
Nonlinear characteristics identification of an impact oscillator with a
one-sided elastic constraint

Bo Tiana, Shan Yina, Yang Liua,∗, Julián Londoño Monsalvea

aExeter Small-Scale Robotics Laboratory, Engineering Department, University of Exeter, North Park Road, Exeter, UK,
EX4 4QF

Abstract

Impacting systems are widely used in many engineering applications, such as self-propelled robots, energy
harvesting and percussive drilling, which exhibit rich and complex nonlinear phenomena. Among these
applications, predicting nonlinearities and estimating system parameters are of great interest of nonlin-
ear dynamics research community. Backbone curve is an analytical tool that captures the frequency-
amplitude dependence of nonlinear systems. In this paper, we estimate the impacting stiffness of a
single-degree-of-freedom non-smooth dynamical system qualitatively by using the backbone curve. It was
found that an increase of the impacting stiffness may lead to lowering the backbone curve. An adaptive
differential evolution algorithm with the Metropolis criterion is proposed to identify the parameters of
the impacting system quantitatively using experimental data, which are consistent with our theoretical
predictions. Finally, the identified parameters are verified, and the limitations of the backbone curve
are drawn. The nonlinear characteristics identification method studied in this paper could be extended
to other vibro-impact systems and is potentially applicable to structural health monitoring and robotic
sensing.

Keywords: Vibro-impact; Backbone curve; Non-smooth dynamical system; Parameter identification;
Experiment.

1. Introduction

Impacting systems are widely found in many applications, such as vibro-impact moling [1, 2], rotor
system with bearing clearances and metal cutting [3], impact dampers [4–6], drill-string system [7],
energy harvesting [8] and self-propelled capsule systems [9–12]. Such impacting systems exhibit rich
complex nonlinear characteristics, and the single-degree-of-freedom (SDOF) impact oscillator with a
linear constraint [13, 14] is one of the most common models, which has been investigated extensively for
the past three decades. For example, Stefani et al. [15] studied various scenarios of nonlinear responses of
a SDOF impacting system experimentally, such as free flight condition and grazing condition, by observing
the characteristics of forward and backward Pseudo Resonance Curves. Thota et al. [16] studied the
distribution and influence of co-dimension-two grazing bifurcations along the grazing curve of two SDOF
oscillators. The existence and stability of the 1/n impact period near grazing were investigated, and the
certain degenerate grazing bifurcation points of the 1/n motions were determined for a SDOF impacting
oscillator [17, 18]. Dai et al.[19] studied the vibration force transmission and power flow characteristics
of a SDOF impact oscillator with a linear constraint, and discussed the effects of stiffness and damping
properties. Liu et al. [20] studied a vibro-impact capsule system in different frictional environments,
including Coulomb friction, viscous damping, Stribeck effect and pre-sliding. They also analysed the
bifurcation of a vibro-impact experimental rig using the continuation platform COCO [13].

While there is extensive literature on nonlinear analysis to characterise the behaviour of impact-
ing systems, few research works have contributed to the identification of nonlinear characteristics and
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parameters of such systems. This could significantly improve their performance through design and op-
timisation. Currently, predicting nonlinearities and estimating system parameters are of great interest
to the nonlinear dynamics research community. For example, Lei et al. [21] proposed a novel unscented
Kalman filter with unknown input to measure the model parameters of a nonlinear shear system with
a modified Bouc-Wen model of hysteresis and validated the algorithm via experiments. Zhu et al. [22]
investigated the identification of restoring and damping forces of a double-well Duffing oscillator with
a generalised nonlinear damping by using the nonlinear subspace identification technique via input per-
turbation. Singh and Moore [23] studied a model fighter-jet wing with a nonlinear energy sink by using
the characteristic nonlinear system identification method. The unknown parameters of the model can
be identified based on the instantaneous frequency and damping curves extracted from acceleration and
full-field displacement data.

Backbone curve [24] is an analytical tool that captures the frequency-amplitude dependence, allowing
for the quantification of nonlinear characteristics and identification of certain parameters in nonlinear
systems. In comparison to the identification methods mentioned earlier, only displacement or accelera-
tion data is required to identify these parameters in nonlinear systems. For example, Julián et al. [25]
identified the effective stiffness and damping coefficient by extracting the backbone and damping curves
of a SDOF nonlinear smooth system from measured displacement data. Ondra et al. [26] identified the
coefficients of a quadratic stiffness based on the backbone and damping curves and the restoring forces.
There are various methods available for extracting backbone and damping curves, including the Hilbert
Transform method [27–29] and the Peak Finding and Fitting method [30]. Due to the limitations in
the traditional Hilbert transform’s identification accuracy, Liu et al. proposed an optimal Hilbert trans-
form parameter identification method [31, 32] and a displacement-measurement restoring force surface
identification approach [33] to estimate parameters in a bistable dynamic system. The Zero-crossing
method [25, 26] is effective for extracting backbone curves from both symmetric and asymmetric sig-
nals, demonstrating comparable or superior accuracy to the Hilbert transform. The fitting time history
method [34, 35] is a versatile technique for computing backbone curves, applicable to any experimental
response. While backbone and damping curves are typically employed to identify parameters in non-
linear smooth systems, this paper explores their application in identifying parameters in a non-smooth
dynamical system.

On the other hand, there are many parameter identification algorithms, which can be used to identify
the full parameters of complex nonlinear systems, such as discontinuous nonlinear systems and multiple-
degree-of-freedom systems. For example, Novelli et al. [36] presented an efficient data-driven sparse
identification [37, 38] of dynamical systems to determine the discontinuity surfaces in hybrid systems.
Feng et al. [39] proposed a digital twin-driven method for assessing the gear surface degradation, and two
endurance tests with different mechanisms were carried out to validate this method. Ren et al. [40] pro-
posed a data-driven parametric model of a six-degree-of-freedom dynamic system, and sparse regression
was applied to fit the measurements. Lin et al. [41] proposed an alternating state-parameter identifica-
tion approach to estimate the parameters of a Bouc-Wen hysteretic system. Apart from these methods,
other identification algorithms, such as the particle swarm optimisation [42–45], the firefly algorithm
[46, 47] and the particle field optimisation [48] were also widely employed for parameter identification of
nonlinear systems. However, most of these methods require synchronous measurements of more than one
variable, posing a strict requirement in practical experiments. Differential evolution algorithm [49, 50] is
a popular identification method, which can be used to identify the parameters with partially observable
experimental data. For example, Dai et al. [51] presented a differential simulated annealing algorithm
for estimating kinetic parameters, leading to a high success rate. Vincenzi et al. [52] identified the
modal frequencies and mode shapes of a bridge based on the response surface approach with differential
evolution. The performance of differential evolution is mainly decided by mutation strategies and control
parameters. Until now, many improved differential evolution algorithms have been proposed based on
control parameters, adaptation and mutation strategies, such as the ranking-based mutation operators
[53], the self-adaptive differential evolution with an improved mutation strategy [54], the algorithms with
neighborhood mutation operators and opposition-based learning [55] and the combination with simulated
annealing [56–58].

In this paper, we will study on a SDOF impact oscillator [59] and use two methods to identify the

2



parameters of this system. One is to use the backbone and damping curves based on the zero-crossing
method for nonlinear asymmetric signal [26]. Another one is based on an adaptive differential evolution
algorithm with the Metropolis criterion [60]. The aim of this study is to evaluate the impacting stiffness
of the oscillator which represents a number of engineering applications, such as rock characteristics
identification [61, 62] and dynamic tissue evaluation [63]. The contributions of this paper are twofold.
First, to adopt the extended zero-crossing method proposed by Ondra et al. [26], the present work
tested the method on an impact oscillator with a one-sided elastic constraint and validated its efficacy
experimentally. However, the system studied numerically by Ondra et al. [26] is an ideal system without
any restriction on initial condition, so its stiffness and damping coefficients can be estimated accurately.
But in the present work, the initial condition of our experimental rig was restricted, so the extended
zero-crossing method cannot estimate the impacting stiffness coefficient quantitatively. Our experimental
investigation reveals some limitations of the zero-crossing method from the practical point of view, such as
initial condition selection and damping effect. Furthermore, we studied the influence of system parameters
(such as the initial displacement, mass, and damping) on estimation accuracy. Second, to estimate
the impacting stiffness coefficient quantitatively, an adaptive differential evolution algorithm with the
Metropolis criterion was proposed. This method can identify all the parameters of the impacting system
by using the historical displacement data only.

The rest of this paper is organised as follows. In Section 2, the method to extract backbone curves
was studied. In Section 3, the mathematical model and the experimental rig of the SDOF impact
oscillator were introduced. In Section 4, the zero-crossing method for asymmetric signal was adopted,
and the adaptive differential evolution algorithm with the Metropolis criterion was proposed to identify
system parameters using experimental data. Also, the limitations of backbone curves are discussed, and
the effects of system parameters on the estimation accuracy of the impacting stiffness coefficient via
backbone curves were investigated. Finally, the conclusions of the present work were drawn in Section 5.

2. Estimation of backbone curves for asymmetric signal

In this section, a method for extracting backbone curves for asymmetric signal was studied, and the
estimations of instantaneous frequency, amplitude and damping ratio were introduced. The signal used
to extract backbone curves is in free vibration generated when setting the nonlinear system free under
a sufficiently large initial displacement. Here, the Resonance Decay Method [25] can be used to obtain
the resonant decay response. The procedure is to excite the system by using harmonic excitation at
the frequency of mode of interest, and remove the excitation when the system reaches to a steady-state
condition. Then the structural nonlinearities can be activated under a sufficiently large amplitude. So,
the resonant decay response can be obtained eventually. Once the decay response is recorded, the zero-
crossing detection method can be used to estimate the instantaneous frequency and amplitude, which are
two main characteristics in measuring the backbone curves of the nonlinear system.

Zero-crossing method is widely used to calculate instantaneous frequency and amplitude, which is
based on the detection of all zero-crossing points of a decay response and the use of polynomial interpo-
lation algorithm to estimate the times of these zero-crossing points. Consider the nonlinear asymmetric
signal shown in Fig. 1 as an example, the upper (denoted by the subscript ‘u’) and lower ( indicated by
the subscript ‘l’) instantaneous frequencies and response envelope of the signal need to be estimated.

For the instantaneous frequency, once the sequence of all zero crossing times ti (where i=1, 2, 3, ...)
is extracted as indicated in Fig. 1, the upper and lower instantaneous frequencies, f(tu) and f(tl) can be
calculated as

f̂(tu) = [2(ti − ti−1)]−1,

f̂(tl) = [2(ti−1 − ti−2)]−1.
(1)

The moving average filter can offer optimal properties in reducing random noise, and can be used to
smooth out the signals around their crossing points when noise is significant. In the present work, a N -th
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Figure 1: Zero-crossing method for the nonlinear systems with asymmetric signal [26], where ti, tu and tl are times of
zero-crossings, maxima and minima, Tu and au are the period and amplitude from the upper part of the signal, and Tl and
al are the period and amplitude from the lower part of the signal, respectively.

.

order moving average filter given as

f(tu) =
1

N

N−1∑
j=0

f̂(tju),

f(tl) =
1

N

N−1∑
j=0

f̂(tjl ),

(2)

where j=1, 2, 3, ...., was used to smooth out the imperfect predictions of Eq. (1). It should be noted
that the filter order needs to be selected based on the level of noise in the signal.

For the instantaneous amplitude, it can be estimated by extracting the amplitude envelope of the decay
signal, which is determined through tracking the maxima au(tu) or the minima al(tl) of the decay response
within the zero-crossing time interval [ti, ti+1], as indicated in Fig. 1. Then a first-order polynomial
interpolator can be adopted to simulate the amplitude envelope, and Ψu(tu) and Ψl(tl) are defined as
the polynomial interpolating function of the sequences [au, tu] and [al, tl], respectively. Thus, the upper
and lower instantaneous amplitudes corresponding to the instantaneous frequencies estimated above are
given as

au(tu) = Ψu(tu),

al(tl) = Ψl(tl).
(3)

In general, the upper and lower envelopes of the free vibration response can be described in terms of
system parameters and initial condition as

au(tu) = au0e
−ζuwutu ,

al(tl) = al0e
−ζlwltl ,

(4)

where ζ and w are the effective damping ratio and the instantaneous angular frequency, respectively.
Thus, the upper and lower effective damping ratios can be obtained as

ζ(tu) =
1

w(tu)tu
(ln au0 − ln au(tu)),

ζ(tl) =
1

w(tl)tl
(ln al0 − ln al(tl)),

(5)
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where w(tu) = 2πf(tu) and w(tl) = 2πf(tl) represent the upper and lower instantaneous angular fre-
quencies, respectively.

After the instantaneous frequency and amplitude are estimated, backbone curves can be determined.
Next, the procedure proposed above will be applied to an impacting system to extract backbone curves
for identifying its nonlinear characteristics.

3. Application to an impacting system

In this section, an impacting system is examined to demonstrate how the proposed method is applied
to extract its backbone curve.

3.1. Mathematical description of the impacting system

As shown in Fig. 2, The impacting system studied in the present work is an impact oscillator ex-
periencing intermittent soft impacts. In mechanical systems, soft impacts mean that an object hits an
obstacle with a negligible mass but a non-negligible stiffness. As can be seen from the figure, the mass
block m is an object connecting with a one-sided constraint with a stiffness coefficient k1 and a damping
coefficient c1, and a secondary spring with a stiffness coefficient k2 and a damping coefficient c2 represents
the obstacle. Impact occurs when the displacement of the block mass y is equal or greater than the gap
g. In this model, it is assumed that the discontinuity boundary is neither motion- nor time-dependent.
The equation of motion of this impact oscillator can be written as

mÿ + c1ẏ + c2ẏ ·H(y − g) + k1y + k2(y − g) ·H(y − g) = A sin(wt), (6)

where H(·) represents the Heaviside step function, A and ω are the forcing amplitude and frequency,
respectively.

Figure 2: Schematic diagram of an impact oscillator.

Here, it should be noted that the extraction of backbone curves is obtained from free vibration
response, so the external excitation, A sin(ωt), will not be applied in the present work, i.e., A = 0 N.

3.2. Experimental rig of the impact oscillator

In this present work, an experimental rig of the impact oscillator shown in Fig. 3(a) was used to
demonstrate the procedure to extract backbone curves for evaluating the impacting stiffness of the os-
cillator (k2). As can be seen from Fig. 3, a steel mass block is connected with the holding frame via a
pair of parallel leaf springs with stiffness k1, ensuring horizontal displacement only. There is an elastic
beam on the right side of the mass representing an obstacle with stiffness k2. Gap g between the mass
block and the elastic beam can be adjusted by moving the bolt forward and backward. The stiffness of
the elastic beam k2 can be changed by adjusting its effective length or replacing it using the beams with
different thickness. Mass displacement was monitored by an Eddy current probe placed against the leaf
spring. Displacement data was recorded by a data acquisition system as shown schematically in Fig. 3(b)
at a sampling rate of 1 kHz.
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Figure 3: (a) Photograph and (b) schematics of experimental rig of the impact oscillator, where a mass is connected with
the holding frame via two parallel leaf springs that prevent it from rotation ensuring horizontal displacement only. Impact
will occur when the mass hits the bolt attaching to the elastic beam mounted on a separate column of the holding frame.
Mass displacement and acceleration were measured by an Eddy current probe and an accelerometer, respectively, collecting
by a data acquisition system.

3.3. Sample of free vibration motion

The experimental data was smoothed by using a Savitzky-Golay filter [64] to fit a second order
polynomial function over a span of 20 data points. A sample data of the obtained free vibration is
presented in Fig. 4, where time histories of mass displacement and acceleration and phase trajectory of
the mass are shown. In this experiment, the mass of the block was 0.503 kg and initial displacement
was set to 6.5 mm. As can be seen from Fig. 4(b), the spikes in the acceleration signal clearly indicate
the impact between the mass and the elastic beam. The red vertical line in Fig. 4(c) denotes the impact
boundary of the rig on the phase plane.

Figure 4: (Colour online) Recorded experimental sample of time histories of (a) mass displacement, (b) mass acceleration,
where impact regimes are easily recognisable in the form of sharp spikes in acceleration, and (c) mass trajectory on the
phase plane, where the red vertical line denotes the location of the impact boundary.
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4. Experimental and numerical results

4.1. Analysis of experimental results

When experimental data was obtained after smoothing, the procedure to extract the backbone curves
and damping ratio skeletons for asymmetric signal was applied. In the present work, experiments were
carried out under three different k2, and the parameters of the elastic beams are given in Table 1. In
addition, theoretical values of k2 were calculated by using the load deflection equation given by

kt =
3E

l3
· bh

3

12
, (7)

where kt is the theoretical stiffness of the elastic beam, l, b, h and E are the length, width, thickness and
elasticity modulus of the elastic beam, respectively. The backbone curves and damping ratio extracted
from the experimental results are shown in Figs. 5-7.

Table 1: The parameters of the three cases (elastic beams used) in experiments, where l, b, h and E are the length, width,
thickness and elasticity modulus of the elastic beam, respectively, and kt is the theoretical stiffness of the elastic beam.

Case l (mm) h (mm) b (mm) E (MPa) kt (N/m)
1 133 3.05 10 1.75 × 105 5276.3
2 139 3.05 10 1.75 × 105 4622
3 130 2.47 10 1.75 × 105 3000.8

Figure 5: (Colour online) Estimation of backbone curves under three different impacting stiffnesses, where (a) Case 1: kt
= 5276.3 N/m, (b) Case 2: kt = 4622 N/m, and (c) Case 3: kt = 3000.8 N/m, and dash and solid lines represent the
lower and upper backbones, respectively. All the three tests in each case were started from different initial displacements,
but showed the same trend. In the upper backbone curve, the larger the initial displacement is, the larger the maximum
instantaneous frequency is. In the lower backbone curve, the instantaneous frequency is natural frequency of the system
that can be read as 6.39 Hz, and gap g can also be read approximately as 1.1 mm from the blow-up windows.

Fig. 5 presents the upper and lower backbone curves obtained from three different k2 in experiments.
As can be seen from this figure, all the tests in different initial displacements show the same backbone
curves: the larger the initial displacement is, the larger the maximum instantaneous frequency in the
upper backbone curve is. For the lower backbone curves, the instantaneous frequency is 6.39 Hz, as there
is no contact between the mass block and the elastic beam. From the lower backbone curves, the stiffness
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Figure 6: (Colour online) Estimation of damping ratio under three different impacting stiffnesses, where (a) Case 1: kt =
5276.3 N/m, (b) Case 2: kt = 4622 N/m, and (c) Case 3: kt = 3000.8 N/m, and dash and solid lines represent the lower
and upper backbones, respectively. All the three tests in each case were started from different initial displacements, but
showed the same trend. The inner panel indicates that damping ratio ζ1 ≈ 0.27%, so c1 ≈ 0.11 Ns/m.

Figure 7: (Colour online) Backbone curves under three different impacting stiffnesses, where Case 1: kt = 5276.3 N/m,
Case 2: kt = 4622 N/m, and Case 3: kt = 3000.8 N/m, indicating that a larger k2 may lead to a lower upper backbone
curve. Dash and solid lines represent the lower and upper backbones, respectively.

of k1 can be estimated by multiplying the square of the instantaneous angular frequency by the mass m,
so k1 = 810.32 N/m. Also, it is worthy noting that gap g can be estimated from this figure as indicated
in the blow-up window, which is about 1.1 mm.

Fig. 6 shows the estimation of damping ratio of the elastic beam. In this figure, both the upper and
lower effective damping ratios are changing with impacts, indicating that the damping coefficients c1 and
c2 could be related to the velocity of the mass. However, the damping coefficients c1 and c2 are simplified
to two constants in the present work. When the displacement of the mass block is lower than the gap
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g, only c1 is active. It can be estimated from the inner panel that the damping ratio ζ1 ≈ 0.27%, so
c1 ≈ 0.11 Ns/m.

For comparison, the backbone curves for these three different cases are presented in Fig. 7, where the
larger the stiffness of k2 is, the lower the upper backbone curve (shown as solid lines) is. However, the
stiffness of k2 can only be determined qualitatively at this stage.

4.2. Parameter identification of the impact oscillator

In this section, parameter identification of the model (Eq. (6)) will be conducted. The general idea of
parameter identification is to convert the identification task into an optimisation problem, by matching
the numerical solutions of Eq. (6) with the provided experimental data as much as possible. In this
paper, the displacement time histories of the model under three constraint spring cases are provided as
known information. Note that the acceleration information acquired by the sensor has not been adopted
here due to the inaccuracies arising in the small amplitude oscillations. Therefore, only displacement
information is used here. From a generic point of view, the identification task can be converted into an
optimisation problem by finding the global optima of the following objective function

J =

√√√√ 1

N

N∑
i=1

(ŷ(α,β, ti) − y(ti))2, (8)

where ŷ(α,β, ti) indicates the simulated data of Eq. (6) and y(ti) denotes the experimental displacement
time history data. Meanwhile, the vector α stands for the unknown parameters which need to be
identified, and the vector β denotes the unknown initial conditions for time history. Based on the
above objective function, the difference between the simulated data and the experimental data can be
quantified, i.e., a good guess of the unknown parameters α and initial conditions β will lead to a small
J . Then the optimisation problem of such an objective function can be solved by various gradient-based
or gradient-free algorithms.

Next, three sets of constraint springs with theoretically predicted stiffness kt =5276.3 N/m, 4622
N/m and 3000.8 N/m shown in Table 1 are applied to generate the displacement experimental time
history data. Each constraint spring k2 will generate three sets of time history data under different
initial conditions, and nine subcases in total will be provided as the known information. Note that
the theoretical stiffness kt is approximated by the basic knowledge of mechanics of materials, and the
material properties are listed in Table 1. Here, theoretical stiffness will be treated as the references for
the identification task. Besides the damping and spring stiffness c1, k1, c2 and k2, the gap g will be also
included in the identification process to address the plastic deformation effect of the bolt (see Fig. 3(b)).
Then the parameter identification task will be defined as

min

√√√√1

9

3∑
i=1

3∑
j=1

J2(αi,βi,j), (9)

where subscript ‘i’ indicates the case number of different constraint spring k2 and subscript ‘j’ indicates
the subcase number of the time history data generated by k2. The unknown parameters αi for each
constraint spring case can be expressed as

αi = [ c1; k1; c2; g; k2,i ]. (10)

Note that the parameters c1, k1, c2 and g are considered as the public parameters and stay constant
in all subcases to ensure the robustness of the identified parameters. The unknown initial velocity βi,j

corresponding to each subcase of the experimental displacement time history can expressed as

βi,j = [ ẏi,j ]. (11)
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Defining a vector X as the design variable,

X = [c1; k1; c2; g; k2,1; k2,2; k2,3; ẏ1,1; ẏ1,2; ẏ1,3; ẏ2,1; ẏ2,1; ẏ2,3; ẏ3,1; ẏ3,2; ẏ3,3], (12)

the optimisation problem (Eq. (9)) corresponding to the identification task can be then solved by the
differential evolution algorithm [49, 50, 53–55, 65] with the Metropolis criterion [60]. Note that the global
search ability of the adaptive differential evolution algorithm can be further promoted by adopting the
Metropolis criterion [60], i.e., a probability-based criterion for accepting the worse solution to help escape
local optimums. The constraints on the feasible ranges of elements of design variable X are defined by
experience. To summarise this procedure, a flow chart of this identification algorithm is illustrated in
Fig. 8.

Figure 8: Flow chart of the adaptive differential evolution algorithm with the Metropolis criterion for identifying the
unknown parameters of the experimental rig, k1, c1, k2, c2.

The results of the parameter identification task are listed in Table 2. As can be seen from the table,
the identified results of three sets of k2 match very well with the theoretically approximated values. Then,
the impact model, i.e., Eq. (6), is simulated based on the identified parameters and initial velocities, i.e.,
design variable X (Eq. (12)), to compare the identified time histories with the experimental results, as
shown in Figs. 9-11. In all three constraint spring cases, the identified time histories are denoted by red
solid lines, while the experimental data are indicated by blue dots. For the constraint spring cases 1
(Fig. 9) and 2 (Fig. 10), the identified time histories agree perfectly with the experimental data. While
for the constraint spring case 3 (Fig. 11), slight differences between the identified and experimental results
can be observed. Such differences might be induced by the assumption that the damping coefficient c2
keeps constant for all the three constraint spring cases. Overall, the comparisons shown in Figs. 9-11
indicate that the identified parameters listed in Table 2 are effective.

Table 2: The results of parameter identification.

Case c1 (Ns/m) k1 (N/m) c2 (Ns/m) g (mm) k2 (N/m) kt (N/m)
1 0.148 808.556 2.085 1.1 5350.156 5276.3
2 0.148 808.556 2.085 1.1 4776.275 4622
3 0.148 808.556 2.085 1.1 2959.249 3000.8
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Figure 9: (Colour online) Comparisons between the identified and experimental data of displacement time histories for
constraint spring Case 1, where the identified value k2 = 5350.156 N/m and the theoretical value kt = 5276.3 N/m. The
identified results are indicated by red solid lines, while the experimental results are denoted by blue dots. The three subcases
were started from different initial displacements and velocities.

4.3. Analysis of numerical results

In this section, the values of all the parameters identified by the adaptive differential evolution al-
gorithm with the Metropolis criterion will be verified in terms of backbone curves and damping ratio.
Also, the limitations of parameter identification via backbone curves will be discussed. Based on the
identified parameters shown in Table 2, the comparison between numerical simulations and experiments
is presented in Figs. 12 and 13.

As can be seen from Figs. 12 and 13, the backbone curves and damping ratio skeletons obtained from
numerical simulations and experiments match well, which demonstrates that the parameter identification
is correct within acceptable errors. However, there are some discrepancies in damping ratio between
numerical simulations and experiments during the first several impacts indicated in the grey inner window
as damping c2 has been simplified to a constant in Eq. (6).

As discussed in Section 4.1, the larger the initial displacement is, the larger the maximum instanta-
neous frequency is, so the maximum effective stiffness of the impacting system is. Therefore, in theory,
if the initial displacement is infinite, the maximum effective stiffness of the impact oscillator will equal
to k1 + k2, and k1 is easy to be measured from experiment, so k2 can be estimated actually. To confirm
this statement, the estimated stiffness k2 from backbone curves in different initial displacements was
computed numerically, and these results are presented in Fig. 14, where the other parameters expect k2
were kept the same as those in Table 2. The estimated k2 was computed by calculating the maximum
effective stiffness of the system via the first impact point of the upper backbone curve demonstrated in
the extra panels in Fig. 14(a), then subtracting k1. It can be seen from the figure that when the initial
displacement is 100 mm, k2 for the three cases mentioned above were determined quantitatively as 5149.35
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Figure 10: (Colour online) Comparisons between the identified and experimental data of displacement time histories for
constraint spring Case 2, where the identified value k2 = 4776.275 N/m and the theoretical value kt = 4622 N/m. The
identified results are indicated by red solid lines, while the experimental results are denoted by blue dots. The three subcases
were started from different initial displacements and velocities.

N/m, 4604.83 N/m and 2871.44 N/m, which are close to the theoretical results 5350.156 N/m, 4776.275
N/m and 2959.249 N/m, respectively, and all errors are within 5%. In addition, as for k2 = 500 N/m,
k2 is estimated as 452.13 N/m when the initial displacement is only 20 mm, while k2 can be estimated
well from the backbone curves under displacement between 10 mm and 15 mm as shown in Fig. 14(b).
Extra panels in Fig. 14(a) show the upper backbone curves at the initial displacement of 100 mm and 20
mm. As can be seen from the panels, when the backbone curve is nearly vertical during the first several
impacts, stiffness k2 can be estimated quantitatively. However, due to the limitation of the experimental
setup, initial displacement cannot be infinite. Thus, stiffness k2 cannot be determined exactly from the
experimental data.

Besides initial displacement, the other parameters affecting the estimation accuracy of k2 were also
studied as shown in Fig. 15, where the gap g was set as 1 mm for all the simulations. In Figs. 15(a) and
(b), it can be seen that a larger k1 can lead to a higher estimation accuracy of k2, where the estimation
accuracy was defined as kest2 /kact2 , and kest2 and kact2 are the estimated and actual stiffness values of the
elastic beam, respectively. Here, the estimation accuracy can reach 80% under small initial displacement,
even up to 90% under the initial displacement around 40 mm, as can be observed from the inner panel
of Fig. 15(b), when k1 = 100 N/m is much larger than k2 = 35 N/m. Fig. 15(c) shows the effect of
the mass block m on estimation accuracy. When k1 = 60 N/m, c1 = 0.148 Ns/m, c2 = 2.085 Ns/m,
and initial displacement was set to 20 mm, as the mass m was increased, the estimation accuracy for
k2 was improved. However, as k2 becomes smaller (softer), its estimation accuracy may degrade. Such
an influence is greater when m is less than 0.3 kg, while the effect of k2 is mild when the mass is larger
than 0.4 kg. In addition, it can be seen that c1 and c2 can influence estimation accuracy, especially c2 in
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Figure 11: (Colour online) Comparisons between the identified and experimental data of displacement time histories for
constraint spring Case 3, where the identified value k2 = 2959.249 N/m and the theoretical value kt = 3000.8 N/m. The
identified results are indicated by red solid lines, while the experimental results are denoted by blue dots. The three subcases
were started from different initial displacements and velocities.

Fig. 15(d), where the larger c1 and c2 are, the lower the estimation accuracy is.

5. Conclusions

Identification of nonlinearities and parameters of impacting systems has been an increasingly sig-
nificant research topic. This paper studied the nonlinear characteristics identification and parameter
estimation for a single-degree-of-freedom impacting system without any external excitation. Based on
the displacement data, backbone curves and a differential evolution algorithm with the Metropolis crite-
rion were used to identify the stiffness of secondary spring of this impacting system k2 qualitatively and
quantitatively, respectively.

As the free decaying response of this impacting system was asymmetric, the zero-crossing method for
nonlinear asymmetric signal was used to extract the upper and lower backbone curves. To identify k2,
experiments under three different k2 were carried out, and the theoretical values of k2 were calculated by
using traditional beam deflection equation for validation. Based on the experimental data, the backbone
curves and damping ratio skeletons were obtained, and the other parameters of the system, such as the
gap g, stiffness coefficient k1 and damping coefficient c1, can also be estimated. However, k2 can only be
estimated from the backbone curves qualitatively, i.e., a larger k2 may lead to a lower upper backbone
curve. The major limitation for identifying k2 quantitatively via backbone curve is that a relatively larger
initial displacement around 100 mm is required, which cannot be achieved in our experimental rig.

Therefore, in order to identify k2 quantitatively, an adaptive differential evolution algorithm with the
Metropolis criterion was proposed. It identified all the parameters of the impacting system successfully

13



Figure 12: (Colour online) Comparison between numerical simulation (indicated in black lines) and experiment (denoted
by red lines) in terms of backbone curves, where the upper backbone curves are indicated by solid lines, while the lower
ones are denoted by dash lines. The numerical and experimental results show the same results.

Figure 13: (Colour online) Comparison between numerical simulation (indicated in black lines) and experiment (denoted by
red lines) in terms of damping ratio, where the upper damping ratio skeletons are indicated by solid lines, while the lower
ones are denoted by dash lines. The results from simulations and experiments of three cases present the same damping
ratio skeletons. Grey areas represent the first several impacts, and non-impact responses are denoted by green areas.

by using the historical displacement data only. Identified k2 values were verified by comparing with
the theoretical results calculated from traditional beam deflection equation. Also, backbone curves were
extracted by applying the identified parameters to the mathematical model of the impacting system,
and then were compared to those obtained from experiments. This comparison demonstrates that the
parameter identification is effective with acceptable errors.

Finally, the effects of system parameters on the estimation accuracy of k2 using backbone curves were
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Figure 14: (Colour online) Estimated stiffness values k2 under different initial displacements. (a) Four cases of k2, where
the theoretical values are 5350.156 N/m, 4776.275 N/m, 2959.249 N/m, 500 N/m. Under 100 mm initial displacement,
Cases 1-3 were estimated as k2 = 5149.25 N/m, 4604.73 N/m and 2871.34 N/m, which are closed to the theoretical values.
For Case 4, calculated from the first impact point shown by red solid point in the blow-up window, k2 was estimated as
452.02 N/m under 20 mm initial displacement. Also, the blow-up windows indicate that k2 can be identified quantitatively
when the backbone curve becomes vertical. (b) Five cases of k2, where k2 = 100 N/m, 80 N/m, 60 N/m, 40 N/m and 20
N/m, indicating that k2 can be estimated with confidence under the initial displacement between 10 mm and 15 mm.

studied, which provided the required parameter boundaries to estimate k2 quantitatively at a confident
level, e.g., achieving 80% or 90% of the actual stiffness value. The results show that smaller damping
coefficients c1 and c2 could help to achieve a higher estimation accuracy, and larger stiffness coefficient
k1 and mass m may also help to improve the estimation accuracy.
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[12] J. Páez Chávez, Y. Liu, E. Pavlovskaia, and M. Wiercigroch, “Path-following analysis of the dy-
namical response of a piecewise-linear capsule system,” Communications in Nonlinear Science and
Numerical Simulation, vol. 37, pp. 102–114, 2016.
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