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V2VFormer: Vehicle-to-Vehicle Cooperative
Perception with Spatial-Channel Transformer

Chunmian Lin, Daxin Tian, Senior Member, IEEE, Xuting Duan, Member, IEEE,
Jianshan Zhou, Dezong, Zhao, Senior Member, IEEE, and Dongpu Cao

Abstract—Collaborative perception aims for a holistic percep-
tive construction by leveraging complementary information from
nearby connected automated vehicle (CAV), thereby endowing
the broader probing scope. Nonetheless, how to aggregate indi-
vidual observation reasonably remains an open problem. In this
paper, we propose a novel vehicle-to-vehicle perception frame-
work dubbed V2VFormer with Transformer-based Collaboration
(CoTr). Specifically. it re-calibrates feature importance according
to position correlation via Spatial-Aware Transformer (SAT), and
then performs dynamic semantic interaction with Channel-Wise
Transformer (CWT). Of note, CoTr is a light-weight and plug-
in-play module that can be adapted seamlessly to the off-the-
shelf 3D detectors with an acceptable computational overhead.
Additionally, a large-scale cooperative perception dataset V2V-
Set is further augmented with a variety of driving conditions,
thereby providing extensive knowledge for model pretraining.
Qualitative and quantitative experiments demonstrate our pro-
posed V2VFormer achieves the state-of-the-art (SOTA) collabo-
ration performance in both simulated and real-world scenarios,
outperforming all counterparts by a substantial margin. We
expect this would propel the progress of networked autonomous-
driving research in the future.

Index Terms—Vehicle-to-Vehicle (V2V) Collaboration, Cooper-
ative Perception, Autonomous Driving, Transformer, Intelligent
Transportation Systems.

I. INTRODUCTION

INtelligent transportation systems (ITS) has demonstrated
a tremendous potential to facilitate the safety and effi-

ciency of traffic operation [1]. As an essential ingredient,
environmental perception provides an adequate comprehension
of surroundings and participants from heterogeneous sensory
data, thus gaining widespread popularity. The emergence in
deep learning pushes a remarkable step for self-driving per-
ception, and its accuracy/robustness has been significantly
improved in several tasks such as object detection [2] [3] [4]
[5], multi-object tracking [6], segmentation [7], etc. Despite
its immense potential, single-agent perception suffers from
occlusion, blind spot and sparse measurement (i.e., LiDAR
point) challenges, and individual perspective easily causes an
unreliable and uncertainty prediction especially in presence of
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Fig. 1. The prototype of individual perception in real-world scenario [13].
Left. Vehicle easily suffers from occlusion in ego-centric view, but it can be
mitigated by complementary observations from networked cars in the vicinity.
Right. Due to the blind-spot area, ego-vehicle fails to foresee the rear-side
participant when turning right at an intersection, possibly causing a severe
traffic conflict or accident-prone hazard.

severe occlusions and corner cases (e.g., sensor failure), as
depicted in Fig.1. Such problem would cause a catastrophic
accident, thereby posing a threat to driving safety. To address
this, recent endeavors are greatly dedicated to explore a
collaborative perception paradigm [8] [9] [10] [11] where
sensory information from nearby CAVs could be transmitted
and shared with each other via vehicle-to-vehicle (V2V)
communication [12], consequently preventing the ego vehicle
from unknown hazard in the real world.

The core issue of cooperative perception is to determine
what information should be received from nearby agents and
how to collaborate valuable information for perception en-
hancement. Based on various fusion approaches, contemporary
works can be roughly divided into three categories. Early col-
laboration [8] incorporates raw sensory measurement among
agents, and circumvent occluded or blind-spot risk via a global
viewpoint. Whereas, redundant information would introduce
unaffordable computation budget and transmission bandwidth.
Late collaboration is a communication-efficient pipeline of
combining the independent prediction directly, while accu-
mulated error from single-vehicle anticipation would result
in an unsatisfactory performance unavoidably. Intermediate
collaboration [9] [14] has been viewed as a communication-
performance trade-off paradigm where informative feature
is aggregated from neighboring cars to enhance perception
ability. Nevertheless, these algorithms mainly depend on hard-
attention association with scalar-valued calculation, making
spatial correlation and information interaction not being well-
studied. It is consequently non-trivial to develop an adaptative
and powerful collaboration for a sufficient exploration of
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multi-agent advantageous observations.
Furthermore, constructing an extensive cooperative percep-

tion dataset is also imperative to model training and evaluation.
There is a spectrum of benchmarks publicly-available for
single-vehicle perception, e.g., KITTI [15], nuScenes [16],
Waymo [17], etc., with synchronous calibration and fine-
grained annotation. In the context of multi-agent perception,
it is of particular interest for data simulation due to costly
acquisition and labeling [18]. For instance, V2V-Sim [14]
builds a group of new scenarios from the real-world collections
based on a self-driving LiDAR simulation [19], and however,
both of them are not released. On the top of OpenCDA
[20] platform co-simulated with CARLA [21] and SUMO
[22], OPV2V [23] customizes a V2V communication dataset
with over 10k frame RGB images and LiDAR points. Chen
et al. [24] develops a data collection system that integrates
LiDAR point cloud from both CAVs and infrastructure for
various transportation applications. Moreover, V2V4Real [25]
is the first large-scale realistic V2V perception benchmark for
practical deployment.

In this paper, we recast collaborative perception into a multi-
vehicle LiDAR-based 3D detection task, and introduce a novel
vehicle-to-vehicle cooperative perception framework termed
as V2VFormer, that is composed of data sharing and extrac-
tion, feature compression and fusion, and prediction header.
After relative pose and extrinsic information sharing within
a communication range (i.e., 70m [12]), intermediate maps
from nearby CAVs are projected and transformed into the ego-
vehicle coordinate, respectively. By leveraging the advantage
of transformer in both spatial and channel feature learning,
we further propose a Transformer-based Collaboration dubbed
CoTr with Spatial-Aware Transformer (SAT) and Channel-
Wise Transformer (CWT) for intermediate aggregation. The
former highlights the potential foreground/target region ac-
cording to multi-agent location correlation, while the latter
is responsible for channel-wise interaction across each paired
ego-networked vehicles. We claim that CoTr is a light-weight
and play-in-plug module with considerable linear complexity
and flexible adaptable for various individual perception ar-
chitectures. Finally, two branches with feed forward network
(FFN) are utilized for predicting classification confidence and
box regression, respectively. Moreover, a newly-built cooper-
ative perception dataset V2V-Set is further introduced under
sensor suites and configurable settings of OPV2V [23], which
provides a variety of scenarios with challenging conditions
(e.g., changing weathers and illuminations) for model pretrain-
ing. Qualitative and quantitative experiments are extensively
conducted on OPV2V, V2X-Sim and V2V4Real datasets,
and our proposed V2VFormer achieves the state-of-the-art
3D detection accuracy over both individual and collaborative
counterparts by a remarkable margin, demonstrating its supe-
riority and generalization in both simulation and reality.

In general, our main contributions can be concluded as
follows:
• We introduce a novel vehicle-to-vehicle cooperative 3D

object detection paradigm named as V2VFormer, that
consists of data sharing and extraction, feature transmis-
sion and fusion, and prediction header.

• To enhance spatial-channel information exchange across
networked vehicles in the vicinity, Transformer-based
Collaboration (CoTr) is designed with Spatial-Aware
Transformer (SAT) for spatial relation encoding among
nearby agents and Channel-Wise Transformer (CWT) for
semantic feature interaction in an adaptative manner.

• On the top of open-sourced OPV2V benchmark, a large-
scale cooperative perception dataset V2V-Set is further
constructed with diverse driving conditions for supporting
model pretraining with abundant priors.

• Empirical studies on OPV2V, V2X-Sim and V2V4Real
benchmarks consistently demonstrates the effectiveness
and advancement of V2VFormer, which outperforms both
single-agent and multi-agent alternatives by a distinct
margin.

The reminder in this paper is organized as follows: we
review related works in Section II, and describe our proposed
method in Section III. Section IV presents implementation
setup and experimental result, and we conclude the overall
research in Section V.

II. RELATED WORKS

This section overviews the contemporary development on
LiDAR-based 3D detection, vehicle-to-vehicle perception and
datasets briefly.

A. LiDAR-based 3D Detection

LiDAR-based 3D object detection has been widely explored
based on different data formats, e.g., raw point [27] [28], voxel
grid [29] [30] [31] and hybrid representation [32] [33]. Based
on PointNet [34], PointRCNN [35] pioneers a point-based 3D
detection architecture that performs foreground segmentation
for box estimation at first and conducts proposal refinement
with semantic attributes later. To improve sampling strategy,
3DSSD [36] incorporates distance- and feature-farthest point
sampling to generate candidate points, while Chen et al. [37]
develop semantics-augmented set abstraction (SASA) to retain
more important foreground point. VoxelNet [26] quantizes
point cloud into equally-spaced 3D volumetric grid and trans-
forms a group of points within each voxel into a unified
representation through voxel feature encoding (VFE) layer. To
speed up quantization efficiency, Yan et al. [38] designs 3D
sparse convolutional neural network (CNN) for accelerating
voxel feature learning, and PointPillars [39] converts raw point
into a pseudo-image and utilizes standard 2D convolution
for downstream tasks. Moreover, point-voxel hybrid repre-
sentation is beneficial to alleviate grid quantization loss and
boost 3D detection accuracy. PV-RCNN [40] represents the 3D
scene as a small set of representative points, and transforms
proposal-specific features into a RoI-grid points via keypoint
set abstraction. Recent transformer-based 3D detection [41]
[42] is drawn increasing attention from research community.
Pointformer [43] is a pure transformer backbone for point-
based 3D detection, that contains local, local-global and global
transformers to integrates both context-dependent and context-
aware features at multiple resolutions. Mao et al. [44] utilize
local attention and dilated attention for operating empty and
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Fig. 2. The overview of V2VFormer pipeline. (a) Data Sharing and Extraction: LiDAR point from independent vehicle is projected on the ego coordinate
according to sharing pose and extrinsic parameters, and voxel-based feature backbone (e.g., VoxelNet [26]) is then utilized for bird-eye’s view (BEV) map
generation at each single perspective. (b) Feature Compression and Fusion (CoTr): an encoder-decoder network with 1×1 convolutions is viewed as feature
compression for transmission bandwidth saving. Given a paired ego-CAV map, Transformer-based Collaboration dubbed CoTr is designed with Spatial-Aware
Transformer (SAT) for intermediate feature re-calibration according to the geometry correlation, and Channel-Wise Transformer (CWT) for detailed semantics
interaction across agents. (c) Prediction Header and Results: with the joint feature map, two branches with feed forward network (FFN) is proposed for
classification confidence prediction and bounding-box regression. The cooperative perception result is visualized with prediction (Red) and ground-truth (GT)
(Green). Best viewed in color.

non-empty voxel position, respectively. In this paper, we
formulate multi-agent perception problem as LiDAR-only 3D
object detection problem.

B. Vehicle-to-Vehicle Perception

The goal of recently-emerged cooperative perception [45]
[46] [47] [48] [49] is to upgrade ego-vehicle recognition
ability by receiving the messages from neighboring CAVs
within an acceptable vehicle-to-vehicle communication range
(i.e., 70m [12]). Prior works can be roughly classified into
early, intermediate and late collaborations. Cooper [8] firstly
conducts raw-data cooperative perception by combining Li-
DAR point cloud from different positions and angles of
connected vehicles. However, sharing raw point without parti-
tioning is restricted by available communication bandwidth
and computational overhead. Contrarily, late fusion is ex-
plored by combining the independent detection from spatially-
diverse sensors [10]. Albeit less communication bandwidth, it
severely damages the perception accuracy due to the devoid
of context and false-positive prediction. Intuitively, interme-
diate collaboration could be performance-efficiency trade-off
pipeline that aggregates collective features across agents in the
vicinity. V2VNet [14] updates node message via mask-aware
permutation-invariant function and convolutional gated recur-
rent unit (ConvGRU). DiscoNet [50] is a brand-new knowl-
edge distillation framework where teacher model employs
an early combination with holistic-view inputs, and student
network conducts intermediate fusion with single-view feature.
Recently, the first open-sourced V2V simulated benchmark
OPV2V [23] stimulates a spectrum of cooperative perception
algorithms: V2X-ViT [51] designs heterogeneous multi-agent
and multi-scale window self-attention modules for information
fusion across on-road vehicles and infrastructures. Meng et al.
[47] incorporates historical tracking cue explicitly via spatial-
temporal 3D network. CORE [52] instantiates multi-agent

Fig. 3. The schematic illustration of Spatial-Aware Transformer (SAT) and
Channel-Wise Transformer (CWT) modules. Noted that

⊕
and

⊗
denote

element-wise concatenation and matrix multiplication, respectively.

perception with a compressor, an attentive collaboration and
a reconstruction module in a learning-to-reconstruct manner.
Nevertheless, it is unreasonable to deal with the contribution of
CAVs as equal, thereby causing key-point feature at different
positions not be fully leveraged. To this end, we propose
a novel V2V cooperative perception with Transformer-based
Collaboration (CoTr) for both spatial-channel awareness.

C. Vehicle-to-Vehicle Datasets

Previous works involve several vehicle-to-vehicle datasets
by virtue of available single-agent data [53] or autonomous-
driving simulation [54]. On the one hand, Chen et al [1] [24]
select various frames from KITTI [15] to configure multi-
vehicle setting at different timestamps, but spatial offset and
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viewpoint overlapping among cars would be unavoidable. On
the other hand, V2V-Sim [14] synthesizes the unseen driving
scenario on the basis of real-world collections, while it is not
publicly-available. Research community demands a large-scale
and widespread cooperative perception benchmark for com-
prehensive model training and evaluation, and OPV2V [23]
is therefore constructed with more than 10k frames over 70
intersection situations from 8 digital towns. More importantly,
it provides a suite of sensor configuration and setting [21],
making it reproducible for both academia and industry. V2X-
Sim [50] is composed of 100 scenes in total of 10k frames for
LiDAR-based vehicle-to-vehicle algorithm evaluation. Recent
interest on real-world cooperative perception facilitates the
development of V2V4Real [25], that is the first large-scale
real-world multi-modal dataset for V2V perception comprising
200k LiDAR frames, 40k RGB frames and 240k annotated
3D bounding boxes for 5 classes. In this work, a new-built
V2V-Set is launched on the top of OPV2V with a variety
of challenging conditions, and empirical study is conducted
to investigate its cooperative performance on both simulation
and reality.

III. METHODOLOGY

This section revisits the preliminary of cooperative percep-
tion and vision transformer, and technical details of vehicle-
to-vehicle perception pipeline V2VFormer with Transformer-
based Collaboration (CoTr) is introduced later.

A. Prerequisites

Cooperative Perception. It is formulated as multi-agent
LiDAR-based 3D object detection issue where a target ve-
hicle strategically receives observations from nearby CAVs
within a vehicle-to-vehicle communication range (i.e., 70m
[12]), aiming for longer probing range and broader perception
scope. Formally, an ego vehicle Ve is selected from a group
of connected vehicles Vm (m = 1, · · · ,M) at timestamp
t, where M implies the number of CAVs in the vicinity.
For simplicity, we assume each agent provides an accurate
spatial location with well-synchronized LiDAR measurement,
denoted by PVm ∈ RN×3. Subsequently, individual map
FVm

with a shape of H × W × 3 is incorporated at the
ego-centric coordinate, and we obtain box prediction B with
category score S for each object, where B contains box center
coordinate (x, y, z), spatial size (l, w, h) and orientation θ.

Vision Transformer. Self-attention (SA) is the core com-
ponent in the vision transformer [55] [56] [57], which attends
to the discriminative object region via matrix multiplication
between Query (Q), Key (K) and Value (V ) embeddings.
Given an input feature X ∈ RL×C of sequence length L and
channel number C, SA can be mathematically described as
Eq.1 and Eq.2:

Q = WQX,K = WKX,V = WV X (1)

SA(Q,K, V ) = σ(
QKT

√
d

)
⊗

V (2)

where W∗ ∈ RL×L are learnable linearity weights, respec-
tively, d denotes head dimension, σ(·) is softmax normal-
ization and

⊗
is element-wise matrix multiplication. Due to

its quadratic computational overhead, employing self-attention
calculation directly on large-scale raw point or low-level
feature map is prohibitive for limited communication resource.

The findings of SA approximated with low-rank projection
makes it apt for a k-clustering process where hidden vector is
served as cluster center [42] [58]. Therefore, a standard SA
could be decomposed into two cross-attention (CA) operators
induced by a group of latent code L ∈ RK×C with size K,
as formulated in Eq.3 and Eq.4:

SA(L,X ) = CA(X , FFN(CA(L,X ))) (3)

CA(L,X ) = σ(LTX )
⊗

X (4)

where X ∈ RL×C refers to a projection of input X (i.e., linear
transformation), and FFN(·) implies feed forward network.
Generally, CA could distill the most significant ingredient
of embedding at first, and a set of latent code is further
highlighted for cross-attention interaction. More importantly,
CA is feasible and affordable due to its linear complexity only
to input length N and latent code number K.

B. V2VFormer: Vehicle-to-Vehicle Cooperative Perception

The overall architecture of V2VFormer includes data sharing
and extraction, feature compression and fusion, and prediction
header modules, as depicted in Fig.2.

1) Data Sharing and Extraction: as commonly done in
previous works [23], a spatial graph is constructed based on
relative pose and extrinsic of CAVs, each node of which rep-
resents a networked vehicle within the communication range.
Individual LiDAR is then projected into a unified reference
plane (i.e., ego coordinate) for data alignment, and finally,
we adopt voxel-based feature backbone for efficiency, e.g.,
VoxelNet [26], SECOND [38] and PointPillars [39], producing
an intermediate bird’s-eye view (BEV) map FVm ∈ RH×W×C .

2) Feature Compression and Fusion: an encoder-decoder
compression module is introduced for mitigating expensive
transmission bandwidth: the encoder stacks several 1 × 1
convolutions for BEV feature compression progressively along
channel dimension, and the decoder projects it back into
the original feature resolution via corresponding 1 × 1 de-
convolutions. Afterwards, Transformer-based Collaboration
(CoTr) is designed for intermediate feature combination from
nearby CAVs.

CoTr. Given an ego-centric map FVm ∈ RH×W×C , an
intuitive solution is to directly incorporate different represen-
tations among vehicles by a simple operator (i.e., addition or
summation). Nonetheless, geometry correlation and semantic
interaction across agents could not be fully exploited in a hard-
association manner. To this end, a novel Transformer-based
Collaboration (CoTr) is proposed for both spatial-channel
awareness. As demonstrated in Fig.3, Spatial-Aware Trans-
former (SAT) is responsible for agent importance re-calibration
according to spatial distance via cross-attention operation,
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Fig. 4. The pipeline of three voxel-based 3D object detector, i.e., VoxelNet
[26], SECOND [38] and Pointpillars [39]. Compared to VoxelNet, SECOND
improves a 3D sparse convolutional neural network (3-D Sparse CNN) for
efficiency, while pillar feature encoding (PFE) in PointPillars compresses
voxel grid into a 2-D pseudo image along the vertical column.

and Channel-Wise Transformer (CWT) further conducts Multi-
Head Self-Attention (MHSA) for channel semantic interaction
among each ego-networked pair. In this way, ego-centric map
could be sufficiently reinforced with both spatial and semantic
information, and we introduce technical details step-by-step.

a. Spatial-Aware Transformer (SAT) It determines which
agent should be collaborated according to spatial distance.
As illustrated in Fig.3-(a), FVm ∈ RH×W×C is firstly flat-
tened and mapped into the hidden feature space using a
linear projection, resulting in a sequential vector F̂Vm

∈
RN×C(N = HW ). For each pair of ego and i-th connected
vehicles [Ve, Vm] (m ̸= e), a fixed-length latent code Lm ∈
RD×C(D = N

M ) is abstracted from ego input F̂Ve
, and the

other CAV feature is transformed into Key KS
m ∈ RN×C

and Value V S
m ∈ RN×C embeddings with linear projection,

respectively.
The cross-attention calculation is then launched between

latent vector and key tensor, and after a normalized softmax
function σ(·), attention matrix Am ∈ RN×D is obtained to
indicate the importance score of ego-networked vehicle being
aware of spatial correlation. Finally, we generate spatial-aware
feature vector F(Ve←Vm) ∈ RD×C by incorporating K/V
embeddings with attention matrix Am in an element-wise
multiplication, as mathematically concluded in Eq.5∼Eq.7.

KS
m : F1

Vm
= WS

K F̂Vm

V S
m : F2

Vm
= WS

V F̂Vm

(5)

Am(Lm,F1
Vm

) = σ(F1
Vm

LT
m) (6)

F(Ve←Vm) =CA(Lm,KS
m, V S

m)

=AT
m(Lm,F1

Vm
)
⊗

F2
Vm

(7)

b. Channel-Wise Transformer (CWT) A naive scheme is
to concatenate the encoded sequence along length dimension
to recover the spatial resolution, while the introduction of
feature redundancy or background noise would be detrimental
to perception accuracy. Hence, Channel-Wise Transformer
(CWT) is further designed for each ego-CAV semantic inter-
action across channels. As presented in Fig.3-(b), a group of
Query (QC

m), Key (KC
m) and Value (V C

m ) is firstly transformed
from F(Ve←Vm) ∈ RD×C , via a linear projection embedded
with positional information. It is noted that position encoding
is great of essential to indicate spatial location for each ego-
networked vehicle. Subsequently, channel attention is obtained
by normalizing Multi-Head Self-Attention (MHSA) output
with a softmax function, and we produce channel-wise feature
sequence F̃(Ve←Vm) ∈ RD×C̃ by matrix multiplication, where
C̃ = C denotes the interacted channel number. Finally, we
concatenate them along the spatial dimension, forming a joint
ego-vehicle sequence F̃Ve

∈ RN×C̃ . The whole process can be
formulated as Eq.8∼Eq.10: Concate[·] defines element-wise
concatenation; H is head number (i.e., 16).

QC
m = WC

QF(Ve←Vm),

KC
m = WC

KF(Ve←Vm),

V C
m = WC

V F(Ve←Vm)

(8)

F̃(Ve←Vm) =Concate[SAh(Q
C
m,KC

m, V C
m )]

=Concate[σ(
QC

m(KC
m)T√

dm
)
⊗

V C
m ]

h = 1, · · · , H

(9)

F̃Ve = Concate[F̃(Ve←Vm)],m = 1, · · · ,M (10)

In general, there are several advantages of CoTr strategy for
multi-vehicle feature aggregation. On the one hand, Spatial-
Aware Transformer (SAT) re-calibrates the feature significance
of nearby CAVs according to spatial correlation, thereby
attending to foreground target more. On the other hand,
Channel-Wise Transformer (CWT) further underlines detailed
semantic interaction across agent channels in a dynamic man-
ner. Compared to other alternatives [51] [47] [52] [59], our
CoTr performs both spatial-channel awareness among per-
agent, which could promote for better multi-agent collabora-
tion and perception ability in the challenging scenarios. More
importantly, linear complexity of CoTr [O(NDC) + O(C2)]
(C ≪ N) demonstrates its efficiency and feasibility in other
perception framework with acceptable overhead.

3) Prediction Header: The fused ego feature F̃Ve ∈ RN×C̃

is recovered back into a format of 2D BEV map F̃ ∈
RH×W×C̃ via tensor reshape operator, and we employ two
feed forward network (FFN) branches for object classification
and 3D box regression, respectively.
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TABLE I
PERFORMANCE COMPARISONS WITH DIFFERENT COLLABORATIONS ACHIEVED BY VOXELNET [26], SECOND [38] AND POINTPILLARS [39] ON

OPV2V Default SPLIT. THE MODEL PRE-TRAINED ON OPV2V AND V2V-SET REPORTS 3D AP ON THE BOTH SIDES OF SIGN ’/’, AND WE HIGHLIGHT
THE BEST RESULT WITH BOLD FONT.

Methods
OPV2V Default

AP@50 (%) AP@70 (%)
No Early Late CoTr No Early Late CoTr

VoxelNet 68.8/69.2 75.8/76.7 73.8/74.0 86.3/87.4 52.6/53.1 67.7/67.8 58.8/59.2 81.1/81.3

SECOND 71.3/71.9 81.3/83.2 77.5/78.0 91.7/92.1 60.4/61.6 74.1/75.0 70.1/70.8 87.6/88.0

PointPillars 67.9/68.1 80.0/80.9 78.1/78.7 88.6/89.2 60.2/61.0 69.6/71.1 66.8/67.0 82.8/84.4

TABLE II
PERFORMANCE COMPARISONS WITH DIFFERENT COLLABORATIONS ACHIEVED BY VOXELNET [26], SECOND [38] AND POINTPILLARS [39] ON

OPV2V Culver City SPLIT. THE MODEL PRE-TRAINED ON OPV2V AND V2V-SET REPORTS 3D AP ON THE BOTH SIDES OF SIGN ’/’, AND WE
HIGHLIGHT THE BEST RESULT WITH BOLD FONT.

Methods
OPV2V Culver City

AP@50 (%) AP@70 (%)
No Early Late CoTr No Early Late CoTr

VoxelNet 60.5/60.9 67.7/68.0 58.8/58.7 80.7/81.5 43.1/43.6 61.3/62.1 50.8/52.3 75.2/76.1

SECOND 64.6/65.5 73.8/74.6 68.2/69.1 89.3/89.8 51.7/52.0 66.4/66.7 60.2/60.9 80.5/81.2

PointPillars 55.7/56.3 69.6/70.1 66.8/67.5 83.8/84.6 47.1/47.3 62.2/62.7 60.1/60.4 78.5/79.8

C. Loss Function

The overall loss function L is formulated as classification
loss Lcls, regression loss Lreg as well as direction loss Ldir:

L = Lcls + Lreg + Ldir (11)

To be specific, classification loss Lcls utilizes focal loss
[60] to alleviate foreground-background imbalance, while
both regression loss Lreg and direction loss Ldir adopt the
smooth-L1 loss. The former calculates the localization offset
(△x,△y,△z,△l,△w,△h), and the latter utilizes Sinusoidal
function for orientation residual △θ = sin(θgt − θp) between
ground-truth (GT) and prediction. More details can further
refer to [26] [38] [39].

IV. EXPERIMENTS

This section firstly introduces a newly-built cooperative
perception dataset V2V-Set on the basis of OPV2V. And
then we conduct extensive experiments and ablation study
on both simulated and real-world benchmarks, to verify the
effectiveness and contribution of proposed method.

A. Datasets

OPV2V/V2V-Set. OPV2V [23] pioneers a publicly-
available vehicle-to-vehicle perception benchmark co-
simulated with CARLA [21] and SUMO [22], which includes
11464 image and point data with 232913 annotations covering
more than 70 scenes from 8 towns on CARLA map.

To further augment the variety of OPV2V, V2V-Set is
constructed with changing weather (sunny, rainy and cloudy)
and illumination (dawn, dusk and nighttime) conditions. It is

acquired with four cameras providing 360◦ viewpoint and 64-
channel LiDAR mounted on the vehicle. In total, V2V-Set
consists of over 100 scenarios with 20000 frames, each of
which contains 2 to 8 CAVs. It is argued that a diversity of
training examples could offer rich knowledge for performance
increment, and experimental result would verify this view.

V2X-Sim. V2X-Sim covers LiDAR-based vehicle-to-
vehicle scenarios at a certain intersection of Town05 generated
by CARLA and SUMO platforms. In general, it contains 100
scenes with a total of 10000 samples. Each scene consists of
100 frames with a 20-second traffic flow, and 2 ∼ 5 vehicles
are selected as collaborative agents.

V2V4Real. V2V4Real is the first large-scale real-world
dataset for V2V perception, which comprises 20k LiDAR and
40k image frames with 240k 3D labeling for 5 categories. It
is challenged that objects have a diversity of box sizes with
length ranging from 2.5m to 23m, widths ranging from 1.5m
to 4.5m and heights ranging from 1m to 4.5m, respectively.

B. Implementation Details

As illustrated in Fig.4, we adopt VoxelNet [26], SECOND
[38] and PointPillars [39] as backbone for high-efficiency
voxel-based representation learning, and incorporate them with
different fusion strategies for a thorough analysis: no collab-
oration implies single-agent perception without any received
information; early collaboration aggregates the raw LiDAR
projected on egocentric coordinate for feature extraction; late
collaboration combines independent prediction from each
CAV, and produces the final result via post-processing Non-
Maximum Suppression (NMS) operator.

Unless otherwise specified, the range of point cloud is set to
[−140, 140]m, [−40, 40]m and [−3, 1]m for both OPV2V and
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TABLE III
PERFORMANCE COMPARISONS WITH SOTA METHODS ON OPV2V Default/Culver City SPLITS AND V2X-SIM Test SET. THE BEST RESULT IS

HIGHLIGHTED WITH BOLD FONT, AND WE DRAW THE ACCURACY INCREMENT WITH RED COLOR IN THE BRACKET.

Methods
OPV2V Default OPV2V Culver City V2X-Sim Test

AP@50 (%) AP@70 (%) AP@50 (%) AP@70 (%) AP@50 (%) AP@70 (%)

V2VNet [14] 82.2 79.4 73.4 68.9 56.8 50.7

DiscoNet [50] 80.1 76.8 75.0 70.3 60.3 53.9
OPV2V-attn [23] 86.4 80.2 77.5 73.6 59.4 53.3

CoBEVT [59] 86.1 81.6 77.3 73.1 - -
FPV-RCNN [61] 82.0 77.3 76.3 72.0 - -

Where2comm [62] 88.9 75.5 82.2 68.0 59.1 52.2

CORE [52] 90.9 85.8 87.7 78.1 - -

SECOND-CoTr 91.7 (+0.8) 87.6 (+1.8) 89.3 (+1.6) 80.5 (+2.4) 61.5 (+1.2) 55.0 (+1.1)

V2V4Real, and [−32, 32]m, [−32, 32]m, [−3, 2]m for V2X-
Sim along x-y-z axes. More details about network param-
eters and training settings could refer to the open-sourced
OpenCOOD1, Coperception2 and V2V4Real3, respectively.
All experiments are conducted on Ubuntu20.04 with two
NVIDIA RTX3090 GPUs. Moreover, we split 6764/1981/2719
in OPV2V, 16000/4000 in V2V-Set, 8000/900/1100 in
V2X-Sim, 14210/2000/3986 in V2V4Real for model train-
ing/validation/testing, and report average precision (AP) at
0.5/0.7 intersection-of-union (IoU) thresholds for comparison.

TABLE IV
PERFORMANCE COMPARISONS WITH SOTA METHODS ON V2V4REAL

Test. WE HIGHLIGHT THE BEST RESULT WITH BOLD FONT.

Methods
V2V4Real Test

AP@50 (%) AP@70 (%)

No Collaboration 39.8 22.0

Early Collaboration 59.7 32.1

Late Collaboration 55.0 26.7

V2VNet [14] 64.7 33.6

OPV2V-attn [23] 64.5 34.3

V2V-ViT [51] 64.9 36.9
CoBEVT [59] 66.5 36.0

PointPillars-CoTr 65.4 36.1

C. Evaluation Results

Comparisons with Different Collaborations. Table I and
Table II elaborate the detection results of VoxelNet [26],
SECOND [38] and PointPillars [39] with different fusions
on OPV2V Default and Culver City test splits in terms of
0.5/0.7 IoU thresholds, respectively. Taking an example of
collaboration perception on Default set, it is clearly observed
that intermediate collaboration (CoTr) reports the best AP@50
of 86.3%/91.7%/88.7% and AP@70 of 81.1%/87.6%/82.8%

1https://github.com/DerrickXuNu/OpenCOOD
2https://github.com/coperception/coperception
3https://github.com/ucla-mobility/V2V4Real

when incorporated with three different backbones, which
surpasses the counterparts over a remarkable margin. For in-
stance, SECOND-CoTr improves No/Early/Late collaborations
by 20.4%/10.4%/14.2% AP@50 and 27.2%/13.5%/17.5%
AP@70, while Pointpillars-CoTr establishes 8.6% ∼ 20.7%
and 13.2% ∼ 22.6% AP gains at both IoU thresholds. More
importantly, an non-negligible accuracy upgrade, e.g., 0.4% ∼
1.6% averaging growth, could be further received when model
pre-trained on V2V-set, which implies the advantage of large-
scale training data. Similar improvements on Culver City test
are also obtained from Table II.

Due to both spatial-aware and channel-wise feature being
fully exploited, it is reasonably argued that CoTr strategy
contributes to a better collaboration performance. Moreover, a
variety of driving scenarios in V2V-Set provides an essential
prior for meaningful and versatile knowledge learning, thereby
facilitating a higher perception accuracy. The consistent im-
provement confirms its effectiveness and contribution.

TABLE V
ABLATION STUDY ON THE EFFECTIVENESS OF Collaborative Strategy ON
OPV2V Default SPLIT. THE BEST RESULT IS HIGHLIGHTED WITH BOLD
FONT, AND WE DRAW THE ACCURACY INCREMENT WITH RED COLOR IN

THE BRACKET.

Collaborations
OPV2V Default

AP@50 (%) AP@70 (%)

PointPillars 67.9 60.2

w./Average 76.0 (+8.1) 67.2 (+7.0)
w./Max 74.9 (+7.0) 65.3 (+3.9)
w./Mask-aware 82.2 (+14.3) 79.4 (+19.2)
w./Attentive 86.4 (+18.5) 80.2 (+20.0)

PointPillars-CoTr 88.6 (+20.7) 82.8 (+22.6)

Comparisons with SOTA Methods. To comprehensively
validate the superiority of CoTr, empirical analysis is further
conducted on OPV2V, V2X-Sim and V2V4Real benchmarks
in comparisons of the state-of-the-art (SOTA) methods, and we
choose SECOND backbone with CoTr scheme for simplicity.

As shown in Table III, SECOND-CoTr sets a new state-
of-the-art on three test splits and outperforms all counterparts
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over a substantial margin. Compared to CORE [52], it offers a
0.8%/1.8% AP boosts at both 0.5 and 0.7 levels on Default set,
and simultaneously presents 1.6% AP@50 and 2.4% AP@70
increments on Culver City split. This drastic elevation suggests
the advancement of our method. As for V2X-Sim, SECOND-
CoTr still brings DiscoNet [50] by 1.2% (61.5% → 60.3%)
and 1.1% (55.0% → 53.9%) precision under two thresholds,
demonstrating its generalization across various datasets.

Furthermore, cooperative performance on V2V4Real Test is
illustrated in Table IV, and we select PointPillars network with
CoTr strategy for a fair comparison. Distinctly, PointPillars-
CoTr achieves a AP of 65.4% and 36.1% at 0.5/0.7 thresh-
olds on practical scenarios, respectively, which exceeds other
single-agent and multi-agent counterparts by a considerable
margin. Compared to V2VNet [14] and attentive fusion [23],
it delivers 0.7% ∼ 0.9% and 1.8% ∼ 2.5% AP promotions
in both IoUs, suggesting its competitiveness and advantage in
physical environment. Nonetheless, our method falls behinds
CoBEVT [59] with 1.1% AP@50 and V2X-ViT [51] with
0.8% AP@70. It is claimed that the real-world pattern is much
challenging and confused, and a performant collaboration
would be devoted to explore in the future.

Result Visualizations. Qualitative experiments are per-
formed to evaluate collaborative perception performance in-
tuitively, and we list visualization results of SECOND-CoTr
on OPV2V and PointPillars-CoTr on V2V4Real splits for sim-
plicity, are depicted in Fig.7∼Fig.8. Apparently, our proposed
method showcases much powerful and robust to varying sim-

TABLE VI
ABLATION STUDY ON THE EFFECTIVENESS OF Anti-interference Ability ON

OPV2V Default SPLIT. WE CONSIDER POSITION/HEADING ERROR AND
TIME DELAY DISTURBANCES, AND ACCURACY DROP IS REPORTED IN THE

BRACKET.

Methods
OPV2V Default → AP@50 (%)

OPV2V-attn CoBEVT PointPillars-CoTr

Po
si

tio
n

(m
)

0.0 86.4 86.1 88.6

0.1 84.9 (−1.5) 85.0 (−1.1) 88.2 (−0.4)
0.2 82.1 (−2.8) 82.3 (−2.7) 86.5 (−1.7)
0.3 78.5 (−3.6) 78.9 (−3.4) 84.3 (−2.2)

H
ea

di
ng

(◦
)

0.0 86.4 86.1 88.6

0.1 83.8 (−2.6) 84.2 (−1.9) 87.7 (−0.9)
0.2 81.0 (−2.8) 82.7 (−1.5) 86.1 (−1.6)
0.3 77.8 (−3.2) 80.6 (−2.1) 83.9 (−2.2)

D
el

ay
(s

) 0.0 86.4 86.1 88.6

0.1 84.7 (−1.7) 85.0 (−1.1) 87.9 (−0.7)
0.2 83.0 (−1.7) 83.3 (−1.7) 86.3 (−1.6)
0.3 79.9 (−3.1) 81.5 (−1.8) 84.9 (−1.4)

ulated/real scenarios: with the help of CoTr method, it could
recognize hard samples in such occluded/crowded situation,
largely enhancing the perception scope and probing range.

D. Ablation Study

We further conduct ablation analysis of collaborative strat-
egy, CAV number, compression ratio, and anti-interference
ability, to probe into their effectiveness in the context of
multi-agent perception. For simplicity, all experiments adopt
PointPillars trained on OPV2V as the baseline.

1) Effectiveness of Collaborative Strategy: table V lists the
OPV2V Default result achieved by a variety of intermediate
collaborations, i.e., Average, Max [9], Mask-aware [14] and
Attentive [23] fusions incorporated with PointPillars. Despite
their promising progresses, our proposed CoTr leverages both
spatial correlation and channel semantic fully, and clarifies
the advantage of multi-agent collaboration with an evident AP
raising of 20.7% and 22.6% at two thresholds.

2) Effectiveness of CAV number: fig.5 depicts the relation-
ship between CAV number with cooperative perception on
both OPV2V Default and Culver City sets. Evidently, detection
accuracy tends to increase with the vehicle number linearly
until 5 CAVs, conforming with the intuition of multi-view
information for ego-vehicle perception enhancement. Whereas,
performance drop occurs with more participants (i.e., 6). We
argue that five networked vehicles sufficiently provide 360◦

field-of-view surroundings for covering potential occlusion
or blind-spot areas, and information redundancy would be
detrimental to collaborative perception with the introduction
of background noise or irrelevant object.

3) Effectiveness of Compression Ratio: the relationship
between compression ratio and cooperative performance is
investigated by changing convolution number in encoder to
emulate the varying feature resolution during transmission. As
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illustrated in Fig.6, a new state-of-the-art cooperative detection
performance is reported by PointPillars-CoTr without feature
compression on both Default and Culver City splits. Intuitively,
an acceptable decay emerges unavoidably with the decreas-
ing feature resolution until 1024× reduction. We speculate
that key-point information loss would be caused by a larger
downsampling process (i.e., 2048×), and it is reasonable that
1024× compression ratio could receive a satisfactory trade-
off performance-efficiency result in terms of collaborative
perception.

4) Effectiveness of Anti-interference Ability: the resistance
of CoTr is also analyzed on OPV2V Default samples: Gaus-
sian noise and uniform distribution are adopted for varying
position/heading error and time delay simulation, and we ex-
plore the cooperative perception under different perturbations.
Compared with two mainstream counterparts, CoTr manifests
an advantageous robustness against real-world disturbances,
and a considerable performance fall is reported as tabulated
in Table VI. For instance, PointPillars-CoTr suffers from
0.4% ∼ 2.2% accuracy degradation under a standard deviation
of [0.1, 0.3] position/heading error. In addition, it experiences
0.7/1.6/1.4 AP declines when encountering different delay
levels. We emphasize the stability and permanence of our
proposed method, and more susceptibility analysis would be
developed in the future.

V. CONCLUSION

In this paper, we develop V2VFormer, a novel collaborative
perception framework with Transformer-based Collaboration
(CoTr). Concretely, Spatial-Aware Transformer (SAT) is re-
sponsible for which agent should be collaborated according to
spatial correlation among CAVs, while Channel-Wise Trans-
former (CWT) aims for sufficient semantic interaction across
channels. Moreover, a new-built dataset V2V-Set is augmented
on the top of OPV2V with a diversity of driving conditions.
We conduct an extensive experiments on OPV2V, V2X-Sim
and V2V4Real benchmarks, and our proposed method re-
ports the state-of-the-art cooperative perception performance
in both simulated/real scenarios, thereby demonstrating its
superiority and advancement. Furthermore, abundant training
samples would provide essential knowledge for performance
promotion, and ablation study further reveals the effectiveness
and robustness of each ingredient. We expect this work would
shed a light on V2V perception in the future.
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Fig. 7. Visualization results achieved by SECOND-CoTr on OPV2V Default and Culver City splits at the left and right columns, respectively. It covers a
variety of simulation condition, and we draw ground-truth (GT) and prediction with Green and Red rectangles. Best Viewed in color.
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Fig. 8. Visualization results achieved by PointPillars-CoTr on V2V4Real Test split covered a diversity of real-world scenarios. The ground-truth (GT) and
prediction are drawn with Green and Red, respectively. Best Viewed in color.
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