
In summary, we have not documented evidence of a
lessebo effect in an experimental therapeutic scenario of
disease modification in PD. The current findings call for
alternative approaches to study the impact of expecta-
tion of benefit on efficacy outcome in clinical trials and
prospectively measure the lessebo effect in future thera-
peutic development in PD.

Data Availability Statement
Data sharing is not applicable to this article as no

new data were created or analyzed in this study.
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ABSTRACT: Background: Epidemiological stud-
ies suggested an association between Parkinson’s dis-
ease (PD) and type 2 diabetes, but less is known about
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Objective: This study sought to explore the associa-
tion between T1D and PD.
Methods: We used Mendelian randomization, linkage
disequilibrium score regression, and multi-tissue trans-
criptome-wide analysis to examine the association
between PD and T1D.
Results: Mendelian randomization showed a poten-
tially protective role of T1D for PD risk (odds ratio
[OR], 0.97; 95% confidence interval [CI], 0.94–0.99;
P = 0.039), as well as motor (OR, 0.94; 95% CI, 0.88–
0.99; P = 0.044) and cognitive progression (OR, 1.50;
95% CI, 1.08–2.09; P = 0.015). We further found a
negative genetic correlation between T1D and PD
(rg = �0.17; P = 0.016), and we identified eight genes
in cross-tissue transcriptome-wide analysis that were
associated with both traits.
Conclusions: Our results suggest a potential genetic
link between T1D and PD risk and progression. Larger
comprehensive epidemiological and genetic studies
are required to validate our findings. © 2023 The
Authors. Movement Disorders published by Wiley
Periodicals LLC on behalf of International Parkinson
and Movement Disorder Society.

Key Words: Parkinson’s disease; Mendelian ran-
domization; type 1 diabetes; insulin; genetic
correlation

Introduction

Multiple lines of evidence suggest an association
between type 2 diabetes (T2D) and Parkinson’s disease
(PD).1-4 T2D is associated with both increased PD risk
and worse progression, measured by cognitive and
motor scales.4 Moreover, drugs targeting T2D may
reduce the risk for PD and potentially could be rep-
urposed to modify PD progression.5

Less is known about the link between PD and type
1 diabetes (T1D). T1D is an autoimmune disorder char-
acterized by the destruction of islets of Langerhans in the
pancreas.6 The pathophysiology of T1D is different from
T2D; nonetheless, both diseases have a strong genetic
correlation and shared biological pathways.7 PD is a
complex disease with multiple pathways involved in its
development,8 including pathways related to immune
response and inflammation.9 Most observational studies
did not differentiate between T1D and T2D when defin-
ing diabetes as a risk factor,10-12 because T1D is much
less prevalent than T2D. One report suggested a poten-
tial increased risk for PD in patients with T1D.13

Mendelian randomization (MR) uses genetic variants
such as single-nucleotide polymorphisms (SNPs) associ-
ated with an exposure of interest (in our case, T1D) as
proxies for causal inference about the association
between that exposure and an outcome. In this study,

we performed MR to estimate whether a relationship
between T1D or other autoimmune traits and PD risk
and progression may exist. Furthermore, we conducted
genetic correlation analysis and transcriptome-wide asso-
ciation study (TWAS) to assess potential shared genetic
architecture.

Subjects and Methods
Mendelian Randomization

We selected publicly available genome-wide associa-
tion studies (GWASs) for T1D and PD risk and pro-
gression with participants of European ancestry and no
overlapping samples. We used SNPs from the selected
GWASs that were significant at the GWAS level
(P < 5 � 10�8) to construct a genetic instrument for the
exposure (T1D) and examine its effects on two categories
of outcomes: PD risk and PD progression. For the expo-
sure, we selected a recent T1D study (n cases = 13,458;
n = 20,143 control subjects)14 downloaded from the
GWAS catalog,15 with only samples of European ancestry
being included. For the outcome, we selected the most
recent PD GWAS (n = 33,674 cases; n = 449,056 control
subjects).16 UK Biobank participants were included in the
PD GWAS, but not in the selected T1D study, to avoid
potential bias.
To study the genetically estimated effect of T1D on

PD motor progression, measured by Unified
Parkinson’s Disease Rating Scale (UPDRS) Part III, and
on PD cognitive progression, measured by Montreal
Cognitive Assessment (MoCa) and Mini-Mental State
Examination (MMSE), we selected the largest publicly
available GWASs of these continuous traits.17 The
GWAS on PD progression is a meta-analysis of several
studies, with a different number of participants for each
phenotype. It means that results for different SNPs cor-
respond different numbers of cases. Therefore, to calcu-
late the sample sizes for PD progression studies, we
calculated the means of patients included in each analy-
sis across all SNPs. The mean sample sizes included in
the GWASs of PD progression traits were n = 1398 for
UPDRS Part III, n = 1329 for MMSE, and n = 1000
for MoCA.
We also performed MR analyses among 10 additional

immune and inflammatory disorders and PD. The full
list of studies included in the analysis can be found in
Table S1 in Data S1.
To perform MR, we used the two-sample MR R

package.18,19 We used the default clumping window of
10,000 kb with r2 cutoff of 0.001. We applied Steiger
filtering to exclude SNPs that explain more variance in
the outcome than in the exposure.19 We used inverse
variance weighted (IVW) meta-analysis, which com-
bines results from individual Wald ratios together. We
used MR Egger, which likewise combines separate
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Wald ratios into metaregression to obtain an estimate
that is unbiased in the presence of directional pleiot-
ropy.20 Considering that some of our inverse vari-
ances could be invalid, we also used weighted median
based estimate to account for it.21 To further explore
potential pleiotropy, we applied a variety of sensitiv-
ity analyses, including Cochran’s Q test in the IVW,
MR-Egger methods, and global MR-PRESSO.22 We
calculated power to detect an equivalent effect size of
OR 1.2 on PD risk and progression using an online
MR power calculation (https://sb452.shinyapps.io/
power/).23

Genetic Correlation
We examined genetic correlations between PD and

T1D using linkage disequilibrium (LD) score regression
(LDSC) as previously described.24,25 LDSC considers
LD structure to estimate potential genetic overlap
between two traits. MR analyses and genetic correla-
tion were done after the exclusion of SNPs within the
major histocompatibility complex region because of the
biased LD structure.

Transcriptome-wide Association Analysis
To calculate cross-tissue gene-expression associations

in T1D and PD, we used the Unified Test for Molecular
Signatures (UTMOST) software.26 In this analysis, we
included the largest publicly available T1D summary
statistics, which also includes UK biobank (UKBB;
n = 18,942 cases; n = 501,638 control subjects).27

However, our results should not be biased because we
independently conducted the analysis on the two sum-
mary statistics and compared only the output.
UTMOST is a multi-tissue TWAS method that can pro-
vide a powerful prediction of gene-trait associations. As
a first step, we used a precalculated matrix with tissue-
specific TWAS weights that was created using grouped
penalized regression. The predicted gene expression
levels were then used as input for the subsequent associ-
ation tests. In the second step, we used UTMOST to

conduct single-tissue TWASs across 44 tissues available
in GTEx (V6p; Table S2 in Data S1).28 Subsequently,
we used UTMOST to identify genes associated with
T1D and PD across all tissues by combining the single-
tissue test results with Generalized Berk-Jones test.26

This was done using a unified statistical framework that
integrates information across multiple tissues and
accounts for correlation between gene expression and
the trait. UTMOST outputs a P value for each gene-
trait association. Notably, this statistical framework
enables gene-trait associations to have different direc-
tions across tissues. Finally, we applied false discovery
rate correction and performed head-to-head compari-
sons of genes significant for both PD and T1D. We
created heatmaps for genes significant in our multi-tis-
sue analysis selecting several tissues that are relevant
for T1D and/or PD (basal ganglia, frontal cortex, pan-
creas, and Epstein-Barr virus (EBV)-transformed
lymphocytes).

Results
Evidence for a Modest Protective Effect of T1D

on PD Risk and Progression
The instruments in all analyses had sufficient strength

as demonstrated by F-statistics > 10 (Table 1). The
number of GWAS significant SNPs before clumping in
the exposure (T1D) GWAS was 30,938. There were 71
SNPs after clumping. We excluded the human leuko-
cyte antigen locus and conducted the analysis on 63
remaining SNPs. The PD risk GWAS had 100% statis-
tical power to detect causal effect with an OR of 1.2.
However, the PD progression GWASs could be under-
powered to detect causal associations (Table 1). We
found weak evidence of a modest protective effect of
T1D on PD risk (IVW: OR, 0.97; 95% CI, 0.94–0.99;
P = 0.039; weighted median: OR, 0.95; 95% CI, 0.90–
0.99; P = 0.026; Table 1; Fig. S1A in Data S1). We
studied the effects of T1D on motor and cognitive pro-
gression. UPDRS3 is a motor performance scale,

TABLE 1 MR analysis between exposure to T1D and outcome of PD risk and progression

Outcome N, SNPs included Power, % F-statistics

Inverse variance weighted MR Egger

OR (95% CI) P OR (95% CI) P

PD risk 58 100 22 0.97 (0.94–0.99) 0.039 0.96 (0.91–1.01) 0.115

UPDRS3 42 32.8 34 0.94 (0.88–0.99) 0.044 1.03 (0.88–1.20) 0.721

MMSE 39 31.4 37 1.11 (0.99–1.25) 0.060 1.13 (0.85–1.50) 0.418

MoCA 38 24.8 39 1.50 (1.08–2.09) 0.015 2.00 (0.85–4.72) 0.121

Note: Significant P-values are highlighted in bold.
Abbreviations: MR, Mendelian randomization; PD, Parkinson’s disease; T1D, type 1 diabetes; SNP, single-nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence
interval; UPDRS3, Unified Parkinson’s Disease Rating Scale part III; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.
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meaning that higher scores indicate poorer perfor-
mance. MMSE and MoCA are cognitive scales, and
higher scores signify better performance. We observed
potentially protective effects of T1D on motor progres-
sion measured by UPDRS3 (IVW: OR, 0.94; 95% CI,
0.88–0.99; P = 0.044; Table 1; Fig. S1B in Data S1)
and on cognitive progression as measured by both
MMSE (IVW: OR, 1.11; 95% CI, 0.99–1.25;
P = 0.060) and MoCA (IVW: OR, 1.50; 95% CI,
1.08–2.09; P = 0.015; Table 1; Fig. S1C,D in Data S1).
We found that rs7110099 near INS-IGF2 (Insulin-
Insulin like growth factor 2) and rs56994090 near
MEG3 (Maternally expressed gene 3) have potential
protective effects on PD risk (Wald ratio OR, 0.95;
95% CI, 0.89–1.00; P = 0.055; and OR, 0.67; 95%
CI, 0.46–0.96; P = 0.03, respectively). Another SNP
next to MEG3, rs4900384, might have a protective
effect for cognitive progression as measured by MoCA
(Wald ratio OR, 17.25; 95% CI, 1.86–159.50;
P = 0.010). We did not find pleiotropy in any sensitiv-
ity analysis (Table S3 in Data S1). Furthermore, we
applied MR-PRESSO analysis and did not find either
general pleiotropy or specific pleiotropic SNPs
(Table S3 in Data S1).

MR Analysis Between Additional Autoimmune/
Inflammatory Traits and PD Did Not Reveal Any

Novel Causal Association
We investigated the potential causal relationship

among 10 additional autoimmune or inflammatory
traits with PD (Table S1 in Data S1). The instruments
in all studies had sufficient strength as demonstrated by
F-statistics > 10. As previously reported, and after cor-
rection for multiple comparisons, we found a protective
effect for rheumatoid arthritis in PD (IVW;
beta = �0.072; SE = 0.021; P = 4.7E�04),29 but not
for any other trait. We repeated the analysis after the
exclusion of SNPs within the human leukocyte antigen
locus and did not find any additional associations
between any of the studied traits and PD.

Shared Expression for Genes Related to
Autophagy and Lysosomal Pathways between

T1D and PD
We found evidence for some negative genetic correla-

tion between T1D and PD using LDSC (rg = �0.17;
P = 0.016). We then performed TWASs on T1D and
PD in multiple tissues and selected significant genes
across all tissues for both traits after false discovery rate
correction. We demonstrated eight significant genes for
PD, as well as for T1D (CTSB, LAT, LRRC37A,
LRRC37A2, R3HDM1, RAB7L1, RNF40, WNT3;
Table 2), suggesting potential pleiotropy that was not
detected by the MR tools. We performed tissue-specific
comparisons of four selected tissues relevant to PD,

T1D, or the immune system (basal ganglia, frontal cor-
tex, pancreas, and EBV-transformed lymphocytes;
Fig. S2 in Data S1). Of the nominated genes, RNF40
and CTSB showed differential expression between the
traits. Although other genes showed similar patterns of
expression across the tissues, genes within the MAPT
locus (LRRC37A, LRRC37A2, and WNT3) displayed
markedly different levels of expression, with PD show-
ing twice the level of expression compared with T1D.

Discussion

In this analysis, we demonstrated a potential protec-
tive effect of T1D on PD risk and progression. We did
not find obvious pleiotropy or heterogeneity in any of
our MR analyses, using a variety of sensitivity methods.
However, our genetic correlation analysis suggested
that there is some potential pleiotropy, with negative
genetic correlation between the two traits (ie, variants
that are associated with reduced risk of one trait are
associated with increased risk of the other traits). This
suggests that the association seen in the MR analysis is
due to residual pleiotropy that was not identified by the
MR tools, because they are only able to detect potential
pleiotropic GWAS significant SNPs in the exposure,
whereas genetic correlation relies on LD structure
unrelated to the significance level of the SNPs. Our
TWAS also supports the notion that the association
seen in the MR is due to residual pleiotropy and not a
true causative association.
We demonstrated potential protective effects of SNPs

near IGF2 and MEG3 for PD. Previously, a neuro-
protective effect of IGF2 was reported in cell and
mouse models of PD,30 and its downregulation was
shown in PD patients’ blood.31 Moreover, over-
expression of IGF2 resulted in a neuroprotective
effect.32 Similarly, downregulation of MEG3 was

TABLE 2 Genes associated with both T1D and PD in cross-tissue
transcriptomic gene-trait association analysis

Gene T1D, Pfdr PD, Pfdr

CTSB 8.06E�05 0.028

LAT 0.026 0.009

LRRC37A 5.25E�04 0.0001

LRRC37A2 8.21E�04 4.36E�08

R3HDM1 0.046 0.001

RAB7L1 0.001 1.65E�05

RNF40 0.027 0.002

WNT3 0.010 2.24E�08

Abbreviations: T1D, type 1 diabetes; PD, Parkinson’s disease; Pfdr, P value after
false discovery rate correction.
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recently reported in patients with PD,33 and its over-
expression could be protective for PD through negative
regulation of LRRK2.33

Using the conjunction false discovery rate method,
some pleiotropy between PD and T1D in two loci was
previously reported (CXCR4 and MAPT).34 In our
analysis, we also found pleiotropic genes in these
regions (Table S4 in Data S1) and detected several
novel pleiotropic loci. Inflammatory and autoimmune
pathways play an important role in the development of
T1D.35 Accumulating evidence suggests lysosomal dys-
function as a prevalent mechanism in the pathogenesis
of PD.36 We showed that CTSB and RAB7L1 were
associated in cross-tissue TWAS analysis with both PD
and T1D. These genes are playing an important role in
the autophagy-lysosome pathway, suggesting a role for
lysosomal function in both traits and potential pathway
overlap. Recently, a similar protective effect was dem-
onstrated in an MR study for another autoimmune dis-
ease, rheumatoid arthritis.29 This finding was also
replicated in our MR analysis. The authors also
highlighted the hypothesis that the protective effect of
autoimmune conditions of PD could be driven by some
variants in genes involved in the lysosomal-autophagy
pathway.29 We suggest that a protective association
could be driven by pleiotropy, particularly in lysosomal
genes, as demonstrated by the genetic correlation and
TWAS in our analyses.
The casual effect between T2D and PD has a different

direction, because T2D may increase the risk for PD
and accelerate its progression as we previously
reported.4 This difference could be because of several
reasons. First, T1D and T2D are genetically distinct dis-
orders; therefore, different effects on PD risk are possi-
ble. Second, as we have demonstrated here with several
lines of evidence, the associated between T1D and PD
is likely due to pleiotropy, whereas the association
between T2D and PD may be a true causative effect.
Our study has several limitations. First, we included

only samples of European ancestry, because large
GWASs in other populations do not exist; therefore,
our findings cannot be generalized to the population at
large. Second, the GWASs on PD progression parame-
ters are underpowered (<80%). Thus, additional repli-
cation is required when larger GWASs on PD
progression will be made available. In addition, we
used GWAS on PD progression with a limited number
of individuals with data on MMSE (n = 1329) and
MoCA (n = 1000).17 It is also likely that the associa-
tions with MMSE and MoCA were not adjusted for
years of education. Therefore, our analyses on MMSE
and MoCA should be interpreted with caution. Another
limitation is the potential effect of survival bias, which
can arise in MR studies when the exposure of interest
(in this case, T1D) is associated with premature mortal-
ity. This can lead to spurious associations between the

exposure and the outcome (in this case, PD) because
individuals who died prematurely are excluded from
the analysis. Consequently, the association between the
exposure and outcome may be either increased or
reduced. In our case, for a survival bias to have a major
effect, it would require that there would be numerous
patients with T1D who were developing PD but did not
survive before the analysis of the PD GWAS had been
performed. MR also could be influenced by the quality
of selected GWASs that are used for the MR analysis.
We, therefore, used different GWASs for exposure and
nonoverlapping cohorts in the outcome to partially
account for this limitation. Lastly, TWAS can improve
the statistical power, allowing for the detection of addi-
tional gene-trait associations. However, it is important
to note that TWAS may still yield false-positive signals,
and therefore further genetic and functional studies are
necessary to validate associations nominated by TWAS.
To conclude, our results support a protective effect of

T1D on PD risk and progression, which could be
driven by potential pleiotropy. Larger comprehensive
epidemiological studies are required to further explore
this association.
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