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Wideband DOA Estimation with Frequency
Decomposition via a Unified GS-WSpSF Framework

Abstract—A unified group sparsity based framework for wide-
band sparse spectrum fitting (GS-WSpSF) is proposed for wideband
direction-of-arrival (DOA) estimation, which is capable of handling
both uncorrelated and correlated sources. Then, by making four
different assumptions on a priori knowledge about the sources,
four variants under the proposed framework are formulated as
solutions to the underdetermined DOA estimation problem without
the need of employing sparse arrays. As verified by simulations,
improved estimation performance can be achieved by the wideband
methods compared with narrowband ones, and adopting more a
priori information leads to better performance in terms of resolution
capacity and estimation accuracy.

Index Terms— Direction-of-arrival estimation, wideband, sub-
band model, underdetermined, sparse spectrum fitting

I. INTRODUCTION

WIDEBAND direction-of-arrival (DOA) estimation
based on sensor arrays has been extensively studied
over the decades. With an N -sensor uniform linear array
(ULA), most of the conventional wideband DOA esti-
mation methods can only resolve up to N − 1 sources
[1], [2]. As one of the important topics in wideband
DOA estimation, the underdetermined wideband direction
finding problem (where the number of impinging sources
is larger than that of the physical sensors) has attracted
significant interests [3]–[5].

In the narrowband case, it is necessary to employ
sparse array structures for underdetermined DOA es-
timation, and accordingly nested arrays [6], co-prime
arrays [7], [8] and their extensions [9]–[16] have been
proposed. In order to exploit the increased degrees of
freedom (DOFs) provided by sparse arrays, many ef-
fective methods including spatial smoothing (SS) based
subspace methods [6], compressive sensing (CS) based
methods [17], [18], and maximum likelihood (ML) meth-
ods [19], have been employed to resolve more sources
than the number of physical sensors. To be specific, the
original sparse spectrum fitting (SpSF) method recovers
all the entries of the covariance matrix, while its simpli-
fied version for uncorrelated sources only considers the
diagonal entries of the covariance matrix as unknown pa-
rameters to be recovered, which can be applied to sparse
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arrays for underdetermined narrowband DOA estimation
as proved in [20], [21].

Similarly, sparse arrays are usually needed to ensure
the feasibility of underdetermined wideband DOA es-
timation. Based on the difference co-array of a sparse
array, focusing [22], [23] and group sparsity [24]–[26]
can be adopted in the wideband case, leading to im-
proved resolution capacity. In [27]–[29], the correlation
between different frequencies is considered to generate
the difference co-array in the spatio-spectral domain with
further increased DOFs, and the corresponding Cramér-
Rao bound (CRB) is derived in [30]. All these wideband
DOA estimation methods assume that the sources are
uncorrelated.

Recently, the wideband Cramér-Rao bounds under
the subband model via frequency decomposition have
been systematically studied [31]. The closed-form CRB
expressions have been derived for four cases with dif-
ferent prior knowledge, where the sources are known a
priori to 1) have flat spectra (Pf ), 2) be uncorrelated to
each other (Pu), 3) be uncorrelated to each other and
have proportional spectra up to unknown factors (Pup),
4) be uncorrelated to each other and have flat spectra
(Puf ). In practice, these cases have been employed by
a number of DOA estimation methods and performance
studies in literature. Pf is available when all the lagged
data correlation matrices contain approximately the same
information, and was considered in underwater acoustics,
radar, and also communications systems where signals
with flat spectra are transmitted [32], [33]. It has also
been adopted in practical design [34], [35] and theoretical
analysis [36], [37]. When the propagation channel is
unbounded, the sources are spatially uncorrelated [37],
[38] and thus Pu can be adopted. Most wideband and
narrowband underdetermined DOA estimation methods
employ Pu to increase resolution capacity [3], [22], [25],
[26], [39], [40]. Pup exists in wireless communications
and satellite communications with sources of the same
modulation format and pulse shaping functions [41]–[43].
Since Puf comprises Pu and Pf , it is suitable for a
combination of the aforementioned cases [42], [44] with a
number of studies related to DOA estimation and source
localization reported [37], [45]–[47]. By examining the
existing condition of the CRBs, the upper bounds on the
resolution capacities in the above four cases are derived
[31], indicating that under different a priori knowledge on
the source spectra, it is possible to resolve more sources
than the sensor number in the underdetermined wideband
case even if a sparse array is not employed. However, to
the best of our knowledge, only the a priori knowledge of
uncorrelated sources has been considered in underdeter-
mined estimation, while other a priori information related
to the source spectra has not been fully exploited in the
wideband case.

To fill in the gaps, a unified group sparsity based
framework for wideband sparse spectrum fitting (GS-
WSpSF) is proposed in this paper. After obtaining the sub-
band model [48] via frequency decomposition, i.e., dis-

crete Fourier transform (DFT) or a series of filter banks,
the general GS-WSpSF method is derived with better
performance compared with narrowband ones, capable of
handling all kinds of sources including uncorrelated and
correlated ones. Then, four variants under this GS-WSpSF
framework with the four different kinds of a priori
knowledge are presented. We show that underdetermined
DOA estimation can be achieved without the assistance
of sparse arrays, verifying the theoretical results proved
in [31]. More specifically, for uncorrelated sources, the
number of resolvable sources in the wideband case can
be larger than |D|−1

2 with |D| being the cardinality of the
difference co-array generated by the physical array ( |D|−1

2
was considered as the maximum number of resolvable
sources in existing literature). Adopting more a priori
information leads to better performance in terms of both
resolution capacity and estimation accuracy.

This paper is organized as follows. Section II provides
basics about the subband model for wideband sources via
frequency decomposition. The unified GS-WSpSF frame-
work is proposed in Section III, while its four variants
adopting different a priori knowledge are presented in
Section IV. Simulation results are given in Section V, and
conclusions are drawn in Section VI.

II. Signal Model

Consider a general linear array consisting of N phys-
ical sensors with a unit spacing of d. The set of sensor
positions is given by A = {ℏ1,ℏ2, . . . ,ℏN}d. Assume
that there are K wideband signals {sk[i]}Kk=1 with the
same bandwidth impinging from incident angles {θk}Kk=1,
respectively, where θk is measured from the broadside of
the array.

For the wideband DOA estimation problem, the
subband signal model via frequency decomposition is
adopted, where the received signal at each sensor is first
decomposed into subbands by applying an L-point DFT
to every non-overlapping L samples.

The discrete array output signal model of the p-th non-
overlapping group after DFT is expressed as

X[l, p] = A(l,θ)S[l, p] +N[l, p], (1)

where X[l, p] is the observed signal vector at frequency
fl corresponding to the l-th frequency bin (subband),
A(l,θ) = [a(l, θ1), ...,a(l, θK)] ∈ CN×K is the steering
matrix, with

a(l, θk) = [e−j2πℏ1d sin(θ1)/λl , . . . , e−j2πℏNd sin(θN )/λl ]
(2)

representing the steering vector at frequency fl and an-
gle θk. Here λl = c

fl
and c is the signal propagation

speed. S[l, p] = [S1[l, p], ..., SK [l, p]]
T is a column vector

holding K source signals at the l-th subband. N[l, p] =

[N 1[l, p], ..., NN [l, p]]
T

is the corresponding column noise
vector in the frequency domain, whose elements are
assumed to be zero-mean Gaussian white and uncorrelated
with the sources.
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The covariance matrix of the observed signal at the
l-th subband is

Rxx[l] = E
{
X[l, p] ·XH [l, p]

}
= A(l,θ)Rs[l]A

H(l, θ) + σ2
n[l]IN ,

(3)

where E {·} denotes the expectation operator, and {·}H
is the Hermitian transpose. Rs[l] = E

{
S[l, p] · SH [l, p]

}
,

σ2
n[l] is the noise power at the l-th subband, and IN is the

N ×N identity matrix.

III. A Unified Group Sparsity Framework for
Wideband Sparse Spectrum Fitting

The core idea for narrowband sparse spectrum fitting
(SpSF) method is to fit the sparse source covariance ma-
trix (i.e., Rs[l] for each subband) to the observed spatial
covariance matrix (Rxx[l]) based on ℓ1-norm penalization
[49].

For the l-th subband, we construct an overcom-
plete array steering matrix from Kg ≫ K possible
incident angles θg = {θg,1, . . . , θg,Kg

} by A(l,θg) =
[a(l, θg,1), . . . ,a(l, θg,Kg

)].
According to (3) and sparse signal recovery theory, the

covariance matrix under the CS framework is equivalent
to

Rxx[l] ≜ A(l,θg)Rsg [l]A
H(l,θg) + σ2

n[l]IN , (4)

where Rsg [l] is defined as the Kg×Kg source covariance
matrix with its each diagonal element representing the
power of a potential source at the corresponding incident
angle.

Then, the SpSF method [49] for narrowband DOA
estimation can be applied to the l-th frequency bin,
formulated as

min
Rsg [l]

∥∥Rxx[l]−A(l,θg)Rsg [l]A
H(l,θg)

∥∥2

F
+ β

∥∥r̃sg [l]∥∥1
,

subject to Rsg [l] = RH
sg [l], diag

(
Rsg [l]

)
⪰ 0, (5)

where ∥·∥F is the Frobenius norm, ∥·∥1 is the ℓ1-norm,
and β is a regularization parameter to balance the fitting
error and the ℓ1-norm, which can be chosen to give the
best estimation result through an automatic selector [49].
r̃sg [l] = vec(Rsg [l]) with vec(·) being the vectorization
operator, and diag(·) returns the set of diagonal elements
of the input matrix. The vector diag

(
Rsg [l]

)
reflects the

signal powers over Kg search grids in θg, and DOAs can
be estimated from diag

(
Rsg [l]

)
. ⪰ denotes element-wise

≥.
Traditional incoherent signal subspace method (ISM)

[1] and coherent signal subspace method (CSM) [2] can
be applied for wideband DOA estimation; however, by
fusing the DOA results or focusing signal models to a ref-
erence frequency, the prior information across frequency
bins cannot be employed to resolve more sources and
improve the estimation accuracy. Inspired by the group
sparsity concept [24], [25], a more effective wideband
DOA estimation method, referred to as group sparsity
based wideband sparse spectrum fitting (GS-WSpSF), is

proposed by exploiting all subband information simulta-
neously.

We first consider the general scenario without any a
priori knowledge. By vectorizing Rxx[l], the l-th subband
signal model is changed to

z[l] = vec {Rxx[l]} = Ã[l]̃s[l] + σ2
n[l]̃iN2 , (6)

where s̃[l] = vec(Rs[l]), and ĩN2 = vec(IN ) is an N2 × 1
column vector, and the equivalent steering matrix

Ã[l] = [ãl(θ1, θ1), . . . , ãl(θK , θ1), ãl(θ1, θ2), . . . , ãl(θK , θK)]

with ãl(θi, θk) = vec(a(l, θi)a
H(l, θk)).

Consider Q (Q ≤ L) subbands of interest indexed
by {lq}Qq=1. We construct a block diagonal matrix B̃ =

blkdiag
{
Ã [l1] , Ã [l2] , . . . , Ã [lQ]

}
, and a K2×Q matrix

R = {[̃s [l1] , s̃ [l2] , . . . , s̃ [lQ]]}. Then, a general wideband
virtual array fitting model is obtained by

z̃ = B̃r̃+E, (7)

where z̃ = [zT [l1], . . . , z
T [lQ]]

T , r̃ = vec(R), and E =

[σ2
n[l1 ]̃iN2 , . . . , σ2

n[lQ ]̃iN2 ]T .
Remark: It is noted that {Ã[lq]}Qq=1 are combined to

form a block diagonal matrix B̃ with increased dimension.
Therefore, the number of distinct rows in B̃ is usually
larger than that of each subband due to the different λl,
implying that it is possible to resolve more sources under
this framework compared with narrowband DOA estima-
tion methods according to the widely adopted number-of-
equations condition [50], [51], as will be further discussed
later with different a priori information considered.

Assume that the same search grid with Kg potential
incident angles are employed for all subbands. Under the
CS framework, we construct

B̃g = blkdiag{Ãg [l1] , Ãg [l2] , . . . , Ãg [lQ]},
Rg =

{
r̃sg [l1], r̃sg [l2], . . . , r̃sg [lQ]

}
,

(8)

where the overcomplete representation of the equivalent
steering matrix at the lq-th subband is Ãg[lq] =
[ãlq (θ1, θ1), . . . , ãlq (θKg

, θ1), ãlq (θ1, θ2), . . . , ãlq (θKg
, θKg

)].
By performing ℓ2-norm to each row of Rg, a new

column vector r̂ = [∥r1∥2 , . . . , ∥rK2
g
∥2]T is formed with

rk
(
1 ≤ k ≤ K2

g

)
representing the k-th row vector in Rg.

Finally, the GS-WSpSF method is formulated as follows

min
Rg

∥∥z̃− B̃gr̃g
∥∥2

2
+ β∥r̂∥1,

subject to Rsg [lq] = RH
sg [lq], diag

(
Rsg [lq]

)
⪰ 0,

(9)

where r̃g = vec(Rg), and q = 1, · · · , Q.
The optimization problem in (9) can be solved in a

second-order cone programming (SOCP) framework us-
ing CVX software package [52]. After fitting all subband
covariance matrices of interest, the recovered r̂ represents
the DOAs over K2

g grids.
The GS-WSpSF can be considered as a unified frame-

work for wideband DOA estimation, and can be applied
to all kinds of source signals (including correlated ones).
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IV. Variants of GS-WSpSF Framework with Different
a Priori Knowledge

As proved in Propositions 1 and 2 in [31], exploiting
different a priori knowledge is beneficial in resolving
more sources than sensor number without the assistance
of a sparse structure, and upper bounds on resolution
capacities have been analyzed. However, underdetermined
wideband DOA estimation methods based on different a
priori knowledge have not been well considered. Moti-
vated by these interesting results, variants of GS-WSpSF
are studied, overcoming the limitation in resolution ca-
pacity imposed by narrowband DOA estimation methods
and traditional wideband ones.

In this section, the following four types of a priori
knowledge will be considered:

Pf : The spectra are flat across subbands of interest.
Pu: The sources are spatially uncorrelated.
Pup: The sources are spatially uncorrelated, and their

spectra are proportional up to a series of unknown
factors across subbands of interest.

Puf : The sources are spatially uncorrelated, and their
spectra are flat or proportional up to a series of
known factors across subbands of interest.

When different a priori knowledge is employed, the
unknown parameters to be estimated can be reduced or
combined, leading to different optimization forms under
the GS-WSpSF framework.

A. GS-WSpSF under Pf

If Pf is employed, flat spectra indicate that the
equivalent source signals {s̃gf

[lq] = vec(Rsg [lq])}
Q
q=1 are

independent of subband index lq, i.e., r̂gf
= s̃gf

[lq] and
Rsgf

= Rsg [lq], ∀q = 1, 2, . . . , Q.
Stacking steering matrices {Ãg[lq]}Qq=1 following the

column direction instead of the block diagonal direction
leads to B̃gf

= [ÃT
g [l1] , Ã

T
g [l2] , . . . , Ã

T
g [lQ]]

T . Then,
GS-WSpSF under Pf , referred to as GS-WSpSF (Pf ), is
formulated as

min
r̂gf

∥∥z̃− B̃gf
r̂gf

∥∥2

2
+ β∥r̂gf

∥1,

subject to Rsgf
= RH

sgf
, diag

(
Rsgf

)
⪰ 0.

(10)

B. GS-WSpSF under Pu

Under Pu with spatially uncorrelated sources,
{Rs[lq]}Qq=1 becomes a real-valued diagonal matrix, and
the covariance matrix of the observed signal at the lq-th
subband in (3) is reformulated as

Rxx[lq] = E
{
X[lq, p] ·XH [lq, p]

}
(11)

=
∑K

k=1
σ2
k[lq]a (lq, θk)a

H (lq, θk) + σ2
n[l]IN ,

where σ2
k[lq] is the power of the k-th source signal at

the lq-th subband. Then, a virtual array corresponding to
the difference co-array [25] is generated by vectorizing

Rxx[lq], leading to

z[lq] = vec{Rxx[lq]} = Â[lq]ŝ[lq] + σ2
n[lq ]̃iN2 , (12)

where the equivalent steering matrix of the virtual ar-
ray Â[lq] = [ãlq (θ1, θ1), . . . , ãlq (θK , θK)] with the k-
th column vector ãlq (θk, θk) = vec(a(lq, θk)a

H(lq, θk)),
and the equivalent source signal vector ŝ[lq] =
[σ2

1 [lq], . . . , σ
2
K [lq]]

T .
With the same search grid of Kg potential incident

angles for all Q subbands, we construct

B̃gu
= blkdiag{Âg [l1] , Âg [l2] , . . . , Âg [lQ]},

Rgu
= [ŝg [l1] , ŝg [l2] , . . . , ŝg [lQ]],

(13)

where Âg[lq] = [ãlq (θg,1, θg,1), . . . , ãlq (θg,Kg
, θg,Kg

)] is
the overcomplete representation of the equivalent steering
matrix, and the Kg × 1 column vector ŝg[lq] contains all
potential source signal powers at corresponding incident
angles.

Denote r̃gu
=

[
∥rgu,1∥2 , . . . , ∥rgu,Kg

∥2
]T

and r̂gu
=

vec(Rgu
) with rgu,k (1 ≤ k ≤ Kg) representing the k-th

row of Rgu
. Then, GS-WSpSF under Pu, referred to as

GS-WSpSF (Pu), is formulated as

min
r̃gu

∥∥z̃− B̃gu
r̂gu

∥∥2

2
+ β∥r̃gu

∥1,

subject to r̂gu
⪰ 0.

(14)

Note that GS-WSpSF under Pu is equivalent to the
wideband method proposed in [25], where uncorrelated
source assumption is adopted for underdetermined DOA
estimation based on sparse arrays.

C. GS-WSpSF under Pup

Based on (12) and (13) where uncorrelated sources
are considered, we set ŝg [lq] = ξq ŝg [l1] = ξq r̂gup

if
Pup is employed with {ξq}Qq=1 being a series of unknown
positive real-valued proportional factors to be estimated.

Then, we construct

B̃gup = B̃gu = blkdiag{Âg [l1] , Âg [l2] , . . . , Âg [lQ]},
Rgup = [ξ1r̂gup , ξ2r̂gup , . . . , ξQr̂gup ]. (15)

The optimization problem for GS-WSpSF under Pup,
referred to as GS-WSpSF (Pup), is expressed as

min
r̂gup ,{ξq}

Q
q=1

∥∥z̃− B̃gup
r̃gup

∥∥2

2
+ β

∥∥r̂gup

∥∥
1
,

subject to r̂gup ⪰ 0, {ξq}Qq=1 ≥ 0,

(16)

where r̃gup
= vec(Rgup

).

D. GS-WSpSF under Puf

Under Puf , the sources are mutually uncorrelated
and their spectra are flat or proportional up to a series
of known factors across subbands of interest. Puf is a
combined a priori knowledge of Pu and Pf , and it is the
basic assumption in applications such as communications
where the spectrum of the transmitted signal is known in
advance.
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Similarly, (12) still holds true due to the uncorrelated
property. According to the spectral property, all column
vectors in Rgu in (13) are equal or proportional with
a series of known factors {ηq}Qq=1 to each other, i.e.,
ŝg[lq] = ηq ŝg[l1] = ηq r̂guf

, ∀q = 1, 2, . . . , Q. For a special
case of ηq = 1, ∀q = 1, 2, . . . , Q, the spectra of the
sources become flat.

By stacking {ηqÂg[lq]}Qq=1 following the column di-
rection, we construct

B̃guf
= B̃gf

= [η1Â
T
g [l1] , η2Â

T
g [l2] , . . . , ηQÂ

T
g [lQ]]

T .

Then, the proposed GS-WSpSF under Puf , referred to as
GS-WSpSF (Puf ), is formulated as

min
r̂guf

∥∥z̃− B̃guf
r̂guf

∥∥2

2
+ β∥r̂guf

∥1,

subject to r̂guf
⪰ 0.

(17)

Remark: Without a priori knowledge, the number of
parameters to be estimated in Rg in (9) is K2

gQ. Under
different a priori knowledge Pf , Pu, Pup, and Puf , the
number of unknown parameters to be optimized in r̂gf

,
r̂gu , r̂gup , and r̂guf

is reduced to K2
g , KgQ, Kg, and Kg,

respectively. The computational complexity is reduced if
a priori knowledge is available.

V. Simulation Results

Throughout this section, a ULA is employed and the
capability of resolving more sources than the sensor num-
ber in the underdetermined case is verified. The wideband
sources with flat spectra are considered; however, this
information is not always known a priori.

Consider a ULA with N = 7 sensors, and the unit
spacing between adjacent sensors is d = c

fmax
, where

fmax is the maximum frequency of interest. The number
of samples in the time domain is 32768, and DFT of
L = 64 points is applied. As a result, the number of non-
overlapping groups (equal to the number of samples in
the frequency domain) is P = 512. The center frequency
of the l-th subband is fl = (l − 1)fs/L. Kg search grids
cover the angle range from −90◦ to 90◦ are generated with
a step size of 0.1◦, and the subbands of interest indexed
from 54 to 64 are exploited by all proposed wideband
methods. The regularization parameter β is chosen to give
the best estimation results through trial-and-error in every
experiment.

A. Comparisons of Resolution Capacity

Based on the existing analysis of CRBs, the lower
bounds of resolution capacity (i.e., the maximum number
of resolvable wideband sources) under different a priori
knowledge have been derived in Propositions 2 in [31].
As summarized in Table I, we have Kf ≥ N , Ku > |D|−1

2 ,
Kup ≥ |D| > N , and Kuf ≥ |D| > N , where Kf ,
Ku, Kup, and Kuf denote the lower bounds of resolution
capacity under Pf , Pu, Pup, and Puf , respectively. | · |
returns the cardinality of the input set. N is the number

TABLE I
Resolution capacities under different a priori knowledge

Prior knowledge Pf Pu Pup Puf

Capacity ≥ N ≥ |D|−1
2

‡ ≥ |D| ≥ |D|

Examples with a 7-sensor ULA
Capacity ≥ 7 ≥ 7 ≥ 13 ≥ 13

† N is the number of physical sensors.
‡ D is the difference co-array of the physical array.

(a) SpSF-C (b) SpSF-U (c) GS-WSpSF

Fig. 1. Overdetermined DOA estimation results for 6 uncorrelated
sources with a 7-sensors ULA, obtained by (a) SpSF-C, (b) SpSF-U,

and (c) GS-WSpSF for uncorrelated sources.

of physical sensors, and D is the difference co-array of
the physical array. In this example, the number of senors
of the ULA is N = 7, and the number of unique co-arrays
provided by the difference co-array D is 2N − 1 = 13.

For the first set of simulations, there are K = 6 (K <
N ) wideband signals impinging on this 7-sensor ULA
with incident angles uniformly distributed between −60◦

and 60◦, and the signal-to-noise ratio (SNR) is 10 dB. For
a single subband indexed by 31, the SpSF based methods
[49], referred to as SpSF-C for the conventional one and
SpSF-U for the one dealing with uncorrelated sources, are
employed for narrow/subband DOA estimation. The DOA
estimation results for uncorrelated sources are shown in
Fig. 1, where blue solid lines represent the estimated
results, while red dotted ones are the true DOAs. Clearly,
all the aforementioned methods are capable of resolving
the 6 uncorrelated sources.

For coherent sources, we set K = 4, and the corre-
sponding results are given in Fig. 2, where we can see
that both SpSF-C and GS-WSpSF can resolve coherent
sources, while SpSF-U fails.

Then, we focus on the underdetermined case with
K = 8 (N < K < |D|). The input SNR is fixed
at 10 dB, and the sources are uniformly distributed
between −70◦ and 70◦. The DOA estimation results
of the narrowband SpSF-U method employing the 31-
th subband is shown in Fig. 3(a). Clearly, the SpSF-U

(a) SpSF-C (b) SpSF-U (c) GS-WSpSF

Fig. 2. Overdetermined DOA estimation results for 4 coherent
sources with a 7-sensors ULA, obtained by (a) SpSF-C, (b) SpSF-U,

and (c) GS-WSpSF.
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(a) SpSF-U (b) GS-WSpSF (Pu) (c) GS-WSpSF (Pf )

(d) GS-WSpSF (Pup) (e) GS-WSpSF (Puf )

Fig. 3. Underdetermined DOA estimation results of 8 uncorrelated
sources based on a 7-sensor ULA obtained by different methods.

(a) GS-WSpSF (Pu) (b) GS-WSpSF (Pf )

(c) GS-WSpSF (Pup) (d) GS-WSpSF (Puf )

Fig. 4. Underdetermined DOA estimation results of 14 uncorrelated
sources based on a 7-sensor ULA obtained by different methods.

method fails in distinguishing all 8 uncorrelated sources,
indicating that for a ULA with the assistance of Pu, the
maximum resolvable sources by the narrowband method
cannot exceed the number of physical sensors. On the
other hand, the proposed GS-WSpSF (Pu), GS-WSpSF
(Pf ), GS-WSpSF (Pup), and GS-WSpSF (Puf ) exploiting
different a priori knowledge have resolved the 8 sources
successfully based on a 7-sensor ULA, verifying their
superior resolution performance in the underdetermined
case.

Then, we consider the case of K = 14 (K >
|D| > N ). Fig. 4 shows the DOA estimation results of
14 uncorrelated sources based on a 7-sensor ULA. It
is obvious that the proposed GS-WSpSF (Pu) and GS-
WSpSF (Pf ) cannot resolve so many sources, while both
GS-WSpSF (Pup) and GS-WSpSF (Puf ) have succeeded.
Therefore, in the wideband case, it is feasible to resolve
more wideband sources than the cardinality of difference
co-array by employing a priori knowledge on sources.
The potential maximum number of DOFs in the wideband
case can be far more than that in the narrowband case.

B. Comparisons of Estimation Performance

Finally, we compare the estimation accuracy of the
proposed methods in both the overdetermined (K = 4)
and underdetermined (K = 8) cases. The root mean
square error (RMSE) is adopted as a metric for compar-
ison, calculated by 100 Monte Carlo trials with respect
to each varied input SNR. The wideband root CRB and
the proposed method for the general case without a priori
knowledge are represented by root CRB (Wideband-Pn)
and GS-WSpSF (Pn), respectively. The RMSE results
versus input SNR for the overdetermined case with K = 4
are given in Fig. 5(a), where ISM-MUSIC [1], CSM-
MUSIC (a method focusing on the co-array instead of
physical array to reduce focusing errors, followed by
MUSIC for DOA estimation) [22], and CSM-CS (a
method focusing on the co-array instead of physical array,
followed by a CS-based approach for DOA estimation)
[22], [23] are involved in comparisons. Clearly, the nar-
rowband methods SpSF-C and SpSF-U exploiting only
one subband perform worse than those wideband meth-
ods, showing that better estimation performance can be
achieved by jointly exploiting more subband information.
Similar RMSE results are achieved by the proposed GS-
WSpSF (Pn) and CSM-MUSIC, both outperforming other
methods consistently with a big margin, while GS-WSpSF
(Pn) yields the best performance for the smallest input
SNR. Note that the proposed GS-WSpSF (Pn) is capable
of handling all kinds of sources including correlated and
uncorrelated ones, while CSM-MUSIC and CSM-CS are
only suitable to deal with uncorrelated sources.

Fig. 5(b) gives the RMSE results of different methods
versus SNR in the underdetermined case with K = 8,
where we can see that the GS-WSpSF (Puf ) performs
the best among all considered wideband methods. More
importantly, we see that R(Puf) < R(Pup) < R(Pu) and
R(Puf) < R(Pf) for a fixed SNR, where R(·) is the
RMSE of the method under given a priori knowledge.
These results are consistent with the order relationship
among CRBs (proved in Lemma 1 in [31], i.e., employing
the a priori knowledge that removes part of the nuisance
parameters yields a lower CRB for DOAs). With more a
priori information adopted, better results can be achieved.

VI. Conclusion

In this paper, by filling the gaps in the study of
underdetermined wideband DOA estimation with the as-
sistance of different a priori knowledge, a unified group
sparsity framework for wideband sparse spectrum fitting
(GS-WSpSF) was proposed by simultaneously exploiting
the information at different subbands. Then, four variants
with different a priori knowledge were presented, allow-
ing underdetermined wideband DOA estimation without
requiring a sparse array. It has been shown by simulations
that improved performance can be achieved by the general
GS-WSpSF compared with narrowband methods and GS-
WSpSF (Pu) is capable of resolving more uncorrelated
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(a) RMSE in the overdetermined case with K = 4.

(b) RMSE in the underdetermined case with K = 8.

Fig. 5. RMSE results of different methods with respect to input
SNR.

sources than narrowband methods. It has also been shown
by simulations that both increased resolution capacity and
improved estimation accuracy can be achieved if more a
priori information is considered.
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