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Magnetic multilayers with interlayer exchange coupling have been widely studied for both static and dynamic
regimes. Their dynamical responses depend on the exchange coupling strength and magnetic properties of
individual layers. Magnetic resonance spectra in such systems are conveniently discussed in terms of coupling
of acoustic and optical modes. At a certain value of applied magnetic field, the two modes come close to being
degenerate and the spectral gap indicates the strength of mode hybridization. In this work, we theoretically
and experimentally study the mode hybridization of interlayer-exchange-coupled moments with dissimilar
magnetization and thickness of two ferromagnetic layers. In agreement with symmetry analysis for eigenmodes,
our low-symmetry multilayers exhibit sizable spectral gaps for all experimental conditions. The spectra agree
well with the predictions from the Landau-Lifshitz-Gilbert equation at the macrospin limit whose parameters are
independently fixed by static measurements.
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I. INTRODUCTION

In two magnetic layers separated by a thin nonmag-
netic spacer, conduction electrons in the spacer magnetically
couple two spatially separated moments, via the so-called
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [1–3].
This interlayer exchange coupling arises from coherent prop-
agation of electron spin across the spacer layer [4–6]. Due
to the Friedel-like oscillation of the electron phase, the ex-
change coupling changes its sign as a function of the interlayer
distance, switching between ferromagnetic and antiferro-
magnetic ordering of the two magnetic layers [7–10]. The
antiferromagnetically ordered states of two identical magnetic
layers, often called synthetic antiferromagnets (SyAFMs),
have served as a test bed for studying antiferromagnetism
where SyAFMs’ relatively weak RKKY exchange coupling,
comparable to the strength of magnetic fields achievable in
laboratories, helps realize experiments otherwise difficult in
atomically ordered, crystalline antiferromagnets [11–13]. One
such property is the magnetic resonances in SyAFMs whose
typical frequency resides within a range of GHz that is readily
accessible by modern microwave techniques [14–27].

In a canted static state in SyAFMs under an applied
magnetic field, the low-lying, spatially uniform resonance
modes are usually called acoustic and optical modes where
the precessions of two exchange-coupled moments are pri-
marily in- and out-of-phase, respectively [28]. The resonance
frequencies of these modes exhibit different magnetic field
dependence, allowing them to come almost degenerate in a
certain field range. Unless some symmetry conditions are
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satisfied, there is no exact degeneracy and the spectrum is
gapped as a function of magnetic field [23,29]. In the regime
where the two modes have well-defined in- and out-of-phase
characters away from the degenerate range, the gap, defined
as the minimum split with respect to the field between the
two resonance frequencies, represents the coupling strength of
the in- and out-of-phase oscillations. When the gap is greater
than the linewidths, it means that the energy transfer between
them takes place more frequently before the excited state
is lost, termed as the strong-coupling regime [30]. A large
coupling strength has been favored for potential magnonic
applications in which such energy transfer might play a crucial
role [30–33].

Coupled-moment systems offer unique research directions
and potential spintronic applications [11,12,34–36]. For ex-
ample, their tunable material parameters enable the control of
characteristic frequencies in nano-oscillator devices [37,38],
up to the THz regime [39]. The oscillation of magnetizations
in SyAFMs could be excited by spin-orbit torques (SOTs) in
planar geometries [40,41]. SOTs in turn drive fast domain-
wall propagation/dynamics in compensated magnets [42].
Due to the compensated nature, skyrmions in such a system
[43] benefit from the cancellation of the skyrmion Hall effect,
moving straight within a propagation channel [44,45]. We also
envisage that some of unique properties in coupled-moment
systems can be used in exploring a variety of neuromorphic
computation schemes [46–48].

In the most commonly studied setup of magnetization
dynamics in SyAFMs, however, the in- and out-of-phase
oscillations are seen to remain eigenmodes for any mag-
netic field value and become fully degenerate, where
symmetry of the system plays a crucial role for the decou-
pling [25,49–51]. MacNeill et al. present that the coupled
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FIG. 1. (a) In the laboratory frame, we define the z direction normal to the plane, and x direction such that the static external magnetic
field lies in the x-z plane. In the canted regime when applying the field (H) in-plane, two sublattice moments (MA and MB) reside within the
plane, canted toward H . For general static states, we introduce new coordinate axes X ,Y , Z adapted to the twofold rotation C2 that brings
the unit vector along MA to that along H . See Eq. (9) for the concrete definition. For H in-plane and identical magnetic layers, C2 combined
with interchanging A and B layers is a symmetry of the system. (b) and (c) When we apply H with the polar angle θ �= 90◦ or two magnetic
moments are not identical, C2 followed by the magnetic layer interchange ceases to be a symmetry. This impacts on the mode coupling as
discussed in this study.

Landau-Lifshitz-Gilbert (LLG) equations due to the interlayer
exchange interaction are symmetric under twofold rotation
around the applied field direction combined with a layer swap,
as long as the field is within the film plane [Fig. 1(a)] [49].
The acoustic and optical modes are odd and even upon the
symmetry operation, respectively, and therefore unable to hy-
bridize with each other, leading to the mode degeneracy at a
resonance point [14,28]. This specific symmetry can be bro-
ken in several ways, for example, tilting the external magnetic
field toward the out-of-plane direction [Fig. 1(b)] [23,49,50].
For general expressions of spin-wave mode frequencies in
interlayer exchange-coupled systems, Layadi presented ana-
lytical solutions with a particular focus on the effect of the
biquadratic exchange coupling and in-plane anisotropy on the
spectra for in-plane magnetized cases [52]. While spectro-
scopic measurements of interlayer exchange-coupled trilayers
with different magnetic-layer thicknesses were reported by
some groups in the past [18,22,53–55], there seems to be
no study fully dedicated to quantitative discussions of the
mode hybridization in such asymmetric interlayer-exchange-
coupled systems.

In this paper, we present our detailed experimental and
theoretical study of the magnon-magnon coupling phenomena
in synthetic ferrimagnets where two magnetically coupled
layers are not identical [Fig. 1(c)]. We systematically compare
spin-wave spectra measured by broadband ferromagnetic res-
onance experiments and calculated using magnetic parameters
deduced from static magnetometry. In all cases examined,
we find excellent agreement between experiment and theory,
suggesting that the coupled LLG equations at the macrospin
limit are indeed a reliable tool for designing and analyz-
ing the spectral properties of the magnetic multilayers. Our
calculations further reveal dissimilar roles of quadratic and
biquadratic exchange interactions for the size of the gap. Our
results help design and control magnetic resonance spectra
in exchange-coupled magnetic moments that can be syn-
thetic antiferro(ferri)magnets, van der Waals antiferromagnets
[49,56–58], and ferromagnetic bilayers [59–61].

II. A MACROSPIN MODEL
OF SYNTHETIC FERRIMAGNET

For our purposes, a theoretical model that extends the result
of Ref. [52] for arbitrary direction of the static magnetic field

is required, which we present in this section with an emphasis
on breaking of the twofold rotation symmetry. Let MA, MB

be the magnetizations of the two ferromagnetic layers. We are
interested in the situations where the two magnetic materi-
als are not identical |MA| ≡ MA �= |MB| ≡ MB, and the two
layers have different thicknesses dA �= dB. The film normal is
chosen as the z axis and the film is regarded infinitely extended
in the x, y directions, as shown in Fig. 1(a).

The static state of the magnetizations corresponds to the
minimum of free energy per unit area W . We include the ex-
ternal magnetic field H , demagnetizing field, and biquadratic
as well as the usual quadratic interlayer exchange interactions:

W = dA

{
−μ0MAH · nA + μ0M2

A

2

(
nz

A

)2
}

+ dB

{
−μ0MBH · nB + μ0M2

B

2

(
nz

B

)2
}

+ J1nA · nB + J2(nA · nB)2. (1)

Here we have normalized the magnetizations nA(B) =
MA(B)/MA(B), and introduced the phenomenological exchange
energies per unit area J1 and J2. Without loss of general-
ity, with the weak crystalline anisotropy being ignored, the
magnetic field can be taken H = H (x̂ sin θ + ẑ cos θ ). We de-
termine the static state n0

A(B) by numerical minimization of W ,
which is parametrized by

n0
A(B) =

⎛
⎝sin θA(B) cos φA(B)

sin θA(B) sin φA(B)

cos θA(B)

⎞
⎠. (2)

If the magnetic field is in-plane θ = 90◦ and 0 < 2J2 < J1, the
static state undergoes two phase transitions at Hsf and Hff as
|H | is increased from zero, where

Hsf =
∣∣∣∣ 1

dBMB
− 1

dAMA

∣∣∣∣J1 − 2J2

μ0
, (3)

Hff =
∣∣∣∣ 1

dBMB
+ 1

dAMA

∣∣∣∣J1 + 2J2

μ0
. (4)

Below Hsf , the static state is antiferromagnetic n0
B = −n0

A
with n0

A · H ≷ 0 according to dAMA ≷ dBMB. Above Hff , the
system is in a forced ferromagnetic state n0

A = n0
B = H/|H |.
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In between lies the spin-flop, or canted, state where
H cos φA,B > 0, sin φA sin φB < 0.

To calculate the magnetic resonance frequencies, let us
introduce the linear perturbation nA(B) ≈ n0

A(B) + n1
A(B) where

n0
A(B) · n1

A(B) = 0. The Landau-Lifshitz equations follow from
the free energy W through the usual procedure [62]. Although
one can press on using n1

A(B) as the dynamical variables [50],
we normalize them so as to make them canonical in the

sense of Hamiltonian mechanics [62], which ensures that the
resulting eigenvalue problem retains the correct Bogoliubov
form [63]:

δA =
√

SdAMA

h̄|γA| n1
A, δB =

√
SdBMB

h̄|γB| n1
B, (5)

where S denotes the area of the film, and γA(B) < 0 are the
gyromagnetic ratios. The linearized equations of motion read

n0
A × dδA

dt
= γAμ0

[{
H · n0

A − MA
(
ẑ · n0

A

)2}
δA + MA(ẑ · δA)

{
ẑ − (

ẑ · n0
A

)
n0

A

}]

− γA

dAMA

{
J1 + 2

(
n0

A · n0
B

)
J2

}⎡⎣(
n0

A · n0
B

)
δA −

√
γBdAMA

γAdBMB

{
δB − (

n0
A · δB

)
n0

A

}⎤⎦

+ 2γA

dAMA
J2

{
n0

B − (
n0

A · n0
B

)
n0

A

}⎛⎝n0
B · δA +

√
γBdAMA

γAdBMB
n0

A · δB

⎞
⎠, (6)

n0
B × dδB

dt
= γBμ0

[{
H · n0

B − MB
(
ẑ · n0

B

)2}
δB + MB(ẑ · δB)

{
ẑ − (

ẑ · n0
B

)
n0

B

}]

− γB

dBMB

{
J1 + 2

(
n0

A · n0
B

)
J2

}⎡⎣(
n0

A · n0
B

)
δB −

√
γAdBMB

γBdAMA

{
δA − (

n0
B · δA

)
n0

B

}⎤⎦

+ 2γB

dBMB
J2

{
n0

A − (
n0

A · n0
B

)
n0

B

}⎛⎝n0
A · δB +

√
γAdBMB

γBdAMA
n0

B · δA

⎞
⎠. (7)

Equations (6) and (7) describe two coupled harmonic oscillators; i.e., there are four independent real functions of time to be
determined. We are interested in the resonance properties, which can be analyzed in terms of any consistent choice of the four
independent variables. Had it not been for the shape anisotropy and the asymmetry between dA, MA, γA and dB, MB, γB, twofold
rotation around H would have mapped n0

A to n0
B and the symmetry-adapted variables would have been convenient. Following

MacNeil et al. [49], let C2 denote the twofold rotation that brings n0
A to n0

B whose axis coincides with X direction in Fig. 1.
Algebraically the action of C2 on an arbitrary vector v is given by

C2v =
(
n0

A + n0
B

) · v

1 + n0
A · n0

B

(
n0

A + n0
B

) − v. (8)

Although C2 is not in general a symmetry of the problem, it helps make sense of the results in terms of the familiar notions
used in previous studies [23,49]. The definition of C2 becomes ambiguous for |H | < Hsf and what follows does not work for
|H | > Hff either, but these collinear cases are simple and separately handled in Appendix A. Focusing on the spin-flop phase, we
introduce δ± = (δA ± C2δB)/

√
2 that are even and odd eigenvectors of C2 × {A ↔ B}. To pick out two independent components

each for δ±, we define a new coordinate frame XY Z (Fig. 1) given by

X̂ = n0
A + n0

B√
2 + 2n0

A · n0
B

, Ŷ = n0
A − n0

B√
2 − 2n0

A · n0
B

, (9)

and Ẑ = X̂ × Ŷ . By construction, n0
A · δ± = 0 so that one may write δ± = δ⊥Z

± Ẑ × n0
A + δ

‖Z
± Ẑ. As is usual in cavity magnonics,

we work with the complex variables α = δ⊥Z
− − iδ‖Z

− , β = δ⊥Z
+ − iδ‖Z

+ that would represent annihilation operators in the quantum
regime. This change of variables brings Eqs. (6) and (7) into

i
d

dt

⎛
⎜⎜⎜⎜⎝

α

−α

β

−β

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f1 − h1 f2 − h2 − i f3 g1 g2 − ig3

f2 − h2 + i f3 f1 − h1 g2 + ig3 g1

g1 g2 − ig3 f1 + h1 f2 + h2 − i f3

g2 + ig3 g1 f2 + h2 + i f3 f1 + h1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α

α

β

β

⎞
⎟⎟⎟⎠, (10)

where overbars denote complex conjugation. Note that the equation is in the Bogoliubov form with the matrix on the right-hand
side being Hermitian. For succinct expressions of the matrix coefficients, let us introduce two distinct orthogonal decompositions
of the film normal ẑ = zAn0

A + z⊥AẐ × n0
A + zZ Ẑ = zBn0

B + z⊥BẐ × n0
B + zZ Ẑ, where zA = n0

A · ẑ, z⊥A = (Ẑ × n0
A) · ẑ, zZ = Ẑ · ẑ
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TABLE I. Summary of the VSM magnetometry parameters used to obtain the theoretical magnetization curves shown in Fig. 2 according
to Eqs. (1) and (20). The left column represents the sample geometry where “..” indicates the thermally oxidized Si substrate and the FM near
to the substrate is the second FM layer referred to as B layer. μ0Hex, μ0H2ex are the quadratic and biquadratic exchange fields respectively and
MA(B), dA(B) are the magnetization and thickness for the two ferromagnetic layers (NiFe/CoFeB).

μ0MA μ0MB μ0Hex μ0H2ex dA dB

Sample geometry (T) (T) (T) (T) (nm) (nm)

Ta/NiFe/Ru(0.4)/NiFe/Ta/.. 0.95 0.9 0.145 0.03 5 3
Ta/NiFe/Ru(0.4)/NiFe/Ta/.. 0.95 0.9 0.1 0.02 3 5
Ta/CoFeB/Ru(0.45)/NiFe/Ta/.. 1.5 1.0 0.048 0.005 3 3
Ta/CoFeB/Ru(0.5)/NiFe/Ta/.. 1.5 1.0 0.02 0.003 3 3
Ta/CoFeB/Ru(0.55)/NiFe/Ta/.. 1.5 1.0 0.03 0.002 3 3

and similarly for the B layer. The coefficients are then given by

f1 = μ0H · |γA|n0
A + |γB|n0

B

2
− 1

2

( |γA|
dAMA

+ |γB|
dBMB

)[
J1n0

A · n0
B + J2

{
3
(
n0

A · n0
B

)2 − 1
}]

+ |γA|μ0MA
z2
⊥A + z2

Z − 2z2
A

4
+ |γB|μ0MB

z2
⊥B + z2

Z − 2z2
B

4
, (11)

f2 = |γA|μ0MA
z2
⊥A − z2

Z

4
+ |γB|μ0MB

z2
⊥B − z2

Z

4
+ 1

2

( |γA|
dAMA

+ |γB|
dBMB

)
J2

{
1 − (

n0
A · n0

B

)2}
, (12)

f3 = |γA|μ0MAz⊥A + |γB|μ0MBz⊥B

2
zZ , (13)

g1 = μ0H · |γA|n0
A − |γB|n0

B

2
− 1

2

( |γA|
dAMA

− |γB|
dBMB

)[
J1n0

A · n0
B + J2

{
3
(
n0

A · n0
B

)2 − 1
}]

+ |γA|μ0MA
z2
⊥A + z2

Z − 2z2
A

4
− |γB|μ0MB

z2
⊥B + z2

Z − 2z2
B

4
, (14)

g2 = |γA|μ0MA
z2
⊥A − z2

Z

4
− |γB|μ0MB

z2
⊥B − z2

Z

4
+ 1

2

( |γA|
dAMA

− |γB|
dBMB

)
J2

{
1 − (

n0
A · n0

B

)2}
, (15)

g3 = μ0
|γA|MAz⊥A − |γB|MBz⊥B

2
zZ , (16)

h1 = −
√

γAγB

dAMAdBMB

[
1 + n0

A · n0
B

2
J1 + {

2
(
n0

A · n0
B

)2 + n0
A · n0

B − 1
}
J2

]
, (17)

h2 =
√

γAγB

dAMAdBMB

1 − n0
A · n0

B

2

{
J1 + 2

(
1 + 2n0

A · n0
B

)
J2

}
. (18)

The eigenfrequencies of Eq. (10) can be calculated as

ω2 = f 2
1 − f 2

2 − f 2
3 + g2

1 − g2
2 − g2

3 + h2
1 − h2

2

± 2
√

( f1g1 − f2g2 − f3g3)2 + ( f1h1 − f2h2)2 − (g1h2 − g2h1)2 − g2
3

(
h2

1 − h2
2

)
. (19)

One can observe that the “couplings” g1,2,3 between α and
β all vanish if the two layers are identical and H is in the
plane. For identical layers with θ �= 90◦, g1 = g2 = 0, g3 �=
0 due to zA⊥ = −zB⊥ and the problem reduces to that of
Refs. [23,49]. The variables α, β represent oscillations that
are odd and even under C2 × {A ↔ B}, and can be considered
generalizations of the acoustic and optical modes in SyAFMs,
respectively. When g1,2,3 become comparable with f1,2,3, h1,2,
however, α and β evenly contribute to the eigenmodes for
all values of H . This makes it meaningless to talk about
hybridization between odd and even modes, which would
require the modes be weakly coupled away from a resonance

region and come almost degenerate upon tuning some param-
eters. Indeed, there is no simple relation between g1,2,3 and
the spectral gap in general.

III. SAMPLE GROWTH AND MAGNETOMETRY
CHARACTERIZATION

Samples used in this study were grown by using mag-
netron sputtering techniques inside a chamber at a base
pressure better than 5 × 10−6 Pa. As summarized in Table I,
we studied five different multilayers Ta(5)/FM1(dA)/Ru/

FM2(dB)/Ta(5)/thermally oxidized Si substrate (numbers in
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FIG. 2. (a)–(e) Normalized M-H loops for different set of samples (a) NiFe(5)/Ru(0.4)/NiFe(3), (b) NiFe(3)/Ru(0.4)/NiFe(5),
(c) CoFeB(3)/Ru(0.45)/NiFe(3), (d) CoFeB(3)/Ru(0.5)/NiFe(3), and (e) CoFeB(3)/Ru(0.55)/NiFe(3). The field is applied along the in-plane
easy axis. The solid lines are the fit obtained by the theoretical static state calculations based on Eq. (1). (f)–(j) Static state angles of
magnetization for two FM layers calculated for the best-fit parameters corresponding to (a)–(e), respectively. (k)–(o) Angle between the
two magnetizations.

the parentheses represent layer thickness in nm) after optimiz-
ing growth conditions [23,41,64]. Figure 2 shows normalized
hysteresis loops for the samples measured for static external
field in the plane by vibrating sample magnetometer (VSM)
techniques. Three regions distinguished by the alignment of
magnetizations of the two layers are indicated in different
colors. As explained in the previous section, due to the com-
petition between the exchange and Zeeman energies, our
samples undergo two phase transitions. In the small magnetic
field limit H < Hsf (shadowed in pink), the exchange energy
dominates and the two moments are aligned antiferromag-
netically. As the field is increased, the spin-flop transition
takes place, after which the two moments tilt away from the
field in a canted state. Finally, at higher field values H > Hff ,
the Zeeman energy prevails and the magnetic moments point
along the field direction entering the forced ferromagnetic
regime as indicated in green for each plot.

Equation (1) was used for fitting to determine the static
states of each moment. For obtaining the ground state, we find

the values of cos φA,B that minimize Eq. (1) for θA = θB = 90◦
in an iterative manner for each magnetic field. The orange
curves in the first row of Fig. 2 are the normalized magne-
tization calculated for each field value as

M(H )

Ms
= dAMA cos φA + dBMB cos φB

dAMA + dBMB
, (20)

where Ms is the total saturation magnetization of the sam-
ple. Optimization with respect to the experimental curves
yielded the best-fit values of MA, MB as well as the quadratic
(μ0Hex = J1/

√
dAdBMAMB) and biquadratic exchange fields

(μ0H2ex = J2/
√

dAdBMAMB), which are summarized in the
Table I. While the microscopic origin of J1 is well explained
by the RKKY interaction via electrons in the spacer layer
[65], the identification of physical origins for J2 is challenging
among the several proposals [66], such as intrinsic mechanism
[67,68], extrinsic fluctuation [69], and magnetic-dipole origin
[70]. We however mention that our theoretical model and spin
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FIG. 3. (a) Schematic of the sample structure. (b), (c) Absorption spectra for the sample NiFe(5)/Ru(0.4)/NiFe(3) at (b) low and (c) high
field for θ = 90◦. (d) Microwave transmission as a function of frequency and field for the sample NiFe(5)/Ru(0.4)/NiFe(3). The field is applied
within the plane, θ = 90◦. A clear avoided-crossing gap is visible at field μ0H = 0.25 T. (e) Fitting results for data as in (d). The solid lines
are fitted curves obtained from macrospin model. The increasing transparencies of the lines correspond to the model calculations for the cases
(dA, dB) = (5 nm, 3 nm), (5 nm, 4 nm), and (5 nm, 5 nm), respectively. It is seen from the calculations that the spectral gap widens as the
thickness asymmetry is increased. (f), (g) Similar plots as in (d) and (e) for sample NiFe(5)/Ru(0.4)/NiFe(5) at θ = 90◦. A clear crossing is
seen at at field μ0H = 0.15 T. This crossing indicates that the two modes are degenerate due to the interlayer symmetry.

dynamics measurements treat the J2 term phenomenologically
and are not influenced by its microscopic origin.

IV. SPIN DYNAMICS

High-frequency responses of the coupled moment systems
were characterized by broadband on-chip microwave absorp-
tion techniques. As illustrated in Fig. 3(a), each sample chip
was placed face-down on a coplanar waveguide [71]. For
each measurement, we fixed the frequency f and swept a dc
external magnetic field μ0H while applying an ac magnetic
field at 12 Hz for lock-in detection techniques. Here we show
our measurements on the samples NiFe(5)/Ru(0.4)/NiFe(3)
and CoFeB(3)/Ru/NiFe(3), both showing avoided crossing
[23,29,49] due to the asymmetry of thickness and magnetic
moment size, respectively.

A. NiFe(5 nm)/Ru(0.4 nm)/NiFe(3 nm)

Figures 3(b) and 3(c) represent individual measurement
curves targeted at two resonance modes in the sam-
ple NiFe(5 nm)/Ru(0.4 nm)/NiFe(3 nm) for θ = 90◦ and
different frequencies. These individual scans are used to pro-
duce a f -μ0H two-dimensional plot as shown in Fig. 3(d)
to capture the absorption spectrum. At μ0H ≈ 0.25 T, in-
stead of mode degeneracy, we observe the avoided crossing,
suggesting that the in- and out-of-phase oscillations are
strongly hybridized [23,29]. Figure 3(e) plots peak posi-
tions extracted by individual curve fittings using derivative
Lorentzian functions [72–74]. Equation (19) with material
parameters independently extracted in the static VSM mea-
surements (Table I) generates curves that are in reasonable

agreement with experiment. This displays the applicability
of the macrospin model with the minimal set of phenomeno-
logical parameters for this type of experiments. To highlight
the role of thickness asymmetry for the gap opening, we also
show two additional sets of model calculations for (dA, dB)
= (5 nm, 4 nm) and (5 nm, 5 nm). The model shows
that the spectral gap widens as the thickness asymmetry is
increased and the gap disappears in a symmetric system. Fig-
ures 3(f) and 3(g) confirm this prediction for the symmetric
sample NiFe(5 nm)/Ru(0.4 nm)/NiFe(5 nm) with similar
thickness of two ferromagnets. The two modes cross each
other at μ0H = 0.15 T with an absence of gap in this case.
The presence of mode symmetry prevents them from hy-
bridization and the two modes are degenerate at the crossing
point. Due to the asymmetry dA �= dB, some of the coupling
parameters in the off-diagonal blocks in Eq. (10), i.e., g1

and g2, become nonzero, for instance through the prefactor
|γA|/μ0MA − |γB|/μ0MB. Therefore, even for the case of θ =
90◦, the thickness asymmetry generates the hybridization of
in- and out-of-phase oscillations.

We can further increase the gap size by tilting the mo-
ments toward the out-of-plane, as we previously demonstrated
in the symmetric cases [23]. Figures 4(a)–4(d) summarize
the experimentally measured θ dependence of the magnetic
resonances. We performed peak position analysis for these
θ -dependent results as shown in Figs. 4(e)–4(h), together
with the 	-θ relationship plotted in Fig. 4(i). Here 	 is
defined as the minimum of the difference between the upper
and lower resonance frequencies as shown in the Fig. 4(i)
inset. Our theoretical curves successfully reproduce the ex-
perimental results without any tunable parameters. As the
out-of-plane field increases, the gap is enhanced in compari-
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(deg)

FIG. 4. (a)–(d) Microwave transmission as a function of frequency and applied field for the sample NiFe(5)/Ru(0.4)/NiFe(3) for different
θ . The angle θ is defined as in Fig. 1. (e)–(h) Resonance frequency as a function of field obtained by derivative Lorentzian fitting of the
experimental data. The solid lines in the figure are theoretical results obtained from the macrospin model. (i) Spectral gap as a function of θ

obtained from theoretical model calculations. It can be seen that a maximum gap of ≈ 4.5 GHz is achieved. The spectral gap is defined as the
minimum of the difference between the upper ( fu) and lower ( fl) resonance frequencies as a function of μ0H as shown by the dotted line in
inset for the sample NiFe(5)/Ru(0.4)/NiFe(3).

son with that due to the thickness asymmetry alone and might
be attributed to an increase of g3 [Eq. (16)] with reducing
θ . The observed trend is further supported by repeated ex-
periments with a sample with the inverted growth order, i.e.,
NiFe(3 nm)/Ru(0.4 nm)/NiFe(5 nm), demonstrating approx-
imately the same quantitative behavior as shown in Figs. 4(i).
This proves that the angle dependence of the gap is a robust
feature independent of the assignment of top and bottom
layers and small fluctuations in material parameters across
different fabrication conditions.

B. CoFeB(3 nm)/Ru/NiFe(3 nm)

In order to experimentally demonstrate the effect
of symmetry breaking due to the asymmetry in mag-
netic moments (MA �= MB) [50], we grew multilayers of
CoFeB/Ru/NiFe where the thickness of the two FM
materials was kept fixed at 3 nm. Figure 5 summa-
rizes the spectral measurements/analysis for the sample
CoFeB(3 nm)/Ru(0.45 nm)/NiFe(3 nm) for different values
of θ . A clear avoided-crossing gap is visible in the spectra
shown in Fig. 5(a) for θ = π/2 and the model calculations
(solid curves) reproduce the dispersion curves with the degree
of moment asymmetry fixed by the static VSM measurements
in this stack as shown in Fig. 5(e). This is because g1 and
g2 become nonzero when MA �= MB [see Eqs. (14) and (15)].
g3 further adds to the coupling when the two moments have
out-of-plane components and this tendency is experimentally
demonstrated as shown in Figs. 5(a)–5(h).

Figure 5(i) displays the gap size 	 as a function of θ

for the samples CoFeB(3 nm)/Ru(t)/NiFe(3 nm) with three
different Ru thicknesses, i.e., t = 0.45, 0.50, and 0.55 nm; the
magnetic parameters of these samples extracted from VSM
measurements are listed in Table I. The Ru thickness does
not directly enter the free energy equation or LLG equation,
instead mostly influencing the interlayer exchange coupling
strength μ0Hex. Hence, comparing these three samples can

(deg) (deg)

FIG. 5. (a)–(d) Microwave transmission as a function of fre-
quency and applied field for the sample CoFeB(3)/Ru(0.45)/NiFe(3)
for different θ . The spectral gap increases as θ is decreased. (e)–(h)
Resonance frequency as a function of field obtained by derivative
Lorentzian fitting of the experimental data. The solid lines in (e)–(h)
are theoretical results obtained from the macrospin model. (i) The
spectral gap as a function of θ for different Ru thicknesses, which
shows a gradual increase as θ is decreased. Inset shows the variation
of 	 as a function of μ0Hex. (j) Spectral gap as a function of θ for
sample with Ru thickness 0.45 nm at μ0Hex = 0.1 T and 0.05 T. The
gap shows an increase as μ0Hex is increased. The spectra used for
extracting the spectral gap is given in Appendix C.
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(deg)

FIG. 6. Spectral gap obtained from simulations by varying
(a) MB and (b) μ0Hex. The other fixed parameters used for the
simulations are indicated on the plot. As the asymmetry is increased,
a very large spectral gap ≈ 12 GHz is obtained for μ0Hex = 0.15 T
as shown in (b). (c) Spectral gap as a function of θ for different
biquadratic exchange field values μ0H2ex for the sample with Ru
thickness of 0.45 nm. The other parameters used for the simulation
are the same as given in Table I. For low μ0H2ex values, the increase
in gap size is not prominent as θ is varied.

be a good experimental demonstration of the effect of the
exchange coupling strength on GHz spectra for the coupled
moments. There is indeed direct correlation between 	 and
μ0Hex as shown in the inset of Fig. 5(i) for θ = 90◦. We also
perform further simulations using the same parameters in the
sample CoFeB(3 nm)/Ru(0.45 nm)/NiFe(3 nm), except for
μ0Hex being 0.1 T. 	 of this simulation as a function of θ is
plotted in Fig. 5(j), supporting our claim.

We have so far shown the reliability of our macrospin
model in reproducing the experimental results of magnetic
resonance spectra in coupled moments via the interlayer
exchange interaction. Here we present our theoretical pre-
dictions to discuss the magnetic-parameter dependence of 	.
The asymmetry of coupled moments, i.e., MA and MB, can be
further enhanced in simulation and we find that 	 is mono-
tonically increased by enlarging the difference between MA

and MB for a fixed value of μ0Hex as shown in Fig. 6(a),
reaching up to approximately 7.5 GHz with μ0MA = 1.5 T
and μ0MB = 0.4 T. This might be achieved by selecting low-
moment magnets as a counterpart of CoFeB to form a stack
of synthetic ferrimagnets. Our model simulations also sug-
gest that in such synthetic ferrimagnets with large moment
asymmetry, μ0Hex that can be tuned by the thickness of the
intermediate layer can act as a knob to further enhance 	 as
presented in Fig. 6(b). See Appendix C for individual spectra
for extracting 	. Finally, the θ dependence of 	 for different
values of μ0H2ex is plotted in Fig. 6(c). For these simulations,
an increase of μ0H2ex decreases 	, which is qualitatively
different from the role of μ0Hex on 	, e.g., in Fig. 5(j).
This is partially because of the general competition between
J1 and J2 which prefer different static state configurations
and therefore combine to soften the order and decrease the
scale of resonance frequency. While μ0H2ex is not a material
parameter that can be easily tuned by growth conditions, it is
interesting to notice that the biquadratic nature enters the spec-
tral responses very differently from the quadratic counterpart.
In general, when the off-diagonal block elements g1, g2, g3

become comparable with the diagonal block ones as in the
present case, the notion of coupling between acoustic and
optical modes becomes inappropriate, leading to the complex
dependence of 	 on not only the asymmetry-related parame-

ters but also the symmetry-respecting ones such as μ0Hex and
μ0H2ex. We would also like to add that in our model, we did
not include the mutual spin pumping term between the two
magnetic layers [75]. However, the fact that we have good
agreement between experiment and theory without the term
indicates that the contribution of the spin-pumping term seems
to be insignificant.

V. CONCLUSION

We studied the dynamics of synthetic ferrimagnets and the-
oretically and experimentally showed their magnon-magnon
coupling with dissimilar material and thickness of two fer-
romagnetic layers. We presented analytical expressions of
the coupled-mode resonance frequencies and used them to
quantitatively discuss experimental results. Using the rich and
controllable spin-wave spectra in interlayer-coupled magnetic
moments, these materials might find their important use for
future magnonic/spintronic applications [30–33,76,77].
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APPENDIX A: COLLINEAR GROUND STATES

The coordinate axes we used in the main text, Eq. (9),
are not well defined for n0

A · n0
B = ±1, namely when the two

magnetizations are collinear in the static state. This happens
for H � Hsf and H � Hff if the magnetic field is in-plane
θ = 90◦, and more generally at high fields if the two layers
are identical.

Let us first discuss the antiferromagnetic state n0
A ·

n0
B = −1, for which we can assume H = H x̂. In place of C2

given in Eq. (8), the static state satisfies C ′
2n0

A = n0
B where

C ′
2v = (ŷ · v)ŷ − v. (A1)

One may still then define δ± = (δA ± C ′
2δB)/

√
2 and decom-

pose them as δ± = δ⊥z
± ẑ × n0

A + δ
‖z
± ẑ. The rest does not have

to be changed with zA = z⊥A = zB = z⊥B = 0, zZ = 1, and
n0

A = −n0
B = ±x̂ according to dAMA ≷ dBMB.

For the ferromagnetic state n0
A · n0

B = 1, X̂ = n0
A is well

defined and one may redefine Ŷ = ŷ. With this provision, C2

is simply a twofold rotation about X̂ and δ± = δA ∓ δB. Again
nothing needs to be modified in Eq. (10) and beyond with
z⊥A = z⊥B = 0.
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FIG. 7. (a), (b) Extra plots of microwave transmission as a func-
tion of frequency and applied field for CoFeB(3)/Ru(0.45)/NiFe(3)
for different θ values. The spectral gap increases as θ is decreased.
Panels (c) and (d) show resonance frequency obtained using deriva-
tive Lorentzian fitting of the experimental data and the solid lines are
the theoretical curves obtained from macrospin model.

FIG. 8. (a), (b) Extra plots of microwave transmission as a func-
tion of frequency and applied field for NiFe(5)/Ru(0.4)/NiFe(3) for
different θ values. Panels (c) and (d) show resonance frequency
obtained using derivative Lorentzian fitting of the experimental data
and the solid lines are the theoretical curves obtained from macrospin
model for the experimental data as in (a) and (b).

FIG. 9. (a)–(d) Microwave transmission as a function of fre-
quency and applied field for CoFeB(3)/Ru(0.5)/NiFe(3) for different
θ . The gap opening is smaller as compared to sample with Ru
thickness 0.45 nm due to smaller μ0Hex of this sample.

FIG. 10. (a)–(d) Microwave transmission as a function of fre-
quency and applied field for CoFeB(3)/Ru(0.55)/NiFe(3) for
different θ values. A small variation in spectral gap is seen as the
θ varied.

APPENDIX B: ADDITIONAL
MAGNETIZATION-DYNAMICS RESULTS FOR OTHER

SAMPLES MEASURED IN THIS STUDY

This section provides supplementary results for samples
measured in this study, which further supports the obser-
vations and claims as described in the main text. The top
panels (a) and (b) in Figs. 7 and 8 show measurements
for some remaining angles not shown in the main text for
the samples with stacking pattern CoFeB/Ru(0.45)/NiFe and
NiFe(5)/Ru(0.4)/NiFe(3), respectively. The fittings produced
by our macrospin model are shown in the bottom panel, which
agree well with the experimental data.

The measurements were repeated for other sets of samples
following the procedure outlined in the main text and we
saw similar behaviors of spectral gap variation with change
in applied field angle toward out-of-plane as shown in Fig. 9
for sample CoFeB/Ru(0.5)/NiFe and Fig. 10 for sample

FIG. 11. (a)–(d) Resonance frequency extracted from derivative
Lorentzian fitting of experimental data as a function of applied field
along with theoretical prediction for CoFeB(3)/Ru(0.5)/NiFe(3).
These correspond to the data shown in Fig. 9.
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FIG. 12. (a)–(d) Resonance frequency extracted from fitting of
experimental data as a function of applied field along with theoretical
prediction for CoFeB(3)/Ru(0.55)/NiFe(3). These correspond to the
data shown in Fig. 10.

CoFeB/Ru(0.55)/NiFe. The resonance frequency obtained
by fitting of experimental data using the derivative of the
Lorentzian function along with the theoretical predictions are
plotted in Figs. 11 and 12 corresponding to Figs. 9 and 10,
respectively. For samples with Ru thickness 0.5 and 0.55 nm
the gap opening is smaller than the sample with Ru thickness
0.45 nm as shown in Fig. 9 and Fig. 10. This is due to the
lower value of μ0Hex in these samples. These results further
support our observation of a spectral gap controlled by the
out-of-plane angle θ and exchange field strength μ0Hex as
mentioned in the main text.

FIG. 13. Resonance frequency simulation as a function of field
obtained by varying different parameters: (a)–(d) μ0MA, (e)–(h)
μ0Hex, and (i)–(l) θ . The other parameters which are kept fixed are
μ0MA = 1.5 T for all cases. For (a)–(d) μ0Hex = 0.048 T, θ = 90◦;
(e)–(h) μ0MB = 0.5 T, θ = 90◦; and (i)–(l) μ0MB = 0.5 T, μ0Hex =
0.12 T. A maximum spectral gap of 12.9 GHz is obtained for (l).

APPENDIX C: NUMERICAL SIMULATIONS TO STUDY
THE IMPACT OF VARYING PARAMETERS

ON COUPLING GAP

Using numerical simulations, we explored different pa-
rameter regimes beyond the experimental conditions. In an
effort to understand the magnetic-parameter dependence of
	 we performed numerical simulations by varying different
parameters μ0MA, μ0Hex, and θ as shown in Fig. 13.

	 corresponding to Fig. 13 is shown in Fig. 6 given in the
main text. Our numerical simulations suggest that we can tune
	 by varying different parameters.
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