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SAMO-D-22-00194: DISCRETE ADJOINT FOR COUPLED CONJUGATE

HEAT TRANSFER

IMAM-LAWAL, VERSTRAETE, MÜLLER

Dear Reviewers, thank you for your comments which were very helpful. Below are our
responses and relevant changes to the text:

1. Reviewer 1

1.1. p.6, The authors claim that λ̃ is a non-physical quantity which affects the
speed of convergence and the stability of the ”Temperature Forward Solid
Coefficient Back” (TFRB) coupling method. In the referenced paper [13], also
by the group of authors, no stability analysis has been carried out for this
particular coupling. Should this be addressed in this paper? Presumably, one
has to perform the same analysis as for the ”Heat-transfer Coefficient Forward
Temperature Back” method presented therein.

1.1.1. Response: Because the scope of the paper is on optimization rather than on conju-
gate heat transfer, the authors fear a stability analysis will reduce the focus of the paper,
and hence it is left out, but properly referenced in the text. A full stability analysis has
been done in [1]

1.1.2. Action: Reference to [1] has been added to the text.

1.2. p.10 The adjoint to the TFFB CHT coupling method, seems to be a ”Flux
Forward Temperature Back” (FFTB) scheme. According to the stability anal-
ysis presented in a previous work of the authors’ group [13], the stability of
the TFFB method is guaranteed for Biot numbers |Bi| > 1. Otherwise, the use
of under-relaxation is needed in order to ensure convergence. However, in the
same paper, stability analysis for the FFTB method yields that the scheme
is stable if |Bi| < 1. Does this contradictory behavior in stability of the two
methods in regards to Bi affect the stability of the discrete adjoint method?

1.2.1. Response: The Biot number indeed affects the stability of the primal solver. Both
the forward and reverse (adjoint) differentiation linearize the primal solver and inherit the
linear stability of the primal solver. In other words, even though the adjoint simulation
may have the look of a FFTB scheme, it is a linearizion of the primal and is stable if the
primal is stable.

1.2.2. Action: none required
1
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1.3. p.10-13, In tables 3,5,7 the authors validate the sensitivities of dTw/dx,
where x=[x,y,z] the coordinates of a node at the bottom surface of the flat plate,
using the adjoint method against the two other methods (tangent and central-
differences). Why is there a sensitivity with respect to (wrt) the perturbation
of the node in the z direction? Is the case 2D or 3D?.

1.3.1. Response: The case is 2.5D with only one cell in the z direction.

1.3.2. Action: The following sentence has been added to the first paragraph of Sec 3.1
”A 3D CHT simulation is performed to obtain the interface temperature and heat flux.”

1.4. p.13, The authors claim that, in Robin based coupling methods, by reduc-
ing the number of reverse-coupling iterations only 0.5% gradient accuracy is
lost. Can the authors further expand this comment? Does this 0.5% reduction
only refer to the flat plate validation case?

1.4.1. Response: This refers to the flat plate validation case. In the results in the table
below, 19 coupling iterations were required to converge the primal solution. Performing
just 3 reverse coupling iterations as opposed to 19 results in a very similar gradient. This
behaviour was observed only for the Robin-based coupling algorithms. More details are
provided in [2].

Primal Its Adjoint Its dTw
dTb

[E-04] dTw
dx

19 19 2.5931768445246677 12.803442391969877
19 3 2.5932320190671476 12.803770636795289
Table 1. hFRB gradients with reverse coupling iterations.

1.4.2. Action: Paragraph 2 of Sec. 3.2. now reads
Furthermore, rather than performing an equal number of primal and reverse coupling
iterations, fewer reverse coupling iterations could be performed, at the cost of a slight
reduction in gradient accuracy. On the flat plate validation case in Sec. 3.1, for Robin-
based coupling algorithms, reducing the number of reverse coupling iterations from 19 to
3 only resulted in a difference of approximately 0.5% in the gradients. This reduction in
the number of reverse coupling iterations can also be combined with partial convergence
of the fluid adjoint to significantly reduce runtime without great loss of gradient accuracy.
However the TFFB algorithm always required the same number of reverse iterations as the
primal to obtain accurate gradients.

1.5. p.18, In table 9, the authors show that by using the TFRB coupling
method, the optimization converges to the target solution with a much lower
computational cost compared to the other two methods, despite the loss in
gradient accuracy due to performing less reverse coupling iterations for the
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adjoint. This proves the time savings of this method. Any reason why the au-
thors performed the optimization of the MarkII turbine blade using the hFRB
method instead of TFRB?.

1.5.1. Response: The hFRB method was used because the TFRB method failed to con-
verge. This was due to extreme interface values at the shocks on the suction side which lead
to divergence of the TFRB method. It is possible that a better choice of Robin parameters
could solve this issue, however, it is not straightforward to conduct a stability analysis on
the irregular geometry and flow field of the blade.

1.5.2. Action: The following has been added to paragraph 1 of 4.2:
The CHT problem was solved using the hFRB algorithm due to stability reasons.

1.6. p.19-20, Is the optimization of the MarkII blade based on mesh adaptation
or re-meshing between optimization cycles? In either case, is it somehow guar-
anteed that conforming/matching meshes will be obtained at the Fluid-Solid
interface, as shown in Fig.7(b)?

1.6.1. Response: The mesh deformation algorithm used is Inverse Distance Weighted in-
terpolation (IDW). Only the internal mesh nodes are displaced while the boundary nodes
are kept fixed. Hence it is guaranteed that the meshes match at the interface

1.6.2. Action: The following has been added to paragraph 1 of 4.2.2:
”The Inverse Distance Weighted (IDW) interpolation method is used to propagate the dis-
placement of the cooling channels to the internal solid mesh nodes. The interface boundary
nodes are kept fixed to maintain the match with the fluid domain. The IDW algorithm
is also reverse differentiated to obtain fully accurate adjoint gradients of the entire design
chain.”

1.7. p.19 The results section seems rather poor. In specific, there is only one 2D
application (the optimization of the MarkII turbine blade) which terminated
prematurely due to fact that geometrical constraints for the positions of the
cooling channels not to cross the boundary of the blade were not imposed.
Even though this is not the subject of this paper, the authors are kindly asked
to include these constraints in the optimization to make their results more
realistic.

1.7.1. Response: Point taken however the focus of this particular paper is the methodology
and not the application. The authors are currently working on more challenging test cases
which will be published in the near future. Within the timescales of this special issue, we
will not be able to redefine and run the cases with additional constraints.

1.7.2. Action: Addressed in the forthcoming paper.
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2. Reviewer 2

2.1. Even though adjoint method is a computationally efficient method, it is
used to compute sensitives for a gradient-based algorithm which is more prone
to result in a local minimum than a gradient-free one. Therefore, I would
recommend to add a brief discussion on this matter in the introduction.

2.1.1. Response: The merits and downsides of gradient-based approaches are well known
and are not the main subject of this paper.

2.1.2. Action: The following has been added to paragraph 3 of Sec. 1
”Although gradient-based approaches are only guaranteed to converge to local minima, they
are preferred because they typically require less function evaluations. This is advantageous
in applications like CHT where the cost of each function evaluation can be high.”

2.2. From my point of view, the introduction could be extended with more
references on the topics covered.

2.2.1. Response: There are a number of papers that summarise the literature of the topic,
we have cited the main ones. To add a summary stability analysis to the manuscript, we
have added Scholl et al, [1] to the introduction. In our view it would not be best use of
the journal pages to repeat the overview.

2.2.2. Action: Reference to [1] has been added to the introductin.

2.3. I suggest to provide more details about the partitioned approach followed.
What kind of loosely-coupled scheme did you use? Are the coupling algorithms
the loosely-coupled scheme? From my point of view, it is not clear from the
text.

2.3.1. Response: Yes the coupling algorithms are the loosely-coupled scheme.

2.3.2. Action: The following sentence has been added to the last paragraph above Sec 2.1
These separate solvers are loosely coupled to solve CHT problems.

2.4. A reference to the Spalart-Allmaras turbulence model could be provided
to the interested reader.

2.4.1. Response: Thank you for pointing out this omission.

2.4.2. Action: Reference has been included

2.5. Why do you have 226 for the inverse optimization problem? I suggest to
include more details about the computational model. Did you perform a mesh
dependency study?

2.5.1. Response: The 226 design variables arise from the number of mesh nodes used to
discretise the computational domain. A mesh dependence study using double the number
of mesh points showed no significant change in results.



SAMO-D-22-00194: DISCRETE ADJOINT FOR COUPLED CONJUGATE HEAT TRANSFER 5

2.5.2. Action: Paragraph 3 of Sec 4.1 has been revised as follows:
Each mesh node at the bottom of the plate has an independent value of Tb specified as

a boundary condition, and is used in this work as a design variable (α) that needs to be
changed to drive J to zero. The selected mesh following a mesh dependence study results
in 226 design variables for the present work.

2.6. Why did you use the BFGS as optimization algorithm?

2.6.1. Response: Any gradient-based optimisation algorithm e.g. steepest-descent, conju-
gate gradient, etc, could be used. The BFGS algorithm is known to have good performance
and is the default method for the scipy.optimize.minimize library. It is widely used for un-
constrained optimisation.

2.6.2. Action: none required.

2.7. From my point of view, you should present more details about the compu-
tational model of the turbine blade.

2.7.1. Response: Thank you for pointing this out.

2.7.2. Action: The following has been added to paragraph 2 of Sec. 4.2
Matching meshes are used for both domains as shown in Figure 7 with 49,532 nodes in

the fluid domain and 5,714 nodes in the solid. A near wall spacing y+ of less than 1 is used
for the fluid.

2.8. There is a typo on page 19, line 48, where it reads ”form”, it should read
”from”.

2.8.1. Response: Thanks for spotting that, this has been changed in the text

2.8.2. Action: Changed in text

2.9. How was the scaling process done for the design optimization problem?

2.9.1. Response: The chord length of the turbine blade is only 0.06855 m. Therefore a unit
displacement in any direction would take a cooling channel outside the solid domain. As
we have no control over the line search and step size used in scipy these large displace-
ments occur. When this happens, a high value of the objective function is returned to the
optimiser to indicate that the step is too large.

2.9.2. Action: Revised the following sentence:
”The shallow slopes of the curves in Fig. 10 are due to the scaling performed to prevent
the optimiser from taking large steps” to ”The irregular shape of the curves in Fig. are a
result of the SciPy line search.”

2.10. Please include the DOI information of the references.

2.10.1. Response: Including the doi is not practised in the recently published papers in the
journal.
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2.10.2. Action: none required at this stage, if requested by the editors, can be added during
proofreading.
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Abstract

The typical method to solve multi-physics problems such as Conju-
gate Heat Transfer (CHT) is the partitioned approach which couples
separate solvers through boundary conditions. Effective gradient-based
optimisation of partitioned CHT problems requires the adjoint of
the coupling to maintain the efficiency of the original multi-physics
coupling, which is a significant challenge. The use of automatic dif-
ferentiation (AD) has the potential to ease this burden and leads
to generic gradient computation methods. In this paper, we present
how to automate the generation of adjoint fluid and solid solvers for
a CHT adjoint using Automatic Differentiation (AD). The derivation
of the adjoint of the loose coupling algorithms is shown for three
fixed-point coupling algorithms. Application is shown to two CHT opti-
misation benchmark cases for inverse design and shape optimisation. The
results demonstrate that Robin-based coupling algorithms have faster
runtimes and are an attractive option for CHT optimisation problems.

Keywords: Gradient-based optimisation, adjoint method, conjugate heat
transfer, Robin boundary conditions, inverse problems, shape optimisation
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2 Discrete Adjoint for Coupled Conjugate Heat Transfer

1 Introduction

Conjugate Heat Transfer (CHT) describes the process of heat transfer between
a fluid and solid and is ubiquitous in engineering applications such as turbine
blade cooling, modelling of heat exchangers, and cooling of electronics.

CHT problems may be solved using a monolithic approach in which both
fluid and solid equations are solved simultaneously by a single solver. However,
the partitioned or segregated approach is often adopted where separate solvers
for the fluid and structure are loosely coupled through boundary conditions.
These conditions need to be updated iteratively until the temperature and
heat flux are continuous between the two domains [1, 2].

Recent work in CHT has evolved beyond merely solving the CHT problem
to an increased interest in shape optimisation [3–6].This has lead to the need
for efficient optimisation methods such as gradient-based approaches. Although
gradient-based approaches are only guaranteed to converge to local minima,
they are preferred because they typically require less function evaluations. This
is advantageous in applications like CHT where the cost of each function eval-
uation can be high. Adjoint methods have been shown to be highly efficient as
the cost of obtaining gradients can be made almost independent of the number
of design variables. However, for partitioned coupling approaches, the flexibil-
ity of using different solvers for both domains results in an increased level of
complexity with regard to obtaining the required gradients.

Adjoint methods can be grouped into continuous or discrete methods. In
the continuous method the adjoint equations are analytically derived before
being discretised while the discrete method discretises the state equations
before formulating the discrete adjoint equations[7]. Arguments in favour of
either approach revolve around stability, accuracy and computational effort.
The discrete adjoint is considered to have the advantage with regards to sta-
bility and accuracy but not with computational effort. However, the use of
automatic differentiation (AD) can significantly reduce the implementation
effort associated with producing the adjoint code.

The majority of the work related to CHT optimisation has favoured the
continuous adjoint formulation [3, 4, 6, 8] while Burghardt and Gauger [9]
use the discrete adjoint but with a monolithic solver. In the present study,
we demonstrate a partitioned/segregated coupling methodology in which the
discrete adjoint formulation is achieved through AD. The use of AD has the
potential to lead to very generic and less labour intensive implementations
of adjoint methods for CHT. We focus on coupling boundary conditions and
highlight the advantages Robin boundary conditions in the fluid domain. Fur-
thermore, the gradient exchange required by partitioned coupling approaches
is demonstrated using three fixed-point coupling algorithms.

This paper is organised as follows: we first describe the CHT problem,
governing equations, and the coupling procedure. We then discuss the adjoint
procedure for the partitioned approach and gradient verification. Two CHT
optimisation problems are then solved using the adjoint method. Finally, a
summary is given in the conclusion.
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b

L

Fig. 1: Description of primal CHT problem

2 PRIMAL PROBLEM

Consider flow over a flat plate with finite thickness. The free stream flow
temperature is T∞, while the bottom of the plate is maintained at a lower
temperature Tb. Consequently, heat is transferred at the interface between the
solid plate and the fluid. The primal problem is to accurately compute the wall
temperature at the interface between the fluid and solid, which is unknown a
priori and can only be computed by considering the coupled problem (see Fig
1).

In order to solve the CHT problem using a partitioned approach, the fluid
and solid governing equations must be coupled leading to a coupled system of
equations

F (U i,W i) = 0, (1)

S(U i,W i+1) = 0, (2)

where U denotes the fluid state variables, W the solid state variables, and
i the coupling iteration. F represents the Reynolds Averaged Navier-Stokes
equations:

∂

∂t

∫
Ωf

~UdΩ +

∮
∂Ωf

(~fc − ~fv) · dS =

∫
Ωf

~QdΩf , (3)

where t denotes pseudo time, Q the source term, and xj , j = 1, 2, 3 are the
Cartesian coordinates. The state vectors U , and the inviscid and viscous flux
vectors ~fc and ~fv are defined as

~U =


ρ
ρ~v
ρe
ν̃

 , ~fc =


ρ~v · ~n

(ρ~v~v + p) · ~n
ρ(e+ p)~v · ~n

ν̃~v · ~n

 , ~fv =


0

τ · ~n
~Θ · ~n

1
σ (νL + ν̃)(∇ν · ~n)ν̃

 , (4)
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~Θ = τ · ~v + λ∇T. (5)

Where, ρ, p, and ~v are the fluid density, pressure, and velocity vector respec-
tively, ~n the surface normal vector, e the internal energy per unit mass, τ is
the stress tensor for Newtonian fluids and λ is the fluid thermal conductivity,
ν̃ is the modified eddy viscosity which is obtained using the Spalart-Allmaras
turbulence model [10] and S in Eqn. (2) refers to the governing equation of
the solid domain Ωs, that is the steady state heat conduction equation

λs∇2T = 0, (6)

where λs is the conductivity of the solid.
Each domain depends on the other through the boundary conditions spec-

ified at the fluid-solid interface. The solid state W , which is the solid’s
temperature, affects the fluid state U through the viscous flux component of
the energy equation and through the heat flux at the non-adiabatic fluid-solid
interface which must be specified using a boundary condition. Similarly, the
fluid state variables U affect the state of the solid W through the interface
boundary conditions specified while solving the heat equation.

Consequently, separate stand alone solvers for the fluid and solid, which are
loosely coupled through interface boundary conditions, can be used to solve
the primal problem. These boundary conditions are updated iteratively until
the temperature and heat flux are continuous between the two domains. That
is until

Tsw = Tfw,

λs
∂T

∂n

∣∣∣∣
s︸ ︷︷ ︸

qsw

= λf
∂T

∂n

∣∣∣∣
f︸ ︷︷ ︸

qfw

,

where Tfw is the interface temperature in the fluid domain Ωf , Tsw the inter-
face temperature in the solid domain Ωs, λf and λs the thermal conductivity
of the fluid and solid respectively, n the surface normal, and qfw and qsw the
interface heat flux in the fluid and solid domains respectively (see Figure 1).

In this work, the fluid equations are solved using the in-house mgOpt flow
solver, a vertex centered, finite volume solver, which solves the 3-D compress-
ible RANS equation using unstructured grids [11, 12]. The solid equations
are solved using the finite element method with open-source solver, CalculiX,
developed by Dhondt and Wittig. [13]. These separate solvers are loosely
coupled to solve CHT problems.

2.1 Coupling Algorithms

In the present work, an implicit coupling method is used to solve the pri-
mal problem with a partitioned approach. Different coupling algorithms exist
depending on which type of boundary conditions are exchanged between both
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domains. In both domains, boundary conditions could be specified as Dirich-
let, Neumann, or Robin, leading to a total of 7 different types of coupling
algorithms [14]. In this work, we use the three different fixed-point coupling
algorithms described in the following sections.

2.1.1 Temperature Forward Flux Back (TFFB)

In the TFFB method [15], the solid interface heat flux distribution, qisw, where
i is the current coupling iteration, is imposed as a boundary condition to the
fluid domain. The fluid solver F solves the flow equations resulting in a fluid
interface temperature distribution, T ifw. This temperature is then imposed as
boundary condition for the solid domain and the solid conduction solver, S,
provides an updated heat flux distribution qi+1

sw . This loop is continued until
there is no change in the boundary conditions exchanged by both solvers (see
Figure 2),

T ifw = F(qisw), (7)

qi+1
sw = S(T ifw). (8)

S

F

S

S

F

S

calc.

S

F

S

calc.

calc.

Fig. 2: CHT coupling algorithms. Left:TFFB, Centre: TFRB, Right:hFRB.
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2.1.2 Temperature Forward Solid Coefficient Back (TFRB)

The TFRB coupling algorithm imposes a Dirichlet boundary condition in the
solid domain and uses a Robin boundary condition in the fluid domain. The

method also requires a virtual conductivity R̃ to be specified, with R̃ = λ̃
L , λ̃

being the virtual solid conductivity, and L a solid length scale. The values of
λ̃ and L are non-physical quantities chosen by the user which affect the speed
of convergence and stability of the method [14, 16].

qisw = S(T isw), (9)

T̃ is =
qisw
R̃

+ T isw, =⇒ (calc. T̃s) (10)

T ifw = F(T̃ is , R̃), (11)

qifw = R̃(T̃ is − T ifw), =⇒ (Robin BC in Ωf ) (12)

T i+1
sw = T ifw. (13)

Assuming the algorithm begins in the solid domain, an initial guess for
the wall temperature T isw is imposed on the solid and used to obtain the heat
flux qisw. Next, the virtual solid sink temperature T̃ is is calculated using Eqn.
(10). The virtual conductivity and solid sink temperature are used for a Robin
boundary condition in the fluid domain (Eqn. (12)). The flow solver then
returns an update of the interface temperature which is given to the solid as
a Dirichlet boundary condition (see Figure 2).

2.1.3 Heat Transfer Coefficient Forward Solid Coefficient
Back (hFRB)

The hFRB method uses Robin boundary conditions in both domains and is the
same as TFRB on the fluid side (see Figure 2). Similar to the TFRB method,
the algorithm can start with an initial guess of the interface temperature on
the solid side. Next, the virtual solid temperature T̃s is then calculated and
passed to the flow solver along with the virtual conductivity R̃.

qisw = S(T isw), (14)

T̃ is =
qisw
R̃

+ T isw, =⇒ (calc. T̃s) (15)

T ifw, q
i
fw = F(T̃ is , R̃), (16)

T isink = T ifw −
qifw

h̃
, =⇒ (calc. Tsink) (17)

qi+1
sw , T i+1

sw = S(T isink, h̃). (18)
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The outputs from the flow solver are the interface temperature and heat
flux (Tfw, qfw). These are used in Eqn. (17) to calculate the ambient fluid tem-
perature (T isink) for a user specified value of the virtual heat transfer coefficient

(h̃). The solid solver then returns an update on the interface temperature and
heat flux and the exchange is continued until convergence [14, 16].

3 DISCRETE ADJOINT

For gradient-based CHT optimisation, we require the gradient of the objective
function I w.r.t the design variables α

dI

dα
=

∂I

∂α
+

[
∂I

∂U

∂I

∂W

] dUdαdW
dα

 , (19)

dI

dα
=

∂I

∂α
+ gTu, (20)

where U and W represent the fluid and solid state variables respectively.
The term gTu is expensive to solve hence it is advantageous to use the adjoint
formulation. The derivatives of the state variables for fluid and solid with
respect to the design variables

(
dU
dα ,

dW
dα

)
can be obtained from the state

equations

F (α,U,W ) = 0, (21)

S(α,U,W ) = 0. (22)

Where F is used to represent the RANS equations, and S represents the
heat equation. The derivative of the state equations with respect to the design
variables which are required to solve Eqn. (19) are obtained from

∂F∂U ∂F

∂W
∂S

∂U

∂S

∂W


 dU∂αdW
∂α

 =

−∂Fdα
−∂S
dα

 , (23)

Au = f.

The diagonal terms are the Jacobians of each discipline while the off-
diagonal terms show how the states of one discipline affect the state of the other
e.g. how the fluid temperature affects the solid flux and vice-versa. Therefore
the sensitivity of the cost function, Eqn. (19), for the coupled problem can be
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written as

dI

dα
=

∂I

∂α
+

[
∂I

∂U

∂I

∂W

]∂F∂U ∂F

∂W
∂S

∂U

∂S

∂W


−1 −

∂F

∂α

−∂S
∂α

 (24)

dI

dα
=

∂I

∂α
+ (gTA−1)f. (25)

The cost of calculating the gradient can be reduced through the adjoint
method. The adjoint variables are the solution to the adjoint equation

∂F∂U ∂F

∂W
∂S

∂U

∂S

∂W


T [

ψ
φ

]
=

 ∂I

∂U
∂I

∂W

 , (26)

AT v = g.

Where vT = [ψ, φ] represents the fluid and solid adjoint variables
respectively and

v = (AT )−1g, (27)

vT = gT (A−1). (28)

Therefore, after only one solve of Eqn. (26) for the adjoint variable v, the
sensitivity can be calculated as

dI

dα
=

∂I

∂α
+ vT f, (29)

dI

dα
=

∂I

∂α
+
[
ψ φ

] −∂F∂α
−∂S
∂α

 . (30)

In the partitioned coupling approach, the Jacobian of the coupled system
in Eqn. (26) is not calculated. Instead, the adjoint solution is obtained through
an iterative approach, similar to the primal coupling, to compensate for the
missing off-diagonals. The adjoint of system of each discipline is solved using
the adjoint solution of the other discipline from the previous iteration [17]

(
∂F

∂U

T)
ψi =

(
∂I

∂U

T)
−
(
∂S

∂U

T

φi−1

)
(31)
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∂S

∂W

T)
φi =

(
∂I

∂W

T)
−
(
∂F

∂W

T

ψi
)
, (32)

where i is the current coupling iteration. The partial derivatives ( ∂S∂U , ∂F
∂W )

in equations (31) and (32) depend on the type of coupling algorithm used (see
Table 1) and are obtained by differentiating the solvers w.r.t. the coupling
boundary conditions and coordinates. Reverse mode automatic differentiation
is applied to the fluid and heat conduction solvers [18] using Tapenade [19], a
source-transformation AD tool. The use of AD significantly reduces the effort
required to obtain the adjoint solvers and in the case of the fluid solver, the
procedure was fully automated. This allows for easy implementation of new
coupling boundary conditions and optimisation objective functions.

Coupling algorithm
Partial derivative TFFB TFRB hFRB

∂S

∂U

∂qsw

∂Tfw

∂qsw

∂Tfw

∂qsw

∂Tsink
,
∂qsw

∂h
,
∂Tsw

∂Tsink
,
∂Tsw

∂h

∂F

∂W

∂Tfw

∂qsw

∂Tfw

∂T̃s

∂Tsink

∂T̃s
,
∂h

∂T̃s

Table 1: Description of multidisciplinary partial derivative terms

The iterative approach shown in equations (31) and (32) results in a
reversed/inverted version of each coupling algorithm. The total sensitivity in
Eqn. (30) is then obtained by accumulating the gradients output after each
solid adjoint iteration.

3.1 Gradient Calculation and Verification

We demonstrate accuracy of the partitioned adjoint methodology using a flat
plate test case. The plate has a fixed temperature Tb at the bottom and comes
in contact with fluid of a different temperature (see Fig 3). A 3D CHT sim-
ulation is performed to obtain the interface temperature and heat flux . A
perturbation in the temperature of a red node at the bottom results in a change
in the heat flux into the fluid domain. This perturbation travels through the
coupling and results in a new interface temperature Tw at the blue node. Sim-
ilarly, a coordinate perturbation (x, y, z) changes the volume of the plate and
leads to a change in the heat flux at the fluid-solid interface and consequently
alters the solution of the coupled problem. Therefore, the effect of these per-
turbations on the interface temperature is described by two gradients dTw

dTb
and

dTw

d~x where ~x = [x, y, z].
The partitioned adjoint approach to solving equations (31) and (32) is now

described.
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x,T

y

V
�

T
�

Tw

Tb Tb + δTb Tb

(a) Temperature perturbation

x,T

y

V
�

T
� Tw

δx

(b) ~x coordinate perturbation

(c) Cross-section of computational domain with matching
Fluid and Solid meshes.

Fig. 3: Design variable perturbations for central difference

3.1.1 Temperature Forward Flux Back (TFFB)

The adjoint run of the TFFB algorithm, starts with seeding a vector T
i

fw

which is set to 1 for the blue node in Figure 3 while all others are set to 0.
T fw is used by the adjoint flow solver (Fb) to obtain the adjoint heat flux
qsw. This is then passed directly to the adjoint solid (Sb) solver to obtain an
update of the adjoint temperature.

qisw = Fb(T
i

fw), (33)

~x
i
, T

i

b, T
i−1

fw = Sb(qisw). (34)

The reverse loop is performed for the same number of iterations as for
the primal solution and at the end of each coupling iteration, the gradient
T b is accumulated. This single adjoint solve obtains the gradient of the inter-
face temperature at the blue node w.r.t to all design variables (red nodes). A
block structure representation of the reverse differentiated coupling algorithm
is shown in Figure 4. In fact, both dTw

dTb
and dTw

d~x are obtained in one reverse
solve highlighting the advantage and cost savings of the adjoint method.
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Design variable
Gradient method 1 [×10−4] 2 [×10−2] 3 [×10−4]

Tangent 3.5742499655677586 1.0915639124275244 6.2298230582871555
Adjoint 3.5742499655677591 1.0915639124275237 6.2298230582871479

CD [∆ = 10−4 K ] 3.5665266295836773 1.0898488085331337 6.2618937590741552

Table 2: TFFB gradient of interface temperature Tw w.r.t bottom tempera-
ture Tb (dTw

dTb
)

Table 2 shows gradients for dTw

dTb
while Table 3 shows the gradients for dTw

d~x .
Both Tables show good agreement between the tangent, adjoint, and central
difference (CD) methods.

Design variable
Gradient method x y z

Tangent 16.353754663042668 -13.270758597756023 0.41017185855131066
Adjoint 16.353754647042667 -13.270758610753868 0.41017185829135394

CD [∆ = 10−7m] 16.321095586135925 -13.244326737549272 0.40858196825865889

Table 3: TFFB gradient of interface temperature Tw w.r.t coordinates

F

F

S

F

F

S

calc.

F

F

S

calc. 

calc.

Fig. 4: Reverse differentiated CHT coupling algorithms; Left:TFFB, Centre:
TFRB, Right:hFRB.

3.1.2 Temperature Forward Solid Coefficient Back (TFRB)

The adjoint TFRB run is started by seeding a vector of the adjoint fluid tem-
perature T fw to the flow solver to obtain T̃sb. The reverse differentiated routine
for Eqn. (10) is also required to obtain the adjoint heat flux and temperature
as shown in equations (36). The solid solver then uses the adjoint heat flux
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to obtain T sw. The two adjoint interface temperatures are then summed to
provide an update for the next iteration.

T̃ isb = Fb(T
i

fw), (35)

qisw, T sw = f(T̃ isb, R̃) =⇒ (calc. T̃sb), (36)

~x
i
, T

i

b, T
i

fw = Sb(qisw), (37)

T
i−1

fw = T
i

fw + T sw. (38)

The loop is done for the same number of coupling iterations and T b and ~x
are accumulated. The final result returns dTw

dTb
and dTw

d~x and is shown in Tables
4 and 5. Good agreement is seen between the tangent, adjoint, and central
difference (CD) methods.

Design variable
Gradient method 1 [×10−4] 2 [×10−2] 3 [×10−4]

Tangent 3.5735550558001070 1.0914304240387199 6.2333366050062219
Adjoint 3.5735550558001043 1.0914304240387196 6.2333366050062176

CD [∆ = 10−4 K ] 3.5665607356349938 1.0898481832555262 6.2619392338092439

Table 4: TFRB gradient of interface temperature Tw w.r.t bottom tempera-
ture Tb

Design variable
Gradient method x y z

Tangent 16.370061472907469 -13.283993573142387 0.41096593285022071
Adjoint 16.370061462907479 -13.283993581266039 0.41096593268774745

CD [∆ = 10−7m ] 16.321095586135925 -13.244325032246707 0.40858196825865889

Table 5: TFRB gradient of interface temperature Tw w.r.t coordinates

3.1.3 Heat Transfer Coefficient Forward Solid Coefficient
Back (hFRB)

For the hFRB adjoint, the adjoint wall temperature T fw is used by the flow
solver to obtain the adjoint solid sink temperature T s. This is then converted
into an adjoint heat flux qsw and adjoint temperature T sw using the differen-
tiated routine which calculates the Robin parameters Tsink and h̃ for the solid
domain. The solid solver then returns an adjoint sink temperature T sink and
adjoint virtual heat transfer coefficient h. The differentiated Robin preprocess-
ing step uses the virtual heat transfer coefficient h to calculate the adjoint wall
temperature T fw while the adjoint sink temperature T sink is assigned to the
first off wall node, as shown in Eqn. (42).
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T
i

s, R
i

= Fb(T
i

fw) (39)

qisw, T
i

sw = f(R, T
i

s) =⇒ (calc. T̃sb) (40)

~x
i
, T

i

b, T
i

sink, h̄
i = Sb(qisw, T

i

sw), (41)

T
i−1

fw , T
i

1 = f(T
i

sink, h̄
i) =⇒ (calc. T sink) (42)

T
i−1

s = Fb(T
i−1

fw , T
i−1

1 ). (43)

Tables 6 and 7 show good agreement between the gradients of dTw

dTb
and dTw

d~x
obtained using the tangent, adjoint, and central difference (CD) methods.

Design variable
Gradient method 1 [×10−4] 2 [×10−2] 3 [×10−4]

Tangent 2.5762110467644555 1.0925380019541161 6.2699386158202540
Adjoint 2.5762110467644582 1.0925380019541164 6.2699386158202584

CD [∆ = 10−4 K ] 2.5761096367205027 1.0925347169177257 6.2007757151150145

Table 6: hFRB gradient of interface temperature Tw w.r.t bottom temperature
Tb

Design variable
Gradient method x y z

Tangent 12.776834118125210 -10.523597306166273 0.32383945281109172
Adjoint 12.776834108125197 -10.523597314289930 0.32383945264861863

CD [∆ = 10−7m ] 12.760587537741230 -10.509541539249767 0.32302864383382257

Table 7: hFRB gradient of interface temperature Tw w.r.t coordinates

3.2 Advantage of fluid Robin-based coupling algorithms

All the gradients obtained in Tables 2 - 7 were obtained by fully converging
the fluid and solid primal and adjoint equations as well as performing an equal
number of primal and reverse coupling iterations. However, for all coupling
algorithms, significant time savings can be obtained by only partially con-
verging the fluid primal and adjoint equations each time without significantly
impacting the accuracy of the gradients [18].

Furthermore, rather than performing an equal number of primal and reverse
coupling iterations, fewer reverse coupling iterations could be performed, at
the cost of a slight reduction in gradient accuracy. On the flat plate validation
case in Sec. 3.1, for Robin-based coupling algorithms, reducing the number of
reverse coupling iterations from 19 to 3 only resulted in a difference of approxi-
mately 0.5% in the gradients. This reduction in the number of reverse coupling
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iterations can also be combined with partial convergence of the fluid adjoint to
significantly reduce runtime without great loss of gradient accuracy. However
the TFFB algorithm always required the same number of reverse iterations as
the primal to obtain accurate gradients.

Consequently, Robin-based coupling algorithms reduce the wall clock time
required to obtain reasonably accurate gradients [18]. The Robin-based cou-
pling algorithms have also been shown by Verstraete and Scholl [2, 14] to
require less coupling iterations to converge the primal. Therefore, the time
saving in both the primal and adjoint coupling runs will significantly speed up
the optimisation process.

4 APPLICATION TO OPTIMISATION
PROBLEMS

4.1 Inverse Design Optimisation

To demonstrate the efficacy of the partitioned adjoint methodology, we start
with a simple inverse problem for which the final solution is known. Inverse
problems are solved by providing a desired solution and adjusting design vari-
ables in order to achieve the desired target. In this problem, we seek the bottom
temperature (Tb) which results in the best match for a given the interface wall
temperature (Ttarget) as shown in Figure 5. Table 8 and Figure 1 show the
remaining parameters.

x

y,T

Tb=?

V
∞

,T
∞

Ttarget

Fig. 5: Description of flat plate inverse problem

The inverse problem is solved by formulating an optimisation problem,
which allows the use of classical direct methods to solve the physics involved.
An objective function (J) is defined as the difference between the desired

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Springer Nature 2021 LATEX template

Discrete Adjoint for Coupled Conjugate Heat Transfer 15

Parameter Value Units

b 0.01 m
L 0.2 m
M∞ 0.1
P∞ 1.03 · 105 Pa
T∞ 1000 K
Tb 600 K
λs 0.2222 W/mK
λf 0.05568 W/mK
µ 3.95 · 10−5 Pa · s
ReL 1.132 · 105

Pr 0.713

Table 8: Table of parameters

interface temperature (Ttarget) and the obtained interface temperature (Tw)

for an estimated bottom temperature (T̃b).

J =
1

2

∫ L

0

(Ttarget − Tw)2dx, (44)

and minimising Eqn. (44) results in an interface temperature which matches
the target temperature. The objective function depends implicitly on the bot-
tom temperature Tb through the solution of the coupled problem. Each mesh
node at the bottom of the plate has an independent value of Tb specified as
a boundary condition, and is used in this work as a design variable (α) that
needs to be changed to drive J to zero. The selected mesh following a mesh
dependence study results in 226 design variables for the present work.

The objective is hence to minimise Eqn. (44) subject to the constraints of
satisfying both the state equations of both domains and maintain continuity
of state variables (Tw, qw) across the interface.

A gradient based method is used to reduce the deviation of the current
interface wall temperature with the desired one. The gradient of the objective
function (sensitivity) w.r.t the control variables, α, is given as

dJ

dα
=

∫ L

0

(Ttarget − Tw)
dTw
dα

dx. (45)

The gradients of the temperature w.r.t the design variables, i.e. the tem-
perature specified on the bottom of the flat plate, are computed using the
adjoint approach for calculating dTw

dTb
described in Sec. 3. The target temper-

ature is obtained by solving the primal problem with a bottom temperature
of 600K, hence it is guaranteed that a solution to the problem exists. T̃b is
initially taken as 400K and refers to the estimated bottom temperature that
should yield Ttarget .
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4.1.1 Results

The objective is minimised using the BFGS optimisation algorithm from the
SciPy library [20]. The difference between the temperatures obtained from the
direct and inverse solution is defined as

Error = TTarget − TInverse. (46)

Figure 6a shows that the reduction in the objective function for all three
coupling algorithms. The results for the TFRB algorithm in Fig. 6b show that
the inverse solution is significantly closer to the target than the initial guess.
Similar results were obtained for the TFFB and hFRB coupling algorithms
(omitted for clarity). The successful solution of the inverse problem shows that
the partitioned discrete adjoint methodology described is effective for solving
CHT optimisation problems.
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Fig. 6: Inverse solution after 28 optimisation iterations

Table 9 shows the time taken for the gradient norm to fall below 0.1 for
all coupling algorithms. The Robin-based algorithms are seen to be faster
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and this is attributed to needing fewer primal and reverse coupling iterations.
Despite the loss of gradient accuracy due to partially converging the fluid
adjoint and performing ≈ 80% less reverse coupling iterations than primal
coupling iterations, the Robin-based algorithms solve the inverse problem. This
shows that the time savings are worth the sacrifice in gradient accuracy.

Coupling method

TFFB TFRB HFRB

Time[hrs] 14.6 6.0 9.5
Iterations 30 30 38

Table 9: Comparison of optimisation runtimes for all coupling algorithms

4.2 MarkII Turbine Blade

Modern gas turbines are equipped with internal cooling channels which cool
the internal structure and prevent damage from high turbine inlet tempera-
tures. Hence, an optimisation problem is formulated to minimise the maximum
temperature in a turbine blade by changing only the location of each cooling
channel.

The vane geometry is modelled after the Mark II turbine vane which has
been investigated experimentally by Hylton et al. [21]. The blade is convec-
tively cooled by ten cooling channels and a 2D simulation of the problem is
carried out. Matching meshes are used for both domains as shown in Figure
7 with 49,532 nodes in the fluid domain and 5,714 nodes in the solid. A near
wall spacing y+ of less than 1 is used for the fluid.

1

2
3

4
5

6 7

8 9

10

periodic

(a) Vane geometry and boundary con-
ditions (b) Matching Fluid and Solid meshes

Fig. 7: MarkII turbine blade

In the fluid domain, boundary conditions for the freestream pressure and
temperature, as well as the Mach number at inlet are specified, while a gauge
pressure of zero is specified at the outlet. In the solid domain, a constant
temperature is imposed in each of the cooling channels.
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PTin
[Pa] TTin

[K] Pout[Pa] Min Mout

337100 788 167000 0.19 1.04

Table 10: MarkII run 5411 fluid boundary conditions

The blade is made of ASTM 310 stainless steel and the thermal conduc-
tivity is a function of temperature taken as

λs = 6.811 + 0.020176 · T, (47)

where T is the temperature at a point in the solid. The density and heat
capacity are taken as 7900 kgm−3 and 586.5 J kg−1 K−1 respectively. We define
an objective function (J) as the maximum temperature in the solid domain

J = p

√
1

Ωs

∫
Ωs

(
T

Tref

)p
dΩs, (48)

where p is a user-defined integer taken as 10 currently and Tref is a user-
defined constant. The objective function depends on the solid temperature
field which is obtained by solving the CHT problem. The CHT problem was
solved using the hFRB algorithm due to stability reasons.

The coordinates (x, y) of each of the cooling channels are taken as control
variables (α) that need to be changed to drive J to zero. As a result, the
control variable α in the discrete problem is an array of size N. Where N is the
number of channels (10), times the x&y coordinates leading to a total of 20.
The gradients of the objective function w.r.t the design variables are computed
using the partitioned adjoint approach described in Sec. 3.

4.2.1 Baseline Analysis

Figures 8 and 9 show the temperature, pressure, and heat transfer coefficient
distributions on the baseline geometry. The computational surface tempera-
ture distribution deviates from the experiment near the leading edge but this
discrepancy reduces closer to the trailing edge. The primary cause of the dis-
crepancy on the suction surface of the leading edge is the due to the limitation
of the Spalart-Allmaras turbulence model. This model is not well suited for
modelling transitional flow and transitional models can be used to better match
the experiment [22–24].

At the trailing edge where we see good agreement between the experiment
and CHT results, the presence of the cooling channels leads to oscillations in
the interface temperature and heat transfer coefficient distributions. We also
see that the solid temperature is highest at the trailing edge.

4.2.2 Optimisation Results

An unconstrained optimisation is performed using the BFGS optimisation
algorithm from the SciPy library [20]. The Inverse Distance Weighted (IDW)
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Fig. 8: Temperature distribution at fluid-solid interface and in the computa-
tional domain
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Fig. 9: Pressure and heat transfer coefficient distribution at the fluid-solid
interface

interpolation method is used to propagate the displacement of the cooling chan-
nels to the internal solid mesh nodes. The interface boundary nodes are kept
fixed to maintain the match with the fluid domain. The IDW algorithm is also
reverse differentiated to obtain fully accurate adjoint gradients of the entire
design chain.

We achieve approximately 0.9% reduction in the objective function which
corresponds to a 3.14 K drop in the maximum temperature as shown in Fig.
10. The irregular shape of the curves in Fig. 10 are a result of the SciPy line
search.

Figure 11a shows the displacement of the cooling channels. The black lines
represent the channels of the optimised blades while the solid surface is the
initial geometry and temperature distribution. The optimisation is terminated
prematurely as the first cooling channel (channel 1) moves out of the solid
domain in the next optimisation step. The channels at the leading edge (chan-
nels 1-3) are displaced upwards and outwards towards the higher temperature
regions, the trailing edge channels (channels 7-10) are displaced downwards,
while the middle channels (channels 4-6) are displaced towards the suction
surface.
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Fig. 10: MarkII optimisation results

(a) Channel displacement (b) Temperature change

Fig. 11: MarkII optimisation results

Figure 11b shows the node based change in the blade temperature distri-
bution plotted on the initial geometry, where ∆T is the difference between the
optimised and baseline temperature. The greatest reduction in temperature is
seen at the leading edge near the new location of channel 1.

5 CONCLUSION

A partitioned discrete adjoint method for the partitioned approach to Conju-
gate Heat Transfer modelling has been presented. Loose coupling of the fluid
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and solid domains with three fixed-point coupling algorithms was presented
and their adjoints were derived. The discrete adjoint solvers were developed
using reverse mode automatic differentiation (AD) which reduces the effort of
development and in particular maintenance. The process of developing the fluid
adjoint solver was fully automated which provides a strong case for adopting
the discrete adjoint over the continuous adjoint for multidisciplinary optimi-
sation problems. The exchange of sensitivity information between solvers was
also described and the gradients verified. The presented methodology was then
applied to two CHT optimisation problems involving a flat plate and a turbine
blade. It was shown that Robin-based coupling algorithms have lower runtimes
as they need fewer coupling iterations to converge the primal and adjoint. Con-
sequently, partitioned methods with Robin-based coupling algorithms can be
an attractive and competitive option for CHT optimisation in comparison to
monolithic methods.
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