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Abstract 

Although river discharge simulations from global hydrological models have undergone extensive 

validation, there has been less validation of reservoir operations, primarily because of limited 15 

observational data. However, recent advancements in satellite remote sensing technology have facilitated 

the collection of valuable data regarding water surface area and elevation, thereby providing the ability 

to validate reservoir storage. In this study, we sought to establish a methodology for validation and 

intercomparison of reservoir storage within global hydrological model simulations using satellite-derived 

data. Accordingly, we chose two satellite-derived reservoir operation products, DAHITI and GRSAD, to 20 

create monthly time series storage data for seven reservoirs in the contiguous United States (CONUS) , 

with access to long-term ground truth data (the total catchment area accounts for about 9% of CONUS). 

We assessed two global hydrological models that participated in the Inter Sectoral Model Intercomparison 

Project (ISIMIP) Phase 3 project, H08 and WaterGAP2, with three distinct forcing datasets: GSWP3-

W5E5 (GW), CR20v3-W5E5 (CW), and CR20v3-ERA5 (CE). The results indicated that WaterGAP2 25 

generally outperforms H08; the CW forcing dataset demonstrated superior results compared with GW 

and CE; the DAHITI showed better consistency with ground observations than GRSAD if temporal 
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coverage is sufficient. Overall, our study emphasizes the potential uses of satellite remote sensing data in 

reservoir operations validation and underscores the importance of normalization and decomposition 

techniques for improved validation efficacy. The results highlight the relative performances of different 30 

hydrological models and forcing datasets, yielding insights concerning future advancements in reservoir 

simulation and operational studies. 

 

1 Introduction 

Artificial reservoirs play an integral role in the hydrological cycle and water resource management (Grill 35 

et al., 2019). Significant reservoirs have been incorporated into global hydrological models (GHMs) such 

as H08 (Hanasaki et al., 2008b, 2018), WaterGAP (Döll et al., 2009), LPJmL (Biemans et al., 2011), 

PCR-GLOBWB (Wada et al., 2011), and CWatM (Burek et al., 2020). The complex, condition-dependent 

nature of reservoir operations (i.e., the storage and release of upstream water for downstream advantages) 

has led to the development and implementation of several algorithms into GHMs (Haddeland et al., 2006; 40 

Hanasaki et al., 2006). Consequently, validation and intercomparison of reservoir operations for these 

models are particularly important. 

When new reservoir operation algorithms were introduced (Haddeland et al., 2006; Hanasaki et al., 

2006) and subsequently implemented into GHMs (Hanasaki et al., 2008a, 2008b, 2018; Döll et al., 2009; 

Biemans et al., 2011; Wada et al., 2011; Burek et al., 2020; Pokhrel et al., 2012), they were validated 45 

using in situ observations. Various model intercomparison projects have enabled an understanding of the 

relative benefits of specific models and algorithms. The Inter-Sectoral Impact Model Intercomparison 

Project (ISIMIP; Warszawski et al., 2014) facilitates the intercomparison of numerous GHMs under 

uniform simulation settings. Several studies have validated and intercompared hydrological variables 

such as river discharge (Zaherpour et al., 2018; Kumar et al., 2022), irrigation water demand (Wada et al., 50 

2013), and terrestrial water storage (Pokhrel et al., 2021). The first reservoir operation intercomparison 

was conducted by Masaki et al. (2017), who examined the effects of dams on simulated river discharge. 

They found substantial variations in model simulations, but their research was restricted to the Green-

Colorado River and the Missouri Mississippi River basins due to the global unavailability of observed 

gauged data. 55 
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Prior validations and intercomparisons of reservoir operations in multiple GHMs have been restricted 

to regions with extensive gauge observation records, such as the Green-Colorado and the Missouri-

Mississippi Rivers (Masaki et al. 2017). Thus, it is challenging to assess the performance of GHMs in 

simulating reservoir operations and identifying superior models. Concurrently, satellite remote sensing 

has emerged as a valuable tool for global validation, irrespective of geographical location (Alsdorf and 60 

Lettenmaier, 2003). A few studies have developed methodologies to determine reservoir storage using 

satellite-derived altimetry and surface area data (Busker et al., 2019; Gao et al., 2012). However, there 

remains a need to establish a method for utilization of the latest satellite-based datasets for GHM 

validation. 

This study was conducted to assess the feasibility of using satellite data to evaluate the performances of 65 

reservoir operation simulations in a multi-model and multi-forcing framework. We focused on seven 

strategically selected reservoirs across the Contiguous United States (CONUS) region. In accordance with 

the methodology developed by Gao et al. (2012) and Busker et al. (2019), we used remote sensing 

altimetry and surface area products to determine reservoir storage and its components in preparation for 

satellite-based reservoir storage observations. We used the outputs of two GHMs that participated in 70 

ISIMIP Phase 3a (Frieler et al., 2023) for stylized simulations of reservoir operations. Our research 

questions were as follows: 

1. Can satellite-based storage estimation data serve as a surrogate for ground truth data? 

2. Can we determine which GHMs or meteorological forcings perform better than others in model 

intercomparison projects, solely by satellite-based storage estimation? 75 

3. Do the findings on reservoir storage validation with satellite data align with ground observations? 

4. Are certain satellite products superior to others? 

To address these questions, we developed a comprehensive framework that thoroughly validated and 

intercompared multi-model and multi-forcing simulated reservoir storage with available satellite and 

ground observations. 80 

 

2 Materials and Methods 
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2.1 Simulation data 

2.1.1 ISIMIP Phase 3a 85 

The third-round framework of the ISIMIP, Phase 3a, is focused on the evaluation and enhancement of 

impact models within the context of climate change (Frieler et al., 2023). As of June 9, 2023, nine models 

have participated in the global water sector, but only a few have completed simulations that include 

reservoir outputs. In this study, we utilized two GHMs, namely H08 and WaterGAP2 (WGP), on the basis 

of three meteorological forcings that are bias-adjusted combinations of two reanalyses, beginning in 1979 90 

for W5E5 and ERA5, respectively (Lange et al., 2022): 

1. GSWP3 combined with W5E5 (GSWP3+W5E5, hereafter referred to as GW) 

2. 20CRv3 combined with W5E5 (20CRv3+W5E5, hereafter referred to as CW) 

3. 20CRv3 combined with ERA5 (20CRv3+ERA5, hereafter referred to as CE) 

These forcing data are globally available at 0.5° × 0.5° spatial resolution at daily intervals. The 95 

combination of the two models and three forcings yields six model simulations, with model and forcing 

names combined (e.g., H08 forced by GW results in H08_GW). Additional details regarding the 

simulation protocol can be found at https://protocol.isimip.org/ and in the work by Frieler et al. (2023). 

 

2.1.2 H08 model 100 

The H08 model is a grid-cell-based GHM designed to address the impacts of human activities on the 

global hydrological cycle. H08 comprises six sub-models: land surface hydrology, river routing, reservoir 

operation, crop growth, environmental flow, and anthropogenic water withdrawal (Hanasaki et al., 2008a, 

b). The model was subsequently updated to include groundwater recharge and abstraction, aqueduct water 

transfer, local reservoir, seawater desalination, and return flow and delivery loss schemes (Hanasaki et 105 

al., 2018). By incorporating these submodules and schemes, H08 simulates natural and anthropogenic 

hydrological processes at a spatial resolution of 0.5° on a daily scale by resolving water and energy 

balance. Specifically, H08 includes explicit flow regulation of 963 major global reservoirs. The modeling 

of release from the reservoir is based on the work of Hanasaki et al. (2006). Reservoirs primarily used for 

irrigation are classified accordingly; all other reservoirs are considered non-irrigation reservoirs. The 110 

water demand for irrigation reservoirs is presumably more affected by the seasonal cycle due to the 
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seasonal nature of irrigation water requirements. Land surface parameters were optimized based on 

climatic zones using the method proposed by Yoshida et al. (2022). 

 

2.1.3 WaterGAP model 115 

WaterGAP (WGP) is a GHM that comprises two primary components (Müller Schmied et al., 2021). 

The WGP Global Water Use Models calculate water use estimates for five sectors: irrigation, domestic, 

manufacturing, cooling water for electricity generation, and livestock. In contrast, the WGP Global 

Hydrology Model uses water balance equations to calculate changes in water storage compartments and 

water flows between them. It considers fluxes such as groundwater recharge, evapotranspiration, and river 120 

discharge, along with net abstractions from surface water and groundwater, as calculated in a linking 

module from the sectoral water use models. Its calculations are performed with a daily time step. The 

reservoir operation has been described by Döll et al. (2009) and Müller Schmied et al. (2021). The 

reservoir algorithm follows the method of Hanasaki et al. (2006), differentiating between reservoirs used 

for irrigation and other purposes, and considering both reservoirs and regulated lakes. Contrary to the 125 

method of Hanasaki et al. (2006), the annual release from a reservoir also depends on the long-term 

average mean streamflow of the grid cell where the reservoir is located, considering the water balance of 

the reservoir. In the model version used in ISIMIP3 (WaterGAP 2.2e), 1255 "global" reservoirs with 

storage volumes of ≥ 0.5 km3 and 5722 "local" reservoirs (with smaller storage volumes) are included. 

However, only the global reservoirs are managed with the reservoir algorithm. 130 

The primary aim of WGP is the provision of reliable estimates of renewable water resources on a global 

scale. To accommodate uncertainties in GHMs, a calibration routine is applied in WGP. This calibration 

ensures that the long-term annual simulated river discharge closely matches observed discharge within a 

± 10% tolerance at grid cells representing calibration stations. Calibration is performed using observed 

discharge data from a selection of 1509 discharge observation stations, which have been collated from 135 

three data sources (Müller Schmied and Schiebener, 2022). 

 

2.2 Reservoir specification data 
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We adopted reservoir parameters such as dam name, location (longitude and latitude), storage capacity 

(Sc), and maximum surface area (Ac) from data provided in the ISIMIP3a protocol. These data are 140 

primarily obtained from the Global Reservoir and Dam Database (GRanD) v1.3, which was developed 

by the Global Water System Project (Lehner et al., 2011). The data also include a set of dams provided 

by Dr. Jida Wang from Kansas State University. This collaboration has resulted in a comprehensive 

database of 7330 dams, either constructed or under construction, spanning the years 286 to 2020. The 

cumulative global storage capacity of the database is approximately 7000.5 km3. 145 

 

2.3 Ground observation data 

Reservoir storage is always precisely monitored by dam operators, but the long-term time series are 

seldom published openly. This has been the primary obstacle in global reservoir modeling and analysis 

in the past. ResOpsUS (Steyaert et al., 2022) is an exhaustive dataset containing historical information 150 

about reservoir inflows, outflows, and storage time series for 679 major reservoirs across the United States. 

The data, with daily temporal resolution, enable detailed analysis of reservoir dynamics. However, the 

temporal coverage varies among reservoirs based on factors such as construction date and data availability. 

The dataset spans the years from 1930 to 2020, with the most robust data for the period from 1980 to 

2020. Notably, reservoirs in the dataset contain more than half of the total storage capacity of large 155 

reservoirs in the U.S., with a minimum storage threshold of 0.1 km3.  

 

2.4 Satellite data 

2.4.1 DAHITI (Surface water level time series) 

The Database for Hydrological Time Series over Inland Waters (DAHITI) is a web service that offers 160 

valuable information on water levels, surface area, and volume variations in rivers, lakes, and reservoirs 

(Schwatke et al., 2015; 2019; Busker et al., 2019). DAHITI uses satellite altimetry technology to measure 

water levels in inland bodies, extending beyond its initial application in sea-level monitoring. The 

methodology utilizes an amalgamation of extended outlier rejection, a Kalman filter, and cross-calibrated 

multi-mission altimeter data. These data are collected from satellites such as Envisat, ERS-2, Jason-1, 165 

Jason-2, TOPEX/Poseidon, and SARAL/AltiKa, considering their respective uncertainties. This 
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comprehensive approach facilitates more accurate estimation of water level time series (Schwatke et al., 

2015). The data are available from 1992 to present. Temporal resolution varied within the period, but in 

this study, a simple monthly mean of the available data was considered.  

In addition to water levels, DAHITI provides surface area time series for lakes and reservoirs, utilizing 170 

optical imagery (Schwatke et al., 2019). The temporal resolution of these measurements varies according 

to the imagery used; for instance, Landsat provides data every 16 days, whereas Sentinel-2 provides data 

every 10 days. Different satellite missions can be merged to further enhance this resolution. These surface 

area time series are processed using a blend of 10-m (Sentinel-2) and 30-m (Landsat) spatial resolution 

imagery (Schwatke et al., 2019). The methodology initially designates a broad area of interest. 175 

Subsequently, it combines five remote-sensing-based water indices to compute the water mask, based on 

land-water differentiation. The final step involves extraction of the water surface area time series 

(Schwatke et al., 2019). In this study, we used altimetry data from DAHITI to estimate reservoir storage, 

primarily because water surface area data were not universally available for all reservoirs under 

consideration. 180 

 

2.4.2 GRSAD (Surface area time series) 

The Global Reservoir Surface Area Dataset (GRSAD) is a creation of Zhao and Gao (2018) and Gao 

and Zhao (2020). This dataset provides a monthly time series of water surface area data for 6,817 

reservoirs worldwide, collectively representing a storage capacity of 6,099 km3 (Zhao and Gao, 2018). 185 

The time frame of this dataset ranges from 1984 to 2015. 

GRSAD builds upon the earlier work of Pekel et al. (2016); it includes automatic corrections for 

disruptions caused by clouds, cloud shadows, and terrain shadows. The determination of maximum 

surface area extent is based on a 500-m outward extension from GRanD shapefiles (Lehner et al., 2011). 

These shapefiles are developed from Shuttle Radar Topography Mission (SRTM; Jarvis et al., 2008) data, 190 

identifying water regions as flat zones with uniform elevation. As a result, any surface area beyond the 

500-m threshold is not considered part of the reservoir. 
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The dataset primarily uses 30-m Landsat satellite imagery; it does not incorporate data from other 

satellite sources. Although it provides extensive information regarding reservoir surface areas, it does not 

offer altimetry or volumetric change data. 195 

 

2.4.3 GRBD (Bathymetry) 

The Global Reservoir Bathymetry Dataset (GRBD) constitutes another category of satellite product (Li 

et al., 2020). This dataset utilizes multi-source satellite imagery and altimetry data to create detailed 

bathymetry information for 347 reservoirs worldwide, representing approximately 50% of the global 200 

storage capacity. In addition to bathymetry data, GRBD offers valuable relationships such as Area-

Elevation (A-h, refer to Section 2.6) and key reservoir parameters such as Sc. 

 

2.5 Reservoir selection 

The process of identifying common reservoirs across H08, WGP, ResOpsUS, GRSAD, and GRBD 205 

datasets is streamlined by the shared use of the GRanD ID. This sharing facilitates integration and 

comparison of data across the different datasets. However, DAHITI uses a unique identification system, 

thereby requiring individual examination of each reservoir for data availability. Accordingly, a meticulous 

selection procedure was conducted. First, common reservoirs  among H08, WGP, ResOpsUS, GRSAD, 

and GRBD were identified. Then they were searched on the DAHITI website. After a comprehensive 210 

review, only seven reservoirs listed in Table 1 were found in all datasets and were thus selected as the 

foundation for analysis. This considerable shrink in the number of reservoirs is attributed to the 

availability of ground observation data (i.e. data are available in the CONUS only). The locations of these 

reservoirs in the H08 and WGP models within the 0.5° × 0.5° grids are indicated in Table S1. Table S2 

displays the Sc utilized in our study for these reservoirs. Identifying common reservoirs to all datasets is 215 

a prerequisite for this study, which evaluates the agreement of satellite products and the performance of 

GHMs. 
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Table 1: Specifications of dams and corresponding reservoirs considered in this study. Year corresponds to the initial 
year of reservoir operation, Hdam corresponds to dam height, and Ac corresponds to the maximum water surface area 
of the reservoir. Longitude and latitude indicate the location of the dams. 220 

Dam 
name 

Lake 
name 

GRanD 
ID 

Hydro
lake 
ID 

DAHITI 
ID 

River Lon Lat Yea
r 

Hdam 
(m) 

Ac 
(km2) 

Main 
purpose 

Hoover Lake Mead 610 809 204 Colorado 
River 

-114.74 36.02 1935 223 580.95 Water 
supply 

Glen 
Canyon 

Lake Powell 597 802 107 Colorado 
River 

-111.49 36.94 1963 216 120.75 Hydro-
electricity 

Fort Peck Fort Peck 
Lake 

307 721 11112 Missouri 
River 

-106.41 48.00 1957 78 814.09 Flood 
control 

Toledo 
Bend 

Toledo Bend 
Lake 

1269 838 10247 Sabine 
River 

-93.57 31.17 1966 34 599.62 Hydro-
electricity 

Structure 
193 

Lake 
Okeechobee 

1957 69 57 Taylor 
Creek 

-81.10 26.94 1972 11 1418.77 Flood 
control 

Wesley 
E. Seale 

Lake Corpus 
Christi 

1317 9615 13139 Nueces 
River 

-97.87 28.05 1958 25 59.14 Recreation 

Coolidge San Carlos 
Lake 

656 9440 13130 Gila 
River 

-110.52 33.18 1929 77 15.47 Irrigation 
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2.6 Reservoir storage calculation from satellite data 

For most reservoirs, as depicted in Figure 1, there is a linear relationship between the water surface area 

(A) and the water surface elevation (h), represented as: 225 

 h = a × A + b,    (1) 

where a and b represent the slope and intercept, respectively, obtained from a linear regression (Gao et 

al., 2012; Busker et al., 2019). These parameters are supplied by the GRBD dataset in our study (refer to 

Table S2). 

 230 
Figure 1: Relationship between water surface area (A), water surface elevation (h), and the change in storage volume (∆𝑺𝑺). 

 

The volume change for a particular period is then calculated as the area of a trapezoid, as described by 

Gao et al. (2012): 

𝛥𝛥𝛥𝛥 = (ℎ2 −ℎ1) ·(𝐴𝐴1+𝐴𝐴2)
2

   (2)  235 
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where ∆S represents the volume change, A1 and A2 are surface areas at the start and end of the period, 

and h1 and h2 are their respective water surface elevations. 

Gao et al. (2012) extended the linear relationship to Sc of the reservoir, resulting in the expression of 

the corresponding maximum surface area (Ac) and maximum water surface elevation (hc) as: 

𝛥𝛥𝑆𝑆 = 𝛥𝛥𝑆𝑆 −  (ℎ𝑐𝑐 −ℎ𝑖𝑖) ·(𝐴𝐴𝑐𝑐+ 𝐴𝐴𝑖𝑖)
2

,   (3) 240 

where Si represents the volume of water stored in the reservoir, corresponding to water surface area Ai 

and water surface elevation hi. However, because hc is unknown, the storage estimation from GRSAD 

data is computed using the linear equation described in eq. 1, as follows: 

 hc = a × Ac + b    (4) 

Busker's Method (Busker et al., 2019) extends the linear relationship toward the minimum storage (i.e., 245 

zero storage); thus, the corresponding surface area is also zero, and the water surface elevation is the bed 

elevation of the reservoir. 

𝛥𝛥𝑆𝑆 =  (ℎ𝑖𝑖 −𝑏𝑏) · 𝐴𝐴𝑖𝑖
2

,    (5) 

Busker's method requires fewer parameters; Ac and hc are unnecessary. Additionally, the storage volume 

can be computed using only h or A by substituting the linear A-h relationship (eq. 1): 250 

𝛥𝛥𝑆𝑆 = (ℎ𝑖𝑖−𝑏𝑏)2

2𝑎𝑎
= 𝑎𝑎.(𝐴𝐴𝑖𝑖)2

2
     (6) 

Equation 6 is applicable for GRSAD and DAHITI datasets, which contain time series of both surface area 

and elevation. 

 

2.7 Analysis 255 

2.7.1 Outline 

Initially, satellite data were compared with ground observations to determine compatibility with 

evaluations of model simulations. Subsequently, simulated reservoir storage from the two ISIMIP3a 

models, H08 and WaterGAP, was validated against two satellite datasets, GRSAD and DAHITI. 

Reservoir storage data were examined in three forms: raw, normalized, and decomposed. The 260 

methodologies for normalization and decomposition are described below. Refer to Table 2 for the data 

utilized. 
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Table 2. Reservoir storage data used in this study. 

 

2.7.2 Normalization 265 

We normalized the monthly storage time series using the following equation: 

𝛥𝛥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑖𝑖 = Si−min(S)
max(S)−min(S)

 ,  (7) 

where min(s) and max(s) represent the minimum and maximum values of the available monthly storage 

time series, respectively. Different datasets and methods utilized to calculate S with GRSAD lead to the 

same normalized storage (Table 2) because the resulting volumes are linearly proportional to each other. 270 

Thus, by normalizing the monthly storage time series, information about the absolute value of reservoir 

storage is omitted; only the rate of change information is retained. 

 

2.7.3 Decomposition 

Category Name/ Description Acronym 

GHMs H08 H08 

WaterGAP2.2e WGP 

Input forcings GSWP3+W5E5 GW 

20CRv3+W5E5 CW 

20CRv3+ERA5 CE 

Simulations e.g., H08 forced by GW H08_GW 

Ground 

observation 

ResOpsUS Grd_obs 

Reservoir volume 

from satellite data 

 

 Raw Storage Normalized 

Storage 

GRSAD area + Sc from GRBD + Gao's Method GRSAD_GRBD GRSAD 

GRSAD area + Sc from ISIMIP + Gao's Method GRSAD_ISIMIP GRSAD 

GRSAD area + Busker's Method [Sc not needed] GRSAD_Busker GRSAD 

DAHITI elevation + Busker's method [Sc not needed] DAHITI_Busker DAHITI 
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The monthly storage time series (Sy,m) was decomposed (Figure 2) into annual average storage (Sy), mean 275 

annual seasonal variability (hereafter referred to as seasonal variability or 𝛥𝛥�̅�𝑛), and residuals (ey,m), as 

follows: 

𝛥𝛥𝑦𝑦,𝑛𝑛 = 𝛥𝛥𝑦𝑦 +  𝛥𝛥�̅�𝑛 + 𝑒𝑒𝑦𝑦,𝑛𝑛 ,  (8) 

Sy denotes the annual average storage volume for a reservoir from January to December, computed by 

averaging the 12 monthly storage values. 𝛥𝛥�̅�𝑛 is determined by calculating the mean storage value for each 280 

month after subtracting the mean annual storage for that specific year; thus, it represents storage 

fluctuation within a year due to seasonal factors. ey,m constitutes the residual storage value after removing 

both the annual average storage and the seasonal variability, thus representing the storage component not 

attributable to annual or seasonal variations.  

 285 

 
Figure 2: Components of volumetric storage investigated in this study. Raw (b-e) and normalized values (f-i). 

 

2.8 Validation 
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Two metrics, Pearson's correlation coefficient (r) and Nash–Sutcliffe efficiency (NSE), were used to 290 

validate time series data. Any months corresponding to missing values in either observation or simulation 

were excluded from the validation process (the percentage of missing values will be reported later). 

r, which measures synchronicity in value fluctuations between simulations (s) and evaluations (e), is 

calculated as: 

𝐫𝐫 = ∑ (𝐬𝐬𝐢𝐢−�̅�𝐬).𝐧𝐧
𝐢𝐢=𝟏𝟏 (𝐞𝐞𝐢𝐢−𝐞𝐞�)

�∑ (𝐬𝐬𝐢𝐢−�̅�𝐬)𝟐𝟐𝐧𝐧
𝐢𝐢=𝟏𝟏 .�∑ (𝐞𝐞𝐢𝐢−𝐞𝐞�)𝟐𝟐𝐧𝐧

𝐢𝐢=𝟏𝟏

,   (9)  295 

where s̅ and e� represent the arithmetic means of the simulation (s) and evaluation (e) data, respectively. r 

ranges from -1 to 1, with 1 indicating a perfect positive correlation, -1 representing a perfect negative 

correlation, and 0 denoting no correlation. A 'two-sided' t-test (using the Wald test with a t-distribution of 

the test statistic) is used to determine the statistical significance of the correlation by calculating the p-

value. The null hypothesis is that the slope of the regression line is zero; the alternative hypothesis is that 300 

the slope is non-zero. If p < 0.05, the correlation is considered statistically significant. 

NSE, which measures the degree of matching between the values of evaluations (e) and simulations (s), 

is calculated as: 

𝑁𝑁𝛥𝛥𝑁𝑁 = 1 −
�∑ (𝐬𝐬𝐢𝐢−�̅�𝐬)𝟐𝟐𝐧𝐧

𝐢𝐢=𝟏𝟏

�∑ (𝐞𝐞𝐢𝐢−𝐞𝐞�)𝟐𝟐𝐧𝐧
𝐢𝐢=𝟏𝟏

,  (10) 

where s̅ and e� represent the arithmetic means of the simulation (s) and evaluation (e) data, respectively. 305 

NSE values range from -∞ to 1, with 1 indicating a perfect match. 
 

3 Results 

 

3.1 Validation of satellite data 310 

3.1.1 Monthly reservoir storage 

The monthly time series of storage volume for the seven selected reservoirs (reservoir storage, S) from 

two remote sensing datasets were compared with ground-based observations (Figure 3). The volumes 

calculated using satellite data (GRSAD and DAHITI) significantly fluctuated depending on the data 

source and the calculation method utilized for raw storage (Figure 3a-g). Intriguingly, even when the 315 
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same surface area data from GRSAD were used, the storage estimates varied according to the 

methodologies adopted (gray lines). However, after normalization, the satellite-derived reservoir volumes 

showed good alignment with ground observations (Figure 3h-n). 

 
Figure 3: Monthly reservoir storage from satellite data and ground observation. Raw monthly reservoir storage (a-g) and normalized 320 
storage (h-n) for the seven selected US reservoirs from ground observation (black) and two satellite data GRSAD (gray) and DAHITI 
(red). For GRSAD, three volumes are obtained by different combinations of data and methods (Table 2). Correlation coefficients (r) 
and NSE values for GRSAD_Gao and DAHITI_Busker are shown in the figure and Tables S4-5. 

 

Several factors contribute to the variances in satellite-derived S, utilizing different methods and data. 325 

For instance, the difference between S derived from GRSAD_ISIMIP and GRSAD_Gao can be attributed 

to the varying reservoir storage capacities used (Table S2). Intriguingly, S calculated using Busker's 

method (GRSAD_Busker), which does not consider the maximum storage parameters such as Ac, hc, and 

Sc, was closest to the observed storage. 

The raw storage volume (S) calculated using DAHITI_Busker and GRSAD_Busker displayed 330 

considerable agreement for Hoover, Fort Peck, Toledo Bend, and Coolidge (Figure 3a, c, d, and g). This 

agreement is promising because these calculations used entirely different satellite products: surface area 
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imagery and water level altimetry. However, discrepancies were evident for Glen Canyon and Structure 

193 (Figure 3b and e). 

For Glen Canyon, temporal storage variability was lost when surface area data from GRSAD were used, 335 

but not when surface elevation data from DAHITI were used. Glen Canyon, with its significant 

differences in surface area parameters considered in GRSAD and GRBD, showed limitations in the linear 

A-h relationship (Li et al., 2021). Although Li et al. (2021) previously described this issue and manually 

corrected a few reservoirs (including Glen Canyon), some persistent problems with GRSAD data remain. 

Structure 193, also known as Lake Okeechobee, had a shallow average depth of 2.7 m but an extensive 340 

surface area (1900 km2). Therefore, its A-h relationship was considerably different from the schematic 

shown in Figure 1, such that it had a very small value and b was negative (Equation 1, Table S2). 

As clearly seen in the panels for the Wesley and the Coolidge Dams, the temporal coverage of DAHITI 

is quite limited (Figure 3f, g, m, n). For such cases, statistics should be viewed with care. 

In summary, the raw satellite-based storage time series exhibited considerable uncertainty due to factors 345 

such as estimation of reservoir surface area, estimation of h0 and b (Figure 1), estimation of hc and Ac, 

and temporal coverage. The success in normalization is largely due to the proportionate contraction and 

expansion of different reservoir areas, if a significant portion of the area is considered. Consequently, 

normalization enables qualitative validation, including sign of change and timing of high/low peaks, of 

the abilities of hydrological models to simulate reservoir operations. 350 

 

3.1.2 Decomposed monthly reservoir storage from satellite and ground observation 

The normalized time series for satellite-derived and ground-based volumes were decomposed into 

annual mean storage, seasonal variability, and residuals (Figure 4). The decomposed raw storage (S) is 

depicted in Figure S1. The correlation coefficient and NSE are displayed in Table S6. 355 
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Figure 4: Decomposed normalized reservoir storage components from satellite data and ground observation. Annual mean storage 
(a-g), seasonal variability (h-n), and residuals (o-u) from satellite-derived data for normalized storage compared with ground 
observations. Corresponding correlation coefficients (r) and NSE values for DAHITI and GRSAD are annotated for each reservoir 360 
in the figure and Table S8. r* indicates insignificant correlation (p > 0.05).  

 

The annual average of normalized reservoir storage (Snorm) is consistent with ground observations for 

both GRSAD and DAHITI (Figure 4a-g). For 10 of 14 cases, correlation coefficient and NSE values for 

GRSAD and DAHITI exceed 0.5. DAHITI exhibits poor Snorm,y agreement for Structure 193; reservoirs 365 

with small surface area variability relative to water depth typically display poor agreement with ground 

observations (Busker et al., 2019). The agreement of DAHITI for Wesley and Coolidge dams also 

diverged from ground truth because temporal coverage was limited. Data for Wesley are available only 
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from 12/2018 to 12/2019, or 13 months of the 480-month analysis period. Data for Coolidge are available 

for 78 months between 06/1995 and 05/2016 (252 months). Although both DAHITI and GRSAD 370 

demonstrate high correlation coefficients and NSE values, DAHITI agrees better in most reservoirs (Table 

S6), with the exception of the Coolidge Dam—despite a high correlation with DAHITI, the NSE is low 

due to limited availability of ground observation data. 

The seasonal variability of normalized reservoir storage (Figure 4h-n) reveals strong alignment between 

ground observations and DAHITI, but not GRSAD, for Fort Peck, Toledo Bend, and Structure 193. This 375 

finding is corroborated by the results in Table S6, which indicate that correlations and NSE values are 

generally higher for DAHITI than for GRSAD. For Toledo Bend and Structure 193, the correlation is not 

statistically significant (p > 0.05) for GRSAD, although long-term data are available. However, GRSAD 

agrees better than DAHITI for Wesley and Coolidge because of the latter's limited temporal coverage. 

The residual of normalized storage also exhibits strong agreement between satellite data and ground 380 

observations for most reservoir-satellite combinations, with high correlations and NSE values (Figure 4o-

u). For reservoirs with sufficient temporal coverage (i.e., excluding Wesley and Coolidge), these values 

are generally higher for DAHITI than for GRSAD. 

Overall, satellite-derived decomposed storage components (annual storage, seasonal variability, and 

residual) consistently compared well with ground-based observation storage components; correlation (> 385 

0.7) and NSE (> 0.5) values were high (Moriasi et al., 2007). In most cases, the performance of annual 

storage was prominent among the decomposed components, particularly for GRSAD-based Snorm (Table 

S6). 

These satellite-derived components of decomposed normalized monthly storage compared well against 

their ground observation counterparts. The annual storage, seasonal variability, and residuals, calculated 390 

after normalization of the original monthly storage, are suitable for validation of model simulations. 

DAHITI is highly reliable when sufficient, continuous data are available (for instance, data for > 5 years). 

When DAHITI data are unavailable or limited, GRSAD remains a viable (although less robust) alternative. 

Short-term data (< 3 years) and highly discontinuous data, such as Wesley for DAHITI and Coolidge for 

ground observation, should not be used for validation. 395 
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3.2 Validation of simulated reservoir storage from ISIMIP3a 

The simulated normalized monthly reservoir storage was initially validated against satellite-derived 

observations. The following sections compare the annual storage and seasonal variability, calculated 

using the normalized time series of monthly reservoir storage from ISIMIP3a simulations, with their 400 

respective counterparts from two satellite products. Finally, the consistency of the validation metric 

evaluated against satellite data is compared with the consistency of ground observations. 

 

3.2.1 Monthly storage 

The model simulations were reasonably consistent with satellite-based observations for Snorm,y,m (Figure 405 

5a-g). In particular, simulations for Fort Peck had high correlations with both GRSAD and DAHITI. 

Conversely, Snorm,y,m for Structure 193 performed relatively poorly against DAHITI but performed better 

against GRSAD. On average, the model performed better when compared with GRSAD than when 

compared with DAHITI (Figure 5h and i). However, for Toledo Bend (Figure 3d), performance relative 

to DAHITI surpassed performance relative to GRSAD (Figure 5h and i). Notably, the performances of 410 

simulations decreased after 2005 (Figure 5a-g). 
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Figure 5: Validation of simulated monthly normalized reservoir storage. (a)-(g) Model simulations compared with satellite data and 
ground truth for monthly normalized reservoir storage. Color shading indicates mean variation among three forcing datasets, 
representing sensitivity to input forcings (𝝈𝝈�), for H08 (yellow) and WGP (blue). (h)-(j) Average correlation coefficient with three 415 
evaluation datasets: GRSAD, DAHITI, and ground observation, respectively, for each reservoir (a)-(g). Colors indicate correlation 
classification. Values in square brackets indicate percentage temporal coverage from 01/1980 to 12/2019 of reservoir storage for 
each reservoir’s evaluation data. Reservoirs with hatch marks had < 30% coverage and were not included in subsequent analyses.  

 

Among the GHMs, the performance of WGP (�̅�𝑟 > 0.5 for 8/12) was superior to the performance of H08 420 

(�̅�𝑟 > 0.5 for 4/12) (Figure 3h and i). Compared with WGP, H08 was generally more sensitive (𝜎𝜎�) to input 

forcings (Figure 3a-g). Among the three forcings, GW (�̅�𝑟 > 0.5 for 7/12) and CE (�̅�𝑟 > 0.5 for 7/12) 

performed better than CW (�̅�𝑟 > 0.5 for 6/12). Direct comparison of r between CE and GW showed that 

CE had higher values (CE > GW for 7/12). Noteworthy is the decline in simulation performance since 

2005 for undiscovered reasons. Because most DAHITI data included this period, performance relative to 425 

DAHITI is generally poor. Considering its long-term consistent coverage, GRSAD demonstrates better 

consistency with ground observations (i.e., Figure 5h displays better alignment with Figure 5j than with 

Figure 5i). Thus, in the validation of Snorm,y,m for ISIMIP3a, GRSAD is a more reliable evaluation data 

source than DAHITI. 
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 430 

3.2.2 Annual average storage 

Figure 6: Validation of simulated annual average normalized reservoir storage. Same as Figure 5 but for annual average normalized 
reservoir storage (Snorm,y).  

 435 

The annual storage simulations were consistent with satellite observations in most cases (Figure 6). In 

particular, simulations for Fort Peck and Coolidge demonstrated good agreement with both DAHITI and 

GRSAD (Figure 6c and g). For most reservoirs, the average correlation coefficient was > 0.5 for 

simulations across two models and three forcings compared with GRSAD (Figure 6h); this finding was 

consistent with results from ground observation comparisons (Figure 6j). Because there were obvious 440 

discrepancies between DAHITI and ground observations (Figure 6i-j), we only used GRSAD for further 

comparisons of GHMs and forcings in this subsection. 

The performances of the two GHMs concerning Snorm,y correlations with satellite data were nearly 

equivalent; WGP (�̅�𝑟 > 0.5 for 7/7) was superior to H08 (�̅�𝑟 > 0.5 for 6/7) (Figure 6h). Additionally, H08 

displayed a slightly larger standard deviation, compared with WGP (Figure 6a-g), indicating that it had 445 
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substantially more interannual variability with input forcings. Among the input forcings, CE performed 

best in terms of the correlation coefficient, followed by GW and CW. WGP_CE correlation coefficients 

were considerably higher than the correlation coefficients of other GHM-Forcing combinations for most 

satellites (Figure S3). 

The GHMs readily captured the interannual variation of reservoir storage. However, there were some 450 

limitations in satellite data that hindered validation of reservoir storage. For instance, validation relative 

to DAHITI was inconsistent with ground observations and GRSAD, possibly because > 50% of DAHITI 

data covered the period after 2005. As discussed earlier, the model's performance deteriorated during this 

period, confirmed by comparisons with ground observations. Thus, although DAHITI outperformed 

GRSAD relative to observations (as discussed in Section 3.1.2), correlations of simulated Snorm,y were 455 

consistent with ground observations for GRSAD but not for DAHITI. 

 

3.2.3 Seasonal variability 

 
Figure 7: Validation of simulated monthly seasonal variability of normalized reservoir storage. Same as Figure 5, but for seasonal 460 
variability of normalized reservoir storage (Snorm,m). For Wesley (f), the DAHITI-derived storage is fully represented in Figure 4m.  

https://doi.org/10.5194/hess-2023-215
Preprint. Discussion started: 12 September 2023
c© Author(s) 2023. CC BY 4.0 License.



23 
 

The model simulations adequately captured the seasonal cycle of reservoir storage in many instances. 

The correlations of simulations with both satellite datasets were generally high, such that many values 

exceeded 0.5 (21/35 for GRSAD and 24/35 for DAHITI), except the Hoover and Wesley dams. For 

instance, the simulated peak timing of the Hoover Dam (April) lagged the satellite products (from January 465 

to March) by 1-3 months, resulting in weaker correlations. 

Both H08 (�̅�𝑟 > 0.5 for 9/14) and WGP ( �̅�𝑟 > 0.5 for 8/14) performed particularly well in terms of 

simulating monthly variability in most reservoirs (Figure 7h and i); WGP was superior to H08 (for 9/14 

cases). H08 demonstrated less robust performance for the Hoover and Wesley Dams, but WGP displayed 

relatively strong correlations with observations for these reservoirs. Therefore, WGP demonstrated 470 

superior overall performance compared with H08. Moreover, H08 exhibited greater variability according 

to input forcings, compared with WGP. Among the input forcings (Figure 7h and i), GW simulations (�̅�𝑟 

> 0.5 for 11/14) outperformed CW (�̅�𝑟 > 0.5 for 9/14) and CE (�̅�𝑟 > 0.5 for 8/14). Even in terms of r values, 

GW performed best for 8/14 cases among the three forcings (Figure 7h and i). This result is consistent 

with the evaluation relative to ground observations, where 5/7 reservoirs had the highest correlation for 475 

GW (Figure 7j).  

Comparison of simulations showed that DAHITI and GRSAD aligned with ground observations; 

DAHITI demonstrated relative consistency. However, there were instances of contradictory outcomes, 

such as WGP validation for the Fort Peck Dam and the Toledo Bend Dam, where a weak correlation with 

GRSAD differed from a strong correlation with DAHITI. Cases with very short data availability periods, 480 

such as Wesley and Coolidge for DAHITI, should be excluded from validation. In these instances, 

GRSAD should be used because it can appropriately capture the seasonal variation due to its long-term 

data availability. However, when DAHITI has sufficient temporal coverage, it outperforms GRSAD. 

Opposite conclusions resulted from the H08-WGP comparison for Structure 193. In this case, the 

simulated seasonal cycle of WGP for Structure 193 closely correlated with GRSAD, but the amplitude 485 

was considerably smaller. This discrepancy leads to questions regarding the reliability of a single 

evaluation data source. Therefore, in the absence of ground-based observations, multiple satellite data 

products and metrics should be used to increase confidence in validation and intercomparison results. 
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When a sufficient number of reliable satellite products were available, it would be possible to calculate 

the mean and ranges of satellite data ensemble. 490 

As expected, the seasonality of reservoir storage was relatively stable compared with annual storage and 

residuals. This phenomenon is evident from the high correlations of seasonal variability (Figure 7) relative 

to annual storage (Section 3.2.2, Figure 6). 

 

3.3 Uncertainties 495 

The present study was conducted on the basis of numerous works that enabled satellite monitoring of 

artificial reservoirs, including the estimation of absolute storage volumes by Gao et al. (2012). 

Consequently, this study inherited some uncertainties from the previous efforts. There were four main 

issues. First, the methods in previous studies assumed a linear A-h relationship for reservoir storage. This 

relationship is not genuinely linear, particularly when the reservoir is near full or empty. The previous 500 

approaches also required knowledge of water surface elevation at storage capacity; such information is 

not currently available in published global reservoir inventories. Therefore, significant uncertainties may 

arise when calculating reservoir storage using these parameters (Gao et al., 2012). Furthermore, the 

records in the inventories are not necessarily error-free or consistent with information in other inventories. 

This systematic approach demands extensive quality checks among global reservoir inventories. Second, 505 

the limitations in area-based satellite products (i.e. GRSAD). Discrepancies in the consideration of water 

surface area extents (i.e., distinguishing between reservoir and river), as noted in the case of the Glen 

Canyon Dam (Section 3.1.2), lead to concerns about the reliability of water surface area datasets. Third, 

the limitations in altitude-based satellite products (i.e. DAHITI). This study found that DAHITI agrees 

better with the ground observation than GRSAD, but the advantage is largely deteriorated by its high 510 

frequency of missing data. Further technical advancement in data processing is expected for more 

extensive spatio temporal coverage of this type of data. Due to these concerns, we abandoned the use of 

absolute storage estimates. Although we showed that the timing and rate of rise and fall can be validated, 

a significant limitation of our study was the loss of storage magnitude information. Finally, since 2005, 

there has been a clear discrepancy between simulation results and ground observations. This issue should 515 
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be further examined from various aspects, including validation with other variables and at different 

locations.   

 

4 Conclusions 

In this study, we examined the feasibility of using satellite reservoir storage estimations as an alternative 520 

to ground truth, applying them to validate two global hydrological models from the ISIMIP. The critical 

findings for the specific research questions we posed are as follows. 

The first question was, "Can satellite-based storage estimation data serve as a surrogate for ground truth 

data?” Based on a detailed comparison of two satellite products and ground observations, we found that 

the satellite products can be used as a surrogate for ground truth when two key criteria are met. First, 525 

because there is significant uncertainty when converting raw satellite observations (i.e., water surface area 

and water level altimetry) into absolute reservoir storage volumes, both satellite and simulation data 

should be normalized before comparison. Second, the satellite observation period must be sufficiently 

long (i.e., 5 years) to correctly capture long-term trends and sample monthly storage variation. The 

normalized reservoir storage can be further decomposed into annual average storage, mean monthly 530 

storage, and residuals. As expected, seasonal variability exhibits the highest correlations, followed by 

annual storage and residuals. For seven reservoirs in CONUS, the two ISIMIP3a models, H08 and WGP, 

demonstrated satisfactory performance in terms of normalized annual average storage and seasonal 

variability. 

The second question was, "Can we determine which GHMs or meteorological forcings perform better 535 

than others in model intercomparison projects, solely by satellite-based storage estimation?" We found 

that, overall, WGP demonstrated slightly better performance compared with H08 (Figures 5-7), although 

differences between the two models were minor. Considering the forcing data, CE and GW exhibited the 

best performances for annual storage and seasonal variability, respectively. Therefore, it is challenging to 

identify the superior model. Also, the model and forcing performance varies by reservoirs. 540 

The third and fourth questions were, "Do the findings align with ground observations?" and, "Are certain 

satellite products superior to others?" These questions can be answered simultaneously. We found general 

agreement between satellite-based and ground observation-based validation results, indicating overall 
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reliability. Comparisons of DAHITI and GRSAD revealed that DAHITI demonstrates better consistency 

with ground observations if temporal coverage is sufficient. However, with respect to simulations, the 545 

extended temporal coverage of GRSAD provides better agreement with ground observations for annual 

storage and residuals. Therefore, to increase confidence in the results, multiple satellite datasets should 

be utilized for model validation and intercomparison efforts. 

To our knowledge, this study is the first effort to use multiple satellite-based products to validate and 

intercompare multiple models for reservoir operations across forcings on a continentall scale. Often, 550 

reservoir operation records are not disclosed, especially for basins that flow across multiple countries (Vu 

et al., 2022). Our study demonstrated the feasibility of extending the spatial coverage of validation and 

intercomparison on a global scale. 

To facilitate further research and applications, we offer four recommendations. First, the latest satellite 

techniques must be incorporated to reduce the uncertainties (i.e., on the accuracy and stability of data 555 

retrieval) discussed in Section 3.3. Second, more models and forcings should be included to enhance the 

comprehensiveness of the study by expanding the ensemble of simulations. Third, although this study 

exclusively focused on the CONUS region, future studies should be performed on a global scale, including 

reservoirs without ground observations. Finally, an integrated platform combining multiple satellite 

products with a common ID is needed to synchronize reservoirs and lakes with existing inventories such 560 

as GRanD and Hydrolakes. 

There is considerable potential for improvement to enhance accuracy and precision in GHMs. Although 

GHM simulations provide valuable insights, there remain significant uncertainties in the representation 

of reservoir dynamics. By refining the models, incorporating more accurate input data, and considering 

additional factors that influence reservoir behavior, better alignment between simulations and real-world 565 

observations can be achieved. This ongoing effort to enhance satellite-based validation will lead to more 

reliable reservoir storage assessments and predictions. 

 

Code and data availability 

The code and data associated with this study can be accessed at https://doi.org/10.5281/zenodo.8291850. 570 
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