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Abstract
To meet the requirement of product variety and short production cycle, reconfigurable manufacturing system is considered as
an effective solution in addressing current challenges, such as increasing customisation, high flexibility and dynamic market
demand. Dynamic factory layout design and optimisation are the crucial factors in response to rapid change in the mechanical
structure, software and hardware integration, as well as production capability and functionality adjustment. Nevertheless, in
the current research, the layout design for reconfigurablemanufacturing systems is usually simplifiedwith autonomous devices
being regarded as 2D shapes. Issues such as overlapping and transportation distance are also addressed in an approximate
form. In this paper, we present a novel multi-agent cooperative swarm learning framework for dynamic layout optimisation of
reconfigurable robotic assembly cells. Based on its digital twin established in the proposed learning environment (constructed
in Visual Components and controlled by TWINCAT), the optimisation framework uses 3D digital representation of the facility
models with minimal approximation. Moreover, instead of using a traditional centralised learning manner, multi-agent system
could provide an alternativeway to address the layout issues combinedwith the proposed decentralisedmulti-agent cooperative
swarm learning. In order to verify the application feasibility of the learning framework, two aerospace manufacturing use
cases were implemented. In the first use case, the layout compactness is reduced by 3.8 times compared with the initial
layout setting, the simulated production time is reduced by 2.3 times, and the rearrangement cost decreased by 33.4%. In
addition, all manufacturing activity within the cell can be achieved with a feasible robot path, meaning without any joint
limits, reachability or singularity issue at each key assembly point. In the second use case, we demonstrated that with the
proposed dynamic layout optimisation framework, it is possible to flexibly adjust learning objectives by selecting various
weight parameters among layout compactness, rearrangement cost and production time.
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Introduction

As the global manufacturing market becomes more com-
petitive, companies are encountering notable difficulties
in manufacturing high-quality products that are not only
cost-effective but also have a short production lead time.
Rapid changes of existing product families, large fluctuations
in demand scale and production volume, and demanding
responsiveness to change and manufacturing techniques
bring more uncertainties into today’s market (Maganha et
al., 2019). All these challenges require the investigation of a
manufacturing system that could accommodate various prod-
ucts with short lead time and a high degree of customisation.
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Reconfigurable manufacturing systems (RMS) proposed
in Koren et al. (1999) are capable of dealing with the
challenges mentioned above. It focuses on the rapid recon-
figuration and adjustment to quickly respond to changes
in product capability and functionality (Maganha & Silva,
2017). This often involves layout reconfiguration, which is
the physical relocation and rearrangement of resources, such
as tooling, machines, manipulators and other autonomous
devices, to achieve the strategic objectives. In addition, layout
reconfiguration is considered as one of the key design issues
of a RMS (Hosseini-Nasab et al., 2018; Yelles-Chaouche et
al., 2021). It can effectively influence the productivity levels
and efficiency of production processes.

A successful layout planning would not only reason-
ably allocate different facilities, adequately utilise space and
minimise security risk but also guarantee the production
requirements to be met at a low cost (ElMaraghy, 2008). To
a certain extent, the current layout could be flexibly recon-
figured given additional production adjustment. In contrast,
inappropriate layout might cause poor workspace utilisation,
redundant workload, unacceptable production efficiency and
lead time. “All this can entail anxiety and ill ease for work-
ers, accidents at work, and make the control of operations
and personnel management difficult” as outlined in Pérez-
Gosende et al. (2021). For example, a loosely-packed layout
can lead to extra transportation effort, increase production
lead time and poor personnel arrangement.

Through the whole planning horizon, if requirements
remain unchanged for manufacturing processes, the facility
layout planning is considered as a static issue, which means
there will be no further change required after the initial con-
figuration. However, with demands to change and adapt, the
production lines requirements can vary regularly. Therefore,
it is more reasonable to consider a dynamic layout planning
for each time period and different situations. In compliance
with this, the number of dynamic layout planning studies is
much less compared to static planning studies as pointed out
in Hosseini-Nasab et al. (2018).

Although layout planning is crucial for RMSs, there are
several open issues that need addressing.

Firstly, the selection of a facility layout scheme always
involves asynchronous, complex and iterative production
processes. The variation of these processesmight leads to sig-
nificant layout changes givendifferent rating criteria.Derived
from the computational complexity theory, the facility lay-
out planning of a manufacturing system is investigated as a
non-polynominal hard optimisation problem and there is no
optimal solution in a reasonable polynominal time (Grobelny
& Michalski, 2017).

Secondly, almost all the facility layout planning problems
in previous literatures were studied with approximated 2D
facility models. Despite the minimal computational effort,
the information that a 2D model provides is extremely lim-

ited. As shown in Fig. 1a, the 2D projection (top view) of a
metrology work cell only provides information of the facil-
ity locations on the floor. However, if the robot workspace
is constrained and the workpiece requires 3D measurements
(as presented in Fig. 1b), only dimensional and positional
information is not sufficient to give an overall judgement of
the application feasibility (in real-world prouduction envi-
ronment such as Fig. 2).

Thirdly, since most of the facility models are investigated
in 2D space, the facility layout problems are limited in a cer-
tain period of production processes, a single layout criterion
or an assumed situation which makes the simplified facility
models or mathematical models only applicable to a certain
change of the production environment. Nevertheless, for a
dynamic production layout or under a complex manufactur-
ing assembly environment, these kinds of layout optimisation
results given by 2D models are usually undesirable.

In this paper, layout optimisation of reconfigurable robotic
assembly cells is explored based on their digital twin in sta-
tion level andmachine level. The advantages include accurate
representation of digital functions and mechanical features
of the physical manufacturing system, full lifecycle horizon
support, and data accessibility and learning feasibility both
in machine level and station level.

Moreover, besides the traditional optimisation objectives,
namely material handling cost and rearrangement cost, there
are indeed additional objectives that are included in thiswork,
which are collision detection, and target reachability and
manipulability. They are of great importance in any robotic
process. If the objective ofminimisingmaterial handling cost
is to generate a compact layout, the aim of collision detec-
tion is to avoid a so compact layout that facilities overlap
with each other. Additionally, any robot path and target point
should be checked for reachability and manipulability (to
avoid joint singularity). Hence they are also optimised in this
work.

Finally, unlike traditional centralised control approaches,
multi-agent system consists of intelligent agents that would
interact to achieve collective goals. Its modularity, flexibility
and reconfigurability naturally coincide with the fundamen-
tal principle of a reconfigurable robotic assembly cell, where
resources in a work cell are considered as agents. Each agent
should select the positions according to their own interests
calculated by different objectives. Therefore, the issue facing
in this paper is amulti-objectivemulti-agent dynamic facility
layout of reconfigurable robotic assembly cells. In order to
address this issue, a bio-inspired cooperative swarm learn-
ing framework is proposed. In this learning framework, the
components in thework cell are allowed to relocate and purse
their own interests both from itself and the others. For each
searching episode, the learning framework combines agent
local views and updates the layout of reconfigurable robotic
assembly cells given the multi-objective exploration results.
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Fig. 1 Comparison between the 2D projection model and the digital
twin model in the layout optimisation. a Top view of the metrology cell.
b The digital twin of the metrology cell. Compared with the top view
of the metrology cell which is a 2D projection, the digital twin model
could provide more comprehensive information, such as Cartesian scan
trajectory, laser tracker motion and other spatial information

The main contributions of this paper are highlighted as
follows,

1. Firstly, a novel digital-twin learning environment based
on Visual Components and TWINCAT is established;

2. A multi-agent learning scheme for the layout optimi-
sation of reconfigurable robotic assembly cells is intro-
duced in this paper;

3. In addition, a cooperative swarm learning framework
is proposed to find the optimal layout solution for the
multi-objective multi-agent robotic assembly cell in both
station level and machine level;

4. Finally, two use cases are conducted to demonstrate the
application feasibility of the proposed layout optimisa-
tion methodology.

The remainder of the paper is organised as follows: after
the literature review given in Literature review, the multi-

agent reconfigurable robotic assembly cell is presented in
Multi-agent systems for layout reconfiguration of robotic
assembly cells, followed by the cooperative swarm optimi-
sation methodology, as well as the novel digital-twin based
learning environment, introduced in Cooperative interaction
in addition, the application feasibility of the proposed frame-
work is verified with two use cases in Evaluation; finally, the
discussion is given in Discussion and the conclusion is drawn
in Conclusion.

Literature review

The literature review is organised in three parts. Firstly,
the multi-agent system for layout reconfiguration is inves-
tigated in Multi-agent system. In addition, the digital twin
for manufacturing is reviewed in Static and dynamic layout
optimisation. Finally, related studies for static and dynamic
layout optimisation are given in Static and dynamic layout
optimisation.

Multi-agent system

Compared with traditional centralised control approach,
multi-agent system offers effective solutions, especially for
the manufacturing systems that require rapid reconfiguration
(Leitão et al. 2012, Kim et al., 2020). Current research of
multi-agent system for industrial applications focuses more
on parallel machine scheduling (Owliya et al., 2012; Barenji
et al. 2017; Zhang & Wong, 2017; Maoudj et al., 2019),
negotiation among distributed agents regarding production
scheduling (Huang & Liao, 2012), and negotiation protocol
of a smart factory framework (Wang et al. 2016).

However, the number of studies that address RMS lay-
out planning based on multi-agent systems is limited, within
which 2D projection was used. In Tarkesh et al. (2009), a
multi-agent system was applied in layout optimisation based
on the fuzzy theory for establishing each agent’s utility func-
tion. However, as pointed out in Tarkesh et al. (2009), “the
approach presented here has certain disadvantages in dealing
with other facility layout design objectives such as depart-
ment shape and total layout plant shape”. In Chraibi et al.
(2014), the design of operating theatre layout was discussed
with multi-agent systems by using mixed integer linear pro-
gramming.

Moreover, multi-agent systems were applied in urban
area layout planning as introduced in Zhang et al. (2019).
In Huang et al. (2020), the rural settlement issues were
addressed by combining system dynamics models and evalu-
ation modules derived from multi-agent system. In addition,
mult-agent systems were applied for indoor furniture layout
optimisation (Di & Yu, 2021).
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Fig. 2 Omnifactory (Future AutomatedAircraft AssemblyDemonstra-
tor Phase 2, FA3D2). The Omnifactory is designed as a experimental
testbed for digital, informatics enabled, and reconfigurable aerospace

manufacturing. As shown above, we present eight different views of
the overall factory. For more details of this project, please refer to the
official website

In summary, although multi-agent systems have been
applied for manufacturing systems in terms of resource
scheduling, negotiation and communication. However, only
a few publications that addressed layout optimisation using
multi-agent systems were found. As pointed out in Tarkesh
et al. (2009), the main limitation is that these works used
approximated facility models such as 2D projections to opti-
mise the corresponding facility layout design. However, in
a manufacturing scenario where mobile resources interact
with each other in a 3D space and collision is strictly for-
bidden, the assumption of 2D projection quickly becomes
insufficient.

Digital twin for manufacturing

Comparedwith simplifiedbi-dimensional and tri-dimensional
models, as pointed out in Xia et al. (2021), a digital twin of
manufacturing system can provide high fidelity models for
prediction, maintenance and monitoring. Consequently, they
have been used in manufacturing for process design (Zhang
et al., 2020), shop-floor system design (Li et al., 2021), and
composite assembly (Polini & Corrado, 2020).

Regarding layout optimisation, in Guo et al. (2021), the
discrete manufacturing workshop was optimised by using
digital-twin data and physical interaction fusion. Moreover,
in Nåfors et al. (2020), the virtual reality derived from the
digital twin model was used to visualise facility layout and
improve solution fidelity at an early stage. Furthermore, auto-
matic layout configuration of a production line for robot
positioning was proposed in Braun et al. (2021).

Additionally, a digital twin for fixed-position assembly
islands was introduced in Guo et al. (2020). Nevertheless,

this work mainly focused on resource allocation not layout
optimisation. In Kousi et al. (2021), real-time data was used
to align the positions for 3D models in a digital twin virtual
world for human-robot collaboration. In Guo et al. (2021),
a flexible cellular production line was optimised based on
digital twin models, where attention was focused on produc-
tion layout, production scheduling and logistics. In Peron
et al. (2020), the emerging technologies such as 3D scan-
ning, indoor positioning system, motion capture system, and
immersive reality are used for dynamic layout planning to
reduce cost, error rate and time efforts.

In conclusion, a considerable amount of literature has
been published for digital-twin application in product and
process optimisation and resource allocation, and a digital-
twin approach towards facility layout optimisation is still
not fully studied, especially at machine and station level.
For instance, factory-level layout optimisation of a discrete
workshop (Guo et al., 2021) and a flexible cellular line (Guo
et al., 2021) were investigated, where the distances among
the 2D projections of the different digital twin models were
optimised and the interaction among different devices and
stations were ignored.

Static and dynamic layout optimisation

Generally speaking, facility layout optimisation can be either
considered as a static or a dynamic problem (Pérez-Gosende
et al., 2021). Static layout planning (Benderbal & Beny-
oucef, 2019; Azevedo et al., 2017; Liu et al., 2021; Feng
& Che, 2018; Friedrich, 2018) aims to solve scenarios where
the material flow remain constant during the whole planning
horizon among different stations. In contrast, when the lay-
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Table 1 An overview of the static facility layout planning problems

References Objectives Levels Models Layout generation approaches

Benderbal and Benyoucef (2019) Constraint penalty Factory 2D Mathematical modelling

Eguia et al. (2017) Transportation costs Machine 2D Mathematical modelling

Che et al. (2017) Material handling costs Factory 2D Mathematical modelling

Liu et al. (2021) Material handling costs Factory 2D Mathematical modelling

García-Hernández et al. (2020) Material handling and transportation cost Station 2D Mathematical modelling

García-Hernández et al. (2020) Material handling costs Station 2D Mathematical modelling

Dahlbeck (2021) Non-overlapping and Material handling costs Factory 2D Mathematical modelling

Palubeckis (2017) Products flow costs Factory 2D Mathematical modelling

Sharma and Singhal (2017) Factors for evaluation Factory 2D Mathematical modelling

Zhou et al. (2017) Material handling costs Factory 2D Mathematical modelling

Asef-Vaziri and Kazemi (2018) Non-vehicle-based material handling costs Factory 2D Mathematical modelling

Besbes et al. (2021) Material handling costs Factory 3D Mathematical modelling

Azimi and Soofi (2017) Material handling costs complication time of jobs Factory 2D Computer-aided planning tools

Defersha and Hodiya (2017) Transportation costs Factory 2D Mathematical modelling

García-Hernández et al. (2019) Material handling efficiency Station 2D Mathematical modelling

Grobelny and Michalski (2017) Material handling efficiency Station 2D Mathematical modelling

Kang and Chae (2017) Material handling efficiency Station 2D Mathematical modelling

Kim and Chae (2021) Material handling costs Station 2D Mathematical modelling

Ning and Li (2018) Row interaction costs Station 2D Mathematical modelling

Palomo-Romero et al. (2017) Unequal area layout Factory 2D Mathematical modelling

Safarzadeh and Koosha (2017) Material handling costs Factory 2D Mathematical modelling

Liu et al. (2020) Material handling costs closeness rating Station 2D Mathematical modelling

Xie et al. (2018) Material handling costs Station 2D Mathematical modelling

Park et al. (2018) Safety considerations Station 2D Mathematical modelling

Feng et al. (2018) Material handling efficiency Station 2D Mathematical modelling

Allahyari and Azab (2018) Material handling efficiency Station 2D Mathematical modelling

Ahumada et al. (2018) Risk assessment Station 2D Mathematical modelling

Durmusoglu (2018) Closeness requirement Factory 2D Mathematical modelling

Ejeh et al. (2018) Optimal spatial arrangement Factory 3D Mathematical modelling

Feng and Che (2018) Total material flow Factory 2D Mathematical modelling

Friedrich et al. (2018) Total material flow Factory 2D Mathematical modelling

Wan et al. (2022) Material flow costs layout area Factory 2D Mathematical modelling

Kalita and Datta (2018) Material handling costs Factory 2D Mathematical modelling

Kang et al. (2018) Material handling costs Factory 2D Mathematical modelling

de Lira-Flores et al. (2019) Land and pipeline costs Station 2D Mathematical modelling

Abdollahi et al. (2019) Quality and quantity Factory 2D Mathematical modelling

Singh and Ingole (2019) Quality and quantity Factory 2D Mathematical modelling

Liu and Liu (2019) Material handling cost closeness rating Factory 2D Mathematical modelling

out is required to adapt to varying material flow intensity, the
layout is designed to be dynamic (Pournaderi et al., 2019;
Kulturel-Konak, 2019; Derakhshan Asl & Wong 2017; Li et
al., 2018; 2017).

Relevant studies on static and dynamic layout optimi-
sation are summarised in Tables 1 and 2 respectively.
The general approach to layout optimisation utilises a bi-
dimensional space, which is the land area of facilities. During

layout optimisation, resources are approximated as rectan-
gles (Azevedo et al., 2017; Wei et al., 2019; McKendall Jr &
Hakobyan, 2010) or simplified mathematical models (Eguia
et al., 2017; Haddou-Benderbal et al., 2017; McKendallJr
& Shang, 2006) and their computational complexity can be
reduced. In order to improve the accuracy of modelling, a
number of papers focus on irregular shapes of facilities in
the layout optimisation, as presented in Liu and Liu (2019),
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Table 2 An overview of the dynamic (RMS) facility layout planning problems

References Objectives Levels Models Layout generation approaches

Azevedo et al. (2017) Material handling and rearrangement costs Factory 2D Mathematical modelling

Liu et al. (2017) Material handling and rearrangement costs Station 2D Mathematical modelling

Kumar and Singh (2017) Material handling costs Station 2D Mathematical modelling

Tayal and Singh (2018) Material flow costs and manufacturing time Station 2D Mathematical modelling

Pourvaziri and Pierreval (2017) Material handling costs and rearrangement costs Station 2D Mathematical modelling

Wei et al. (2019) Material handling costs and rearrangement costs Factory 2D Mathematical modelling

Haddou-Benderbal et al. (2017) Layout evaluation effort and performance metrics Factory – Mathematical modelling

Derakhshan Asl and Wong (2017) Material handling costs and rearrangement costs Factory 2D Mathematical modelling

Pournaderi et al. (2019) Equipment transport and handling costs Factory 2D Mathematical modelling

Vitayasak and Pongcharoen (2018) Material handling costs Factory 2D Mathematical modelling

Turanoğlu and Akkaya (2018) Material handling costs Factory 2D Mathematical modelling

Peng et al. (2018) Material handling costs Factory 2D Mathematical modelling

Li et al. (2018) Safety, sustainability efficiency Factory 2D Mathematical modelling

Kulturel-Konak (2019) Material handling costs and rearrangement cost Factory 2D Mathematical modelling

Xiao et al. (2016) Material handling costs Factory 2D Mathematical modelling

Moslemipour et al. (2017) Material handling costs Factory 2D Mathematical modelling

Ghadirpour et al. (2020) Material handling costs Factory 2D Mathematical modelling

Tayal et al. (2020) Material handling costs Factory 2D Mathematical modelling

Khajemahalle et al. (2021) Material handling costs Factory 2D Mathematical modelling

Erik and Kuvvetli (2021) Material handling costs Factory 2D Mathematical modelling

Guo et al. (2021) Production capacity Work in progress Factory 3D Digital twin

Peron et al. (2020) Time efforts error rates and costs Factory 3D 3D mapping Immersive Reality

de Lira-Flores et al. (2019), Abdollahi et al. (2019), Kalita
and Datta (2018).

However, it is important to note that not all layout planning
can be considered as bi-dimensional. For example, a common
use case of robot gantry system features robots located above
the entire production line. However, only a few consider
the problem in tri-dimensional space (Besbes, Zolghadri,
CostaAffonso,Masmoudi, andHaddar, 2021;Yamada,Ook-
oudo, andKomura, 2003). In Peron et al. (2020), 3Dmapping
and immersive reality techniques were applied to optimise
layout at a factory level to reduce the time efforts, error rates
and costs. In Guo et al. (2021), facility layout was optimised
regarding production capacity and work in progress using
a factory digital twin. Even though a digital twin is applied,
only 3D static virtualmodels are utilised in the layout optimi-
sation. Machine-level and station-level interactions between
resources is not considered in their work.

In summary, most of the available literature addressed
static and dynamic facility layout optimisation using 2D
mathematical modelling. Although a few publications inves-
tigated facility layout issues using the digital twin approach,
they only focused on the factory level, where interaction
between resources at machine level and station level were
not captured.

Multi-agent systems for layout
reconfiguration of robotic assembly cells

In this section, the multi-agent systems for layout recon-
figuration are given in threefold. Firstly, the motivation
of applying multi-agent systems for layout optimisation is
explained in Motivation. In addition, the agent properties
including agent communication, agent state, and agent action
are given in Agent state, action and communication. Finally,
the agent behaviour is detailed in Agent behaviours and cor-
responding rewards.

Motivation

“A multi-agent system is a system composed of multiple
interacting intelligent agents that interact to solve problems
that are beyond the individual capabilities or knowledge of
each individual” (Weiss, 1999). In a multi-agent system, the
agents should have the following three crucial characteristics
(Wooldridge, 2009; Panait & Luke, 2005), i.e., autonomy,
local views, and decentralisation.

Initially, autonomy in a multi-agent system defines the
basic behavioural principle of an agent, which should be
autonomous and partially independent. Compared this with
a manufacturing system as shown in Fig. 3a, the factory
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First station

Second station

Third station Forth station

(a) The top view of Omnifactory as shown in Fig. 2.

Camera agent

Storage agent

End-effector stand agent

ABB agent

(b) Digital twin of Omnifactory established in Visual Components.

Fig. 3 Top view and digital twin modelling of the Omnifactory. As
presented in a, the entire factory is consisted of four robotic assem-
bly cells (stations). In addition, the digital twin modelling is shown in
b. Based on multi-agent system, each device is considered as a single

agent. As indicated in the first station in b, there are five agents in the
cell, i.e., two V-STARS camera agents, ABB robot agent, storage agent
and end-effector stand agent

consists of four cells, where various autonomous devices
are required to implement production tasks. In the first sta-
tion, the devices including the ABB robot, the tool storage,
the end-effector stand and two V-STARS camera should
autonomously complete their own individual production
processes as given in Fig. 3b. Each autonomous device is
independent to the other devices located at different work
cells.

The second important characteristic of a multi-agent sys-
tem is that each agent only has a local view of the overall
system. With regard to layout reconfiguration, the optimi-
sation objectives are based on the sum of fitness function
of each agent. Hence, the agent contribution for the layout
optimisation can only be obtained from their own interaction
surrounding, which is local and partial.

Thirdly, in the layout reconfiguration, given that the
behaviour of each agent is controlled at different operational
stages during task implementation, fitness functions for opti-

Table 3 Multi-agent system for layout reconfiguration

Property Implementation

Agent commun Event-triggered

Agent state Position ξn

Agent action Relocation

Agent behaviour Self-interest & cooperative

Agent reward Fitness functions

misation are computed at different timestamps. Hence, the
whole layout reconfiguration in this work is decentralised,
which fulfils the third characteristic, decentralisation.

Therefore, as the layout reconfiguration naturally coin-
cides with the three important characteristics of multi-agent
systems, this paper propose a novel approach to address
dynamic layout optimisation issues based on the multi-agent
systems anddefine the following crucial properties, i.e., agent
communication, agent state, agent action, agent behaviour
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Fig. 4 Agent relocation for layout reconfiguration. In Omnifactory, there are two main ways to relocate agents. First, agents can be relocated by
crane. Second, some small devices can be moved by forklift. Note that, we design reconfigurable grids to position robot and provide pneumatic
port and power supply

and agent reward, as shown in Table 3. Accordingly, the first
three properties are detailed in Agent state, action and com-
munication, while the agent behaviours and their rewards are
investigated inAgent behaviours and corresponding rewards.

Agent state, action and communication

The agent state, action and communication are introduced in
this subsection, respectively.

Agent state: In themulti-agent system for dynamic layout
optimisation, agents (devices) are relocated in order to meet
the requirements. Thus, each agent state is defined as the its
position

ξn = {ξ xn , ξ
y
n , ξα

n }, (1)

where ξ xn and ξ
y
n are the coordinates in the assembly cell of

the n-th agent, and ξα
n is the rotation angle as given in Fig. 4.

For a new reconfiguration, each agent reward is only related
to the agent positions.

Agent action: The action for a single agent is to relocate
during the facility layout optimisation. As given in Fig. 4,
for example, the relocation of the profile board storage is
completed bu using forklift. In terms of the relocation of
the robots, we design reconfigurable grids to provide power
supply and pneumatic ports. For different robots, they could

Fig. 5 Communication among different components or agents (internal
communication). The internal communication among different compo-
nents is based on event-triggered communication. The signals are shown
in the above figures with light blue solid lines

sit on four grids. Therefore, the relocation of a KUKA robot,
for instance, is achieved with the crane as shown in Fig. 4.

Agent communication: The communication among dif-
ferent agents is event-triggered and most of the signals are
replicated from the Siemens PLC system in the physical
robotic assembly cells, which are used for virtual commis-
sioning. As presented in Fig. 5, the signals of the FANUC
M-900iB components were divided into input signals and
output signals. In addition, it can be observed that in the
Connect Signals menu as shown in the right part in Fig. 5,
the communication betweenFANUCrobot,KUKArobot and
AGV were realised through boolean signals. These signals
were used to indicate arrival of an AGV, and the status of
the first and the second station, respectively. As illustrated
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in Fig. 5, the status of the first task is active. In our scenario,
the production process in the first station has been completed
and the AGV is moving towards the second station (manual
assembly).

Agent behaviours and corresponding rewards

The agent behaviours can be divided into two categories, i.e.,
self-interest and cooperation. For different behaviours, there
will be corresponding rewards. The self-interest behaviours
are given in Self-interest, while the cooperation behaviours
are presented in Cooperative interaction.

Self-interest

The self-interest behaviour allows agents to pursue their
interests, such as AGVs and robots. In the following, several
self-interest behaviours are defined along with the corre-
sponding fitness functions (rewards).

Facility rearrangement: Facility layout reconfiguration
is always related with facilities location rearrangement.
Given the initial position ξn/0 = {ξ xn/0, ξ

y
n/0, ξ

α
n/0} of the

agent located in the assembly cell, the rearrangement cost
should be taken into account and the corresponding fitness
function can be defined as

farr (ξn) =
∑

v

Warr (ξ
v
n − ξv

n/0)
2, (2)

where Warr is the constant parameter for the rearrangement
fitness function and the superscript v = {x, y, α} defines
the three coordinate components (two translations and one
rotation around z axis).

Robot joint limits: In advanced robotic assembly cells,
robots usually play an important role. During trajectory
implementation, the robot agent should operate within its
joint limits. However, due to agent relocation, the joint angle
might be out of its range as indicated in red color in Fig. 6.
Thus, it is necessary to taken robot joint limits into consider-
ation in the layout optimisation. By using inverse kinematics,
the target position in the Cartesian robot base frame is trans-
formed into a joint space

[q1, ..., qJ ] =ginv(x, y, z, α, β, γ )

s.t. qljn ≤ q j ≤ qujn, j = 1, ..., J .

where ginv is the inverse kinematic solution of the robot given
a Cartesian target (x, y, z, βx, βy, βz), with (x, y, z) the target
translations and (βx, βy, βz) the target rotations, respectively.
The joint angle q j should satisfy the constraints shown in
the above equation, as qljn and qujn are the lower bound and
upper bound of the robot joint, respectively. Hence the fitness
function can be expressed as

Fig. 6 Joint limit triggered by relocation. In the left subfigure above,
the robot third joint is out of the joint range. In contrast, for a different
storage position in the right subfigure above, the robot third joint is in
the joint range

Fig. 7 Wrist singularity triggered by relocation. The relocation might
cause robot wrist singularity. Therefore, it is considered in this work
and a fitness function is introduced to avoid this issue

finv(ξn) =
{
0 if qljn ≤ q j ≤ qujn∑

j ‖q j − qljn‖ + ‖q j − qujn‖ otherwise.
(3)

Robot singularity: During the production process, if the
fifth joint is zero, there will be wrist singularity issue for
robots as given in Fig. 7, which makes the robot difficult to
manipulate. For improvingmanipulability, singularity is also
being detected and avoided in our work. Given A = J JT ,
where J is the Jacobian matrix, the manipulability μm(A)

of the robot can be defined as

μm(A) =
√

λmax (A)√
λmin(A)

,

with λmax and λmin the maximum andminimum eigenvalues
of A, which is also known as the longest and shortest axes of
the manipulability ellipsoid. Consequently, the fitness func-
tion can be given as

fman(ξn) =
{
0 if μm(A) < μ0

μ0 if μm(A) ≥ μ0.
(4)
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Table 4 Learning objectives for the dynamic layout optimisation of the robot assembly cell

Interaction Description Fit. function Objective

Self-interest Rearrangement (Eq. 2) farr (ξn) Reduce facility rearrangement cost

Robot joint limits (Eq.3) finv(ξn) Check task feasibility

Robot singularity (Eq.4) fman(ξn) Check task feasibility

Cooperative Collision detection (Eq.5) fcd (ξn) Avoid overlapping

Target reachability (Eq.6) frea(ξn) Check task feasibility

Layout compactness (Eq.7) fc(ξ1, ..., ξ N ) Reduce material handling cost

Production time (Eq.8) ft (ξ1, ..., ξ N ) Improve production efficiency

Fig. 8 Collision detection. The collision among different agents is
detected during the implementation of the production processes

where μ0 is the threshold of the robot manipulability.
The self-interest behaviours are summarised in Table 4,

along with the objective explanation of each fitness function.

Cooperative interaction

Besides self-interest interaction, cooperation among differ-
ent agents is also commonly in multi-agent reconfigurable
layout optimisation. In the following,we introduce a group of
fitness function for cooperative interaction behaviour among
various agents.

Collision detection: Collision detection among agents is
another key factor in layout design. In Fig. 8, the AGV has
unexpected collision with the end-effector stand as shown
in yellow. Based on the digital twin model, collision should
be detected during the entire production process. Given the
volumes of the cooperative agents, collision detection can be
defined as

Vd =
∑

nd

Vm ∩ Vn,

with Vm the checked agent and Vn the n-th agent that coop-
erates with m-th agent during the production process. nd
defines the numbers of collision detection. If the collision
set Vd is null, then m-th agent has no collision with the oth-

Fig. 9 Target reachability issues triggered by relocation. As in a, the
FANUC robot can pick up the skin within the workspace. However, in
b, after relocation, the skin picking point is out of the robot workspace

ers. Hence the fitness function of collision detection function
can be defined as

fcd(ξn) =
{
0 if Vd = ∅
V0 otherwise.

(5)

where V0 is a constant value which is used to penalise the
collision.

Target reachability: If the robot cannot reach the prede-
fined target after relocation as shown in Fig. 9, the picking
task will be uncompleted. For a dual agent task, the reach-
ability check for a robot agent can be obtained by breaking

123



Journal of Intelligent Manufacturing

the series chain of the robot into two parts, series chain
h(q1, ..., qk) and series chain g(qk+1, ..., qJ ), 1 < k < J ,
and hence check if there is a conjunction between two series
sets.

�r = h(q1, ..., qk) ∩ g(qk+1, ..., qJ )

Therefore, the fitness function of the target reachability can
be given as

frea(ξn) =
{
0 if �r �= ∅
∑

n�
�0 otherwise.

(6)

If the region �r is empty, then the target cannot be reached
and the penalty constant�0 will be accumulated. Otherwise,
the target is within reach.

Layout compactness: The compactness of the system lay-
out is equally important since it is directly related to capital
cost, space and production cost. The fitness function of the
layout compactness is expressed as

fc =
∑

n

∑

m

‖ξn − ξm‖2 (7)

where ξn and ξm are the positions of two agents, respectively.

Production time: The production time ft is also penalised
in the framework developed, as it is the key performance indi-
cator for the effectiveness of the overall layout optimisation
result.

ft = argmax
∑

nt

�t sr (8)

where s is the product label and r is the process label. nt
defines the number of sequential processes.Given that aman-
ufacturing systemmayproduce several different products and
processes in parallel, only the maximum production time is
taken into consideration in this work.

Similarly, the cooperation behaviours are concluded in
Table 4, along with the objective explanation of various fit-
ness functions.

Cooperative swarm optimisation

After establishing the multi-agent RMS, this section focuses
on exploring the optimal layout solution for the system.
Firstly, the cooperative swarm learning framework regarding
multi-objective fitness functions is proposed in Cooperative
interaction. Secondly, the digital twin learning environment
is introduced in Digital-twin based learning environment,

+ ++

ξ11 ξ21 ξ31 ξ41 ξ51

r11
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r51
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r42

r52
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r1N
r2N

r3N
r4N

r5N
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n =

∑
i ωnifi(ξs

1, ..., ξ
s
N) +

∑
j ωnjfj(ξs

n), ξs
n = {ξs

x, ξ
s
y, ξ

s
α},

∑
i ωni +

∑
j ωnj = 1

ω1i, ω1j ω2i, ω2j ωNi, ωNj

ξb = argmins

∑
n

∑
i ωnifi(ξs

1, ..., ξ
s
N) +

∑
n

∑
j ωnjfj(ξs

n)

Fig. 10 Cooperative swarm learning framework. The Cooperative
swarm learning framework aims to allocate various agents ξ sn with dif-
ferent fitness functions ( fi , f j ) and weights (ωi , ω j ) into an overall
learning scheme. Each agent explores the surrounding environment in

the work cell separately and contributes to the whole learning reward
cooperatively. The reward of each agent particle is defined as rsn with n
and s the agent label and particle label respectively
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along with the communication among various agents in
Visual Components and TWINCAT.

Cooperative swarm learning framework

Based on the self-interest and cooperation behaviours, the
layout optimisation for robotic assembly cells is a multi-
objective problem. As shown in Table 4, all fitness functions
correlate to a unique position of a single agent or unique posi-
tions of several agents, which means the fitness functions are
injective.

As shown in Figure 10, the layout optimisation problem
can be mathematically defined as:

min
ξ1,...,ξ N

∑

i

ωi fi (ξ1, ..., ξ N ) +
∑

j

ω j

∑

n

f j (ξn)

i = {c, t}, j = {inv,man, rea, cd, arr}
s.t. ξn ∈ [ξ ln, ξun]

h(ξ1, ..., ξ N ) = 0
∑

i

ωi +
∑

j

ω j = 1

(9)

with ωi and ω j being the weight parameters for adjusting the
multi-objective optimisation and superscript l and u being
the lower bound and upper bound according to the layout
area. In addition, h(ξ1, ..., ξ N ) is a constraint equation used
to further limit the searching areas in the manufacturing lay-
out. fi represents the fitness function detailed in Agent state,
action and communication and Cooperative interaction and
summarised in Table 4.

During the layout optimisation, the fitness functions are
calculated according to the flowchart given in Fig. 11. The fit-
ness functions, robot joint limits finv , singularity fman and
target reachability frea are computed before the virtual pro-
duction processes implementation. Then, the collision fcd
among different agents is detected during the virtual pro-
duction processes implementation. Finally, the other fitness
functions are calculated after the implementation.

Regarding the population-based approach, the partial
swarm optimisation and multi-agent system do share some
similarities. Firstly, the agent in the layout could be seen as a
particle. During the exploration of a particle in the problem
space, the position of an agent is adjusted according to the
penalty derived from the fitness functions. Secondly, both
approaches requires cooperation among different compo-
nents. The particle swarm optimisation updates the next-step
position and velocity according to the evaluation of each
particle exploration. While for the multi-agent system, it
combines the self-interest and cooperative interactions to
explore the surrounding environment.

Nevertheless, simple combination of particle swarm opti-
misation and multi-agent system is not applicable given the

Checking before
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Checking during
implementation

Checking after
implementation

Production
implementation

Position
constraints
Position

constraints
Position

constraints
Position

constraints

Robot
joint limits
Robot

joint limits
Robot

joint limits
Robot

joint limits

Robot
singularity
Robot

singularity
Robot

singularity
Robot

singularity

Target
reachability

Target
reachability

Target
reachability

Target
reachability

C
ol
li
si
on

d
et
ec

ti
on

Layout
compactness

Production
time

Layout
rearrangement

Production
processes

Fig. 11 Calculating procedures of different fitness functions.Given that
two types of interactions introduced in this work, the self-interest fit-
ness functions are checked before the implementation of the production
processes. However, since there might be clash during the implemen-
tation, the collision is detected throughout the whole implementation.
Finally, the layout compactness is calculated after the implementation,
along with production time and layout arrangement cost

following reasons. Initially, not all the agents share the same
fitness functions. For instance, the storage agent in the man-
ufacturing layout would only require optimisation for its
position to avoid collision and increase compactness. While
for the manipulator, the joint limits, singularity and tar-
get reachability should be taken into consideration overall.
Moreover, particle swarm optimisation explores the optimal
solution or suboptimal solution in an overall environment
towards a single objective or multiple objectives. On the
other hand, layout optimisation ofmulti-agent systemusually
employs agents which are learning in different environments
with non-identical multiple objectives.

Therefore, a cooperative swarm learning framework is
introduced here for layout optimisation of the reconfigurable
robotic assembly cell. In this learning framework, each agent
learns two types of interactions, self-interest and cooperative
as shown in Table 4. For layout optimisation, the position
parameters ξ sn = (ξ sx , ξ

s
y , ξ

s
α) of the agent, including two

translational and one rotational variables, are considered as
the learning variables, with s being the particle index.

In the cooperative optimisation scheme, each agent
equipped with S particle sets searches the surrounding and
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Fig. 12 The position of our proposed dynamic layout optimisation framework in the entire Omnifactory system

enrich the local view of the overall environment. During the
exploration, different allocations of the particles generate dif-
ferent penalties derived from the fitness function described
in Table 4. Meanwhile, the weight parameters are defined
according to the functionality of the agent. For example, a
robot agent would be analysed in terms of joint limits, singu-
larity and target reachability. Therefore, the corresponding
weight parameters are set to zero. Consequently, an extra
agent label n to the weight parameters ωni , ωnj is added to
customise the penalty for various agents.

During each learning episode, the reward of an agent with
a particle s can be derived from the customised fitness func-
tions as shown in Fig. 10.

rsn =
∑

i

ωni fi (ξ
s
1, ..., ξ

s
N ) +

∑

j

ωnj

∑

n

f j (ξ
s
n ) (10)

where ξ sn = {ξ sx , ξ y
s , ξ sα}. The reward of all the agents with

customised weighted fitness functions can be given as rs =∑
n r

s
n for the current learning episode.Hence, the global best

position ξbn is correlated to the minimum reward choosing
from S explorations of the current episode. Then the next-
step t+1 velocity and the position of a particle can be defined
as

vsnd(t + 1) = vsnd(t) + c1u1(t)[ξ sbnd(t) − ξ snd(t)]
+ c2u2(t)[ξbnd(t) − ξ snd(t)]

xsnd(t + 1) = xsnd(t) + vsnd(t) (11)

with c1 and c2 being the positive acceleration constants,
which are applied to improve the cognitive and social
behaviours, respectively. u1(t) and u2(t) are random values
derived from the uniform sampling.

Digital-twin based learning environment

A digital twin is the virtual representation of a manufactur-
ing system.More specifically, it duplicates the exact physical
devices and machines in the system layout. As presented in
Fig. 12, both physical facility layout and its digital twin are
established in the overall Omnifactory system. The physical
side consists of manipulators, AGVs and inspection systems.
Their data (configuration, task parameters, and real-time
sensing information) are obtained through various commu-
nications such as MQTT, DDS, and AMQP into Siemens
MindSphere. Then, based on the digital twin model estab-
lished in VC, the layout is optimised given, task parameters,
novel requirements and device configuration.

In addition, the optimisation result is further sent to Pro-
cess Simulate for virtual commissioning and PLC code
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Fig. 13 Digital twin learning environment.The digital twin mod-
els are established in Visual Components, where the communication
among different components is event-triggered internally. Moreover,

overall cooperative learning framework is embedded in Jupyter Note-
book. Hence, the signals are connected externally through TWINCAT
(Automation Device Specification, ADS)

generation as indicated in Fig. 12. In Siemens Team Centre,
the product management and production control system are
implemented. Finally, the logic control, sensing system and
HMI are designed in the TIA Portal for controlling physical
side in Omnifactory.

Consequently, embedded into the Omnifactory system as
shown Fig. 12, our proposed multi-agent dynamic layout
optimisation can be divided into three levels as illustrated
in Fig. 13.

At the bottom level, Visual Components (VC) simulation
software is employed to establish the digital twin of the man-
ufacturing system. More specifically, the behaviour of each
component can be programmed in Python, as well as the
management of their allocations. In addition, the coopera-
tive learning framework is in the top level, along with data
collection and data analysis. The learning framework is pro-
grammed and edited via Jupyter Notebook.

At the middle level, the connection for the learning envi-
ronment is guaranteed with BECKHOFF TWINCAT. Based
on the Automation Device Specification (ADS) protocol, the
data, which contains the behaviour information of each com-
ponent or agent, is communicated among three levels. The
advantage of using TIA-portal is its capability to effectively
connect to the physical PLC system and transfer the learning
result in a batch form. The behaviour data of each agent is
collected after each episode and the parameter of the coop-

erative framework is updated after each exploration, which
contains a number of episodes.

Evaluation

In this section, the proposed cooperative learning frame-
work is evaluated with two use cases. The first use case
is derived from the first station in Omnifactory, which is a
reconfigurable robotic assemble cell with dynamic layout
requirements, such as low rearrangement cost and material
handling cost. As this system has been optimised with our
proposed learning framework and successfully applied in
the real world, the learning result will be detailed in Frame
assembly work cell, along with the assembly implementa-
tion.

In addition, a more comprehensive analysis of the pro-
posed layout learning framework is performed for the second
station in Omnifactory as given in Drilling work cell. The
second experiment aims to provide a thorough analysis by
prioritising different learning objectives.

Frame assembly work cell

As presented in Fig. 14, the work cell aims to assemble a
family of small-box products.With adjustment of the vacuum
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Fig. 14 Frame for different product assembly. The designed frame aims
to allocate different product assembly in a reconfigurable manner as
shown in a and b. The vacuum cups located on the profile boards can
be flexibly adjusted to hold different products

cups and locating pins located on the profile boards as given
in Fig. 14a and b, the frame can support the assembly of
different products. The design objective for this work cell
is to achieve low cost material handling (the frame will be
located on an AGV in the next work package) and assembly
system rearrangement. In addition, the assembly processes
should be feasible and any damage or collision should be
avoided.

In terms of resources, there are twoKUKAKR270 robots,
a profile board storage rack, a end effector tool stand and a
frame allocated in thiswork cell. The digital twin of thewhole
work cell is established in Visual Components as detailed in
Digital-twin based learning environment. According to the
learning environment detailed in Fig. 13, the digital model is
established in Visual Components and the cooperative learn-
ing framework is programmed via Jupyter notebook. Finally,
the connection between the high-level learning framework
and low-level digital twin is achieved with BECKHOFF
TWINCAT3 (APS, pyads Python package).

Before the layout optimisation starts, weight parameters
for each agent are set as shown in the Kiviat chart in Fig. 15.
The weight parameters for the Kuka robot is indicated in
Fig. 15a. The scenarios for the other three agents are set iden-
tically in Fig. 15b.

(a) (b)

Fig. 15 Kiviat chart of the weight parameters for agents. a Weight
parameters for the Kuka robot. bWeight parameters for the tool stand,
storage, and frame

According to the project requirement, the layout of the
whole work cell should be allocated in a compact space
(fitness function fc). Therefore, the weight parameter for
compactness is set to be 0.5, which is the largest amongst all
weight parameters. However, the target reachability, robot
joint limits and singularity are also essential as they can
decide the feasibility of the whole assembly process. There-
fore these penalties ( frea, fman, finv) are included in the
robot agent as presented in Fig. 15a. The other demand such
as production time ft and rearrangement cost farr are also
taken into consideration.

Different devices (agents) are located in a reasonable
spacewithin the designatedwork cell, and the initial layout is
presented in Fig. 16a. Initially, each component is relatively
far away from each other. In the following multi-agent coop-
erative swarm learning, agents in the cell start approaching
each other, as given in Fig. 16b, c, d, and e. However, at one
point, the cell is so compact that collisions among agents are
detected as illustrated in Fig. 16d and e. As given in Fig. 16e,
the tool stand agent has clashed with the manipulator. How-
ever, these collisions can be penalised significantly with the
collision detection fitness function.

Therefore, the framework enables learning from the
rewards and penalties, and the agents would relocate in
further learning processes. The final optimised layout is
presented in Fig. 16f. In addition, during the real-time imple-
mentation, the updated digital twin as shown in Fig. 16g
provides lifecycle support for the physical side as given in
Fig. 16h. Correspondingly, the process of the robot mounting
the profile board onto the frame is presented in Fig. 16i.

The learning results for all agents during the optimisa-
tion are given in Figs. 18, 19, 20 and 21. The overall penalty
of KUKA robot as shown in Fig. 18a consists of five fitness
functions including compactness (Fig. 18b), rearrangement
(Fig. 18c), robot reconfiguration (Fig. 18d), production time
(Fig. 18e) and collision detection (Fig. 18f). In contrast, the
frame agent contains four fitness functions such as compact-
ness (Fig. 19b), rearrangement (Fig. 19c), production time
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Fig. 16 Experimental learning result and real-world assembly imple-
mentation. The snapshots of the cooperative learning for the assembly
work cell are presented from a to f. In addition, the learned result (dig-

ital twin of the assembly work cell) and its physical side are given in
g and h, respectively. Finally, the real-world assembly is carried out as
indicated in i

(Fig. 18e) and collision detection (Fig. 18f). Similarly, the
penalty of the stand agent and the storage agent also has four
fitness function as given in Figs. 21a and 20a, accordingly.

Note that, as the fitness functions of collision detection and
production time are penalised for all four agents, the learning
results of collision detection (Fig. 18e) and production time
(Fig. 18f) apply to all four agents. In addition, without loss
of generality, dynamic layout of the robotic assembly cell is
optimised relatively to the KUKA robot. Hence, the arrange-
ment cost of the KUKA robot as given in Fig. 18c remains
constant during the learning process.

Additionally, penalties for all the fitness functions are
presented in Fig. 17b–f. The dynamic layout optimisation is
converged after nearly 1000 episodes. Although the overall
penalty of the work cell gradually decreases during the learn-
ing, the penalties for four agents do not have the same trend
as presented in Figs. 18, 19, 20 and 21. Initially, the layout is
loose, there is no collision among different agents given in

Fig. 17c and f. However, the sum of singularity, reachability
and joint limits indicate that the assembly targets are actually
out of the manipulator’s workspace as shown in Fig. 17e.

At the episode around 200, as the layout shrinks, penalties
of the manipulator ( finv, frea, fman) decrease as indicated
in Fig. 17e. Nevertheless, collision is detected at the same
learning period, which indicates that the layout is too com-
pact. The same penalties from the agents are also shown in
Figs. 18f, 19a, 20a, and 21a. Note that, as long as a clash is
detected, all the agents are heavily penalised in the optimi-
sation framework.

The most interesting part is from around episode 450 to
episode 550. The layout is enlarged by a small scale, and no
collision was triggered. Although the penalties for the Kuka
robot ( finv, frea, fman) are shown at a large value, the overall
penalty is decreasing as shown in Fig. 17e. This is because
in the multi-agent system, the agents learn from collective
reward in each exploration. Although not all of the agents
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Fig. 17 Layout optimisation result (all four agents). The sum of the
rearrangement cost is given in Fig. 17b, including the rearrangement
cost of each agent as presented in Figs. 18c, 19c, 20c, and 21c. The sum
of the compactness cost is shown in Fig. 17c, consisting of the compact-
ness cost of each agent as given in Figs. 18b, 19b, 20b, and 21b. The

learning cost of the fitness functions, i.e., robot joint limits, singularity
and target reachability are given in Fig. 17e, which is only addressed
by KUKA agent. Regarding the learning cost of the production time
fitness function and the collision detection fitness function are given in
Figs. 17d and 17f, which apply to all four agents

show the same trend of convergence (as presented in Figs. 18,
19, 20, and 21), the overall penalty is decreasing during the
learning. Therefore, after nearly 950 episodes, the penalties
for every fitness function converge (as given in Fig. 17b, c, d,
e and f) and the layout is at an optimised configuration after
nearly 1000 episodes.

In summary, compared with the initial facility layout, the
rearrangement cost is reduced by 33.4%. The overall lay-
out compactness among different agents is improved for 3.8
times and the reduction of the production time is at 2.3 times.
Moreover, after the layout optimisation, there is no collision
detected during the entire process implementation and there
is no joint limit, reachability and singularity issues at any
assembly points.

Drilling work cell

In the second scenario, the proposed cooperative learning
framework is exploited for its ability to select weight parame-
ters for different fitness functions. The layout reconfiguration

task is to optimise the work cell with one Fanuc robot. More
specifically, the Fanuc robot assembles the skin to the generic
hinged product with the skin end-effector and then, drill on
the skin with the drill end-effector.

Since this case study is used to demonstrate and discuss the
selection of theweight parameters,wedesign three parameter
selection scenarios as shown inFig. 22a, b and c.Aspresented
in Fig. 22a, the layout compactness is set to be the largest
weight parameter for all five learning agents in the work cell,
namely Fanuc robot, AGV, end-effector stand, skin storage
and skin end-effector storage. In this way, the optimisation
framework is prone to choose a more compact layout. Sim-
ilarly, in Fig. 22b, collision detection is set to be the largest
weight parameter in order to prioritise collision-free layout
reconfiguration. In Fig. 22c, the consideration priority is the
production time.

The experimental setting is the same as the first exper-
iment, as well as the learning environment. The particle
quantity for each agent is set to be five. The optimal lay-
outs are illustrated in Fig. 22d, e and f, respectively. For
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Fig. 18 Layout optimisation result (KUKA agent). The overall penalty
regarding learning episode of the KUKA agent as given in a is the
sum of rhe penalty for compactness, rearrangement cost, robot con-
figuration, production time and collision detection as presented in b–f,
accordingly. Note that, the compactness penalty, rearrangement penalty

and robot configuration penalty belongs to KUKA agent itself. How-
ever, As the production time fitness function and collision detection are
designed for all four agents, the production time and collision detection
are identical for all four agents
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Fig. 19 Layout optimisation result (frame agent). The whole penalty regarding learning episode of the frame agent as shown in a consists of the
penalty for compactness, rearrangement, production time and collision detection as indicated in b, c, Figs. 18e, and f, respectively

123



Journal of Intelligent Manufacturing

0 500 1000 1500
Episode

0

2

4

6

8

10

12

P
en

al
ty

105

Stand agent

(a) Overall penalty.

0 500 1000 1500
Episode

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
en

al
ty

105

fc

(b) Compactness fc.

0 500 1000 1500
Episode

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
en

al
ty

105

farr

(c) Rearrangement farr .

Fig. 20 Layout optimisation result (stand agent). The whole penalty regarding learning episode of the stand agent as shown in a consists of the
penalty for compactness, rearrangement, production time and collision detection as indicated in b, c, Fig. 18e, and f, respectively
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Fig. 21 Layout optimisation result (storage agent). The whole penalty regarding learning episode of the storage agent as shown in a consists of the
penalty for compactness, rearrangement, production time and collision detection as indicated in b, c, e, and f, respectively

further clarity, top views for the optimised layouts are shown
in Fig. 22g, h and i.

As presented in Fig. 22g, the reconfigured layout is the
most compact compared with the other two given in Fig. 22h
and i. This is because of the larger penalty relating to the
compactness fitness function as shown in Fig. 22a. In addi-
tion, the optimal layout solution prioritising the production
time fitness function ft is illustrated in Fig. 22f and i. Further-
more, when comparing layouts from Fig. 22g and i, it shows
that a more compact layout does not always lead to less pro-
duction time. This is because the manipulator point-to-point
motion is not simply planned by the straight line connecting
these points (Laumond et al., 1998).

In order to provide amore comprehensive explanation, the
elapsed time for each process is listed in Fig. 23. It shows that
the compact layout ( fc) spends more time on picking up the
pneumatic and drilling end-effectors, as the robot takes time
to accelerate and decelerate. For the fcd case, the skin picking
up process takes longer than the other two layout config-
urations. However, after the layout optimisation prioritising
production time function, the total time reduces from22.5s to
21.6s, around 4% improvement.Although, the improvement

is only related to one work cell. When it comes to multiple
work cells with repetitive operations, the improvement will
be more significant.

In terms of the optimised layout prioritising collision
detection fcd , the components are located further away from
each other in the work cell in Fig. 22h in contrast to the lay-
out in Fig. 22g and i. However, the available workspace for
a manufacturing system is often limited. The optimised lay-
out can only be a viable solution when the workspace is big
enough to accommodate it.

Discussion

Since the proposed layout optimisation framework focuses
on two successive levels, namely machine level and sta-
tion level, with all the production manufacturing processes
predefined in the digital-twin environment at the machine
level. The robot joint limits, manipulation, and singularity
are taken into consideration, they require large penalties to
guarantee the success of motion planning and layout optimi-
sation, which requires experience of choosing proper weight
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(a) Parameter selection (prioritis-
ing compactness fc).

(b) Parameter selection (prioritis-
ing collision detection fcd).

(c) Parameter selection (prioritis-
ing production time ft).

(d) Demo. of the learned result
(fc).

(e) Demo. of the learned result
(fcd).

(f) Demo. of the learned result
(ft).

(g) Top view of the learned layout
(fc).

(h) Top view of the learned layout
(fcd).

(i) Top view of the learned layout
(ft).

Fig. 22 The parameter selections, the last-step demonstrations and the
top views of the learned layouts of the second experiment. The corre-
sponding optimised result prior to compact fitness function fc is given
in a, d and g. The corresponding optimised result prior to collision

detection fitness function fcd is illustrated in b, e and h. The corre-
sponding optimised result prior to production time fitness function ft
is illustrated in (c), (f) and (i)

123



Journal of Intelligent Manufacturing

Fig. 23 Comparison of the elapsed time of the three optimisation
schemes. For the three optimisation schemes, the elapsed time for each
production process are presented in the above figure. The total time is
listed at the end of each optimisation scheme

parameters. We are currently testing the dynamic layout
optimisation issues in a hierarchical manner. Moreover, the
machine level optimisation is implemented after the optimal
solution at the station level layout. This could avoid man-
ual weight parameter assignment and to some extent reduce
conflicting issues amongst multiple objectives.

In addition, although the proposed framework supports
random initial positioning, the learning timing and optimi-
sation efficiency is sensitive to the initial layout, and the
framework is much more efficient if a reasonable initial lay-
out, or for a selected area, is given.

Due to changes in production requirements, expansion
regarding new products and addressing deficiencies in the
current facility reconfiguration is extremely necessary. Since
the robotic cell is designed for reconfiguration, maximising
asset reuse and promoting sustainable production, asset relo-
cation and commissioning become recurring costs compared
to traditional production systems. The proposed framework
optimised facility layout considering objectives for reduc-
ing reconfiguration cost. Resiliency can only be achieved if
the reconfiguration is timely, and this would rely on digital
tools such as the framework proposed. The proposed lay-
out optimisation framework focuses on the quick adaptation
to unexpected production demands and increases resiliency
by allowing timely decisions of facility layout in response
to market change. Therefore by incorporating the proposed
optimisation framework, the facility layout can contribute to
long-term success of broader production and maintain both
resiliency and sustainability.

The proposed framework was inspired initially as a lay-
out planning tool to support the reconfigurable shop floor and
accelerate the reconfiguration process by detailed simulation,
comparison and decision-making in the early development
stages. In the case where a business do not have the rapid
physical-reconfigurability, they would still benefit from the
digital-twin enabled information for decision-making. The
framework can still provide optimal layout information
regardless, for initial factory setup or reconfiguration. Based
on the different level of physical reconfigurability, weight

parameters for rearrangement cost will be different and
assigned to limit the physical movement required. Therefore,
we believe this framework could also be extended to manu-
facturing SMEs, as the penalty functions are similar and the
theory behind this is identical.

Conclusion

In this paper, a novel cooperative swarm learning frame-
work for layout optimisation of a multi-agent reconfigurable
robotic assembly cell is proposed based on its digital twin. In
the evaluation, two use cases are presented in order to demon-
strate the application feasibility of the proposed framework.

Based on the digital twin, a layout optimisation process is
implemented under a multi-agent system framework consist-
ing of self-interest and cooperative fitness functions. During
the exploration, weight parameters provide further options
for layout optimisation prioritising different objectives. The
whole framework is initially verified with a reconfigurable
assembly cell. The optimised reconfigured layout is suc-
cessfully applied for ongoing projects at the University of
Nottingham. According the layout optimisation result, the
rearrangement cost is decreased by 33.4 %. The layout com-
pactness and the production time are improved for 3.8 times
and 2.3 times respectively. During the overall assembly pro-
cess implementation, there is no collision detected or any
robot configuration issues such as joint limits, reachability
and singularity at assembly points. Then, selection of the
weight parameters is further discussed in the second use case.
Three options, such as prioritising production time, collision
detection and compactness are discussed regarding the cor-
responding layout.

Although this paper aims to address dynamic facility
layout issues for a single robotic assembly cell, it can be
extended to multiple facility layout problems. Moreover, the
dynamic layout optimisation is investigated at both machine
level and station level in this paper. For multiple facility lay-
out optimisation, it will be at factory level. However, as the
fitness functions are only dependent on facility positions, the
proposed framework can run in parallel for each work cell
separately.

In terms of product family, small box product family
is within consideration, which includes winglets, rudders
and elevators. Given that the assembly of aerostructures
still requires high flexiblity, a manual assembly cell is also
included in Omnifactory. To enable better awareness of the
digital system, Siemens real-time tracking system is applied
to monitor the usage of different tools, such as drilling and
sealing guns.

Finally, the digital twin in this work is developed for
dynamic layout optimisation as given in Fig. 12. Currently,
the digital twinwith theoptimised layout result canbe applied
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further to simulate PLC signals and generate off-line robot
motion planning in Omnifactory. Given sensor information
derived from MindSphere, the digital twin model can be
viewed in real-time and provide specific factory information
for the physical world.
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