

$$
\left|\left(\frac{z}{f_{1}(z)}\right)^{2} f_{1}^{\prime}(z)-1\right|>1
$$

This implies that $f_{1} \notin \mathcal{U}$.
Theorem 2.2 If $f \in \Omega$, then $f \in \mathcal{U}$ in the $\operatorname{disc}|z|<\sqrt{\frac{\sqrt{5}-1}{2}}=0.78615 \cdots$.
Proof If $f \in \Omega$, then we have the representation (1.2). If we put $\omega(z)=\int_{0}^{z} \varphi(\zeta) \mathrm{d} \zeta$, then $|\omega(z)| \leq|z|,\left|\omega^{\prime}(z)\right| \leq 1$ and

$$
\begin{equation*}
f(z)=z+\frac{1}{2} z \omega(z) . \tag{2.1}
\end{equation*}
$$

By using a result of Dieudonné ([8], pp.198-199), we have the next inequality

$$
\begin{equation*}
\left|z \omega^{\prime}(z)-\omega(z)\right| \leq \frac{r^{2}-|\omega(z)|^{2}}{1-r^{2}} \tag{2.2}
\end{equation*}
$$

where $|z|=r$ and $|\omega(z)| \leq r$. It follows from (2.1) and (2.2) that

$$
\begin{aligned}
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right| & =\left|\frac{z}{f(z)}-z\left(\frac{z}{f(z)}\right)^{\prime}-1\right| \\
& =\left|\frac{\frac{1}{2}\left(z \omega^{\prime}(z)-\omega(z)\right)-\frac{1}{4} \omega^{2}(z)}{\left(1+\frac{1}{2} \omega(z)\right)^{2}}\right| \\
& \leq \frac{\frac{1}{2}\left|z \omega^{\prime}(z)-\omega(z)\right|+\frac{1}{4}|\omega(z)|^{2}}{\left(1-\frac{1}{2}|\omega(z)|\right)^{2}} \\
& \leq \frac{\frac{1}{2} \frac{r^{2}-|\omega(z)|^{2}}{1-r^{2}}+\frac{1}{4}|\omega(z)|^{2}}{\left(1-\frac{1}{2}|\omega(z)|\right)^{2}} .
\end{aligned}
$$

If

$$
\begin{equation*}
\frac{\frac{1}{2} \frac{r^{2}-|\omega(z)|^{2}}{1-r^{2}}+\frac{1}{4}|\omega(z)|^{2}}{\left(1-\frac{1}{2}|\omega(z)|\right)^{2}}<1 \tag{2.3}
\end{equation*}
$$

then we have

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<1
$$

But the inequality (2.3) is equivalent to

$$
\begin{equation*}
|\omega(z)|^{2}-2\left(1-r^{2}\right)|\omega(z)|+2-3 r^{2}>0 \tag{2.4}
\end{equation*}
$$

Noting that $|\omega(z)| \leq|z|=r$, if we put $|\omega(z)|=t$, with $0 \leq t \leq r$, and consider the function

$$
F(t)=t^{2}-2\left(1-r^{2}\right) t+2-3 r^{2}
$$

then it is an elementary fact to show that the function F is positive for $0 \leq r<r_{0}=\sqrt{\frac{\sqrt{5}-1}{2}}$, that is, the inequality (2.4) holds when $|z|<r_{0}$. And therefore, f is in \mathcal{U} in the disc $|z|<r_{0}$.

3 Estimation of Coefficients

Definition 3.1 ([8], p.151) The logarithmic coefficients γ_{n} of f in \mathcal{S} is defined by

$$
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n},|z|<1
$$

Theorem 3.2 Let $f \in \Omega$ and let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be its logarithmic coefficients. Then
(a) $\left|\gamma_{1}\right| \leq \frac{1}{4}$;
(b) $\left|\gamma_{2}\right| \leq \frac{1}{8}$;
(c) $\left|\gamma_{3}\right| \leq \frac{1}{12}$.

All results are the best possible.
Proof We will use the representation (2.1). If we put $\omega(z)=c_{1} z+c_{2} z^{2}+\cdots$, then from $\left|\omega^{\prime}(z)\right|=\left|c_{1}+2 c_{2} z+3 c_{3} z^{2}+\cdots\right| \leq 1$, we have

$$
\begin{equation*}
\left|c_{1}\right| \leq 1,\left|2 c_{2}\right| \leq 1-\left|c_{1}\right|^{2},\left|3 c_{3}\right| \leq 1-\left|c_{1}\right|^{2}-\frac{4\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|} \tag{3.1}
\end{equation*}
$$

(see Prokhorov and Szinal [9]). By using (2.1) we have

$$
\begin{aligned}
\log \frac{f(z)}{z} & =\log \left(1+\frac{1}{2} \omega(z)\right) \\
& =\log \left(1+\frac{1}{2}\left(c_{1} z+c_{2} z^{2}+\cdots\right)\right) \\
& =\frac{1}{2} c_{1} z+\frac{1}{2}\left(c_{2}-\frac{1}{4} c_{1}^{2}\right) z^{2}+\frac{1}{2}\left(c_{3}-\frac{1}{2} c_{1} c_{2}+\frac{1}{12} c_{1}^{3}\right) z^{3}+\cdots
\end{aligned}
$$

which implies that

$$
\begin{equation*}
2 \gamma_{1}=\frac{1}{2} c_{1}, 2 \gamma_{2}=\frac{1}{2}\left(c_{2}-\frac{1}{4} c_{1}^{2}\right), 2 \gamma_{3}=\frac{1}{2}\left(c_{3}-\frac{1}{2} c_{1} c_{2}+\frac{1}{12} c_{1}^{3}\right) . \tag{3.2}
\end{equation*}
$$

Combining (3.1) with (3.2), we have

$$
\left|\gamma_{1}\right|=\frac{1}{4}\left|c_{1}\right| \leq \frac{1}{4},\left|\gamma_{2}\right| \leq \frac{1}{8}\left(2\left|c_{2}\right|+\frac{1}{2}\left|c_{1}\right|^{2}\right) \leq \frac{1}{8}
$$

Similarly,

$$
\begin{aligned}
12\left|\gamma_{3}\right| & =\left|3 c_{3}-\frac{3}{2} c_{1} c_{2}+\frac{1}{4} c_{1}^{3}\right| \\
& \leq 3\left|c_{3}\right|+\frac{3}{2}\left|c_{1}\right|\left|c_{2}\right|+\frac{1}{4}\left|c_{1}\right|^{3} \\
& \leq 1-\left|c_{1}\right|^{2}-\frac{4\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}+\frac{3}{2}\left|c_{1}\right|\left|c_{2}\right|+\frac{1}{4}\left|c_{1}\right|^{3} \\
& =\psi\left(\left|c_{1}\right|,\left|c_{2}\right|\right),
\end{aligned}
$$

where

$$
\psi(x, y)=1-x^{2}-\frac{4 y^{2}}{1+x}+\frac{3}{2} x y+\frac{1}{4} x^{3},(x, y) \in D
$$

and D is defined by the conditions: $0 \leq x \leq 1,0 \leq y \leq 1, y \leq \frac{1}{2}\left(1-x^{2}\right)$. It is easy to check that the function ψ has only one critical point $(0,0)$ belonging to the boundary of the domain D and that $\psi(x, y) \leq 1$ in the domain D. This implies that $\left|\gamma_{3}\right| \leq \frac{1}{12}$. If we choose the function φ in (1.2) to be $1, z, z^{2}$ respectively, then we obtain that all results in this theorem are sharp.

Theorem 3.3 If $f(z)=z+\sum_{n=1}^{\infty} a_{n} z^{n} \in \Omega$ and if the inverse function of f has an expansion

$$
\begin{equation*}
f^{-1}(w)=w+A_{2} w^{2}+A_{3} w^{3}+A_{4} w^{4}+\cdots \tag{3.3}
\end{equation*}
$$

near $w=0$, then

$$
\left|A_{2}\right| \leq \frac{1}{2},\left|A_{3}\right| \leq \frac{1}{2},\left|A_{4}\right| \leq \frac{5}{8}
$$

All these results are the best possible.
Proof By using the identity $f\left(f^{-1}\right)=w$ and the representations for the functions f and f^{-1}, we can obtain the next relations

$$
\left\{\begin{array}{l}
A_{2}=-a_{2} \tag{3.4}\\
A_{3}=-a_{3}+2 a_{2}^{2} \\
A_{4}=-a_{4}+5 a_{2} a_{3}-5 a_{2}^{3}
\end{array}\right.
$$

On the other hand, in view of (2.1), if we put $\omega(z)=c_{1} z+c_{2} z^{2}+\cdots$, where $|\omega(z)| \leq|z|$, $\left|\omega^{\prime}(z)\right| \leq 1$, we have

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} \frac{1}{2} c_{n-1} z^{n} \tag{3.5}
\end{equation*}
$$

Combining (3.4) with (3.5), we obtain

$$
\left\{\begin{align*}
A_{2} & =-\frac{1}{2} c_{1} \tag{3.6}\\
A_{3} & =-\frac{1}{2} c_{2}+\frac{1}{2} c_{1}^{2} \\
A_{4} & =-\frac{1}{2} c_{3}+\frac{5}{4} c_{1} c_{2}-\frac{5}{8} c_{1}^{3}
\end{align*}\right.
$$

From (3.6) it follows that $\left|A_{2}\right|=\frac{1}{2}\left|c_{1}\right| \leq \frac{1}{2}$. Also, by using (3.6) and (3.1), we have

$$
\left|A_{3}\right| \leq \frac{1}{2}\left|c_{2}\right|+\frac{1}{2}\left|c_{1}\right|^{2} \leq \frac{1}{4}\left(1-\left|c_{1}\right|^{2}\right)+\frac{1}{2}\left|c_{1}\right|^{2} \leq \frac{1}{4}+\frac{1}{4}\left|c_{1}\right|^{2} \leq \frac{1}{2}
$$

Finally, from (3.6), we obtain that

$$
\left|A_{4}\right|=\frac{1}{2}\left|c_{3}-\frac{5}{2} c_{1} c_{2}+\frac{5}{4} c_{1}^{3}\right| \leq \frac{1}{2} \cdot \frac{5}{4}=\frac{5}{8}
$$

by using the result of Prokhorov and Szinal (with $\mu=-\frac{5}{2}$ and $\nu=\frac{5}{2}$) [9]. If we consider the function $w=f(z)=z+\frac{1}{2} z^{2}$, then we have that

$$
z=f^{-1}(w)=-1+\sqrt{1+2 w}=w-\frac{1}{2} w^{2}+\frac{1}{2} w^{3}-\frac{5}{8} w^{4}+\cdots
$$

which means that our results are the best possible.
Theorem 3.4 Let $f \in \Omega$ and let $\gamma_{n}, n=1,2,3, \cdots$, be its logarithmic coefficients. Then
(a) $\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4} L i_{2}\left(\frac{1}{4}\right)$, where $\frac{1}{4} L i_{2}\left(\frac{1}{4}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\frac{1}{4}\right)^{n+1}$ is the best possible;
(b) $\sum_{n=1}^{\infty} n^{2}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4}$;
(c) $\left|\gamma_{n}\right| \leq \frac{1}{2 n}, n=1,2, \cdots$.

Proof (a) If $f \in \Omega$, then from (2.1) we have

$$
f(z)=z+\frac{1}{2} z \omega(z)
$$

where $|\omega(z) \leq|z|$ and $| \omega^{\prime}(z) \mid \leq 1$. From here we have

$$
\frac{f(z)}{z} \prec 1+\frac{1}{2} z
$$

which implies

$$
\log \frac{f(z)}{z} \prec \log \left(1+\frac{1}{2} z\right)
$$

or

$$
\sum_{n=1}^{\infty} 2 \gamma_{n} z^{n} \prec \sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n 2^{n}} z^{n}
$$

By using Rogosinsky's result([8], p.192) we obtain

$$
\sum_{n=1}^{\infty} 4\left|\gamma_{n}\right|^{2} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2} 2^{2 n}}=\sum_{n=1}^{\infty} \frac{\left(\frac{1}{4}\right)^{n}}{n^{2}}=L i_{2}\left(\frac{1}{4}\right)
$$

From the last equality we have the statement (a) of the theorem. The function $f(z)=z+\frac{1}{2} z^{2}$ shows that our result is the best possible.
(b) By using the representation (2.1) and the facts for the function ω, we have

$$
\begin{equation*}
\log \frac{f(z)}{z}=\log \left(1+\frac{1}{2} \omega(z)\right) \tag{3.7}
\end{equation*}
$$

From (3.7), after derivation, we get

$$
\begin{equation*}
\left(\log \frac{f(z)}{z}\right)^{\prime}=\frac{\frac{1}{2} \omega^{\prime}(z)}{1+\frac{1}{2} \omega(z)} \tag{3.8}
\end{equation*}
$$

Noting that $|\omega(z)| \leq 1$ and $\left|\omega^{\prime}(z)\right| \leq 1$, from (3.8) we have that

$$
\begin{equation*}
\left|\sum_{n=1}^{\infty} 2 n \gamma_{n} z^{n-1}\right| \leq \frac{\frac{1}{2}\left|\omega^{\prime}(z)\right|}{1-\frac{1}{2}|\omega(z)|}<1 \tag{3.9}
\end{equation*}
$$

The last relation (with $|z|=r$) gives

$$
\begin{equation*}
\sum_{n=1}^{\infty} 4 n^{2}\left|\gamma_{n}\right|^{2} r^{2(n-1)}<1 \tag{3.10}
\end{equation*}
$$

Letting r tend to 1 in (3.10), we have the statement (b) of the theorem.
(c) From (b) of this theorem we have $n^{2}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4}$, which implies $\left|\gamma_{n}\right| \leq \frac{1}{2 n}, n=1,2, \cdots$.

Remark 3.5 If we compare the result (c) of Theorem 3.4 with the results of of Theorem 3.2 , we conclude that it is not the best possible. We conjecture that $\left|\gamma_{n}\right| \leq \frac{1}{4 n}$ for $n=1,2, \cdots$. But we don't know how to prove it.

4 Robinson's $1 / 2$-Conjecture and $1 / 2$ Theorem on the Class Ω

Theorem 4.1 Robinson's $1 / 2$-conjecture is valid for the class Ω, i.e., if $f \in \Omega$, then the function

$$
\begin{equation*}
F(z)=\frac{1}{2}\left(f(z)+z f^{\prime}(z)\right) \tag{4.1}
\end{equation*}
$$

is univalent in the disc $|z|<\frac{1}{2}$.
Proof If $f \in \Omega$, then by (2.1) we have

$$
f(z)=z+\frac{1}{2} z \omega(z)
$$

where $|\omega(z)| \leq|z|$ and $\left|\omega^{\prime}(z)\right| \leq 1$ for $z \in \mathbb{D}$. From here we have that the function F defined by (4.1) is equal to

$$
F(z)=z+\frac{1}{2} z\left(\omega(z)+\frac{1}{2} z \omega^{\prime}(z)\right)=z+\frac{3}{4} z \omega_{1}(z)
$$

where

$$
\omega_{1}(z)=\frac{2}{3}\left(\omega(z)+\frac{1}{2} z \omega^{\prime}(z)\right)
$$

Since $\omega_{1}(0)=0$ and

$$
\left|\omega_{1}(z)\right| \leq \frac{2}{3}\left(|\omega(z)|+\frac{1}{2}|z|\left|\omega^{\prime}(z)\right|\right) \leq \frac{2}{3}\left(|z|+\frac{1}{2}|z|\right)<1, z \in \mathbb{D}
$$

it follows that $\left|\omega_{1}(z)\right| \leq|z|<\frac{1}{2}$ for $|z|=r<\frac{1}{2}$. Also, by the result of Dieudonné, we have

$$
\left|z \omega_{1}^{\prime}(z)-\omega_{1}(z)\right| \leq \frac{r^{2}-\left|\omega_{1}(z)\right|^{2}}{1-r^{2}} \leq \frac{r^{2}}{1-r^{2}}<\frac{1}{3}
$$

for $|z|=r<\frac{1}{2}$. By using all these facts, we finally have

$$
\begin{aligned}
\left|\frac{z F^{\prime}(z)}{F(z)}-1\right| & =\left|\frac{\frac{3}{4} z \omega_{1}^{\prime}(z)}{1+\frac{3}{4} \omega_{1}(z)}\right|=\left|\frac{\frac{3}{4}\left(z \omega_{1}^{\prime}(z)-\omega_{1}(z)\right)+\frac{3}{4} \omega_{1}(z)}{1+\frac{3}{4} \omega_{1}(z)}\right| \\
& \leq \frac{\frac{3}{4}\left|z \omega_{1}^{\prime}(z)-\omega_{1}(z)\right|+\frac{3}{4}\left|\omega_{1}(z)\right|}{1-\frac{3}{4}\left|\omega_{1}(z)\right|}<\frac{\frac{3}{4} \cdot \frac{1}{3}+\frac{3}{4} \cdot \frac{1}{2}}{1-\frac{3}{4} \cdot \frac{1}{2}}=1
\end{aligned}
$$

for $|z|=r<\frac{1}{2}$, which implies that the function F is starlike in the disc $|z|<\frac{1}{2}$.
Theorem 4.2 If $f \in \Omega$, then

$$
\left|f^{\prime}(z)-1\right|<1, z \in \mathbb{D}
$$

Proof From the representation (2.1), we have

$$
f^{\prime}(z)=1+\frac{1}{2}\left(\omega(z)+z \omega^{\prime}(z)\right)
$$

and it follows that

$$
\left|f^{\prime}(z)-1\right| \leq \frac{1}{2}\left(|\omega(z)|+|z|\left|\omega^{\prime}(z)\right|\right) \leq|z|<1
$$

Theorem 4.3 If $f \in \Omega$, then the range of f contains the disk $\left\{w:|w|<\frac{1}{2}\right\}$. The number $\frac{1}{2}$ is the best possible.

Proof If $f \in \Omega$, then by the results in [7], we have $f \in S^{\star}$ and

$$
\begin{equation*}
|f(z)| \geq|z|-\frac{1}{2}|z|^{2} \tag{4.2}
\end{equation*}
$$

Let $\mathbb{D}_{r}=\{z \in \mathbb{C}:|z| \leq r\}$ for $0 \leq r<1$. Since f is univalent on \mathbb{D}_{r} and the image of the circle $|z|=r$ under f is a Jordan curve $\Gamma_{r}, f\left(\mathbb{D}_{r}\right)$ is a closed domain bounded by Γ_{r}. Noting the inequality (4.2), $f\left(\mathbb{D}_{r}\right)$ contains a closed disk $\left\{w:|w| \leq r-\frac{r^{2}}{2}\right\}$. Since $\mathbb{D}=\bigcup_{0 \leq r<1} \mathbb{D}_{r}$, $f(\mathbb{D})=\bigcup_{0 \leq r<1} f\left(\mathbb{D}_{r}\right) \supset\left\{w:|w|<\frac{1}{2}\right\}$.

If considering the function $f(z)=z+\frac{1}{2} z^{2} \in \Omega$, we know that the number $\frac{1}{2}$ is the best possible.

5 Libera Integral Operator

Libera [10] introduced the integral operator

$$
L(f)=\frac{2}{z} \int_{0}^{z} f(\zeta) \mathrm{d} \zeta
$$

where $f \in \mathcal{A}$. The Libera integral operator has been studied by several authors on different classes [11-14]. In the paper [10] Libera proved that $L(f) \in \mathcal{K}$ if $f \in \mathcal{K}$ and proved that $L(f) \in \mathcal{C}$ if $f \in \mathcal{C}$, where \mathcal{K} and \mathcal{C} are the class of convex functions and the class of close-toconvex functions respectively. For the class Ω we have the same result.

Theorem 5.1 If $f \in \Omega$, then $L(f) \in \Omega$.

Proof If $f \in \Omega$, then

$$
f(z)=z+\frac{1}{2} z \int_{0}^{z} \varphi(\zeta) \mathrm{d} \zeta=z+\frac{1}{2} \int_{0}^{1} z^{2} \varphi(z t) \mathrm{d} t
$$

where φ is analytic in \mathbb{D} and $|\varphi(z)| \leq 1, z \in \mathbb{D}$.

$$
\begin{aligned}
L(f) & =\frac{2}{z} \int_{0}^{z} f(\zeta) \mathrm{d} \zeta \\
& =\frac{2}{z} \int_{0}^{z}\left(\zeta+\frac{1}{2} \int_{0}^{1} \zeta^{2} \varphi(\zeta t) \mathrm{d} t\right) \mathrm{d} \zeta \\
& =z+\frac{1}{2} z^{2} \int_{0}^{1}\left(\int_{0}^{1} 2 \lambda^{2} \varphi(z \lambda t) \mathrm{d} t\right) \mathrm{d} \lambda \\
& =z+\frac{1}{2} z^{2} \int_{0}^{1}\left(\int_{0}^{1} 2 \lambda^{2} \varphi(z \lambda t) \mathrm{d} \lambda\right) \mathrm{d} t \\
& =z+\frac{1}{2} z^{2} \int_{0}^{1} \omega(z t) \mathrm{d} t
\end{aligned}
$$

where $\omega(z)=\int_{0}^{1} 2 \lambda^{2} \varphi(z \lambda) d \lambda$. It is clear that $\omega(z) \in \mathcal{A}$. Since

$$
|\omega(z)|=\left|\int_{0}^{1} 2 \lambda^{2} \varphi(z \lambda) \mathrm{d} \lambda\right| \leq \int_{0}^{1} 2 \lambda^{2}|\varphi(z \lambda)| \mathrm{d} \lambda \leq \int_{0}^{1} 2 \lambda^{2} \mathrm{~d} \lambda<1
$$

we have $L(f) \in \Omega$.

6 Coefficient Multipliers

The Hadamard product, or convolution, of two power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { and } g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

convergent in \mathbb{D} is the function $h=f * g$ with power series

$$
h(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n},|z|<1
$$

It is clear that

$$
h(s z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(s \mathrm{e}^{\mathrm{i} t}\right) g\left(z \mathrm{e}^{-\mathrm{i} t}\right) \mathrm{d} t
$$

for $|z|<1$ and $0 \leq s<1$.
Let $H^{p}(0<p \leq \infty)$ be the Hardy space consisting of the functions $f \in \mathcal{A}$ which satisfies the condition that $M_{p}(r, f)$ remains bounded as $r \rightarrow 1$, where

$$
M_{p}(r, f)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta\right\}^{\frac{1}{p}}, \quad 0<p<\infty
$$

and

$$
M_{\infty}(r, f)=\max _{0 \leq \theta<2 \pi}\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|
$$

The closed unit ball of H^{∞} is denoted by \mathcal{B}, that is,

$$
\mathcal{B}=\{\varphi(z): \varphi(z) \in \mathcal{A},|\varphi(z)| \leq 1\} .
$$

A complex sequence $\left\{\lambda_{n}\right\}$ is said to be a coefficient multiplier of a family \mathcal{F} of analytic functions into a family \mathcal{G} if $\sum \lambda_{n} a_{n} z^{n}$ belongs to \mathcal{G} for each $f(z)=\sum a_{n} z^{n} \in \mathcal{F}$. If we let $g(z)=\sum \lambda_{n} z^{n}$, then the sequence $\left\{\lambda_{n}\right\}$ is a coefficient multiplier of \mathcal{F} into \mathcal{G} if and only if $g * f \in \mathcal{G}$ for each $f(z) \in \mathcal{F}$.

Lemma 6.1 If $f \in H^{\infty}, g \in \mathcal{A}$ and $h=f * g$, then

$$
h(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\mathrm{e}^{\mathrm{i} t}\right) g\left(z \mathrm{e}^{-\mathrm{i} t}\right) \mathrm{d} t
$$

Proof

$$
\begin{aligned}
\left|h(s z)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\mathrm{e}^{\mathrm{i} t}\right) g\left(z \mathrm{e}^{-\mathrm{i} t}\right) \mathrm{d} t\right| & =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[f\left(s \mathrm{e}^{\mathrm{i} t}\right)-f\left(\mathrm{e}^{\mathrm{i} t}\right)\right] g\left(z \mathrm{e}^{-\mathrm{i} t}\right) \mathrm{d} t\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(s \mathrm{e}^{\mathrm{i} t}\right)-f\left(\mathrm{e}^{\mathrm{i} t}\right)\right|\left|g\left(z \mathrm{e}^{-\mathrm{i} t}\right)\right| \mathrm{d} t \\
& \leq\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(s \mathrm{e}^{\mathrm{i} t}\right)-f\left(\mathrm{e}^{\mathrm{i} t}\right)\right| \mathrm{d} t\right\} \max _{|\zeta|=|z|}|g(\zeta)| .
\end{aligned}
$$

Since $f \in H^{\infty} \subset H^{1}$, it follows that([15], p.21)

$$
\lim _{s \rightarrow 1} \int_{0}^{2 \pi}\left|f\left(s \mathrm{e}^{\mathrm{i} t}\right)-f\left(\mathrm{e}^{\mathrm{i} t}\right)\right| \mathrm{d} t=0
$$

Therefore

$$
\left|h(s z)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\mathrm{e}^{\mathrm{i} t}\right) g\left(z \mathrm{e}^{-\mathrm{i} t}\right) \mathrm{d} t\right| \rightarrow 0
$$

as $s \rightarrow 1$. This prove that

$$
h(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\mathrm{e}^{\mathrm{i} t}\right) g\left(z \mathrm{e}^{-\mathrm{i} t}\right) \mathrm{d} t
$$

Lemma 6.2 Suppose $g \in \mathcal{A}$. Then $g * f \in \mathcal{B}$ for any $f \in \mathcal{B}$ if and only if

$$
\begin{equation*}
\min _{h \in H^{1}}\left\|g\left(z \mathrm{e}^{-\mathrm{i} t}\right)-\mathrm{e}^{\mathrm{i} t} h\left(\mathrm{e}^{\mathrm{i} t}\right)\right\|_{1} \leq 1 \tag{6.1}
\end{equation*}
$$

holds for each $z \in \mathbb{D}$.
Proof For any given $z \in \mathbb{D}, g(z / \zeta) / \zeta$ is analytic in the region $\{\zeta:|\zeta|>|z|\}$. So it can define a continuous linear functional on H^{∞} as follows:

$$
\phi_{z}(f)=\frac{1}{2 \pi \mathrm{i}} \int_{|\zeta|=1} f(\zeta) g\left(\frac{z}{\zeta}\right) \frac{1}{\zeta} \mathrm{~d} \zeta
$$

According to Lemma 6.1, for each $z \in \mathbb{D}$

$$
\phi_{z}(f)=(g * f)(z)
$$

Thus, $g * f \in \mathcal{B}$ for any $f \in \mathcal{B}$ if and only if $\left|\phi_{z}(f)\right| \leq 1$ for all $f \in \mathcal{B}$ and for each $z \in \mathbb{D}$, or equivalently, if and only if

$$
\left\|\phi_{z}\right\|=\sup _{f \in H^{\infty},\|f\|_{\infty} \leq 1}\left|\phi_{z}(f)\right| \leq 1
$$

Since([15], p.131)

$$
\left\|\phi_{z}\right\|=\sup _{f \in H^{\infty},\|f\|_{\infty} \leq 1}\left|\phi_{z}(f)\right|=\min _{h \in H^{1}}\left\|g\left(z \mathrm{e}^{-\mathrm{i} t}\right) \mathrm{e}^{-\mathrm{i} t}-h\left(\mathrm{e}^{\mathrm{i} t}\right)\right\|_{1}=\min _{h \in H^{1}}\left\|g\left(z \mathrm{e}^{-\mathrm{i} t}\right)-\mathrm{e}^{\mathrm{i} t} h\left(\mathrm{e}^{\mathrm{i} t}\right)\right\|_{1}
$$

we complete the proof of the lemma.

Theorem 6.3 Suppose $h \in \mathcal{A}$. Then $h * f \in \Omega$ for all $f \in \Omega$ if and only if $h(z)=z+z^{2} g(z)$, where $g \in \mathcal{A}$ and

$$
\min _{h \in H^{1}}\left\|g\left(z \mathrm{e}^{-\mathrm{i} t}\right)-\mathrm{e}^{\mathrm{i} t} h\left(\mathrm{e}^{\mathrm{i} t}\right)\right\|_{1} \leq 1
$$

holds for each $z \in \mathbb{D}$.
Proof $\quad f \in \Omega$ if and only if there exists a $\varphi \in \mathcal{B}$ such that

$$
f(z)=z+\frac{1}{2} z \int_{0}^{z} \varphi(\zeta) \mathrm{d} \zeta
$$

or equivalently,

$$
f(z)=z+\frac{1}{2} \int_{0}^{1} z^{2} \varphi(z t) \mathrm{d} t
$$

Since for any $h(z)=z+z^{2} g(z) \in \mathcal{A}$

$$
(h * f)(z)=\left(z+z^{2} g(z)\right) *\left(z+\frac{1}{2} \int_{0}^{1} z^{2} \varphi(z t) \mathrm{d} t\right)=z+\frac{1}{2} \int_{0}^{1} z^{2}(\varphi * g)(z t) \mathrm{d} t
$$

it follows that $h * f \in \Omega$ for all $f \in \Omega$ if and only if $\varphi * g \in \mathcal{B}$ for all $\varphi \in \mathcal{B}$. By Lemma 6.2, we get the conclusion.

References

[1] Ozaki S, Nunokawa M. The Schwarzian derivative and univalent functions. Proc Amer Math Soc, 1972, 33: 392-394
[2] Obradović M, Ponnusamy S. Product of univalent functions. Math Comput Modell, 2013, 57: 793-799
[3] Obradović M, Ponnusamy S. New criteria and distortion theorems for univalent functions. Complex Variables, Theory and Application: An International Journal, 2001, 44(3): 173-191
[4] Obradović M, Ponnusamy S. Univalence and starlikeness of certain transforms defined by convolution. J Math Anal Appl, 2007, 336: 758-767
[5] Obradović M, Ponnusamy S. Radius of univalence of certain combination of univalent and analytic functions. Bull Malays Math Sci Soc, 2012, 35(2): 325-334
[6] Fournier R, Ponnusamy S. A class of locally univalent functions defined by a differential inequality. Complex Variables and Elliptic Equations: An International Journal, 2007, 52(1): 1-8
[7] Peng Z, Zhong G. Some properties for certain classes of univalent functions defined by differential inequalities. Acta Mathematica Scientia, 2017, 37B(1): 69-78
[8] Duren P L. Univalent Functions. New York: Springer-Verlag, 1983
[9] Prokhorov D V, Szynal J. Inverse coefficients for (α, β)-convex functions. Ann Univ Mariae CurieSklodowska, 1981, 35: 125-143
[10] Libera R J. Some classes of regular univalent functions. Proc Amer Math Soc, 1965, 16: 755-758
[11] Nunokawa M, Sokol J, Cho N E, et al. Conditions for starlikeness of the libera operator. J Inequal Appl, 2014, 1: 1-9
[12] Sokol J. Starlikeness of the Libera transform of functions with bounded turning. Appl Math Comput, 2008, 203: 273-276
[13] Miller S S, Mocanu P T. Libera transform of functions with bounded turning. J Math Anal Appl 2002, 276: 90-97
[14] Ponnusamy S. On starlikeness of certain integral transforms. Annales Polonici Mathematici, 1992, 56(3): 227-232
[15] Duren P L. Theory of H^{p} Spaces. New York: Academic Press, 1970

[^0]: ＊Received July 27，2018；revised May 16，2019．The first author was supported by the Key Laboratory of Applied Mathematics in Hubei Province，China．The second author was supported by MNZZS（ON174017， Serbia）．
 ${ }^{\dagger}$ Corresponding author：Zhigang PENG．

