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Abstract

A subset of vertices of a graph G is a general position set if no triple of
vertices from the set lie on a common shortest path in G. In this paper we
introduce the general position polynomial as

∑
i≥0 aix

i, where ai is the number
of distinct general position sets of G with cardinality i. The polynomial is
considered for several well-known classes of graphs and graph operations. It is
shown that the polynomial is not unimodal in general, not even on trees. On
the other hand, several classes of graphs, including Kneser graphs K(n, 2), with
unimodal general position polynomials are presented.

Keywords: general position set; general position number; general position polyno-
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1 Introduction

Given a graph G = (V (G), E(G)), a set S ⊆ V (G) of vertices of G is a general
position set if no triple of vertices from S lie on a common shortest path in G. The

∗corresponding author, available at sandi.klavzar@fmf.uni-lj.si
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cardinality of a largest general position set of G is called the general position number
of G and is denoted by gp(G). These sets were independently introduced in [7, 20]
and have already been studied from many perspectives, cf. [4, 15, 16, 18, 22, 23, 26].
In this paper, we explore general position sets from the point of view of the counting
polynomial defined in the following standard way.

Definition 1.1. The general position polynomial of a graph G is the polynomial

ψ(G) =
∑
i≥0

aix
i ,

where ai is the number of distinct general position sets of G with cardinality i.

A polynomial is said to be unimodal if its coefficients are non-decreasing and then
non-increasing. Unimodality is one of the most important and most studied properties
of counting polynomials in graph theory. In the next paragraph, we give a very brief
justification for our claim.

Since the matching polynomial of a graph has only real zeros [11], it is unimodal.
The unimodality of the chromatic polynomial has been established in [13]. In [3]
it has been conjectured that the domination polynomial of an arbitrary graph G
is also unimodal. The conjecture has been approached from different perspectives,
see [2, 5, 6, 19], but it remains open. On the other hand, it is known that the inde-
pendence polynomial is not unimodal in general, but it has been conjectured by Alavi,
Malde, Schwenk, and Erdős that the independence polynomial of a tree is unimodal [1],
a conjecture which is also still open. It was very recently demonstrated that the con-
jecture cannot be strengthened up to its log-concave version [14]. On the other hand,
the independence polynomial of a claw-free graph is unimodal [8].

The rest of the paper is organised as follows. In the next section we determine
the general position polynomial of several families of graphs and give an inclusion-
exclusion-like formula for the polynomial. We also construct an infinite number of pairs
of non-isomorphic trees with the same general position polynomial. In Section 3 we
consider the general position polynomials of disjoint unions of graphs, joins of graphs,
and Cartesian products of graphs. In particular, we express the general position
polynomial of the join of two graphs with the clique polynomial and the independent
union of cliques polynomial (to be defined in Section 3) of the factors, and determine
ψ(Pr □ Ps). Then, in Section 4, we consider unimodality of the polynomial. We
first demonstrate that it is not unimodal in general and not even unimodal on the
class of trees. On the other hand, we prove that it is unimodal on combs, Kneser
graphs K(n, 2), and a family of graphs containing complete bipartite graphs minus
a matching. The paper is concluded with some open problems and suggestions for
future research.

2 Basic results and examples

Let G be a graph. Then, clearly, the degree of ψ(G) is gp(G). It was shown in [7,
Theorem 2.10] that C4 and Pn, n ≥ 2, are the only connected graphsG with gp(G) = 2,
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hence among connected graphs the degree of a general position polynomial is equal to
2 precisely for C4 and for Pn, n ≥ 2. In addition, if G is of order n, then since every
set of at most two vertices is a general position set, its general position polynomial
starts as

ψ(G) = 1 + nx+

(
n

2

)
x2 + · · · (1)

We now derive general position polynomials for some standard families of graphs.

Proposition 2.1. (i) If n ≥ 1, then ψ(Kn) = (1 + x)n.

(ii) If n ≥ 1, then ψ(Pn) = 1 + nx+
(
n
2

)
x2.

(iii) If n ≥ 3 is odd, then ψ(Cn) = 1 + nx+
(
n
2

)
x2 +

((
n
3

)
− n

(⌊n
2
⌋

2

))
x3.

(iv) If n ≥ 4 is even, then ψ(Cn) = 1 + nx+
(
n
2

)
x2 +

((
n
3

)
− n

(n
2
−1
2

)
− n(n−2)

2

)
x3.

(v) If m ≥ n ≥ 1, then ψ(Km,n) = 1 + (m+ n)x+
(
m+n
2

)
x2 +

∑m
i=3

((
m
i

)
+
(
n
i

))
xi.

Proof. (i) Any subset of i vertices in Kn for 0 ≤ i ≤ n is in general position, so the
coefficient at xi in ψ(G) is

(
n
i

)
. Thus ψ(G) =

∑n
i=0

(
n
i

)
xi = (1 + x)n.

(ii) Follows from (1) and the previously mentioned fact that gp(Pn) = 2 for n ≥ 2.

(iii) Consider C2d+1, d ≥ 1. We count the number of triples of vertices that are on
a common geodesic. For 2 ≤ r ≤ d there are exactly n pairs of vertices at distance
r on the cycle and each such pair corresponds to exactly r − 1 sets from

(
V (Cn)

3

)
that

are on a common geodesic. Thus there are n
∑d

r=1(r − 1) = n
(
d
2

)
triples that are on

a common geodesic and hence there are exactly
(
n
3

)
− n

(
d
2

)
triples that are in general

position.

(iv) Consider C2d, d ≥ 2. The reasoning for odd cycles applies to pairs of vertices
at distance at most d − 1 from each other; however, each pair of vertices at distance
d now corresponds to n− 2 sets from

(
V (Cn)

3

)
on a common geodesic. Therefore there

are
n

2
(n− 2) + n

d−1∑
r=1

(r − 1) = n

(
d− 1

2

)
+
n

2
(n− 2)

triples of vertices that are on a common geodesic.

(v) The formula follows since gp(Km,n) = max{m,n} = m and since a general
position set S of Km,n of cardinality at least 3 is an independent set, so that S is a
subset of one of the bipartition sets of Km,n.

The general position polynomial can also be expressed via the inclusion-exclusion
principle as follows. For a positive integer n, let [n] = {1, . . . , n}.

Proposition 2.2. Let G be a graph and let X1, . . . , Xn be the maximal general position
sets of G. Then

ψ(G) =
n∑

k=1

(−1)k−1
∑

{i1,...,ik}⊆[n]

ψ(Xi1 ∩ · · · ∩Xik) .
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Proof. Any subset of a general position set X is also a general position set and the
number of subsets of size i is

(|X|
i

)
. It follows that for every general position set

X we have ψ(X) = (1 + x)|X|. The formula then follows by the inclusion-exclusion
principle.

As an example, consider the Petersen graph P = K(5, 2). In the standard drawing
of it denote the consecutive vertices of the outer 5-cycle by u0, u1, u2, u3, u4, and their
respective neighbors on the inner 5-cycle by u0, u1, u2, u3, u4. It is known from the
seminal paper [20] that gp(P ) = 6. By inspection it can be checked that there are
precisely five general position sets of cardinality 6:

{u0, u1, u3, v2, v3, v4}, {u0, u2, u3, v0, v1, v4}, {u0, u2, u4, v1, v2, v3},
{u1, u2, u4, v0, v3, v4}, {u1, u3, u4, v0, v1, v2} .

Moreover, the remaining maximal general position sets are the five independent sets
of cardinality 4:

{u0, u2, v3, v4}, {u0, u3, v1, v2}, {u1, u3, v0, v4}, {u1, u4, v2, v3}, {u2, u4, v0, v1} .

Since every vertex of P lies in five different maximal general position sets, the inter-
section of six or more such sets is empty. In Table 1 it is shown how many different
occurrences of the same number of sets in an intersection have the same size of inter-
section.

no. of
maximal sets

intersection size
0 1 2 3 4 5

2 5 10 0 30 0 0
3 50 40 30 0 0 0
4 160 50 0 0 0 0
5 242 10 0 0 0 0
6 210 0 0 0 0 0
7 120 0 0 0 0 0
8 45 0 0 0 0 0
9 10 0 0 0 0 0
10 1 0 0 0 0 0

Table 1: Number of different occurrences of the same number of maximal general
position sets in an intersection having the same size of intersection.

Combining Proposition 2.2 with Table 1 yields:

ψ(P ) =
[
5(x+ 1)6 + 5(x+ 1)4)

]
−
[
5(x+ 1)0 + 10(x+ 1)1 + 30(x+ 1)3)

]
+
[
50(x+ 1)0 + 40(x+ 1)1 + 30(x+ 1)2

]
−
[
160(x+ 1)0 + 50(x+ 1)1

]
+
[
242(x+ 1)0 + 10(x+ 1)1

]
− 210 + 120− 45 + 10− 1

= 1 + 10x+ 45x2 + 90x3 + 80x4 + 30x5 + 5x6.
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To conclude the section we point out that the general position polynomial does
not determine a graph uniquely. For example, 1 + 4x + 6x2 is a general position
polynomial of both P4 and C4. Furthermore, the general position polynomial does
not even determine a tree uniquely. For example, let k ∈ N and take T

(k)
1 to be the

tree obtained from identifying one leaf of P13k, P5k and P4k, and T
(k)
2 to be the tree

obtained from identifying one leaf of P10k, P9k and P3k. The case k = 1 is shown in
Fig. 1.

Figure 1: Trees T
(1)
1 and T

(1)
2 .

Both trees T
(k)
1 and T

(k)
2 have 20k vertices and three leaves, thus gp(T

(k)
1 ) =

gp(T
(k)
2 ) = 3 by [20, Corollary 3.7]. Observe that

ψ(T
(k)
1 ) = 1 + 20kx+

(
20k

2

)
x2 + 144k3x3,

ψ(T
(k)
2 ) = 1 + 20kx+

(
20k

2

)
x2 + 144k3x3,

where the coefficient at x3 is obtained by taking one vertex from each pendent path.
The key property that achieves the equality of polynomials is that 12+4+3 = 9+8+2
and 12 · 4 · 3 = 9 · 8 · 2. Note that this is not the only pair of triples with this property.

3 The general position polynomial of some graph

operations

In this section we consider the general position polynomials of disjoint unions of graphs,
joins of graphs, and Cartesian products of graphs.

Let G ·∪H denote the disjoint union of graphs G and H. Then S ⊆ V (G ·∪H) is a
general position set of G ·∪H if and only if S ∩V (G) is a general position set of G and
S ∩ V (H) is a general position set of H. Using this fact, the following result readily
follows.

Proposition 3.1. If G1, . . . , Gr, r ≥ 2, are graphs, then

ψ(G1 ·∪ · · · ·∪Gr) = ψ(G1) · · ·ψ(Gr) .

Proposition 3.1 extends as follows.
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Proposition 3.2. Let G be a graph, V1, V2 a partition of V (G), and G1 = G[V1],
G2 = G[V2]. Then ψ(G) = ψ(G1)ψ(G2) if and only if G = G1 ·∪G2 or G is complete.

Proof. Sufficiency follows by Proposition 3.1 and Proposition 2.1(i).

Conversely, we need to prove that ψ(G) = ψ(G1)ψ(G2) implies either that G is
a clique or that G is the disjoint union of G1 and G2. Examine the subsets of order
three of V (G); in order to have equality in the x3 term, we must have that every set of
three vertices with two vertices in one of G1, G2 and one vertex in the other must be
in general position. Suppose that there is an edge between G1 and G2 in G; we show
that G must be complete. Let e be an edge from G1 to G2 with endpoints u ∈ V (G1)
and v ∈ V (G2). Let u′ be any neighbour of u in G1; as {u, u′, v} must be in general
position, it follows that v ∼ u′. Inductively, we conclude that u is adjacent to every
vertex of G1; furthermore, it follows that if u1 and u2 are non-adjacent vertices in G1,
then u1, v, u2 would not be in general position, so G1 is a clique. Similarly G2 must
be a clique and we must have every edge between G1 and G2.

If G andH are disjoint graphs, then the join G∨H of G andH is the graph with the
vertex set V (G∨H) = V (G)∪V (H), and the edge set E(G∨H) = E(G)∪E(H)∪{xy :
x ∈ V (G), y ∈ V (H)}. Setting ρ(G) to denote the maximum number of vertices in a
union of pairwise independent cliques of G, it was proved in [10, Proposition 4.2] that
gp(G ∨H) = max{ω(G) + ω(H), ρ(G), ρ(H)}.

The clique polynomial C(G) of a graph G is the counting polynomial of cliques,
that is,

C(G) = c0 + c1x+ c2x
2 + . . . ,

where ci is the number of cliques of order i in G, cf. [12]. Similarly, the independent
union of cliques polynomial Ci(G) has coefficients equal to the number of independent
union of cliques in G. Since a set S ⊆ V (G1 ∨G2) is in general position if and only if
either it induces a clique in both G1 and G2, or S is an induced union of cliques in G1

or G2, the above discussion yields the following relation between the general position
polynomial and the two clique polynomials.

Proposition 3.3. If G1 and G2 are graphs, then

ψ(G1 ∨G2) = (C(G1)− 1)(C(G2)− 1) + Ci(G1) + Ci(G2))− 1.

We now turn our attention to the Cartesian product of graphs. Recall that the
Cartesian product G □ H of graphs G and H has the vertex set V (G □ H) = V (G)×
V (H) and the edge set E(G □ H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and h = h′, or, g =
g′ and hh′ ∈ E(H)}.

For the general position number of the Cartesian product of two paths we have
(cf. [21]):

gp(Pr □ Ps) =


2; r = s = 2,

3; r = 2, s ≥ 3,

4; r, s ≥ 3.

(2)
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Moreover, in [17, Theorem 2.1] it was proved that the number of general position sets
in Pr □ Ps of cardinality gp(Pr □ Ps) is equal to

6; r = s = 2 ,

s(s− 1)(s− 2)

3
; r = 2, s ≥ 3 ,

rs(r − 1)(r − 2)(s− 1)(s− 2)(r(s− 3)− s+ 7)

144
; r, s ≥ 3 .

(3)

From (3) we immediately obtain the general position polynomial of thin grids:

Corollary 3.4. If r, s ≥ 2, then

ψ(Pr □ Ps) =

{
6x2 + 4x+ 1; r = s = 2,
s(s−1)(s−2)

3
x3 +

(
2s
2

)
x2 + 2sx+ 1; r = 2, s ≥ 3.

For larger grids we have:

Theorem 3.5. If r, s ≥ 3, then

ψ(Pr □ Ps) =
rs(r − 1)(r − 2)(s− 1)(s− 2)(r(s− 3)− s+ 7)

144
x4

+
1

18
(r − 1)r(s− 1)s(r(2s− 1)− s− 4) x3

+

(
rs

2

)
x2 + rsx+ 1.

Proof. Let r, s ≥ 3. It follows from (2) that ψ(Pr □ Ps) is of degree 4. From (3) we get
the leading coefficient, while coefficients of x2, x1 and x0 are obviously

(
rs
2

)
, rs and 1,

respectively. Consider the number of general position sets with three vertices. There
are

(
rs
3

)
3-subsets of V (Pr □ Ps), but some of them are not in general position. In

the following, we count the number of 3-subsets of V (Pr □ Ps) that are not in general
position.

1. There are r
(
s
3

)
and s

(
r
3

)
sets where all vertices are in the same horizontal or

vertical layer.

2. Consider the case where exactly two are in the same horizontal layer (the case
where they are in the same vertical layer is similar). Suppose that the second
coordinate is k. The one with smaller first coordinate has r − 1 possibilities;
suppose it is i, while the one with greater coordinate can be in {i + 1, . . . , r},
say j. Since the triplet is not in general position, the third vertex can have
any other second coordinate (any of {1, . . . , k− 1, k+1, . . . , s}), and for its first
coordinate x either x ≤ i or x ≥ j. Using the same reasoning for the case where
two coordinates are in the same vertical layer and subtract the cases where both
of them are the same, we obtain that in this case the number of sets that are
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not in general position is equal to

r

s−1∑
i=1

s∑
j=i+1

(s− (j − i− 1))(r − 1)+

s

r−1∑
i=1

r∑
j=i+1

(r − (j − i− 1))(s− 1)− 4

(
r

2

)(
s

2

)
.

3. The last case is vertices (x1, y1), (x2, y2) and (x3, y3), where x1 < x2 < x3 and
either y1 < y2 < y3 or y1 > y2 > y3. There are:

2
r−2∑
i=1

s−2∑
j=1

r∑
k=i+2

s∑
l=j+2

(k − i− 1)(l − j − 1)

such sets.

By subtracting from the number of all sets the number of sets that are not in
general position, we get this simplified expression:

1

18
(r − 1)r(s− 1)s(r(2s− 1)− s− 4),

representing the coefficient of the x3 term in the general position polynomial.

4 Unimodality

In this section we consider the unimodality of the general position polynomial. First,
it is not unimodal in general as shown by the following example, which follows from
Proposition 2.1(v):

ψ(K8,4) = 1 + 12x1 + 66x2 + 60x3 + 71x4 + 56x5 + 28x6 + 8x7 + x8 .

Another complete bipartite graph for which the general position polynomial is not
unimodal is K9,7.

In view of the above example and the situation with the independence polynomial,
we can ask ourselves whether the general position polynomial is unimodal on trees.
The answer is negative as we now demonstrate.

A broom Bs,r, s ≥ 0, r ≥ 0, is a graph with vertices u0, . . . , us, v1, . . . , vr, and edges
uiui+1 for i ∈ {0, . . . , s− 1} and u0vj for j ∈ [r]. See Fig. 2 for an example.

It is straightforward to check that

ψ(Bs,r) =
∑
k≥0

bkx
k

= 1 + (s+ r + 1)x+

(
s+ r + 1

2

)
x2 +

∑
k≥3

(
s

(
r

k − 1

)
+

(
r

k

))
xk .
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u0 u1 u2 u3 u4

v1
v2
v3
v4
v5
v6

Figure 2: The broom B4,6.

The smallest broom whose general position polynomial is not unimodal is B17,6; its
general position polynomial is

ψ(B17,6) = 1 + 24x+ 276x2 + 275x3 + 355x4 + 261x5 + 103x6 + 17x7 .

Moreover, one can calculate that if

r ≥ 6 and s ≥
⌈
1

2

(
r2 − 3r − 1

)
+

√
3r4 − 14r3 − 3r2 + 14r + 3

2
√
3

⌉
,

then b1 < b2 > b3 < b4 holds, and hence there are infinitely many brooms for which
the general position polynomial is not unimodal.

On the positive side, we first prove that the general position polynomial of comb
graphs are unimodal. Recall that the comb Gn, n ≥ 1, is obtained from the path Pn

by respectively attaching a pendent vertex to each of its vertices.

Theorem 4.1. If n ≥ 1, then ψ(Gn) is unimodal.

Proof. Let ψ(Gn) =
∑

k≥0 akx
k. Clearly, a0 = 1, a1 = 2n, and a2 =

(
2n
2

)
. For k ≥ 3,

we can determine ak by distinguishing between zero, one or two vertices from the
general position set belonging to the path Pn in G:

ak =

(
n

k

)
+

n∑
i=1

((
i− 1

k − 1

)
+

(
n− i

k − 1

))
+

n−1∑
i=1

n∑
j=i+1

(
j − i− 1

k − 2

)
=

1

k

(
(n− 1)n

k − 1

(
n− 2

k − 2

)
+ n

(
n− 1

k − 1

)
+ (n− k + 1)

(
n

k − 1

)
+ k

(
n

k

))
.

In particular, a3 =
2
3
(n− 2)(n− 1)n, and a3 ≥ a2 if and only if n ≥ 6.

If n = 1, then G1 = K2, while if n = 2, then G2 = P4, and their polynomials are
unimodal. For n ∈ {3, 4, 5}, we calculate the polynomials explicitly to check that they
are also unimodal:

ψ(G3) = 4x3 + 15x2 + 6x+ 1

ψ(G4) = 4x4 + 16x3 + 28x2 + 8x+ 1

ψ(G5) = 4x5 + 20x4 + 40x3 + 45x2 + 10x+ 1

For n ≥ 6, we already know that a0 ≤ a1 ≤ a2 ≤ a3, thus it only remains to show
that the sequence (ak)k≥3 is unimodal. The difference between two terms in ψ(G) for
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3 ≤ k ≤ n− 1 can be simplified as follows:

ak − ak+1 =
4n!(2k − n+ 1)

(k + 1)!(n− k)!
,

which implies that for 3 ≤ k ≤ n−1
2
, ak ≤ ak+1, and that for n−1

2
≤ k ≤ n − 1,

ak ≥ ak+1, so (ak)k≥3 is indeed unimodal.

Another family of graphs for which the general position polynomial is unimodal is
the class of Kneser graphs K(n, 2). Recall that the vertex set of K(n, 2) contains all
2-subsets of an n-set, two vertices being adjacent if the corresponding sets are disjoint.
At the end of Section 2 we have considered the special case P = K(5, 2).

Theorem 4.2. If n ≥ 2, then ψ(K(n, 2)) is unimodal.

Proof. We first determine the general position polynomial of K(n, 2). Recall from [20]
that

gp(K(n, 2)) =

{
6; n ≤ 6,

n− 1; n ≥ 7.

General position sets of size j ∈ {2, . . . , n − 1} can be cliques or independent sets,
and for j ≥ 7 this is the only possibility. To form a clique on j vertices in K(n, 2),
select 2j elements of the n-set (this can be done in

(
n
2j

)
ways) and put them into

unordered pairs (
(

2j
2,...,2

)
1
j!
= (2j)!

2jj!
options). An independent set on j vertices can be of

the form {ax1, . . . , axj}, where a, x1, . . . , xj are distinct elements of the n-set. There
are n

(
n−1
j

)
such sets. For j ≥ 4, all independent sets are of this form. However, for

j = 3, independent sets can also take the form {ab, bc, ac}, where a, b, c are distinct
elements of the n-set. For j ∈ {3, . . . , 6}, several additional types of general position
sets are possible. On six vertices, 3K2 forms a general position set, and there are

(
n
4

)
such sets (they are of the form {ab, cd, ac, bd, ad, bc}). On five vertices, 2K2 ·∪ K1 is
also a general position set, and it can be obtained by removing one vertex from the
general position set on six vertices, thus there are 6

(
n
4

)
of them. Similarly, on four

vertices, 2K2 or K2 ·∪ 2K1 are also independent sets. They are obtained by removing
two vertices from the general position set on six vertices, so there are

(
6
2

)(
n
4

)
= 12

(
n
4

)
of them. On three vertices, we need to consider the additional type of independent
sets as well, and there are

(
n
3

)
of them. By removing three vertices from a general

position set on six vertices we can also obtain a set of three vertices in general position
that induces a copy of K2 ·∪K1, but these vertices must not belong to three copies of
different K2. Thus there are

((
6
3

)
− 23

) (
n
4

)
= 12

(
n
4

)
. Therefore:

ψ(K(n, 2)) =
n−1∑
k=0

akx
k

= 1 +

(
n

2

)
x+

((
n

3

)
+ 12

(
n

4

))
x3 + 15

(
n

4

)
x4 + 6

(
n

4

)
x5 +

(
n

4

)
x6

+
n−1∑
j=2

((
n

2j

)
(2j)!

2jj!
+ n

(
n− 1

j

))
xj .
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We can check by computer that ψ(K(n, 2)) is unimodal for 2 ≤ n ≤ 16. For n ≥ 17,
the following inequalities hold: a0 ≤ a1 ≤ · · · ≤ a6 ≤ a7. Thus it remains to show
that (ak)k≥7 is unimodal. Since k ≥ 7, ak = n

(
n−1
k

)
+ (2k)!

2kk!

(
n
2k

)
. To show unimodality,

we simplify the difference

ak − ak+1 =

(
n

k+1

)
2k+1

(
2k+1(2k + 2− n)

+ (n+ 2− (n− 2k)2)(n− 2k + 1)(n− 2k + 2) · · · (n− k − 1)
)
.

To determine for which k the difference ak−ak+1 ≥ 0 and for which k it is ak−ak+1 ≤ 0,
we only need to consider the terms

A = 2k+1(2k + 2− n),

B = (n+ 2− (n− 2k)2)(n− 2k + 1)(n− 2k + 2) · · · (n− k − 1) .

First observe that if k > n
2
, then (2k)!

2kk!

(
n
2k

)
= 0, thus ak − ak+1 =

( n
k+1)
2k+1 · A > 0.

If n
2
− 1 ≤ k ≤ n

2
+ 1, then A ≥ 0, and since n + 2 − (n − 2k)2 ≥ 0 and for all

j ∈ [k − 1], n− 2k + j ≥ 0, we also have B ≥ 0. Thus ak − ak+1 ≥ 0.

For n
2
−

√
n+1
2

≤ k ≤ n
2
− 1, we have A ≤ 0 and B ≥ 0. In the following we will

prove that B ≥ |A|. Observe that n + 2 − (n − 2k)2 ≥ 1, n − 2k + 1 > |2k + 2 − n|
and for all j ∈ {2, . . . , k − 1}, n− 2k + j ≥ 4. Thus

B ≥ 1 · |2k + 2− n| · 4k−2 > |2k + 2− n| · 2k+1 = |A|

since k ≥ 7. Hence we have ak − ak+1 ≥ 0.

For 7 ≤ k ≤ n
2
−

√
n+2
2

, we have A < 0, n+2− (n− 2k)2 ≤ 0 and for all j ∈ [k− 1],
n− 2k + j ≥ 0, thus B ≤ 0. It follows that ak − ak+1 < 0.

It remains to prove that the above cases indeed cover all integers k, 7 ≤ k ≤ n− 1.

To see this we need to prove that no integer lies in the interval
(

n
2
−

√
n+2
2
, n
2
−

√
n+1
2

)
.

Suppose that there exists m ∈ N such that n
2
−

√
n+2
2

< m < n
2
−

√
n+1
2

. Simplifying
and squaring this chain of inequalities yields n + 1 < (n − 2m)2 < n + 2. But since
n + 1 and n + 2 are consecutive integers, we obtain a contradiction. Thus we have
proved that (ak)k≥7 is unimodal.

The following family of graphs T ∗(r, a) from [25] yields another family of graphs
with unimodal general position polynomial. Take a complete a-partite graph, each
part of which contains r vertices and label the vertices in part i by i1, . . . , ir. Then for
each i ∈ [r], delete the edges of the clique induced by the vertices i1, . . . , ia.

Now suppose that S is a general position set of T ∗(r, a). Any subset lying in a
single partite set is in general position. Suppose that S contains three vertices (say
with labels 1,2,3) in part A; then S can contain no vertices from other partite sets, for
when we add a new vertex x from another part, the label of x will differ from that of
at least two vertices of S. Suppose then that S contains two vertices a1, a2 of a part
A (say with labels 1,2); by the same reasoning S can only contain vertices with labels

11



1 and 2. If S intersects only two parts, it will be in general position, inducing either
a K2 ·∪K1 or a 2K2. However, S cannot contain vertices from more than two partite
sets; if S contains a vertex b1 with label 1 in a part B and a vertex c1 with label 1
in a part C, then b1, a2, c1 is a shortest path, whereas if S contains a vertex b1 in B
with label 1 and a vertex c2 with label 2 in C, then b1, c2, a1 would again be a shortest
path. It follows that the general position polynomial of this graph is given by

ψ(T ∗(r, a)) =1 + nx+

(
n

2

)
x2 + 2a(a− 1)

(
r

2

)
x3 +

(
a

2

)(
r

2

)
x4

+
∑
i≥3

[
a

(
r

i

)
+ ri

(
a

i

)]
xi ,

where n = ra.

Proposition 4.3. If a ∈ {1, 2}, then T ∗(r, a) is unimodal.

Proof. If a = 1, then T ∗(r, 1) = Kr, which is unimodal. If a = 2, then T ∗(r, 2) is a
complete bipartite graph without a perfect matching. Simplifying its general position
polynomial gives

ψ(T ∗(r, 2)) = 1 + 2rx+

(
2r

2

)
x2 + 4

(
r

2

)
x3 +

(
r

2

)
x4 +

∑
i≥3

2

(
r

i

)
xi.

Observe that the sequence (2
(
r
i

)
)i≥3 is unimodal. Thus if we can prove that the

initial coefficients of ψ(T ∗(r, 2)) are increasing, the general position polynomial is also
unimodal. This holds for r ≥ 10, as 1 ≤ 2r ≤

(
2r
2

)
≤ 4

(
r
2

)
+ 2

(
r
3

)
≤

(
r
2

)
+ 2

(
r
4

)
≤ 2

(
r
5

)
holds for r ≥ 10.

r ψ(r, 2)
1 x2 + 2x+ 1
2 x4 + 4x3 + 6x2 + 4x+ 1
3 3x4 + 14x3 + 15x2 + 6x+ 1
4 8x4 + 32x3 + 28x2 + 8x+ 1
5 2x5 + 20x4 + 60x3 + 45x2 + 10x+ 1
6 2x6 + 12x5 + 45x4 + 100x3 + 66x2 + 12x+ 1
7 2x7 + 14x6 + 42x5 + 91x4 + 154x3 + 91x2 + 14x+ 1
8 2x8 + 16x7 + 56x6 + 112x5 + 168x4 + 224x3 + 120x2 + 16x+ 1
9 2x9 + 18x8 + 72x7 + 168x6 + 252x5 + 288x4 + 312x3 + 153x2 + 18x+ 1

Table 2: General position polynomials for a = 2 and small values of r.

The unimodality of the remaining cases can be checked by hand, see Table 2.

5 Concluding remarks

Recall that the corona G ◦ K1 of a graph G is obtained from G by attaching a pen-
dent vertex to each the vertices of G. We wonder whether the following extension of
Theorem 4.1 holds:
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Problem 5.1. Assume that ψ(G) is unimodal. Then is ψ(G ◦K1) also unimodal?

In Proposition 4.3 we have proved that if a ∈ {1, 2}, then T ∗(r, a) is unimodal.
This leads to:

Problem 5.2. For which pairs (r, a) is the graph T ∗(r, a) unimodal?

For example, T ∗(r, 3) is unimodal if r ≥ 19, but also for some smaller values of r.

Several variations of the general position number have been investigated in the
literature. For example, a set S ⊆ V (G) is in monophonic position if no induced path
of G contains three vertices of S (see [24]), whilst S is a mutual-visibility set if for any
u, v ∈ S there exists a shortest u, v-path in G that does not pass through S \ {u, v}
(see [9]). We suggest than an interesting direction for future research would be to
explore the polynomials counting such sets and their relation to the general position
polynomials.
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