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Abstract

In the area of statistical genetics, classical genome-wide association studies (GWAS)

assess the association between a biological characteristic and genetic variants, working

with one variant at a time in a regression model, and reporting the most significant

associations. These studies test genetic markers individually, even though the data may

exhibit multivariate structure due to the way genes are transmitted together from the

parents to the offspring. Despite considering covariates like age and sex in the model,

the classical GWAS does not account for the joint effects of genetic variants. Moreover,

when multiple genetic variants within a gene have small effects on a phenotype, testing

them individually can lack statistical power, but testing them together in a joint model

can be more useful in pooling together all the evidence. In this thesis, I reviewed

different multivariate testing procedures in joint multivariate model settings, explored

their properties, and demonstrated them in further real-life database applications, such

as enhancing statistical power by conditioning on major variants.

I studied the mathematical properties of various multivariate test procedures, par-

ticularly within the context of multiple linear regression. Considering the theoretical

aspect as well as their availability in literature, I adapt various multivariate test proce-

dures for canonical correlation in multiple regression settings. These procedures have

been demonstrated to asymptotically follow the chi-square distribution. Importantly,

these test procedures exhibit asymptotic equivalence among themselves and with the

Wald test statistic. This indicates that the Wald test statistic may be sufficient for

future studies, given its equivalence to the multivariate test procedures.

In many cases, there are known databases of major genetic variants that have a sub-

stantial effect on the trait. In such situations, it makes sense statistically to condition

on these major variants to improve power in detecting associations with new variants,
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but this is not a common practice in GWAS applications. In this study, we also showed

theoretically and computationally how conducting a joint analysis of the genetic variants

in a multiple regression model, where the estimated effect of a new variant is conditioned

upon some major variants, can improve the performance of the model in terms of re-

ducing the standard error and improving the power. The amount of gain of power will

depend on the correlation between the response and the covariates, as well as the cor-

relation between the covariates. I further show that conditional results can sometimes

be obtained from publicly available summary statistics reported for univariate associa-

tions in published GWAS studies, even when the individual-level data are unavailable.

A prominent example of such a trait is skin color, for which there are many studies

consistently identifying a handful of major genes. I looked into a dataset of over 6,500

mixed-ethnicity Latin Americans to see how the conditioning process can improve the

detection power of GWAS studies and identify new genetic variants in such a situation.

In practical applications, the statistical models I worked with for association testing

can be carried forward for predictive purposes in new datasets. In this thesis, I have also

demonstrated mathematical formulations of prediction errors in different linear models,

including simple linear regression models, as well as shrinkage methods like ridge re-

gression and lasso regression. These expressions for prediction errors show the inherent

trade-off between bias and variance at both individual data points and across a set of

observations. Moreover, these formulations have found the connections between predic-

tion errors and genetic heritability that can enhance prediction performance in genetic

association studies. Additionally, I reviewed various statistical and machine learning pre-

dictive models. Based on a dental morphology dataset, I compared their performance

using classification metrics such as average error rate and maximum classification error

rate per specimens.

2



Dedication

This thesis is dedicated to my beloved parents, wife, and two smart kids for their endless

love, support, and ecouragement.

I also extend my heartfelt dedication to my cherished country, Bangladesh, a nation

distinguished by its abundant heritage and vibrant culture.

I am grateful to the esteemed institution, the University of Dhaka, which has played an

instrumental role in enriching my academic journey and fostering a spirit of knowledge

and excellence.

3



Acknowledgement

Above all, I express my deepest gratitude to Almighty ALLAH for His enduring mercy

and for granting me the strength and resilience necessary to overcome the challenges

I encountered on this journey. It is through His blessings that I have been able to

thrive despite the adversities faced. I would like to extend my profound gratitude to my

lead supervisor, Dr. Kaustubh Adhikari, for his outstanding guidance and mentorship

throughout this research journey. His unwavering dedication, enthusiastic support, and

invaluable feedback have not only influenced the development of this thesis but have also

expanded my research network through collaborations, participation in engaging public

engagement events, writing research grants, and delivering talks on various platforms. I

am grateful to my internal advisor, Dr. Fadlalla Elfadaly, for his constructive discussions,

continuous support, and valuable feedback on my work.

Moreover, I extend my gratitude to the University of Dhaka, Bangladesh, for granting

me study leave to pursue my doctoral degree. I am also thankful for the financial

support provided through the prestigious Bangabandhu Overseas Scholarship, which

has been instrumental in enabling me to pursue my research endeavors. I would also

like to extend my sincere thanks to the Open University for providing an excellent

and stimulating research environment. Many thanks to Sagnik Palmal and Soumya

Paria for their valuable contributions and insightful discussions on various topics in

genetics. Their constructive engagement has significantly enhanced my understanding

of the fundamentals of genetics and has propelled me forward on my research journey. I

am truly grateful for their support and the knowledge they have shared with me. Being

in Milton Keynes has been a wonderful experience, and I consider myself fortunate and

proud to be part of such a nice community. I sincerely grateful to all of my friends,

especially Sagor bhai, Naznin Apu, Tanvir bhai, Shipa Apu, Mohabbat bhai, Sumaya

4



Apu, Riasat, priota, and Shisir for the fantastic moments we shared together.

Heartfelt thanks to my parents, brother, and sisters for their faithful wishes and

prayers throughout my whole academic journey. I am truly and heartily grateful to

my wife, Farhana Akond Pramy, for her incredible support and patience over the years.

I consider myself truly fortunate to have such an exceptional life partner by my side.

Lastly, I would like to thank Almighty Allah for blessing us with the most precious gifts,

Muhammad Muhtadin Mahran and Muhammad Zaid Mahnaf. Their presence has been

a constant source of inspiration throughout every stage and every word of this thesis. I

am forever grateful for their love, support, and the joy they bring to my life.

5



Contents

1 Introduction 2

2 Literature Review on Linear Regression Models 8

2.1 Review of Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Maximum Likelihood Estimation (MLE) . . . . . . . . . . . . . . 9

2.2 Review of Linear Mixed Model (LMM) . . . . . . . . . . . . . . . . . . . 11

2.3 Review of GWAS Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Evaluation of Contribution of Individual Variables . . . . . . . . . 13

2.3.2 Correcting for population structure and kinship using the LMM:

Theory and Extensions . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 GCTA: A Tool for Genome-wide Complex Trait Analysis . . . . . 16

2.3.4 A comparison of principal component regression and genomic REML

for genomic prediction across populations . . . . . . . . . . . . . 18

2.4 Shrinkage Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Principal Component Regression (PCR) . . . . . . . . . . . . . . 20

2.4.2 Partial Least Squares (PLS) . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.4 LASSO Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.5 Eigenvalue Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Linking Shrinkage Methods’ with Linear Mixed Models . . . . . . . . . . 33

2.5.1 Linear Mixed Models link with OLS Regression [Own Work based

on Literature Review] . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Linear Mixed Models link with Ridge Regression . . . . . . . . . . 36

2.5.3 Linear Mixed Models link with LASSO (LMM-LASSO) . . . . . . 37

6



2.6 Statistical View of Different Regression Methods . . . . . . . . . . . . . . 39

3 Multivariate Test Procedures (Mostly Literature Review with a little

Novel Contribution) 45

3.1 Review of Large Sample Test Procedures in Multiple Regression . . . . . 45

3.1.1 Likelihood Ratio Test (LRT) . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Wald and F-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.3 Lagrange Multiplier (LM) and F-Test . . . . . . . . . . . . . . . . 50

3.1.4 Test Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.5 Assessing the Performance of Partial Least Squares Regression . . 53

3.2 Review of Canonical Correlation Analysis (CCA) and its Test Procedures 56

3.2.1 Canonical Correlation Link with Multiple Correlation Coefficients 59

3.2.2 A general parametric significance-testing System for the Canonical

Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2.1 Link with Multiple Regression Analysis . . . . . . . . . . 61

3.2.3 Tests for Determining the Number of Nonzero Canonical Correla-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Optimality of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Novel Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Comparing Test Procedures in Multiple Regression Settings: A

Literature Review-Based Analysis . . . . . . . . . . . . . . . . . . 67

3.4.2 Equivalence of Multivariate Test Procedures in Canonical Corre-

lation for Multiple Regression . . . . . . . . . . . . . . . . . . . . 69

4 Gain of Power by Conditioning 74

4.1 Overview of Genetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Genetic Structure among SNPs . . . . . . . . . . . . . . . . . . . 76

4.1.2 Genetic Structure among People . . . . . . . . . . . . . . . . . . . 77

7



4.1.3 Relatedness Consequence on Y . . . . . . . . . . . . . . . . . . . 78

4.1.4 Adjustment of Population Structure . . . . . . . . . . . . . . . . . 78

4.2 Overview of GWAS Models . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Mathematical Derivations for 2-Variable LM . . . . . . . . . . . . . . . . 84

4.5 Derivation of Regression Coefficients . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Derivation of R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Derivation of MSE . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.3 Derivation of SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.4 MSE when Covariates are Uncorrelated . . . . . . . . . . . . . . . 88

4.5.5 Proof of Concept: Gain of Power . . . . . . . . . . . . . . . . . . 89

4.5.5.1 Expression of Gain of Power when Fitting a Simple Re-

gression Model but the True Model is a 2-Variable Model 91

4.5.5.2 Validataion of the Model under the Null Scenario i.e.,

βw = 0, βz ̸= 0, r2wz ̸= 0 . . . . . . . . . . . . . . . . . . . 95

4.5.5.3 Validation of the Model when the Conditional Variant

has no Effect (i.e., βz = 0) . . . . . . . . . . . . . . . . . 96

4.6 Mathematical Derivations for Multiple Regression Model . . . . . . . . . 98

4.7 Single-SNP Model vs. Joint-SNP Model . . . . . . . . . . . . . . . . . . 99

4.8 2-Block LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8.1 Expression of Regression Coefficeints . . . . . . . . . . . . . . . . 101

4.8.2 Expression of Regression Coefficients in terms of Residuals . . . . 105

4.8.3 Derivation of Estimates arising from Yang et al. (2012) . . . . . . 106

4.8.4 MSE in Multiple Regression Model . . . . . . . . . . . . . . . . . 107

4.8.5 Gain of Power in Multiple Regression Model Setting . . . . . . . . 110

8



4.9 3-Block LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.9.1 Expression of Model Estimates through Residuals . . . . . . . . . 114

4.9.2 Conditional Coefficients with Summary Statistics: Comparison

between 3-Block Approach and Yang’s GCTA Approach . . . . . 116

4.10 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.11 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.11.1 Analysis with CANDELA Cohort Database . . . . . . . . . . . . 119

4.11.2 Analysis with UK Biobank Database . . . . . . . . . . . . . . . . 122

4.12 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Prediction Error (PE) 129

5.1 Prediction Error at a single point (say, x0) . . . . . . . . . . . . . . . . . 129

5.1.1 Conecting Prediction Accuracy to Heritability . . . . . . . . . . . 131

5.2 Prediction Error at a set of (say, m) observations . . . . . . . . . . . . . 133

5.2.1 Simple Linear Model Case . . . . . . . . . . . . . . . . . . . . . . 133

5.2.2 Multiple Linear Model Case . . . . . . . . . . . . . . . . . . . . . 133

5.3 Expression of Prediction Error considering two independent covariates

(say, w, z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Expression of Prediction Error considering Ridge Regression Model . . . 135

5.5 Expression of Prediction Error considering general case . . . . . . . . . . 138

5.6 Prediction Error at different Shrinkage Factors (f) . . . . . . . . . . . . . 139

5.7 Prediction Accuracy for different Models . . . . . . . . . . . . . . . . . . 142

6 Applied Research Work: Dental Morphology Analysis 144

6.1 Introduction and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Dimension Reduction Techniques for Prediction (My Contribution) . . . 147

6.3.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . 148

9



6.3.2 Between Group Principal Component Analysis (bgPCA) . . . . . 149

6.3.3 Leave-one-out cross-validated group PCA (cv-bgPCA) . . . . . . 150

6.3.4 tSNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4 Prediction Accuracy with Different Prediction Models (My Contribution) 152

6.4.1 Random Forest (RF) Model . . . . . . . . . . . . . . . . . . . . . 153

6.4.2 Multinomial Logistic Regression . . . . . . . . . . . . . . . . . . . 153

6.4.3 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . 153

6.4.4 K-nearest Neighbour (K-NN) . . . . . . . . . . . . . . . . . . . . 154

6.4.5 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . 154

6.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4.6.1 Modelling with PCs, with and without Centroid Size . . 154

6.4.6.2 Modelling with bgPCs, with and without Centroid Size . 156

7 Applied Research Work: Facial Morphology Analysis 158

7.1 Introduction and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.1 Study Sample and Phenotyping . . . . . . . . . . . . . . . . . . . 159

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3.1 Overview of GWAS results . . . . . . . . . . . . . . . . . . . . . . 161

7.3.2 Follow-up of newly associated regions: Replication in independent

cohorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3.3 Neanderthal introgression in a genomic region 1q32.3 and Nasal

height comparison across the various Ethnicities . . . . . . . . . . 162

7.4 My Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8 Overall Conclusion 166

A APPENDICES 170

10



A.1 Computational methods for mixed models . . . . . . . . . . . . . . . . . 170

A.2 Parameter estimation and inference in the linear mixed model . . . . . . 174

A.3 Expression of R2 in terms of z-Score . . . . . . . . . . . . . . . . . . . . . 182

1



1 Introduction

In recent years, there has been an explosion of projects producing data from thousands

of people over millions of genetic markers, for example, 500,000 volunteers in the UK

BioBank [Thompson and Willeit (2015)], 500,000 Finnish individuals in FinnGen [Kurki

et al. (2023)], 54,000 US participants in TOPMed [Taliun et al. (2021)], and 200,000

volunteers in BioBank Japan [Nagai et al. (2017)]. Consequently, the need for advanced

statistical methods to deal with high-dimensional data became more prominent. With

this explosion in genetic studies came an explosion in proposed statistical tools too, but

most of the proposed methods such as GCTA [Yang et al. (2011)] do not deal with joint

multivariate analysis of the input data.

Genome-wide association studies (GWAS) require two main types of input data on

sampled individuals: millions of genetic markers (genotypes) and physical characteristics

(phenotypes). The GWAS study aims to explore the presence of genetic variants linked to

specific physical traits, such as skin color, eye color, height, or diseases. Genetic variation

refers to the changes in gene sequences occurring at distinct locations in DNA across

individuals within a population. These variations are carefully considered and analyzed

separately to identify potential associations with the studied traits, for example, skin

color.

Figure: Skin Color Variation, a Biological
Trait of Human Beings. (https://www.earth.
com/news/color-human-skin-complicated/)

Figure: Single Nucleotide Polymorphism
(SNP) in DNA. (http://en.wikipedia.org/
wiki/Single-nucleotide_polymorphism)
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Traditional analysis only performed univariate linear regression analysis by assessing

one genetic marker against one phenotype at a time [Burton et al. (2007)]. An increas-

ing number of proposed statistical methods propose more sophisticated models such as

Bayesian methods [Lloyd-Jones et al. (2019); Speed et al. (2012)], but most methods do

not leverage the multivariate structure in the data, for example, the correlated nature

of the variables.

Biological characteristics (traits) such as skin color or height are influenced by many

genes at the same time – tens, hundreds or even thousands of genetic variants con-

tributing to a single characteristics have been discovered. And due to the way genes are

transmitted together from the parents to the offspring, genetic variants that are close

by on a chromosome are also correlated, a phenomenon known as LD (linkage disequi-

librium). This implies that a joint analysis of all the predictors (genetic variants) in

an unified model is the best way of analyzing a physical characteristic [Adhikari et al.

(2015)].

In this PhD project, I have therefore worked with multivariate statistical models for

joint analysis of the genotype-phenotype data. The research involved a combination

of theoretical and computational approaches. Such methods proved valuable not only

in identifying novel gene associations with new phenotypes but also in enhancing the

prediction of physical characteristics from genetic data, thereby contributing to forensic

reconstructions [Adhikari et al. (2016a)].

Diagram: Classical GWAS Model for Genetic
Association

The project mainly has two main, in-

terconnected parts along with some col-

laborative research works. The first part

focuses on the identification of genetic

variants that contribute to a trait. This is

done with genome-wide association stud-
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ies (GWAS), which in its simplest form do

association tests between a single trait and

a single genetic variant, while adjusting

for the potential effects of other covariates,

such as the age of the participants.

To explore the association testing procedures, I initiated the research work by con-

ducting a comprehensive literature review of existing test procedures. Among the avail-

able options, I explored the multivariate test procedures of canonical correlation, con-

sidering their prevalence in the literature. In this context, I studied their mathematical

properties, particularly within the framework of multiple linear regression, and demon-

strated their asymptotic convergence to the chi-square distribution. Moreover, I showed

them as an asymptotic equivalence among themselves and with the Wald Test. Conse-

quently, I recommend the Wald Test for further studies, serving as an equivalent choice

for all tests, particularly canonical correlation in multiple regression scenarios.

Diagram: Proposed Conditional Model for
Genetic Association

After obtaining the proposed test pro-

cedure, I worked with a different avenue.

For example, I explored various multiple

regression settings to investigate the im-

pact of conditioning on statistical power.

The theoretical investigation aimed to de-

termine whether, in addition to condition-

ing on common covariates like age and sex

of the participants, conditioning on known

genetic variants with significant effects on

the trait can enhance the power in de-

tecting new, smaller-effect genetic variants
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[Yang et al. (2012)].

I explained the nature of power gain considering the behaviour of genetic variants

within chromosomes, including aspects like LD structures and proxy variants. Theoreti-

cal developments were demonstrated to highlight the potential improvement in statistical

power, and real-life databases such as the CANDELA cohort and UK Biobank were used

to validate these findings. Moreover, I showed that these conditional results can be ap-

proximated using publicly available summary statistics from GWAS databases, even in

scenarios where individual-level data is not available.

A prediction problem can arise in a real-life situation in a few different ways. For

example, a geneticist may be interested in predicting a trait using already identified

genetic variants, which were published in the literature via GWASes. Alternatively, the

geneticist may want to first conduct a GWAS themself and proceed with the identified

variants. Each of these approaches reduces the number of variants used in the prediction

to a more manageable number, such as tens, hundreds, or thousands. Alternatively, other

prediction methods are interested in analyzing the entire genome with millions of variants

at once and let the statistical approach pick the best set of variants simultaneously while

predicting, e.g. through a method like LASSO.

In prediction, the primary goal is to maximize prediction accuracy rather than test-

ing and statistical power. However, the statistical models used in testing, such as linear

models and shrinkage methods, can also be carried out for predictive purposes in new

datasets and the predictive ability can be calculated with prediction accuracy or errors.

A theoretical derivation of prediction accuracy is often more difficult for any particu-

lar method than the theoretical derivation of its test statistic or power while testing.

Nonetheless, by exploring the pros and cons of various linear and shrinkage methods,

which provide a trade-off between bias and variance, we can improve predictive perfor-

mances during prediction, which is the second part of this thesis.
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This PhD thesis is organized into seven chapters. After the introductory Chapter,

Chapter 2 provides a brief review of linear models commonly applied in the field of

statistical genetics. Following the relationship between linear mixed models with the

ordinary least square regression and shrinkage methods demonstrated by Bates et al.

(2014); Hoffman (2013), I expressed these relationships in a more simplified manner to

illustrate how the estimates of these models are linked.

Chapter 3 of this thesis delves into the discussion of various multivariate testing

procedures, with a particular focus on procedures for canonical correlation due to their

prevalence in the existing literature. By adapting these test procedures to multiple re-

gression settings, I analyzed their approximate distributions and established their equiv-

alence to each other and the Wald test statistic. Consequently, I recommended a unified

test procedure for association testing in future studies.

Chapter 4 represents a significant contribution to this thesis, where I explored the

concept of power gain resulting from conditioning on major genes, both theoretically

and computationally. The theoretical developments of statistical power are primarily

based on multiple linear regression settings, incorporating various design matrix forms.

Moreover, I discussed the nature of power gain, considering gene structures such as

LD (Linkage Disequilibrium) and the sample size in the database. To demonstrate the

6



concept, I conducted analyses using two genetic databases: the CANDELA cohort and

UKBiobank. In particular, I derived mathematical expressions for statistical power when

the design matrix is a 3-Block matrix and explained the extent to which power improves

through conditioning on one block. Acknowledging that the statistical power depends on

the significance of conditional genes, I also presented a mathematical approach for com-

puting conditional results using summary statistics, even when individual-level datasets

are not available.

In Chapter 5, I provided the mathematical expressions of prediction errors for various

methods, such as the simple linear regression model and ridge regression. These expres-

sions demonstrate how prediction errors can be related to genetic association studies,

allowing us to understand genetic heritability based on the prediction error of a model.

Chapter 6 and Chapter 7 focus on collaborative research works related to ’Dental

Morphology Data’ and ’Facial Morphology Data,’ respectively. In each chapter, I have

provided a detailed account of the research work, outlining my specific contributions to

the studies.

7



2 Literature Review on Linear Regression Models

2.1 Review of Linear Regression

Suppose, yi denotes a response variable which is a linear function of a set of p covariates

x1, x2, · · · , xp, and n is the number of observations. Then the linear model can be

modelled as [Johnson and Wichern (2007)]

yi = β0 + β1x1i + · · ·+ βpxpi + ϵi (2.1)

Here, β′s are the regression coefficients, and ϵi indicates the error term and follows a

normal distribution with mean zero and variance σ2
ϵ and to be independent across the

samples that is cov(ϵi, ϵj) = 0.

If the response variable y, the input matrix X, the regression coefficient vector β and

the error vector ϵ are defined as follows

y =



y1

y2
...

yn


,X =



1 x11 x21 · · · xp1

1 x12 x22 · · · xp2
...

...
. . .

...

1 x1n x2n · · · xpn


, β =



β0

β1
...

βp


and ϵ =



ϵ1

ϵ2
...

ϵn


Then the linear model in (2.1) can be written in matrix form as

y = Xβ + ϵ with ϵ ∼ N(0, σ2
ϵIn) (2.2)

where, σ2
ϵ is the error variance covariance matrix and In denotes the n × n identity

matrix. Note that the statistical models discussed in Chapter 4, concerning the power

gain through conditioning, have been considered as a mean standardized, implying the
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exclusion of intercept terms within the model.

The sample variance-covariance matrix and sample correlation matrix can be defined

in multiple regression setups as

S =

S2
y ST

yx

Sxy Sxx

 and R =

 1 rTyx

rxy Rxx


The variance-covariance matrix of the response variables Y , in multivariate case, is

expressed as Syy = 1
n

∑n
k=1(Yk − Ȳ )(Yk − Ȳ ). For the single response variable case,

Syy is equivalent to S2
y . The vector rTyx indicates sample correlation between y and

Xi; i = 1, 2, · · · , p. Following Johnson and Wichern (2007), it is noted that the sample

correlation coefficient Rij can be obtained in terms of the covariance Sij and variances

Sii and Sjj as follows

Rij =
Sij√

Sii

√
Sjj

2.1.1 Maximum Likelihood Estimation (MLE)

Using the maximum likelihood method, the estimates of the unknown parameter β

and σ2
ϵ can be obtained by maximizing the log-likelihood function, logL(β, σ2

ϵ |y,X)

depending on the given dataset X and y. Suppose β̂ and σ̂2
ϵ are the MLE of β and σ2

ϵ

respectively, then mathematically it can be written that

β̂, σ̂2
ϵ = argmax

β,σ2
ϵ

logL(β, σ2
ϵ |y,X) (2.3)

and the solution of the maximum likelihood estimator can easily be obtained as

β̂ = (XTX)−1XTy (2.4)

σ̂2
ϵ =

1

n
(y − ŷ)T (y − ŷ)

9



=
1

n

(
y −Xβ̂

)T(
y −Xβ̂

)
(2.5)

here, n is the number of responses, β̂ is the ordinary least squares (OLS) estimator of

β, σ̂2
ϵ will be computed using the value of β̂ and ŷ = Xβ̂ is the fitted value.

In Genome-wide association studies (GWAS), the linear model is a widely used ap-

proach to investigate the relationship between genetic variants (genotypes) and phe-

notypic traits. Traditional GWAS typically tests the association between one genetic

marker and one characteristic at a time, while considering other covariates such as age,

sex, and genetic principal components in the model.

However, the linear model can also be used to perform a joint analysis of multiple

variants, enabling us to explore how the phenotypic trait is influenced by the combined

effects of multiple genetic variants.

GWAS aims to identify genetic variants that show significant associations with the

phenotypic trait under the study and to achieve this, various statistical tests are used

to assess the significance of the regression coefficients (β1, β2, · · · , βp), representing the

effect of each genetic variant on the phenotypic trait.

In Chapter 3 of this thesis, I have revisited the properties of various statistical tests

and a detailed comparison has also been made among them. Chapter 4 focuses on the

concept of power gain resulting from conditioning. The key mathematical developments

are centered around linear regression models, elucidating their various properties and

relevance for statistical power calculation. Once the concept is validated in linear model

settings, I further extended the exploration of power gain to multiple linear models with

diverse forms of the design matrix.
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2.2 Review of Linear Mixed Model (LMM)

In statistical genetics, the genome-wide association studies (GWAS) is the most widely

used technique to analyze the thousands of millions of genetic data and traditionally it

performs association testing considering a single genetic marker with a single phenotype

at a time [Burton et al. (2007)]. But in practice, phenotypic characteristics may be

influenced by many genetic markers simultaneously and the genotype-phenotype asso-

ciation may be misled by the effect of confounding factors such as population structure

[Patterson et al. (2006)]. For example, skin color may be jointly influenced by many

genetic markers as well as may be influenced by some hidden factors such as environ-

ment, geographical region, age, sex, and other contextual variables [Kang et al. (2008)].

To incorporate the joint effect of multiple markers as well as to deal with different con-

founding factors, the linear mixed model (LMM) is another attractive tool in statistical

genetics [Kang et al. (2010, 2008)]. The widely used linear mixed model (LMM) is given

by

y = Xβ + Zu+ ϵ (2.6)

where, yn×1 is a vector of responses, Xn×p is a design matrix for the fixed effects, βp×1

is a vector of fixed effect parameters, Zn×q is a design matrix for the random effects,

uq×1 is a vector of random effect which follows u ∼ N(0, Gσ2) and ϵn×1 is a vector of

residuals which follows ϵ ∼ N(0, Rσ2).

Following Patterson and Thompson (1971), the variance-covariance matrix of the

data, y can be written as

var(y) = σ2(ZGZT +R) = σ2H

where,

H = ZGZT +R
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The matrix H consists of two components that are used to model heteroscedasticity and

correlation: a random effects component ZGZT and a within-group component R.

The estimates of β and u can be obtained by solving the score equations obtained

from the log-joint distribution of (y, u) and these equations are called the mixed model

equation (MMEs) as proposed by Henderson et al. (1959) and the equations can be

written in matrix form asXTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1


β̂
ũ

 =

XTR−1y

ZTR−1y


Now the estimation of variance parameters can be obtained by using the maximum

likelihood method and residual maximum likelihood (REML) method. The maximum

likelihood estimators of the variance parameters are biased downwards, especially in

small samples, because they do not take into account the degrees of freedom lost in

the estimation of the fixed effects [Swallow and Monahan (1984)] and the parameter

inference in linear mixed model is usually done by using residual maximum likelihood

(REML) [Anderson and Bancroft (1952); Patterson and Thompson (1971)].

The R statistical package ”lme4” is a versatile tool that facilitates the fitting and

analysis of linear mixed models, generalized linear models, and nonlinear models. Bates

et al. [Bates et al. (2014)] extensively discussed the computational methods implemented

in this package and how it enables the determination of parameter estimates in a mixed

model [detailed discussion in Appendix A.1].

Gumedze and Dunne (2011) extensively discussed parameter estimation and inference

procedures for various components of the linear mixed model. They focused on the joint

estimation of fixed and random effects, as well as the parameter estimation methods for

variance, such as the maximum likelihood method and the residual maximum likelihood

method. The detailed discussions has been provided in Appendix A.2.
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2.3 Review of GWAS Methods

The previous sections provided a brief description of linear models including the pa-

rameter estimation steps of linear mixed model (LMM). In this section, I reviewed and

explored the application of various multivariate statistical models such as multiple linear

regression, linear mixed models etc. in genetic and other research areas. Specifically, I

investigated how statistical joint modelling can effectively aggregate the joint effect of

multiple genetic markers and account for hidden factors that might confound genotype-

phenotype associations.

2.3.1 Evaluation of Contribution of Individual Variables

To portray the genotype-phenotype relationship precisely, it is sometimes essential to

assess the impact of individual genetic effects on phenotype variability as this can help

to choose which genetic markers are the most relevant and which are not. The selection

of significant variants plays a crucial role in building a conditioning model and is also

essential for prediction, which are the main focal points of this thesis. In this section,

I reviewed some of the methods and journal papers regarding the evaluation of the

contribution of individual variables.

Following Shabuz and Garthwaite (2019), there are two most obvious methods of

evaluating the relative importance of regressors, which are the beta weight method,

which looks at the beta coefficients of variables (once the variables have been variance-

standardized), and the zero-order correlation method, which looks at the correlation

between individual variables and the response. There are other individual contribu-

tion evaluation methods, such as Product measures [Thomas et al. (1998)], Usefulness

[Darlington (1968)], Structure Coefficients [Courville and Thompson (2001)], Dominance

Analysis [Budescu (1993)], Orthogonal Counterparts [Gibson (1962)], Relative Weight

analysis [Johnson (2000)], Shapley value regression [Lipovetsky and Conklin (2015)],
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Random forest [Liakhovitski et al. (2010)], etc.

When the regressors are uncorrelated, all these measures yield the same results, and

they collectively measure the individual contributions of the regressor variables, which

sum to the coefficient of determination (R2). The R2 value indicates the proportion

of variation in the dependent variable that can be explained by the regressor variables.

This metric plays a crucial role in statistics and genetic studies as it helps quantify the

contribution of specific factors or genetic variants to the overall variability in a dataset

or phenotypic trait.

In Chapter 4, I have provided mathematical derivations for these metrics, expressing

them in terms of correlations and partial correlations between the trait and genetic

variants. Sometimes, when we have GWAS summary statistics for variants (SNPs) such

as SNP ID, SNP location, allele information, effect size, test statistic, and P-value, we

may need to calculate the correlation coefficient between an SNP and the trait of interest.

In such cases, the R2 can be calculated from the test statistic, and I have demonstrated

this mathematical expression in Appendix A.3.

But if the data contain collinearity among regressors then these methods become

meaningless since the high collinearity can inflate the values of regression coefficients

in comparison with pair correlations between the regressors and response [Lipovetsky

and Conklin (2015)]. In this situation, to choose a good measure of evaluating rela-

tive importance, it should be based on concrete logic behind their development, their

properties, shortcomings, and the sensibility of the results they produce [Johnson and

Lebreton (2016)].

Partitioning the quadratic form into contributions from individual variables, Garth-

waite and Koch (2016) argued a way of measuring the contribution of an individual

named corr-max transformation that maximizes the sum of the correlations between

individual variables and transformed variable. This transformation is closely related to
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another transformation named as cos-max transformation proposed by Garthwaite et al.

(2012). The only difference is that the cos-max transformation is designed to transform

a data matrix while the corr-max transforms a random vector. Recently, Shabuz and

Garthwaite (2019) developed three new measures of relative importance and compared

them with well-regarded alternatives through examples and by examining theoretical

properties. According to them, the new measures are much in common with the orthog-

onal counterpart measure and the relative weights measure but the main difference is

that the new measure uses the values of both the regressor and the response in deter-

mining the transformation while the others ignore the response.

2.3.2 Correcting for population structure and kinship using the LMM: The-

ory and Extensions

Population structure and kinship influence the genetic covariance among individuals

and are considered confounding factors in genome-wide association studies (GWAS)

[Price et al. (2010)]. Typically, genetic studies address this by using genome-wide SNP

data to exclude problematic individuals or incorporate these effects in association tests.

Principal component analysis (PCA) is a widely used technique for detecting population

structure, capturing genetic ancestry, often included as fixed effects in regression models

[Price et al. (2006)]. In recent times, linear mixed models (LMMs) have caught attention

for modelling the dependence structure of GWAS datasets by considering the genome-

wide similarity among all pairs of individuals [Kang et al. (2008); Lippert et al. (2011);

Segura et al. (2012)]

Failure to account for hidden genetic relatedness among individuals in the genetic

database can lead to misleading association results. This can result in decreased statis-

tical power and an increase in false positive findings [Price et al. (2010)]. Hence, LMMs

or the inclusion of principal components as fixed effects in the model are commonly

used approaches to address dependence [Price et al. (2010)]. While fixed effect mod-
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els involve a few principal components (i ≪ n), LMMs incorporate the genome-wide

similarity among individuals to address population structure [Kang et al. (2008)].

Hoffman (2013) introduced a unified framework connecting fixed vs random effects,

showcasing that the effects share the same underlying regression model. The distinction

lies in their capacity to handle population structure, inference methods, and the number

of included principal components in the model [Kenny et al. (2011); Price et al. (2010);

Wu et al. (2011)].

Moreover, Efron (2004) noted that the effective degrees of freedom is equal to the

number of parameters in the model, but increasing the number of parameters increases

the covariance between the observed and fitted response due to overfitting without an

increase in actual explanatory power [Kutner (2005)]. Hoffman (2013) also introduced a

summary statistic, effective degrees of freedom based on the Lippert algorithm [Lippert

et al. (2011)], to measure the overall model complexity and the influence of each principal

component on the fit of the LMM.

In this chapter, in Section (2.5), I have demonstrated a mathematical connection

between the linear mixed model and ordinary least square regression models, as suggested

by Hoffman (2013). This mathematical link indicates that the estimate of the random

effect model can be related to the estimate of the principal component-based ordinary

least square regression model. This insight establishes a valuable connection between

these two commonly used statistical approaches.

2.3.3 GCTA: A Tool for Genome-wide Complex Trait Analysis

Following Yang et al. (2011) genome-wide complex trait analysis (GCTA) is a versatile

tool to estimate genetic relationships from genome-wide SNPs. GCTA has developed to

perform 5 functions such as Data management, Estimation of the genetic relationships

from SNPs, Mixed linear model analysis of variance explained by the SNPs, Estimation

of the linkage disequilibrium structure, and GWAS simulation. It estimates variance
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explained by all SNPs for a phenotype rather than testing the association for any par-

ticular SNP to the phenotypic characteristics. The basic difference with Single SNP

based association analysis is that it takes into account all SNPs effects as random ef-

fects by fitting a mixed effect linear model (LMM). Estimation of genetic relationships

considering the genetic relationship matrix (GRM) between individuals from the genetic

structures is one of the important functions of GCTA [Hayes et al. (2009); VanRaden

(2008)]. During this estimation process, GCTA implements the restricted maximum

likelihood (REML) approach to estimate variance components relying on the GRM esti-

mated from all the SNPs and it provides the best linear unbiased prediction (BLUP) of

the genetic effect using REML [Patterson and Thompson (1971)]. BLUP is widely used

by plant and animal breeders to quantify the breeding value of individuals in artificial

selection programs [Henderson (1975)].

Chapter 4 is a significant part of this thesis, where I have demonstrated that condi-

tioning on major genetic variants can lead to the discovery of new variants with improved

statistical power. Through mathematical derivations in multiple regression settings, I

have illustrated how the conditional results can be approximated using publicly available

summary statistics from GWAS databases, even without having access to individual-level

data.

The ’GCTA-COJO’ command in the GCTA software played a significant role in my

research, as it allowed for multi-SNP-based conditional analysis using GWAS summary

statistics. By comparing the conditional results obtained from the GCTA software with

those derived from my mathematical developments, I was able to validate the accuracy

of the proposed approach.
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2.3.4 A comparison of principal component regression and genomic REML

for genomic prediction across populations

During the analysis of high-dimensional genetic data, one of the major problems is

multicollinearity among genetic markers which misleads the least square estimates and

another problem is that a large number of regressors (p) may be larger than the number

of observation (n). To deal with this kind of problem, principal component analysis

(PCA) is the possible way of getting rid of it which fits the model by taking the principal

components instead of the original regressors. In genetic studies, PCA has been mainly

used for correcting population structures and stratification during the association studies

and capturing the joint effect of genetic variation [McVean (2009); Patterson et al. (2006);

Price et al. (2006); Reich et al. (2008)]. The first application of PCA in population

genetics was applied by Menozzi et al. (1978) to produce maps of human genetic variation

across mainland regions.

Many research studies have used principal components to capture the variability

present in the original variable X (SNPs), concentrating primarily on selecting those

principal components that maximize variance among the regressors. However, solely

incorporating principal components with the highest variance might not guarantee the

best prediction in the data. This is because a principal component that explains a small

amount of variance in X can still be significant for predicting the response variable.

To address this, some authors suggest selecting principal components not only based

on the variance decomposition of covariates but also considering their contribution to

the regression sum of squares. Dadousis et al. (2014) discussed various approaches for

selecting principal components in the context of PCR modeling. They compared these

approaches by evaluating their prediction accuracies in terms of minimum mean squared

error (MSE).

One approach involved performing PCA solely on the SNP matrix of the reference
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dataset. Principal components were then selected by ranking them according to decreas-

ing eigenvalues and their contribution to the sum of squares of the regression. Another

approach conducted PCA on the matrix with all SNP genotypes, including reference and

test datasets. Optimal principal components for PCR modelling were chosen using a

cross-validation (CV) approach within the reference dataset. These selected components

were subsequently employed for predicting the test dataset.

In this thesis, I introduced a novel mathematical approach for computing conditional

results in multiple regression settings, with a particular emphasis on the role of genetic

principal components (PCs). The design matrix was divided into three distinct blocks:

the tested genetic variant block, the conditional variants block, and the covariates block,

which might include variables such as age, sex, and genetic PCs.

This approach allows for the calculation of conditional results using GWAS summary

statistics, even in situations where individual-level data are not available. Since these

summary statistics are typically adjusted for population structures using genetic prin-

cipal components (PCs), it is essential to apply the same adjustment to the tested and

conditioned genetic variants. By incorporating PCs adjustment, the proposed method

ensures the accuracy of the conditional results and provides a reliable means of conduct-

ing conditional analyses in GWAS.

Furthermore, in one of the applied research works presented in Chapter 6, I ex-

tensively utilized various dimension reduction techniques for prediction. The aim was

to determine the optimal number of dimensions required to build an effective predic-

tive model. Among the approaches used, principal component analysis (PCA) played a

significant role, and the reduced dimensions were selected based on the scree plot anal-

ysis. Various predictive models were then employed to evaluate the prediction accuracy,

providing valuable insights into the performance of the predictive model based on the

reduced dimensions.
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2.4 Shrinkage Methods

In this section, I have conducted a comprehensive review of various shrinkage techniques.

These techniques hold the potential to identify the genetic markers that contribute to

human phenotypic variation, thereby leading to enhanced prediction accuracy for high-

dimensional genetic data. Usually, the number of genetic markers is huge in number

and possibly much larger than the number of observations, so these features can be

reduced by regularization [Hastie et al. (2009)]. In this situation, there are some subset

selection methods that retain a subset of the regressors and discard the rest, and doing

so often exhibits high variance during the construction of the model as well as increases

the prediction error. However the shrinkage methods are more continuous and trade-

off between bias and variance, these methods reduce the prediction error and provide

prediction accuracy during prediction.

In Chapter 6, I also provided detailed mathematical expressions for prediction errors

in both the linear model and different shrinkage methods, emphasizing their significance

in genetic association studies.

2.4.1 Principal Component Regression (PCR)

The singular value decomposition (SVD) of the centered matrix X is another way of

expressing the principal components of the variables inX. The sample covariance matrix

is given by [Hastie et al. (2009)]

XTX = V D2V T

which is the eigen-decomposition of XTX. The eigenvectors vj (columns of V ) are

also called the principal components directions of X. The first principal component

direction v1 has the property that z1 = Xv1 has the largest sample variance amongst all
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normalized linear combinations of the columns of X.

When the design matrix contains a large number of correlated inputs, then this

method produces a small number of linear combinations Zm,m = 1, 2, · · · ,M of the

original inputsXj, and the Zm are then used in place of theXj as inputs in the regression.

Principal component regression forms the derived input columns zm = Xvm, and then

regresses y on z1, z2, · · · , zM for someM ≤ p. Since the zm are orthogonal, this regression

is just a sum of univariate regressions:

ŷpcr(M) = ȳ1+
M∑

m=1

θ̂mzm

where, θm = ⟨zm, y⟩/⟨zm, zm⟩. Since the zm are each linear combinations of the original

xj , the above equation can be expressed in terms of coefficients of the xj.

ŷpcr(M) = ȳ1+
M∑

m=1

θ̂mzm

= ȳ1+X
M∑

m=1

θ̂mvm

=

[
1 X

] ȳ∑M
m=1 θ̂mvm



It can also be written as the matrix

[
1 X

]
times a vector β̂pcr

(M) if the later vector taken

as

β̂pcr
(M) =

 ȳ∑M
m=1 θ̂mvm


This is the same equation as β̂pcr

(M) =
∑M

m=1 θ̂mvm, when restrict to just the last p elements

of β̂pcr
(M). The principal components regression is very similar to ridge regression. Both
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of them operate via the principal components of the input matrix. The ridge regression

shrinks the coefficients of the principal components, shrinking more depending on the

size of the corresponding eigenvalue but the principal components regression discards

the (p−M) smallest eigenvalue components.

2.4.2 Partial Least Squares (PLS)

The partial least squares (PLS) also constructs a set of linear combinations of the inputs

for regression, but unlike principal components regression, it uses y (in addition to X)

for this construction [Hastie et al. (2009)]. Similar to principal component regression,

PLS is not scale-invariant, assuming that each xj is standardized to have a mean of 0

and a variance of 1.

The PLS algorithm begins by computing φ̂1j = ⟨xj, y⟩ for each j. From this, the

derived input constructs as z1 =
∑

j φ̂1jxj, which represents the first partial least squares

direction. In the construction of each zm, the inputs are weighted by the strength of

their univariate effect on y. The outcome y is regressed on z1, yielding the coefficient

θ1. The input variables x1, · · · , xp are then orthogonalized with respect to z1, and this

process continues until M ≤ p directions have been obtained.

In this manner, partial least squares produce a sequence of derived, orthogonal inputs

or directions z1, z2, · · · , zM . If M = p, the solution will be equivalent to the usual least

squares estimates, while using M < p directions results in a reduced regression. The

general algorithm of partial least square:

1. Standardize each xj to have mean zero and variance one. Set ŷ(0) = ȳ1 and

x
(0)
j = xj; j = 1, 2, · · · , p

2. For m = 1, 2, · · · , p

� zm =
∑p

j φ̂mjx
(m−1)
j , where, φ̂mj = ⟨x(m−1)

j , y⟩.
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� θ̂m = ⟨zm, y⟩/⟨zm, zm⟩.

� ŷ(m) = ŷ(m−1) + zmθ̂m.

� Orthogonalization each x
(m−1)
j with respect to zm as

x
(m)
j = x

(m−1)
j − [⟨zm, x(m−1)

j ⟩/⟨zm, zm⟩]zm; j = 1, 2, · · · , p

3. Output the sequence of fitted vectors [ŷ(m)]p1. Since the [zl]
p
1 are linear in the

original xj, so is ŷ(m) = Xβ̂pls
(m). These linear coefficients can be recovered from the

sequence of PLS transformations.

Note: It can show that in the orthogonal case, PLS stops after m = 1 steps, because

subsequent φ̂mj in step 2 in the above Algorithm are zero [Hastie et al. (2009)].

2.4.3 Ridge Regression

Ridge regression reduces overfitting and multicollinearity by applying a penalty on the

size of regression coefficients [Hastie et al. (2009)]. The ridge estimator achieves this by

minimizing the ridge loss function, which can be expressed as follows:

Lridge(β, λ) = RSS(λ) = ||y −Xβ||22 + λ||β||2

= (y −Xβ)T (y −Xβ) + λβTβ

Mininizing the above loss function with respect to β, the ridge regression solutions are

easily seen to be

βridge = (XTX + λIpp)
−1XTy

Note that with the choice of quadratic penalty, the ridge regression solution is a linear

function of y. The solution adds a positive constant to the diagonal of XTX before

inversion and this makes the problem non-singular, even if XTX is not of full rank,
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and that was the main motivation for ridge regression when it was first introduced in

statistics [Hoerl and Kennard (1970)].

When a linear regression model contains correlated variables, multicollinearity can

lead to poorly determined coefficients exhibiting high variance. A wildly large positive

coefficient on one variable can be canceled by a similarly large negative coefficient on its

correlated cousin. By imposing a size constraint on the coefficients, as in the above loss

function, this problem is alleviated. As the coefficients are penalized, their bias increases,

but the trade-off leads to reduced variance, which can help mitigate the multicollinearity

problem.

Case-I: If the design matrix is Orthogonal

In the case of orthonormal inputs, the ridge estimates are just scaled versions of the

least squares estimates. That is, when XTX = Ipp = (XTX)−1, then

β̂ridge = (XTX + λIpp)
−1XTy

= (Ipp + λIpp)
−1XTy

= (1 + λ)−1IppX
Ty

= (1 + λ)−1(XTX)−1XTy

= (1 + λ)−1β̂ols

Hence, the ridge estimator scales the OLS estimator by a factor (1 + λ)−1.

Case-II: Bayesian Approach

Ridge estimator can also be derived as the mean or mode of a posterior distribution,

with a suitably chosen prior distribution. Suppose, y ∼ N(Xβ, σ2), and the parameter,
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β ∼ N(0, τ 2). According to Bayes rule,

p(β|y) ∝ p(y|β)p(β)

= N(Xβ, σ2I)N(0, τ 2I)

So, the log-posterior density of β, with τ 2 and σ2 assumed known can be expressed as

logp(β|y) = c− 1

2σ2
(y −Xβ)T (y −Xβ)− βTβ

2τ 2

The mean and mode of this posterior distribution can be obtained by minimizing the

above expression as

β̂ = (XTX +
σ2

τ 2
)−1XTy

If λ = σ2

τ2
, then the expression is same as the previous one.

Case-III: Using the Singular Value Decomposition (SVD) of the Design Ma-

trix

The singular value decomposition (SVD) of the centered input matrix X provides

a further understanding of ridge regression. The solutions of the ridge and ordinary

least squares (OLS) estimates can be formulated using the singular values and vectors

derived from the SVD of the design matrix X, showcasing the effect of regularization on

the coefficients.

The singular value decomposition (SVD) of the design matrix X is given by

X = UDV T

where, Un×p and Vp×p are orthogonal matrices, with the column of U spanning the

column space of X, and the column of V spanning the row space, and Dp×p is a diagonal
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matrix with diagonal entries d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 are called the singular values of X.

If one or more values of dj = 0, then X is singular.

Using SVD, the OLS estimates can be written as

ŷ = Xβ̂ols = UDV T [(V D2V T )−1V DUTy]

= UDV T (V D−2V T )V DUTy

= UUTy

=

p∑
j=1

uj(u
T
j y)

Note that UTy are the corordinates of y with respect to the orthonormal basis U . The

above expression shows that the ordinary least square (OLS) estimate does not incorpo-

rate the regularization term and relies solely on the original design matrix to estimate

the coefficients.

In the context of ridge regression, the SVD can be used to express the estimates as

follows:

ŷ = Xβ̂ridge = X(XTX + λI)−1XTy

= UDV T [(V D2V T + λV V T )−1V DUTy]

= UDV T [V (D2 + λI)V T ]−1V DUTy

= UDV TV (D2 + λI)−1V TV DUTy

= UD(D2 + λI)−1DUTy

=

p∑
j=1

uj(
d2j

d2j + λ
)(uTj y)

The solution of ridge estimate presented above includes a regularization term λ to

counter overfitting by shrinking the coefficient estimates toward zero. This regulariza-

tion term, controlled by the tuning parameter λ, is added to the diagonal elements of
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the SVD-derived matrix. This adjustment in ridge regression helps to address multi-

collinearity and enhances the stability of the inverse matrix, yielding a more reliable

solution compared to OLS. It’s noteworthy that when λ is set to 0, ridge regression

simplifies to the ordinary least squares solution.

Effective Degrees of Freedom

The effective degrees of freedom of the ridge regression estimator is defined as

df(λ) = tr(H) = tr[X(XTX + λI)−1XT ]

= tr[UD(D2 + λI)−1DUT ]

=

p∑
j=1

d2j
d2j + λ

The effective degrees of freedom of the ridge regression fit is a decreasing function

of λ. In a linear model fit with p variables, the degree of freedom is p, representing the

number of free parameters. With ridge regression, all p coefficients are non-zero, but

they are constrained by λ. When λ = 0, df(λ) = p, and as λ→ ∞, df(λ) → 0.

Ordinary least squares to implement ridge regression using augmented data

set

The ridge regression estimates can be obtained through ordinary least squares re-

gression on an augmented data set. The augmentation is applied to the centered matrix

X with p additional rows
√
λI, and the response vector y is augmented with p zeros. By

introducing artificial data with response values of zero, the fitting procedure is compelled

to shrink the coefficients toward zero. This concept is related to the idea of hints due

by [Abu-Mostafa (1995)], where model constraints are implemented by adding artificial

data examples that satisfy them.

Consider the input centered data matrix Xp×p and the output data vector Y both
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appended to produce the new variable X̂ and Ŷ as follows

X̂ =

 X
√
λIp×p


and

Ŷ =

 Y

0p×1


with Ip×p and 0p×1 identity and zero column respectively. The least squares solution to

this new problem is given by

β̂ols = (X̂T X̂)−1X̂T Ŷ

Performing the block matrix multiplications required by the above expressio, it can be

calculated that

X̂T X̂ =

[
XT

√
λIp×p

] X
√
λIp×p

 = XTX + λIp×p

and

X̂TY =

[
XT

√
λIp×p

] Y

0p×1

 = XTY

Thus it can be written that

β̂ols = (XTX + λIp×p)
−1XTY

which is the solution of the regularized least squrare estimate i.e, ridge regression esti-

mate.
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2.4.4 LASSO Regression

The least absolute shrinkage and selection operator (LASSO) is a shrinkage method

like ridge regression with important differences in imposing the constraint [Hastie et al.

(2009)]. The LASSO estimate is defined as

β̂lasso = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
subject to

p∑
j=1

|βj| ≤ t,

The above constraint makes the solution nonlinear in y and there is no closed-form

expression as in ridge regression. Because of the nature of the constraint, making t

sufficiently small will cause some of the coefficients to be exactly zero and thus the

LASSO does a kind of continuous subset selection. If t is chosen larger than t0 =∑p
j=1 |β̂j| (where β̂j is the least square estimates), then the LASSO estimates are the

β̂′
js. But if it is taken as t = t0/2, say, then the least squares coefficients are shrunk by

about 50% on average. To get the best subset variable in subset selection, the penalty

parameter (t) should be chosen to minimize an estimate of the expected prediction error.

Zou and Hastie (2005) proposed an alternative penalty term, known as elastic net,

which compromises between ridge and lasso regression. The elastic net penalty has the

following form

p∑
j=1

(α|βj|+ (1− α)β2
j )

The elastic net penalty combines two important components to achieve its purpose.

The first term encourages sparsity in the coefficients of correlated features, promoting

a more compact and interpretable model. The second term, on the other hand, en-

courages correlated features to be averaged together, promoting stability and reducing

multicollinearity issues. As a result, the elastic net penalty can be effectively applied in

various linear models, including regression and classification tasks.
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2.4.5 Eigenvalue Shrinkage

Hastie et al. (2009) showed that the singular value decomposition of the n×p dimensional

design matrix, X, can be written as

X = UxDxV
T
x

where, Dx is a n× n dimensional diagonal matrix with diagonal entries d1 ≥ d2 ≥ · · · ≥

dn ≥ 0 is called the singular values of X, Ux is a n×n dimensional matrix with columns

containing the left singular vector, and Vx is p × n dimensional matrix with columns

containing the right singular vectors. The coloumns of Ux and Vx are orthogonal that is

V T
x Vx = UT

x Ux = Inn. The OLS estimator can be written in terms of the SVD matrices

as

β̂ols = (XTX)−1XTy

= (VxD
2
xV

T
x )−1VxDxU

T
x y

= VxD
−2
x DxU

T
x y

The ridge estimator can be written as

β̂ridge = (XTX + λIpp)
−1XTy

= (VxD
2
xV

T
x + λVxV

T
x )−1VxDxU

T
x y

= Vx(D
2
x + λInn)

−1V T
x VxDxU

T
x y

= Vx(D
2
x + λInn)

−1DxU
T
x y
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Combining the OLS and ridge results, it can be compared that

d−2
x,jj ≥ (d−2

x,jj + λ)−1

⇒ d−1
x,jj ≥ dx,jj(d

2
x,jj + λ)−1 ;∀λ > 0

Thus, the ridge penalty shrinks the singular values and the fitted value can be expressed

as

ŷridge = Xβ̂ridge

= UxDxV
T
x Vx(D

2
x + λInn)

−1DxU
T
x y

= UxDx(D
2
x + λInn)

−1DxU
T
x y

=

p∑
j=1

uj
d2j

d2j + λ
u2jy

In principal component regression, the least square estimate of θ is

θ̂ = (zTmzm)
−1zTmy

= (V T
mX

TXVm)
−1V T

mX
Ty

= (V T
mVxDxU

T
x UxDxVxVm)

−1V T
mVxDxU

T
x y

= (ImnD
2
xInm)

−1ImnDxU
T
x y

It is observed that the PCR threshholds the singular values ofX, but the ridge regression

shrinks them depending on their size. Now, the PCR estimator of β is

β̂pcr = Vxθ̂ = Vx(ImnD
2
xInm)

−1DxU
T
x y
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and the fitted value can be expressed as

ŷpcr = Xβ̂pcr

= UxDxV
T
x Vx(ImnD

2
xInm)

−1DxU
T
x y

= UxDx(ImnD
2
xInm)

−1DxU
T
x y

=
m∑
j=1

uj
d2j

Imnd2jInm
u2jy

Here, if m = p, then the fitted value equal to the fitted value obtained by OLS.

The random effect estimator can be expressed as

ûre = (ZTZ + δ)−1ZTy [δ =
σ2
u

σ2
ϵ

]

= (VzDzU
T
z UzDzV

T
z + δ)−1VzDzU

T
z y

= Vz(D
2
z + δ)−1V T

z VzDzU
T
z y

= Vz(D
2
z + δ)−1DzU

T
z y

and the fitted value can be expressed as

ŷre = Xβ̂re

= UxDxV
T
x Vx(D

2
x + δ)−1DxU

T
x y

= UxDx(D
2
x + δ)−1DxU

T
x y

=

q∑
j=1

uj
d2j

d2j + δ
u2jy

The estimate from the random effect model resembles the ridge estimate and can

be viewed as a specific instance within ridge regression. When the value of δ = σ2
u

σ2
ϵ

matches λ, i.e., the selected penalty parameter in ridge regression equals to the ratio of

the variance components in the corresponding LMM, they become mathematically the
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same [Shen et al. (2013)].

2.5 Linking Shrinkage Methods’ with Linear Mixed Models

2.5.1 Linear Mixed Models link with OLS Regression [Own Work based on

Literature Review]

In section (2.3.2), I reviewed the research work of Hoffman (2013), where he explored

the connection between modelling principal component effects as fixed versus random.

He highlighted that these effects share the same underlying regression model. In this

context, he considered the genotype data matrix as Xn×p, representing n individuals

and p genetic markers, with each entry indicating the number of minor allele copies.

The singular value decomposition of the design matrix underlying principal component

analysis is given by

X = USV T

where the first i principal components are the initial i columns of Un×n, Sn×n is a diagonal

matrix containing singular values for each principal component, and Vp×n represents

loadings on each marker. Incorporating the first i principal components as fixed effects

in a linear model can be expressed as:

y = µ+ xjβ + U1:iω + ϵ with ϵ ∼ N(0, σ2
eI) (2.7)

where yn×1 is a vector of phenotype values, µ is the scalar mean term, xj is the jth

marker with scalar regression coefficient β, U1:i are the first i principal components with

coefficient vector ωi×1, and ϵ is the normally distributed residual error term with variance

σ2
e .
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Now, a linear mixed model (LMM) can be expressed as

y = µ+ xjβ + α + ϵ

where, αn×1 is a random effect vector with a multivariate Gaussian prior follows a

distribution as α ∼ N(0, Kσ2
a) , Kn×n is the genetic similarities matrix between all pairs

of individuals so that Kk,l represents the similarity between individuals k and l, σ2
a

is the additive genetic variance and ϵ ∼ N(0, σ2
eI). Here, the population structure is

treated as a random effect, and fitting the model involves integrating over the vector α

with respect to the Gaussian prior so that the likelihood is maximized w.r.to σ2
a, σ

2
e , µ, β.

As per Patterson et al. (2006), the genetic similarity matrix K can be regarded as a

function of observed genotypes and factorized through the singular value decomposition

as:

K = XXT = USV TV SUT = (US)(US)T = RRT

here the columns ofRn×n represent the principal components weighted by their respective

singular values. It is important to note that each principal component Ut has a singular

value st and an eigenvalue s2t . By utilizing the property of a multivariate Gaussian

distribution, where ϕ ∼ N(m,Σ), it follows that Bϕ ∼ N(Bm,BΣBT ). Following the

aforementioned decomposition, it can be deduced that γ ∼ N(0, σ2
a), Rγ ∼ N(0, Kσ2

a),

and the Linear Mixed Model (LMM) can be equivalently reformulated as:

y = µ+ xjβ +Rγ + ϵ (2.8)

here, γ ∼ N(0, σ2
a) and ϵ ∼ N(0, σ2

eI). Examining the relationship between equations

(2.7) and (2.8), it becomes evident that modelling principal components as fixed or ran-

dom effects share the same underlying regression model. Notably, even though equation

(2.8) represents a Linear Mixed Model (LMM), the parameters to be estimated, σ̂2
a and
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σ̂2, as well as γ̂1, γ̂2, · · · , γ̂k, σ̂2, can be obtained using ordinary least squares (OLS)

estimates, showcasing a connection between them.

Subsequently, I calculated the estimate for the random effect γ using the estimating

equation outlined by Robinson (1991), as shown below

 γ

y −Rγ


T  σ2

a 0

0 σ2
e


−1 γ

y −Rγ

 = γTσ−2
a γ + (y −Rγ)Tσ−2

e (y −Rγ)

By maximizing the above function with respect to γ and setting the derivative to

zero, I obtained the estimate for γ as follows:

2σ−2
a γT − 2RTσ−2

e y + 2γTRTσ−2
e R = 0

=⇒ [σ−2
a +Kσ−2

e ]γ̂ = RTσ−2
e y

=⇒ [
σ−2
a

σ−2
e

+K]γ̂ = RTy

So, γ̂ = [K + δ]−1RTy = [K + δ]−1K1/2y [letting, δ =
σ−2
a

σ−2
e

]

The estimated fitted response values based on the random effect are

ŷ = Rγ̂ = [K + δ]−1Ky = Hy

where δ = σ2
e

σ2
a
and H is the projection matrix for the random effect model.

To validate the assertion by Hoffman (2013) that modeling principal components as

either fixed or random effects shares the same underlying regression model, I examined

a linear model utilizing the principal component as

Y = Wu+ ϵ
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here, the singular decomposition of the genetic similarities matrix (K) can be written

as K = W TW = RTR and the ordinary least square estimate of this model is β̂ =

(W TW )−1W Ty.

From the estimates obtained using the two modeling approaches described above, I

demonstrated a mathematical pathway to calculate the estimate of the random effect.

This pathway involves relating the estimate of the random effect to the estimate of the

principal component-based linear model, as follows:

γ̂ = [K + δ]−1RTy = [K + δ]−1W Ty = [K + δ]−1KK−1W Ty

= [K + δ]−1K(W TW )−1W Ty [here K = W TW ] = Hβ̂

= Projection Matrix of Random Effect Model×OLS estimate based on PCA

The above expression indicates that the random effect solution can be obtained as mul-

tiplying the projection matrix of the random effect model by the principal component-

based linear model solution.

2.5.2 Linear Mixed Models link with Ridge Regression

Consider a random effect model which is defined as

yn×1 = Zn×quq×1 + ϵn×1

where, yn×1 is a vector of responses, Zn×q is a design matrix for the random effects,

uq×1 ∼ N(0, σ2
u) is a vector of random effect and ϵ ∼ N(0, σ2

ϵ ). Considering u as known,

the conditional distribution of y|u can be written as y|u ∼ N(Zu, σ2
ϵ ). Following Bates

et al. (2014), the estimate of u, can be obtained through methods like penalized likelihood

where the penalty term is added to the log-likelihood function as follows

36



û = agrmin
u∈Rq

||y − Zu||22 + uTuσ2
u

= (y − Zu)Tσ2
ϵ (y − Zu)︸ ︷︷ ︸

Residual Sum of Square

+ uTuσ2
u︸ ︷︷ ︸

Penalty term

Now, minimizing the above loss function with respect to u and the estimate of the

random effect can be obtained as

û = [ZTZ + δ]−1ZTy [letting, δ =
σ2
u

σ2
ϵ

]

It is observed that if the term δ is ignored, the predictor reduces to a least square

estimator. But with the term, δ, the predictor is actually of the shrinkage type as is the

ridge estimator. In LMM, the shrinkage estimator, represented by δ, indicates the vari-

ance component estimated using the REML with δ = σ̂2
u

σ̂2
ϵ
, whereas for the ridge regression

δ is computed using the generalized cross-validation (GCV) function GCV (δ) = ϵT ϵ
(n−dfe)

,

where, dfe is the effective degrees of freedom [Hastie et al. (2009)].

2.5.3 Linear Mixed Models link with LASSO (LMM-LASSO)

The analysis of the genetic data can be misleaded and can produce false positive findings

with the presence of some hidden factors such as population structure. One of the

major sources of these hidden effects can be understood as deviation from the idealized

assumption that the samples in the study population are unrelated. So it is really

difficult to ignore the population structure in the sample and even in the stratified

sample, the extent of hidden structure can not be ignored [Newman et al. (2001)]. There

are some modelling approach that accounts for the presence of such structure and has

been shown it greatly reduce the impact of this confounding source of variability. For

example, EIGENSTRAT builds on the idea of extracting the major axes of population
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differentiation using a principal component analysis decomposing of the genotype data

[Price et al. (2006)], and subsequently including them into the model as additional

covariates. Another statistical approach that controls the effect of such population

structures through correcting of family structure and cryptic relatedness is the linear

mixed model [Kang et al. (2010, 2008); Lippert et al. (2011); Yu et al. (2006); Zhang

et al. (2010)].

There are a few existing approaches that are capable of addressing both the correction

of population structure and the joint mapping of multiple effects jointly. In line with

EIGENSTRAT, Hoggart et al. (2008) and Li et al. (2011) add principal components to

the model to correct for population structure. But Rakitsch et al. (2013) proposed the

LMM-LASSO modelling approach considering the effect of multi-marker genetic effects

by summing the individual effects as well as taking them as random confounding factors.

There are also some works that considered joint modelling of multi-marker genetic effects

in a mixed model using a stepwise regression or forward selection approach [Segura et al.

(2012); Yang et al. (2012)]. However, the inclusion of the SNPs in the model following

an order is also a problem. As an alternative, the LMM-LASSO approach proposed

by Rakitsch et al. (2013) carries out joint inference in the model and assesses all SNPs

at the same time while accounting for their interdependencies and without making any

assumptions on their ordering. To allow for application to genome-wide SNP data, a

Laplacian shrinkage prior has been placed over the fixed effects, assigning a zero-effect

size to the majority of SNPs as done in the classical LASSO [Tibshirani (1996)]. In

pure LASSO, it is not clear which markers reflect merely the hidden confounders but

LMM-LASSO explains confounding explicitly as random effects and these help to resolve

the ambiguity between individual genetic effects and phenotype variability because of

population structure.
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2.6 Statistical View of Different Regression Methods

There are some statistical techniques such as principal component regression, partial

least square regression, canonical correlation analysis, etc. that have been used in differ-

ent fields of research for the reduction of high dimensional data. During the construction

of a set of linear combinations, the principal component analysis considers only regres-

sors while the partial least square regression considers the response variable in addition

to the regressors. The canonical correlation analysis (CCA) is also an important tech-

nique to identify the strength of association between two sets of variables [Johnson and

Wichern (2007)]. It focuses on the correlation between a linear combination of the vari-

ables in one set and a linear combination of the variables in another set. Each set of

variables gets reduced to a single variable which is known as a canonical variable and

finds its correlation which is known as canonical correlation. In addition to that the

multiple correlation is a special case of canonical correlation as it can be obtained by

considering one set of observations equal to one. The construction of the PLS algorithm

has been discussed by different authors in the literature some of which are Garthwaite

(1994); Hastie et al. (2009); Helland (1988) and Rosipal and Krämer (2006) e.t.c.

Frank and Friedman (1993) discussed two common methods (partial least square

and principal component regression) used in chemometrics for predictive modelling and

compared them with other statistical methods (ordinary least squares, variable selection,

and ridge regression) to understand their apparent success as they all attempting to

achieve the same operational goal but in slightly in different ways and in what situation

they can be expected to work better.

Consider a regression model that finds the predictive relationship among a set of q

response variables (y) on a set of p predictor variables (x) given a set of N observations
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and the structural form of this predictive relationship can be taken to be linear as

yj = aTj x; j = 1, 2, · · · , q (2.9)

The coefficients aj are estimated using the training data. This model serves both

as descriptive statistics for interpreting the data and as a prediction rule to estimate

response variable values when only predictor variable values are available.

The purpose is to show how the coefficients vector a in the equation (2.9) shrink away

from the Ordinary Least Squares (OLS) estimates. This movement is toward directions

in the predictor variable space where the samples contain a larger spread, or away from

the directions where sample predictor variables exhibit minimal spread, i.e.,

var(aTx/|a|) = ave(aTx/|a|)2 = small

where the average is over the training sample. The comparisons among different regres-

sion methods consist of regarding the regression procedures as a two-step process as in

variable subset selection Stone and Brooks (1990); first a K dimensional subspace of

the regression is performed under the restriction that the coefficient vector a lies in that

subspace

a =
K∑
k=1

akck

where the unit vectors [ck]
K
1 span the prescribed subspace with cTk ck = 1. The regression

procedures can be compared by the way in which they define the subspace [ck]
K
1 and the

manner in which the constraint in regression is performed.

According to Frank and Friedman (1993), the comparison among ridge regression

(RR), principal component regression (PCR), and partial least square (PLS) has been
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made based on criteria

cOLS = argmax
cT c=1

corr2(y, cTx)

cRR = argmax
cT c=1

corr2(y, cTx)
var(cTx)

var(cTx) + λ

ck(PCR) = argmax
[cTV cl]

k−1
1 and cT c=1

var(cTx)

ck(PLS) = argmax
[cTV cl]

k−1
1 and cT c=1

corr2(y, cTx)var(cTx)

The above criteria indicate that RR, PCR, and PLS are applying a penalty to the OLS

criterion, where the penalty increases as var(cTx) decreases. Then the question is under

what circumstances should this lead to improved performance over OLS? According to

James and Stein (1992) that OLS is inadmissible in that one can always achieve a lower

mean squared estimation error with biased estimates. Again the question arises when

can these estimators substantially improve performance and which one can do it best.

Considering a highly idealized situation, these questions can be answered, and in

reality

y = αTx+ ϵ

for some coefficient vector α and considereing ϵ is an additive (i.i.d) homoscedastic error,

with zero expectation and variance σ2. Considering the coordinate system in which the

predictor variables are uncorrelated that is V = diag(e21, e
2
2, · · · , e2p).

Let a be an estimate of α that is ŷ(x) = aTx for a given point x in the predictor space

and considering training sample predictor covariance matrix V has the eigenvalues. The

mean squared error (MSE) of prediction at x is

MSE(ŷ(x)) = Eϵ[α
Tx− aTx]2
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Since α (the truth) is unknown, the MSE (at x) for any particular estimator is also

unknown.

One can, however, consider various (prior) probability distributions π(α) on α and

compare the properties of different estimators when the relative probabilities of encoun-

tering situations for which a particular α occurs is given by that distribution. For a

given π(α), the mean squared prediction error averaged over the situations it represents

is

MSE(ŷ(x)) = EαEϵ[α
Tx− aTx]2

Considering all coefficient vector direction α
|α| equally likely that is the prior distribution

depends only in its norm |α|2 = αTα that is π(α) = π(αTα).

Considering the simple linear shrinkage estimates of the form aj = fjα̂j; j = 1, 2, · · · , p

where, α̂j is the OLS estimate and in this case, the MSE becomes

MSE(ŷ(x)) = EαEϵ

[ p∑
j=1

(αj − fjα̂j)xj

]2

Averaging over α using the probability distribution given by πα yields

MSE(ŷ(x)) =

p∑
j=1

[
(1− fj)

2Eα|α|2/p+ f 2
j σ

2/(Ne2j)
]
x2j

here, Eα|α|2 is the expected value of the length of the coefficient vector α under the prior

π(α), p is the number of predictor variables, σ2 is the error variance. The two terms

within the bracket in the above equation contribute to the MSE at x having separate

interpretations. The first term represents the bias of the estimate and the second is

the variance. estimate. Setting [fj = 1]p1 yields the least squares estimates, which are

unbiased but have variance given by the second term in the above equation. Reducing

any of the [fj]
p
1 to a value less than 1 causes an increase in bias but decreases the variance.

This usual bias-variance trade-off is encountered in nearly all estimation settings. It is
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also noticeable that taking any value greater than one for this shrinkage factor causes an

increase in both bias squared and variance. This above equation for the MSE illustrates

the important fact that justifies the qualitative behavior of RR, PCR, and PLS discussed

previously, namely, the shrinking of the solution coefficient vector away from directions

of low variance in the predictor-variable space. One sees from the second term in the

equation that the contribution to the variance of the model estimate from a given (eigen)

direction (xj) is inversely proportional to the sample predictor variance e2j associated

with that direction. Directions with a small spread in the predictor variables give rise

to high variance in the model estimate. The value of [fj]
p
1 that minimizes the MSE are

f ∗
j =

e2j
e2j + λ

; j = 1, 2, · · · , p

with

λ = p(σ2/Eα|α|2)/N

The quantity of λ is the number of variables times the square of the noise-to-signal

ratio, divided by the training sample size. The optimal linear shrinkage esimates can be

obtained as

aj = α̂j

e2j
e2j + λ

; j = 1, 2, · · · , p

One sees that the unbiased OLS estimates [α̂j]
p
1 are differentially shrunk with the relative

amount of shrinkage increasing with decreasing predictor variable spread ej. The amount

of differential shrinkage is controlled by the quantity λ. The larger the value of λ, the

more differential shrinkage, as well as more overall global shrinkage. The value of λ in

turn is given by the inverse product of the signal/ noise squared and the training-sample

size. It is important to note that this high relative shrinkage in directions of small spread

in the (sample) predictor-design distribution enters only to control the variance and not

because of any prior belief that the true coefficient vector α is likely to align with the
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high spread directions of predictor design. The prior distribution on α, π(α), that leads

to this result of aj equal mass on all directions α/|α|.

Therefore, one can at least qualitatively conclude that the common property of RR,

PCR, and PLS of shrinking their solutions away from low spread directions mainly serves

to reduce the variance of their estimates, and this is what gives them generally superior

performance to OLS. The above results indicate that their degree of improvement (over

OLS) will increase with decreasing signal-to-noise ratio and training-sample size and

increasing collinearity as reflected by the disparity in the eigenvalues of the predictor

variable covariance matrix.

It is well known that aj is just RR as expressed in the coordinate system defined by

the eigenvectors of the sample predictor variable covariance matrix. Thus these results

show (again well known) that RR is a linear shrinkage estimator that is optimal (in the

sense of MSE) among all linear shrinkage estimators for the prior π(α) assumed here

and the expression λ known. PCR is also a linear shrinkage estimator

aj(PCR) = α̂j.I(e
2
j − e2k)

where k is the number of components used and the second factor I(.) takes the value

1 for nonnegative argument values and 0 otherwise. Thus RR dominates PCR for an

equidirection prior. PLS is not a linear shrinkage estimator, so RR cannot be shown to

dominate PLS through this argument.

In Chapter 5, I presented an expression for the prediction error under various shrink-

age factors, highlighting the trade-off between bias and variance based on this factor.

Following the discussion on the shrinkage factor by Frank and Friedman (1993), I fol-

lowed the connections between the qualitative behavior of ridge regression (RR), prin-

cipal component regression (PCR), and partial least square (PLS) regression.
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3 Multivariate Test Procedures (Mostly Literature

Review with a little Novel Contribution)

In real-life genetic studies, multiple characteristics can share the same genetic signal, e.g.

several facial measurements can be influenced by the same gene. However, the effect of

the genes on any single measurement can be small, as is usually the case with most

genes. In such a scenario, doing a multivariate test that jointly tests all characteristics

at the same time through a multiple regression model can provide more power. Such an

approach was implemented in Adhikari et al. (2016a), specifically as a Wald test.

This Chapter focuses on the review and exploration of the mathematical proper-

ties of different multivariate test procedures, especially in the context of multiple linear

regression. After carefully considering their theoretical aspects and availability in the

literature, I adapted various multivariate test procedures for canonical correlation in

multiple regression settings. Notably, I demonstrated that these procedures asymp-

totically follow the chi-square distribution and, more importantly, exhibit asymptotic

equivalence among themselves and with the Wald test statistic. These findings provide

valuable insights into the statistical power and efficiency of these test procedures for

genetic association studies.

3.1 Review of Large Sample Test Procedures in Multiple Re-

gression

In multiple regression, the usual interest is to test the hypothesis of linear restrictions on

β. To test this linear restriction, some of the large sample test procedures are Wald Test

(W), Likelihood Ratio Test (LRT), and Lagrange Multiplier Test (LM). The key points

of the three large sample testing approach are the Wald test starts at the alternative
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and consider movements toward the null hypothesis, the LM approach starts at the null

hypothesis and ask whether movement toward the alternative would be an improvement

and the LR test compares the two hypotheses directly on an equal basis.

In a multiple regression setup, these tests can be applied to challenge the hypothesis

that certain β coefficients are equal to zero. When there’s insufficient evidence in the

data to reject this hypothesis, those parameters are set to zero and treated as constants.

Chandra and Joshi (1983) noted that the mentioned tests assume the same null hy-

pothesis and are asymptotically equivalent, but their test statistics construction varies

significantly.

Quaglio et al. (2020) showed a graphical representation of these test statistics for

testing the hypothesis in model identification frameworks based on maximum likelihood

inference and described these test statistics based on the literature.

Figure: A Visual Comparison of Likelihood Ratio (LR), Wald, and Lagrange Multiplier
(LM) Statistics

The Wald statistic quantifies the difference between the unrestricted and restricted

maximum likelihood estimates in the parameter space [Wald (1943)]. The Lagrange

multipliers statistic is computed from the log-likelihood gradient at the restricted esti-
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mate [Rao (1948); Silvey (1959)]. The likelihood ratio test statistic measures the dis-

crepancy between the restricted and unrestricted estimates using log-likelihood values

[Wilks (1938)].

Depending on the specific scenario, one of the statistics may offer greater computa-

tional convenience compared to the others. A unified development of the three principles

has been achieved by establishing the properties of the tests and interconnecting their

relationships [Engle (1984)]. Vandaele (1981) indicated that Wald, Lagrange, and Like-

lihood Ratio tests can be derived as functions of the small sample F test in the context

of a multiple regression model. This derivation allows the establishment of well-known

sample inequalities among these tests. Following the work by Berndt and Savin (1977),

the subsequent relationship among the large sample tests has been deduced as

W ≥ LR ≥ LM

.

3.1.1 Likelihood Ratio Test (LRT)

The Likelihood Ratio Test (LRT) statistic can be obtained by taking the ratio of like-

lihoods with and without restrictions of the null hypothesis. Considering the multiple

regression model in the equation (2.2), The Likelihood Ratio statistic for testing the null

hypothesis, H0 : β = 0 is defined as LR = −2logλ, where λ can be obtained as

λ =
maxβ=0,σ2 L(β, σ2)

maxβ,σ2 L(β, σ2)
=

[
σ̂2
u

σ̃2
R

]n/2
(3.1)

here,

û = y − ŷ = y −Xβ̂ and ũ = y −Xβ̃ = y (under the restriction)

47



σ̂2
u =

ûT û

n
= maximum likelihood estimate of the error variance in the unrestricted model

σ̃2
R =

ũT ũ

n
= maximum likelihood estimate of the error variance in the restricted model

β̂ = (XTX)−1XTy and β̃ can be expressed as a function of the unrestricted estimator as

β̃ = β̂ − (XTX)−1(XTX)β̂ = 0

ũ = û+X(XTX)−1(XTX)β̂ = y

which allows to write the restricted sum of squares as

ũT ũ = ûT û+ β̂T (XTX)β̂ (3.2)

Using the equation (3.2), the likelihood ratio λ can be expressed as

λ =

 1

1 + β̂T (XTX)β̂
nσ̂2

u

n/2

(3.3)

3.1.2 Wald and F-Test

The Likelihood Ratio Test (LRT) can be written in terms of Wald statistic as

λ =

[
1

1 + W
n

]n/2
(3.4)

where W indicates the Wald test statistic which is constructed from the unrestricted

estimates of the parameters and their estimated σ̂2
u and defined as can be defined as

W =
ŷT ŷ

σ̂2
u

=
β̂T (XTX)β̂

σ̂2
u

=β̂T [σ̂2
u(X

TX)−1]−1β̂
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=[(XTX)−1XTY ]T
(XTX)

σ̂2
u

(XTX)−1XTY

=Y TX(XTX)−1X
TY

σ̂2
u

Now defining the sample variances and covariances between X and Y as

SY Y =
Y TY

n
SXY =

XTY

n

SXX =
XTX

n
SY X =

Y TX

n

The Wald test statistic can be expressed as

W

n
= S−1

Y Y SY XS
−1
XXSXY (3.5)

Alternatively it can be written that,

λ =

[
1

1 + qFq,v

v

]n/2
(3.6)

where, F indicates an F -test statistic which is defined as

Fq,v =
β̂T [σ̂2

u(X
TX)−1]−1β̂/q

ns2

σ̂2
u
/(n− k)

∼ Fq,n−k

⇒ Fq,v =
β̂T (XTX)β̂

nσ̂2
u

(n− k)

q

∴
q

v
Fq,v =

β̂T (XTX)β̂

nσ̂2
u

(3.7)

where, s2 = ûT û/v with v = n− k, which is unbiased estimator of σ̂2
u. Comparing (3.3)

and (3.6), it can be written that

W

n
=
qFq,v

v
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⇒ (n− k)

n
W = qFq,v (3.8)

Considering the limiting distribution of qFq,v which is χ2
q when v → ∞, it can also be

shown that the limiting distribution of (n−k
n
)W will also follow χ2

q when v → ∞.

3.1.3 Lagrange Multiplier (LM) and F-Test

The Lagrange Multiplier (LM) test statistic is defined as

LM =
β̂T (XTX)β̂

σ̃2
R

; where, σ̃2
R =

yTy

n
=
ũT ũ

n
(3.9)

Note that, LM uses restricted estimates. Using the definition of the Wald test statistic,

LM can be written as

LM =

(
σ̂2
u

σ̃2
R

)
W (3.10)

Relaying on (3.1)&(3.4), it can be expressed as

LM =

[
W

1 + W
n

]
(3.11)

Finally substituting equation for W , the LM can be expressed as,

LM =
(v + k)qFq,v

v + qFq,v

(3.12)

Again, when n→ ∞, then

LM = qFq,∞

and qFq,v ∼ χ2
q for large n.

50



3.1.4 Test Inequalities

Following Vandaele (1981), the likelihood ratio test statistic can be written as

LR = −2 log λ = n log

(
1 +

W

n

)
(3.13)

Using the inequality, W
n
≥ log

(
1 + W

n

)
the above equation (3.13) directly follows that

W ≥ LR

Comparing (3.11)&(3.12), it can be written that

LR ≥ LM

because, log
(
1 + W

n

)
≥

W
n

1+W
n

. Finally, it can be said that for the multiple regression

model, there is no need to use any of these large sample results as the test of the hy-

pothesis of linear restrictions on β can be derived as an exact F test.

Buse (1982) also demonstrated an important relationship along with two examples

among these large sample test procedures which is that if the log-likelihood function

is quadratic then the LRT, Wald, and LM tests are numerically identical that is W =

LRT = LM , and follow χ2 distribution for all sample sizes under the null hypothesis.

Buse (1982) demonstrated that if the log-likelihood function is quadratic then the

LRT, Wald, and LM tests are numerically identical and have χ2 distribution for all

sample sizes under the null hypothesis. He showed the equivalence among these test

procedures demonstrating an example discussed as follows:
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Example: Let yn×1 = Xn×kβk×1 + un×1 with u ∼ N(0, σ2I) and test the hypothesis

H0 : β = 0

H1 : β ̸= 0

The log-likelihood, a quadratic in the vector β, is given by

logL(β) = −(n/2)(log2π)− 1/2log(σ2)− (1/2σ2)(y −Xβ)T (y −Xβ)

= c− (1/2σ2)(y −Xβ)T (y −Xβ)

dlogL/dβ =
XTY

σ2
− (XTX)β

σ2

and

d2logL/dβdβT = −(XTX)

σ2

In order to construct the LR statistic we need both the unrestricted and the restricted

estimates. The unrestricted estimate of β can be written as

β̂ = (XTX)−1XTY

and under the restriction, β̃ = 0.

Define û = y − Xβ̂ and ũ = y − Xβ̃ = y. The unrestricted log-likelihood can be

written as

logL(β̂) = c− (1/2σ2)ûT û

and the restricted log-likelihood as

logL(β̃) = c− (1/2σ2)ũT ũ
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Based on the relation that ũT ũ = yTy = ûT û+β̂T (XTX)β̂, since β̂TXT (y−Xβ̂) = 0,

the above equation can be expressed as

logL(β̃) = c− (1/2σ2)ûT û− (1/2σ2)β̂T (XTX)β̂

The LR statistic is now given as

LR = (1/σ2)β̂T (XTX)β̂ = S−1
Y Y SY XS

−1
XXSXY

The Wald statistic can be expressed as

W = β̂T [σ2(XTX)−1]−1β̂ = S−1
Y Y SY XS

−1
XXSXY

Buse (1982) discussed the Lagrange multiplier test statistic as

LM = S(β̃)TC−1S(β̃)

and showed a relationship that S(β̃) = (XTX)β̂
σ2 . Following this relation, the LM test

statistic can be expressed as

LM = S(β̃)TC−1S(β̃) = β̂T [σ2(XTX)−1]−1β̂ = S−1
Y Y SY XS

−1
XXSXY

So in the case of multiple regression, it is also found that LR = W = LM .

3.1.5 Assessing the Performance of Partial Least Squares Regression

Following Wakeling and Morris (1993), Partial Least Squares (PLS) regression is a widely

used multivariate statistical method, particularly suitable when the number of factors

exceeds the number of observations. It generates a set of uncorrelated score vectors,
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which are linear combinations of the original variables.

However, two important issues arise in PLS: determining the number of dimensions to

include and evaluating their statistical significance. Including more dimensions may lead

to overfitting, although it may summarize the data well, resulting in poorer performance.

Hence, it is essential to select only those dimensions that enhance predictive performance.

To assess a good model, testing for significance poses another challenge. Since there

is no distributional theory available for testing PLS, model validation becomes crucial to

evaluate the prediction accuracy. This can be measured using the Prediction Residual

Error Sum of Squares (PRESS). A scree plot, based on PRESS values, can help determine

the optimal number of dimensions to include in the model, but it is a data-specific

process. For a more quantitative approach, using statistical tests is preferable.

In their work, Wakeling and Morris (1993) discussed two test statistics based on

PRESS and attempted to identify a parsimonious model without a significant increase

in PRESS.

In this paper, another significant test procedure based on cross-validated R2 is also

explored, which is analogous to R2 in ordinary regression but can take negative values

if the PRESS value is larger than the residual sum of squares (RSS). All the methods

discussed in this paper are arbitrary in their choice of either degrees of freedom or some

threshold, providing a rough idea of how many dimensions should be included.

To assess the predictive ability of the PLS model, critical values have been calculated

using Markov Chain Monte Carlo (MCMC) simulation for different sample sizes. These

critical values will be compared with the cross-validated R2 obtained from the original

data, allowing for the formulation of a statistical test statistic without resorting to a

randomized test.

PLS poses another challenge regarding the determination of the appropriate number

of degrees of freedom associated with a component. For instance, when performing prin-
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cipal components first and then applying PLS to these principal components, the first

PLS component provides the OLS solution. In this case, the first PLS component should

have r degrees of freedom associated with it, where r is the number of explanatory vari-

ables, as that is the number of degrees of freedom typically associated with explanatory

variables in an OLS model.

However, if there are high correlations between the r explanatory variables, then

the degrees of freedom to associate with any component should be much less than r.

The lack of clarity on the appropriate number of degrees of freedom for a component

gives rise to testing problems. Hence, cross-validation is employed to select the number

of components to use in a PLS regression and to evaluate the model’s performance

[Wakeling and Morris (1993)].

As per Eldén (2015), the Partial Least Squares procedure is recursive, involving the

computation of basis vectors (latent components) for both the explanatory variables and

the solution vectors. Since the vectors of regression coefficients and predictions are non-

linear functions of the right-hand side, an algorithm for calculating Frechet derivatives

of these functions is developed to address this issue. Utilizing the Frechet derivatives of

the prediction vector, one can compute the number of degrees of freedom, which serves

as a stopping criterion for the recursion process.

In Chapter 6, I applied various dimension reduction techniques for prediction, which

included principal component analysis, between-group principal components (bgPCs),

and leave-one-out cross-validated group PCs (cv-bgPCs). Each method yielded a dif-

ferent number of selected dimensions, and these dimensions were utilized to assess the

performance of different predictive models. The valuable insights derived from Wakeling

and Morris (1993)’s work were instrumental in effectively implementing these dimension

reduction techniques and assessing the predictive ability of various models for dental

morphology data.
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3.2 Review of Canonical Correlation Analysis (CCA) and its

Test Procedures

Canonical correlation analysis (CCA) is a multivariate statistical technique used to ex-

plore the relationships between two sets of variables [Johnson and Wichern (2007)]. It

aims to find linear combinations of variables from each set that have the highest cor-

relation with each other. The goal is to identify the maximum correlation between the

two sets, referred to as canonical variates or canonical factors. The general theoretical

steps of canonical correlation can be outlined as follows:

� It seeks to identify and quantify the relationship between two sets of variables

� In multiple correlations, it takes a linear combination of X1, X2, · · · , Xp and find

its correlation with Y

� In CCA, it finds the relationship between two sets of variables X1, X2, · · · , Xp and

X∗
1 , X

∗
2 , · · · , X∗

s

� Each set of variables be reduced to a single variable and finding their correlation

� The variables obtained by this linear combination are known as canonical variables.

Suppose, X(1) = X1, X2, · · · , Xr and X(2) = X(r+1), X(r+2), · · · , X(r+s). Assume

that r ≤ s and

E(X) =

µ1

µ2


and

Cov(X) =

Σ11 Σ12

Σ21 Σ22
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� Consider, r and s dimensional co-efficient vector a and b such that

U = aTX(1)

V = bTX(2)

Cor(U, V ) =
aTΣ12b

(aTΣ11abTΣ22b)1/2

Now, the question is what should be the value of a and b?

� 1st pair (U1, V1) are chosen as to maximize Cov(U, V ) subject to var(u1) = var(v1) =

1.

� 2nd pair (U2, V2) are chosen as to maximize Cov(U, V ) subject to their combina-

tions being orthogonal to the 1st choice.

� This can be done till r. 1st canonical correlation is given by

cor(u1, v1) = ρ =
√
λ1

with canonical variables

u1 = aTX(1) = pT1Σ
−1/2
11 X(1)

and

v1 = bTX(2) = qT1 Σ
−1/2
22 X(2)

where, λ1, λ2, · · · , λr are the eigen values or characteristics roots of

[Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 ]r×r

with corresponding eigen vectors p1, p2, · · · , pr.
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� In fact λ1, λ2, · · · , λr are also the largest r eigen values of

[Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 ]s×s

In general,

uk = aTX(1) = pTkΣ
−1/2
11 X(1)

and

vk = bTX(2) = qTk Σ
−1/2
22 X(2)

with

cor(uk, vk) = ρ∗k =
√
λk; k = 1, 2, · · · , r.

� Result: Let ρ∗21 ≥ ρ∗22 ≥ · · · ≥ ρ∗2p be the p ordered eigenvalues of S
−1/2
11 S12S

−1
22 S21S

−1/2
11

with corresponding eigen vectors ê1, ê2, · · · , êp and p ≤ q. Let f̂1, f̂2, · · · , f̂q be the

eigenvectors of S
−1/2
22 S21S

−1
11 S12S

−1/2
22 , where the first p f̂ ′s may be obtained from

f̂k = (1/ρ∗k)S
−1/2
22 S21S

−1/2
11 êk; k = 1, 2, · · · , p. The kth sample canonical variate

pair is

Ûk = êk
TS

−1/2
11︸ ︷︷ ︸

âTk

x(1)

V̂k = f̂k
T
S
−1/2
22︸ ︷︷ ︸

b̂Tk

x(2)

The first sample canonical variate pair has the maximum sample correlation

rÛ1,V̂1
= ρ̂∗1

� To ease the mathematical burden, many people prefer to get the canonical corre-
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lations from the eigenvalue equation

|Σ−1
11 Σ12Σ

−1
22 Σ21 − ρ∗2I| = 0

The coefficient vectors a and b follow directly from the eigenvector equations

Σ−1
11 Σ12Σ

−1
22 Σ21a = ρ∗2a

Σ−1
22 Σ21Σ

−1
11 Σ12b = ρ∗2b

3.2.1 Canonical Correlation Link with Multiple Correlation Coefficients

Multiple correlation coefficient, ρ1,x(2) is a special case of a canonical correlation when

x(2) has a single element i.e., p = 1 [Johnson and Wichern (2007)]. So,

ρ1,x(2) = max
b
cor(x(1), bTx(2)) = ρ∗1

When p > 1, ρ∗1 is larger than each of the multiple correlation of x
(1)
i with x(2) or the

multiple correlation of x
(2)
i with x(1). That is,

ρuk,x(2) = max
b
cor(uk, b

Tx(2)) = cor(uk, vk) = ρ∗k; k = 1, 2, · · · , p.

Similarly,

ρvk,x(1) = max
a
cor(vk, b

Tx(1)) = cor(vk, uk) = ρ∗k; k = 1, 2, · · · , p.

That is, the canonical correlations are also the multiple correlation coefficients of Uk

with X(2) or the multiple correlation coefficients of Vk with X(1). Because of its multiple

correlation coefficient interpretation, the kth squared canonical correlation, ρ∗2k , is the

proportion of the variance of the canonical variate, Uk explained by the set X(2). It is
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also the proportion of the variance of canonical variate Vk explained by the set X(1).

Therefore, ρ∗2k is often called the shared variance between the two sets X(1) and X(2).

3.2.2 A general parametric significance-testing System for the Canonical

Correlation Analysis

If there is one set of p variables and another set of q variables (where, q ≤ p), then

the principle objective of canonical correlation analysis is to find a linear combination

of the p-variables that correlate maximally with linear combinations of the q variables

and for sample data, to test statistical significance of that correlation [Knapp (1978)].

The weight for the q variable in the second set is obtained by finding the elements of

the eigenvector v1 associated with the largest eigenvalue λ1 of the matrix

M = R−1
yy RyxR

−1
xxRxy

where, R−1
yy is the inverse of q × q matrix,Ryx is the q × p matrix of cross-correlations

between two sets, R−1
xx is the inverse of p× p matrix. The weights for p variables in the

first set are obtained by finding the elements of the vector

v2 = λ
−1/2
1 R−1

xxRxyv1

The maximal canonical correlation ro is the square root of λ1. Its significance is tested

by referring to a table of the F sampling distribution, the following statistic for pq and

(ms− pq/2 + 1) degrees of freedom.

F =
[1− Λ1/s]/pq

Λ1/s/(ms− pq/2 + 1)
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where,

Λ =

q∏
i=1

(1− λi); i = 1, 2, · · · , q

m = N − 3//2− (p+ q)/2

s = [(p2q2 − 4)∇ ·
(
p2 + q2 − 5

)
]1/2

The test [Rao (1952)] is exact if either p or q is less than or equal to two and is approx-

imate otherwise.

3.2.2.1 Link with Multiple Regression Analysis

The major difference between multiple regression analysis and canonical analysis is

that the former employs just one variable in the second set, that is q = 1. Therefore,

R−1
yy RyxR

−1
xxRxy reduces to RyxR

−1
xxRxy, which is recognizable as Ryxb, where, b is the

columns vector of beta weights (standardized partial regression coefficients) and which

in turn reduces to the scalar r2y.x1,x2,··· ,xp
(since, Ryx is row vector of the correlations of

each of the variables in the first set with the variable in the second set that is, the square

of the multiple correlation coefficient. The largest eigenvalue of r2 is again r2 itself. The

F formula reduces to

F =
r2/p

(1− r2)/(N − p− 1)

which is equal to the traditional formula for testing the significance of a multiple r, since,

q = 1, s = 1, Λ1/s = Λ = 1− λ1 = 1− r2 and m = N − 3/2− (p+ 1)/2. The case p = 2

and q = 1 represents a special difficulty, since p2 + q2 − 5 = 0 and s is undefined. F still

the same multiple regression, F , however.

There is a test of the significance of a canonical correlation coefficient due to Bartlett
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(1941) that is not subject to this constraint

χ2 = −[N − (p+ q + 1)

2
]logeΛ ∼ χpq(α)

3.2.3 Tests for Determining the Number of Nonzero Canonical Correlations

In canonical correlation analysis, the usual interest to test the association between two

sets of variates and the number of non-zero population canonical correlation may be

called as dimensionality. Caliński et al. (2006) compared the tests for the dimensionality

in the canonical correlation analysis with regard to the relative frequencies of underes-

timation, correct estimation, and overestimation of the true dimensionality. Suppose

y1, y2, · · · , yp︸ ︷︷ ︸
p

and X1, X2, · · · , Xq︸ ︷︷ ︸
q

are two sets of observations which have the variance-

covariance matrix as follow

Cov(Y,X) = Σ =


Σ11︸︷︷︸
p×p

Σ12︸︷︷︸
p×q

Σ21︸︷︷︸
q×p

Σ22︸︷︷︸
q×q


The likelihood ration test of H0 : Σ12 = 0 vs H1 : Σ12 ̸= 0 rejects H0 for large value of

−2 log Λ =n log
|S11||S22|

|S|

=− n log
|S|

|S11||S22|

=− n log
|S22||S11 − S12S

−1
22 S21|

|S11||S22|

=− n log
(
|I − S−1

11 S12S
−1
22 S21|

)
=− n log

min(p,q)∏
i=1

(1− ρ̂2i ) (3.14)
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where, ρ1, ρ2, · · · ρmin(p,q) are the square root of the eigenvalue of S−1
11 S12S

−1
22 S21. The

likelihood ratio statistic compares the sample generalized variance under H0S11 0

0 S22

 = |S11||S22|

with the unrestricted generalized variance |S|. Bartlett (1941) suggests replacing the

multipliplicative factor n in LRT with the factor (n − 1 − 1/2(p + q + 1)) to improve

the χ2 approximation to the sampling distribution of −2 log Λ. Thus for large n, Reject

H0 : Σ12 = 0(ρ∗1 = ρ∗2 = · · · = ρ∗p = 0) at significance level α if

−(n− 1− 1/2(p+ q + 1)) log

min(p,q)∏
i=1

(1− ρ̂2i ) > χ2
pq(α)

where, χ2
pq(α) is the upper 100αth percentile of a chi-square distribution with pq degrees

of freedom. If the H0 : Σ12 = 0 is rejected, it is natural to examine the significance of

the individual canonical correlations. Because the coefficients are ordered from largest

to smallest, it can start by assuming the first canonical correlation is nonzero and the

remaining (p − 1) are zero. If it is rejected, assume the first two canonical correlations

are nonzero but the remaining (p− 2) are zero, and so forth. That is

Hd : ρd+1 = ρd+2 = · · · = ρp = 0 for d = 1, 2, · · · , (p− 1)

Bartlett (1941) has argued that the above situation can be tested by the LR criterion.

Specifically, reject null hypothesis if

−(n− 1− 1/2(p+ q + 1)) log

min(p,q)∏
i=d+1

(1− ρ̂2i ) > χ2
(p−d)(q−d)(α) (3.15)

It is noticed that the test statistic involves
∏min(p,q)

i=d+1 (1 − ρ̂2i ), the residual after the
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first d sample canonical correlations have been removed from the total criterion

Λ2/n =

min(p,q)∏
i=1

(1− ρ̂2i )

∴ −2 log Λ =− n log

min(p,q)∏
i=1

(1− ρ̂2i )

For testing Hd, the following three test statistic analogus to the statistics proposed for

MANOVA can be considered

(1) Lawley-Hotelling trace statistic

T 2
d =

min(p,q)∑
i=d+1

ρ̂∗2i
1− ρ̂∗2i

(2) Wilk’s statistic (Likelihood ratio statistic)

Λd =

min(p,q)∏
i=d+1

(1− ρ̂2i )

(3) Bartlett-Nanda-Pillai trace statistic

Vd =

min(p,q)∑
i=d+1

ρ̂2i

Under Hd, Bartlett χ
2-approximation can be applied to T 2

d ,Λd and Vd when transformed

to

SB(T
2
d ) = (n− p− q − 2)T 2

d

SB(Λd) = −[n− 1− 1/2(p+ q + 1)] log Λd

SB(Vd) = (n− 1)Vd
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Their distribution under Hd is approximately χ2 with (p− d)(q− d) degrees of freedom.

Olson (1976) suggested that multivariate analysis of variance must be chosen such

that test statistics can be expressed as a generalization of the usual univariate F statistic.

He also reviewed the above-described tests which leads to the recommendation that

Pillai-Bartlett statistic for general use. He discussed that the Hotelling-Lawley statistic

makes use of all the sample eigenvalues by summing them but the eigenvalue can take

any value from 0 to ∞ which will result that a single deviant eigenvalue may have a

severe effect on the test statistic. In Wilks’s likelihood ratio statistic, the eigenvalues

are multiplied which also affects severely if a deviant of eigenvalue occurs. On the other

hand, the Pillai-Bartlette statistic is defined in such a way that it is relatively well

protected from the deviant of eigenvalues as it uses summing rather than multiplying

them.

3.3 Optimality of Tests

When conducting association tests to detect genetic signals, the primary objective is

to identify the most powerful test, whenever possible. This allows us to maximize the

chances of discovering a larger number of relevant genes associated with the trait under

investigation. Discovering more genes also means their subsequent use in prediction,

making the prediction results more accurate. However, there is no broad discussion

available about the power and optimality of the various statistical tests employed in the

statistical genetics literature. It is therefore of interest to discuss such properties of the

various tests encountered in this literature review and find out if any of them are better

than the others, at least in certain scenarios.

In practice, sometimes uniformly most powerful test does not exist because the class

of level α tests is so large that no one test dominates all the others in terms of power

[Casella and Berger (2002)]. In such cases, a common method of continuing the search
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for a good test is to consider some subset of the class of level α tests and attempt to find

a UMP test in this subset. When no UMP level α test exists within the class of all tests,

it might be tried to find a UMP level α test within the class of unbiased tests.Young

and Smith (2005) also discussed that sometimes characterizing UMPU tests for two-sided

problems is a much harder task than characterizing UMP tests for one-sided hypotheses,

but for one specific but important example, that of a one-parameter exponential family,

it ables to find UMPU tests. The extension to multiparameter exponential families

involves the notion of conditional tests. Here it have been discussed two situations

where conditional tests naturally arise, one when there are ancillary statistics and the

other where conditional procedures construct similar tests. The basic idea behind an

ancillary statistic is that of a quantity with distribution not depending on the parameter

of interest and eliminating the dependency on nuisance parameters.

Edelman demonstrated that if one accepts a restriction, and attention is limited to

the class of tests ζ that have this property, then uniformly most powerful tests do indeed

exist for the two-sided testing problem, and they are equal to the ones usually proposed

for the two-sided testing problem. It is well known that the usual one-sided test for

the mean of a normal distribution (with variance known) is uniformly most powerful

but within the class of all possible tests, there is no uniformly most powerful two-

sided test for the mean of a normal distribution. He explained that in many two-sided

testing situations, considering the symmetry suggests that it is reasonable to restrict

attention to tests that have a critical region that is symmetric about the null mean

µ0 = (µ0, µ0, · · · , µ0); that is, if an observation x = (x1, · · · , xn) is to lead to rejection,

then an observation of (2µ0 −x) should also lead to rejections. The previous argument

may be extended to include certain testing problems in which there exists a sufficient

statistic for the parameter of interest and when certain symmetry properties are present.
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3.4 Novel Contribution

In the previous sections of this Chapter, I conducted a review of various statistical test

procedures in both multiple regression and canonical correlation settings. Based on the

characteristics of these test procedures, my first step was to compare the test procedures

in the multiple regression setting and assess their suitability as uniformly most powerful

tests or based on specific observations.

Next, I revisited several multivariate test procedures from the canonical correlation

setting and adapted them for use in the multiple regression setting. I then calculated

their approximate distributions to facilitate a comprehensive comparison of all the test

procedures, including the previously recommended one. This comparison allowed me to

identify a unified test procedure for further association studies.

3.4.1 Comparing Test Procedures in Multiple Regression Settings: A Lit-

erature Review-Based Analysis

Classical genome-wide association studies (GWAS) model a single phenotype against

one genetic marker at a time. So even though a large number of markers are tested,

they are tested separately. And the model employed is usually a multiple regression

model, since in addition to the genetic marker, other covariates like age and sex are

usually included.

However, other studies have employed multiple regression models more directly,

where multiple genetic markers against a phenotype, or multiple phenotypes against

a genetic marker [Adhikari et al. (2015)], have been tested. Such uses have particu-

lar advantages. For example, when multiple genetic variants within a gene have small

effects on a phenotype, testing them individually can be underpowered to their weak

effects, but testing them together in a joint model can be useful in pooling together all

the evidence. A joint model also allows us to take into consideration the correlation
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structure between the variables.

In the first part of my PhD project, I am looking into multivariate statistical pro-

cedures, particularly in the context of multiple linear regression. My aim is to assess

various testing procedures to look for more powerful tests and see if the most power-

ful test exists in any particular scenario. For example, in studying two-sided tests for

one-parameter exponential families, we have seen that UMP tests don’t exist in this sce-

nario, but a UMPU test exists [Young and Smith (2005)]. However such discussions do

not exist for multi-parameter scenarios, such as the multiple linear regression problem

studied here.

But even if explicit discussion of the power of tests is not available, some observations

can be made by looking at the tests themselves. In the multiple linear regression context,

Berndt and Savin (1977) showed an inequality between the Wald test, likelihood ratio

test, and Lagrange multiplier test:

W ≥ LR ≥ LM

As Vandaele (1981) showed that they all are tested in small samples by the same F-test,

it means that the test statistic with the largest numerical value, i.e. W , will have the

highest power. However, Buse (1982) demonstrated that if the log-likelihood function is

quadratic then the three test statistics are identical, i.e. W = LRT = LM .

These observations inform us that from this class of tests, it suffices to focus on only

the Wald test for the rest of the analysis. Building on the same premise, I compared

other test procedures applicable to multiple linear regression with the Wald test. The

next section focuses on the adaptation of various test procedures for canonical correlation

to multiple regression settings, enabling a thorough comparison among these procedures

as well as the Wald test.
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3.4.2 Equivalence of Multivariate Test Procedures in Canonical Correlation

for Multiple Regression

In the literature review, only the canonical correlation method was found to have a

theoretical testing procedure. Hence, I modified the multivariate test procedures to suit

multiple regression settings and provided a comparison of its testing procedures to the

Wald test.

I first revisit the Wald test for multiple linear regression. Consider a multiple re-

gression model discussed in equation (2.2) and suppose, we would like to test the null

hypothesis that the entire coefficient vector is zero, H0 : β = 0. It has shown that the

Wald test statistic can be obtained as a classical F test statistic:

Fq,v =
β̂T [σ̂2

u(X
TX)−1]−1β̂/q

ns2

σ̂2
u
/(n− k)

∼ Fq,n−k

⇒ Fq,v =
β̂T (XTX)β̂

nσ̂2
u

(n− k)

q
[Using the equations (3.7) & (3.8)]

⇒ qFq,v =
(n− k

n

)
W

Since the limiting distribution of qFq,v is χ2
q when n − k = v → ∞, so the limiting

distribution of (n−k
n
)W will also follow χ2

q when n→ ∞. Put in a simpler way, for large

samples,
(

n−k
n

)
W ≈ W will follow a χ2

q distribution asymptotically.

Next, I considered the method of canonical correlations. It generally considers the

relationship between two multivariate data sets Y and X. However, when Y is uni-

variate, it reduces to the same problem conceptually as multiple linear regression. In

this particular context, I have considered the different multivariate test procedures for

canonical correlation as described in section (3.2). The widely used testing procedures

are the Lawley-Hotelling trace statistic, Wilks’s lambda statistic, and Bartlett-Nanda-

Pillai trace statistic. In canonical correlation, it is attempted to test whether there are
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any correlations among two sets of variates e.g., H0 : Σ12 = 0 vs H1 : Σ12 ̸= 0. Initially,

the purpose was to make comparisons among various testing procedures in multiple re-

gression setups, so I attempted to simplify these multivariate test procedures to multiple

regression setups first and then make a comparison among them. At this point, I tried to

simplify all the test procedures in terms of correlation-covariance and the reason behind

this is that it will help to form all the test statistics considering the covariance structure

of the data. In addition to that comparing the test procedures in this way and referring

to a powerful test, the impact of joint effects can be evaluated and eventually, the most

relevant factors can be chosen.

Firstly, I simplified the Wald test statistic in terms of covariance structures and the

simplified form has been shown in the equation (3.5) as W = nS−1
yy SyXS

−1
XXSXy. In

multivariate canonical test procedures, if we constraint one set of covariate equal to one

then the term R−1
yy RyxR

−1
xxRxy will be reduced to RyxR

−1
xxRxy which is also recognizable

as Ryxβ where β is the column vector of beta weights, and eventually it will reduce to

the scalar R2
y.x1,x2, ··· ,xp

that is the square of the multiple correlation coefficient [Knapp

(1978)]. With this reference, I simplified the reduced term in terms of covariance as

RyxR
−1
xxRxy =(S−1/2

yy SyxS
−1/2
xx )(S−1/2

xx SxxS
−1/2
xx )(S−1/2

xx SxyS
−1/2
yy )

=S−1
yy SyxS

−1
xx Sxy

Now, the squared multiple correlation between y and X1, X2, · · · , Xp is

R2 = rTyxR
−1
xxRxy = S−1

yy SyxS
−1
xx Sxy =

W

n

It is noticeable that the multiple correlations (R2) and W
n

are equivalent if the test

statistics are expressed in terms of covariance structure.

Considering different multivariate test procedures for canonical correlation setup in
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section (3.2), I simplified these test procedures to multiple regression setup. As described

earlier, by letting one set of covariates equal to one, the canonical correlation setup

can be linked with multiple regression by expressing the correlations in terms of R2.

The values of ρ̂∗i are called canonical correlations. As p = 1, the largest canonical

correlation ρ̂∗1, is used as a measure of association of the two sets of variables and ρ̂∗21

is the maximum squared correlation between a linear combination of the y variable and

a linear combination of the x variables. It is also noticeable that the first eigenvalue of

R2 is again R2, that is ρ̂∗1 = R2. So, to test the hypothesis H0 : ρ
∗
1 = 0(d = 0), the test

statistics for canonical correlations can be expressed as

(1) Lawley-Hotelling trace statistic

T 2
0 =

ρ̂∗21
1− ρ̂∗21

=
R2

1−R2
=

W/n

1−W/n
(3.16)

(2) Wilk’s statistic

Λ0 = (1−R2) = (1−W/n) (3.17)

(3) Bartlett- Nanda-Pillai trac statistic

V0 = R2 = W/n (3.18)

Under H0, Bartlett χ
2 approximation can be applied to transform as

SB(T
2
0 ) =(n− q − 3)T 2

0

=(n− q − 3)(
R2

1−R2
)

=(n− q − 3)(
W/n

1−W/n
) ∼ χ2

q(α) (3.19)

SB(Λ0) =− [n− 1− 1/2(q + 2)] log Λ0

=− [n− 1− 1/2(q + 2)] log
(
1−R2

)
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=− [n− 1− 1/2(q + 2)] log(1−W/n) ∼ χ2
q(α) (3.20)

SB(V0) =(n− 1)V0 = (n− 1)R2 = (n− 1)
W

n
∼ χ2

q(α) (3.21)

Just like the comparison among conventional test procedures in multiple regression

settings (W ≥ LR ≥ LM), a similar comparison can be made for the test procedures

mentioned above. To facilitate the comparison, equations (3.19), (3.20), and (3.21) can

be expanded as follows:

SB(T
2
0 ) = (n− q − 3)

W

n

(
1− W

n

)−1

=

(
n− q − 3

n

)
W

[
1 +

W

n
+
W 2

n2
+
W 3

n3
+ · · ·

]
(3.22)

[Using (1− x)−1 = 1 + x+ x2 + x3 + · · · ]

SB(Λ0) = −[n− 1− 1

2
(q + 2)] log(1−W/n)

= −
(
n− 1− 1

2
(q + 2)

)[
−W
n

− W 2

2n2
− W 3

3n3
− · · ·

]
[Using log(1− x) = −x− x2

2
− x3

3
− · · · ]

=

(
n− 1− 1

2
(q + 2)

)
W

n

[
1 +

W

2n
+
W 2

3n2
+ · · ·

]
=

(
n− 1− 1

2
(q + 2)

n

)
W

[
1 +

W

2n
+
W 2

3n2
+ · · ·

]
(3.23)

SB(V0) = (n− 1)
W

n

=

(
n− 1

n

)
W (3.24)

The expansions of the test statistics in equations (3.22), (3.23), and (3.24) reveal that

they can be arranged in order of magnitude, which in turn affects their respective power.

The sequence of test procedures can be expressed as SB(T
2
0 ) > SB(Λ0) > SB(V0). In

other words, Lawley-Hotelling Trace Statistic >Wilk’s Statistic > Bartlett- Nanda-Pillai
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Trac Statistic.

By using the simplified test procedures in multiple regression scenarios, an asymp-

totic comparison has been conducted to illustrate their behavior for large samples (n) and

various values of the Wald test statistic (W). When examining the asymptotic distribu-

tion of W as n approaches infinity, it becomes apparent that not only is W/n = R2 ≤ 1

but also under the null hypothesis, W follows a χ2
q distribution. This implies that W/n

converges to 0 in probability, or in other words, W/n is of the order op(1). Leveraging

these insights and considering large sample sizes, the aforementioned test procedures,

described in equations (3.22), (3.23), and (3.24), can be further simplified as:

SB(T
2
0 ) ≈ W ∼ χ2

q(α)

SB(Λ0) ≈ W ∼ χ2
q(α)

SB(V0) ≈ W ∼ χ2
q(α)

That is, under the null when the sample size goes to infinity, the three test procedures

are asymptotically equal and follow χ2
q distribution asymptotically, and they are also

asymptotically equivalent to the Wald test statistic itself.

The simplification of canonical correlation to multiple regression and the equivalence

between R2 and (W/n) suggest that the Wald test statistics is a suitable choice for testing

the coefficient vector in the multiple regression setup. Furthermore, it is asymptotically

equivalent to test procedures used in the area of canonical correlation. Therefore, in

further studies, it will suffice to investigate only the Wald test statistic in further studies.
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4 Gain of Power by Conditioning

This chapter commenced with an exploration of genetic data in section (4.1), explaining

aspects like the genetic structures among SNPs and individuals, implications of relat-

edness, and population structures. Section (4.2) then describes the outlines of GWAS

models, encompassing both traditional and conditional models. It includes a motiva-

tional example showcasing how conditioning on major genes can enhance association

power for the ’melanin’ trait. This example involves selecting a list of major conditional

SNPs based on unconditional models and identifying the major genes through a Man-

hattan plot. This plot is drawn by using the P-values for the genetic variations and their

respective chromosomes.

Theoretical aspects including standard errors and statistical power are thoroughly

explored in sections (4.4), (4.5), and (4.6), across simple linear and multiple regression

scenarios. These theoretical developments consider various modelling setups and eluci-

date how conditioning on major variants improves the discovery power of new genetic

variants. The viability of enhancing power through conditioning on major variants is

extensively scrutinized using mathematical expressions, while also considering genetic

variant characteristics within chromosomes, such as LD structure, proxy variants, and

the population size of the database. Subsequently, these mathematical advances are

demonstrated in two genetic databases—the CANDELA cohort and UK BioBank—in

section (4.11), showcasing detailed power gain results through power graphs.

Moreover, mathematical expressions demonstrating how conditional results can be

derived from publicly available summary statistics of univariate associations in GWAS

studies, even without access to individual-level data, are discussed. This begins with

a mathematical linkage between a single SNP model and joint SNP models. Sections

(4.8) and (4.9) extend the regression modelling setup by considering 2-Block and 3-
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Block matrix design matrices, illustrating the calculation of conditional results using

publicly available summary statistics even when individual-level data are inaccessible.

A comparison between the conditional coefficient results from the 3-Block approach

and those derived from the GCTA software is made, demonstrating that the 3-Block

approach’s conditional coefficients closely align with true conditional results for all tested

SNPs, surpassing those from the GCTA software. Finally, the chapter concludes with

a comprehensive conclusion in section (4.12), summarizing all mathematical derivations

regarding power gain and their real-world implications in databases.

4.1 Overview of Genetic Data

Suppose genetic data contains n individuals, y is the output variable indicating the phe-

notypes of the individuals, which can take single or multiple traits (e.g., height, pigmen-

tations, diseases, etc.), X denotes the information regarding genotypes of n individuals

which can be three cases:

� Single SNP case, where a single genetic marker will look for a genetic variation on

the traits, and the performance will be evaluated by a single P-value and plotting

Manhattan plot. In this situation, the dimension of the genetic variable, X, is

n× 1.

� Multi-SNP case, where a set of SNPs will be taken as genetic variants and multiple

regression analysis can be applied to evaluate the potential genetic variants. A

penalized regression method, ’LASSO’, can be used to select a subset of variants,

say, q, and then the dimension of the genotype matrix will be n× q.

� All SNPs cases, where all possible SNPs will be included. Considering all SNPs

(say, m) in the model, the genotype matrix will be n × m dimensional, where

m can be one million or even more and much larger than n. The product XXT
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(dimension n × n) will represent population structure among n individuals, also

known as the kinship matrix.

The population structure indicates the genetic covariance/correlation matrix among the

individuals derived from the genetic data, i.e., SNPs. Usually, the covariance matrix

is analyzed with a linear mixed model (LMM) or some such methods; for example,

the genome-wide complex trait analysis (GCTA) tool uses an LMM to estimate the

heritability of a trait from genetic data [Yang et al. (2011)]. In GWAS, it’s common to

incorporate a small number of principal components that capture the most variability

in the trait to address kinship effects.

Suppose U denotes the information regarding covariates which can be entered in the

model as:

� Basic covariates such as age, sex, etc. Sometimes Y (and X) is pre-adjusted to

remove effects of U , i.e., regressing Y on U , and using residuals for further analysis

such as GCTA heritability.

� Genetic-derived variables such as genetic principal components (PCs) are calcu-

lated by decomposing the eigenvalue of the kinship matrix (classical GWAS). Here,

the number of principal components (PCs) is determined empirically and used as

a fixed effect in an OLS. In such a case, the whole kinship matrix is not used in an

LMM anymore. Often software implementations pre-adjust Y with U , and take

residuals, to simplify the analysis of Y with X.

4.1.1 Genetic Structure among SNPs

Linkage disequilibrium (LD) indicates the correlation among SNPs (X variables) mea-

sured as r2 or D′. The correlation matrix obtained from XTX (dimension: m × m)

represents r2 between pairwise SNPs. Linkage disequilibrium (LD) between SNPs arises
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due to the transmission of genetic materials through generations, and it can be expressed

as LD ∝ r2.

SNPs on different chromosomes will not be in LD, as chromosomes are inherited

independently. The kinship matrix has correlation blocks due to the genetic recombi-

nation process being non-uniform throughout the genome. Closely situated SNPs on a

genome are highly correlated; therefore, including them in a regression model can create

collinearity. Therefore, it is essential to consider no LD (i.e., uncorrelated SNPs) when

working with multiple X variables simultaneously.

4.1.2 Genetic Structure among People

Genetic similarity is a measure of genetic relatedness among individuals that can arise

due to

� Recent relatedness, also termed as familial kinship.

� Historical relatedness, also known as demographic history, population structure,

or admixture.

These two sources of relatedness can have very different effects on the overall kinship

matrix XXT , especially on genetic PCs. Recent kinship may produce a small block of

related people, which can inflate the variance of all PCs even when a single family is

included [Hoffman (2013)]. Then it becomes necessary to use the entire XXT matrix

through an LMM.

On the other hand, historical population structure may affect everyone and appear

as a gradient instead of blocks. Then these gradients are well represented by the top

few PCs of XXT .
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4.1.3 Relatedness Consequence on Y

Familial relatedness or demographic history affects not only the genetic structure but

the shared environment, too, causing correlation structure in X. For example, a similar

diet (U) can affect the weight phenotype (Y ). So, Y can have familial similarity through

U without any effect of genes X, which may be called confounded effects.

4.1.4 Adjustment of Population Structure

Genome-wide association studies (GWAS) usually aim to identify genetic associations

among individuals that are ancestrally similar but differ phenotypically. However, dif-

ferent ethnicities and familial relatedness may be included in the same study and cause

population structure in the dataset due to having similar genetic signals of associations.

As a consequence, the power, as well as the efficiency of genetic association can be

severely jeopardized.

GWAS and all other genetic studies carefully consider the impact of ancestry and

relatedness, mainly when the participants of a data set come from diverse backgrounds,

to avoid false positive or negative genetic signals [Marchini et al. (2004)]. GWAS usually

adjusts these population structures by calculating principal components from the geno-

type of all individuals and including them as covariates in subsequent GWAS regression

models [Price et al. (2006)].

The classical GWAS models take the genetic principal components (PCs) along with

other demographic factors, such as age and sex, as a fixed or random effect in the model

but do not check their empirical performance explicitly. While a fixed effect model

includes relatively a few principal components (i ≪ n) as a fixed effect, an LMM uses

the genome-wide similarity between all pairs of individuals to account for population

structure but it requires higher computational cost due to its complexity in handling

both fixed and random effects [Kang et al. (2008)].
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Hoffman (2013) suggested that under a transformation, it can be shown that there

is a relationship between modelling the effect of principal components as a fixed vs.

random, and the effects share the same underlying regression model. Only the difference

is in their ability to account for population structure, inference method, and number of

principal components included in the model [Kenny et al. (2011); Price et al. (2010);

Wu et al. (2011)].

4.2 Overview of GWAS Models

4.2.1 Notation

Consider a GWAS model which consists of n individuals. Let Xj be the genotype value

of a particular SNP j (j = 1, 2, · · · ,m), y be the trait of interest ( say, skin color), and U

be a set of covariates such as age, sex, genetic PCs etc. Traditional GWAS uses a simple

regression model to assess the genetic association between an SNP and a phenotypic

trait of interest with the adjustment of covariates such as sex, genetic PCs as

response = SNPj + age+ sex+ genetic PCs︸ ︷︷ ︸
covariates

+ ϵ ; j = 1, 2, · · · ,m

or, y = xjbj + U + ϵ (4.1)

here, bj indicates the regression coefficients of the classical GWAS model which rep-

resents the strength and direction of the association between a genetic variant and a

phenotypic trait. Sometimes, the power of detecting the genetic association can be im-

proved considering additional SNPs along with the effect SNP, i.e., conditioning on some
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other SNPs, and the conditional GWAS model can be modelled as

response = SNPj + SNPm+1 + SNPm+2 + · · ·+ SNPm+k︸ ︷︷ ︸
major SNPs

+ U + ϵ ; j = 1, 2, · · · ,m

(4.2)

The above conditional GWAS model is conditioned on (m − k) major SNPs along

with some non-genetic covariates. Choosing a set of major SNPs typically involves

methods like Genome-Wide Association Studies (GWAS), which assess the association

between SNPs and a phenotype of interest. Selection criteria vary but often include sta-

tistical significance (such as p-values), effect size, linkage disequilibrium, and biological

relevance, for example, validation in wet lab or animal model experiments.

Determining the sufficiency of major SNPs involves considering factors like effect

sizes, significance thresholds, multiple testing control, and the explained genetic variance.

There’s no fixed rule, but researchers often stop when the increase in predictive power

becomes negligible.

4.3 Motivating Examples

The CANDELA Cohort Database is a valuable resource for genetic research and studies

related to human populations. It comprises a diverse dataset collected from individu-

als of Latin American ancestry, particularly from Mexico, Colombia, Peru, Chile, and

Brazil. The database contains comprehensive genetic, phenotypic, and environmental

data, making it an excellent platform for studying various health-related traits and con-

ditions. [Adhikari et al. (2016a, 2015); Ruiz-Linares et al. (2014)].

The classical GWAS model generates summary statistics based on equation (4.1) to

summarize the results of association analysis between SNPs and the phenotypic trait of

interest. These statistics typically include SNP identifiers, effect sizes (regression coeffi-

cients), standard errors, P-values, and allele frequencies. Summary statistics are often
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publicly available in large-scale GWAS efforts, facilitating the utilization and integration

of results across multiple studies.

The P-value is commonly used in GWAS to assess statistical significance. It quantifies

the probability of observing the association between a SNP and the phenotype by chance

alone. Manhattan plots are frequently employed in GWAS as a visual tool to depict

the statistical significance of associations between genetic variants and a phenotypic

trait across the entire genome. These plots utilize the negative logarithm of p-values

(-log p) on the y-axis and allow for the identification of significant associations through

peaks above the significance threshold. Manhattan plots are valuable for detecting the

presence of multiple associated genetic variants and providing an overview of the genomic

landscape of associations in GWAS studies [Paria et al. (2022)].

Figure | Manhattan Plot: Displaying the significantly associated genes related to skin
color through classical GWAS or unconditional models. Genome-wide suggestive: 10−5,
blue line; Genome-wide significance: 5× 10−8, red line

The above Manhattan plot indicates the P-values for corresponding SNPs which
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were calculated by using the classical or unconditional GWAS model. Blue and red lines

represent the genome-wide suggestive and genome-wide significance levels respectively.

The P-values above these thresholds (genome-wide suggestive: 10−5, blue line; genome-

wide significance: 5×10−8, red line) suggest significant SNP association with skin color.

The names of the candidate genes, which are closest to each association peak, are shown

in the figure. Notably, among all the other associated genes, two genes such as SLC45A2

and SLAC24A5 exhibit the strongest association with skin color.
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Using the CANDELA Cohort Database and equation (4.2), we can investigate the

efficacy of conditioning techniques and assess the improvement in statistical power when

identifying associations between genetic variants and traits like melanin. To demonstrate

the concept of power gain through conditioning, I have extracted two sets of summary-

level data from this cohort. The first dataset comprises unconditional ”P-values” for

approximately 9 million genetic variants. The second dataset includes ”P-values” for

genetic variants conditioned on known larger-effect variants, such as those present in

genes SLC45A2 and SLAC24A5. These datasets provide valuable context and motiva-

tion for understanding the concept of power gain achieved through conditioning.

Figure | Proof of Concept: Detection of new gene association imposing a condition on
some major effect SNPs

The conditional P-values for the genetic variants are represented by the points located

above the blue diagonal line, indicating that certain SNPs exhibit increased significance

after conditioning compared to their corresponding unconditional p-values. This obser-
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vation implies that some genetic variants, which were initially less significant, become

stronger through conditioning, as demonstrated by the points positioned above both the

red and blue lines. Consequently, conditioning on well-known major genetic variants

enables the identification of smaller-effect genetic variants with enhanced power. Fur-

thermore, biological verification ensured that these newly associated genes were relevant

for skin color [Adhikari et al. (2016a)]

4.4 Mathematical Derivations for 2-Variable LM

Let’s consider a linear regression model as follows

y = βww + ϵ (4.3)

where y is the response variable, w corresponds to a genetic variant of interest extracted

from X, and ϵ denotes the error term. For asymptotic distributions, assume that ϵ is

normally distributed i.e., ϵ ∼ N(0, σ2). Additionally, all variables in the model are mean

standardized, implying that there are no intercept terms included.

The inclusion of additional covariates in the linear regression framework leads to a

reduction in the mean square error (MSE) and standard error, consequently enhanc-

ing the precision of estimating and testing the regression coefficients of other covariates

[Rao (2002)]. In line with the steps described by Rao (2002) and Chatterjee (2012), we

introduce an additional variable, denoted as z, into equation (4.3) to demonstrate the in-

creased power gained through conditioning on this additional covariate. The conditional

linear regression model can be represented as follows:

y = βww + βzz + ϵ (4.4)

Here, βw and βz represent the regression coefficients for variables w and z, respec-
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tively, while ϵ denotes the error term.

4.5 Derivation of Regression Coefficients

Let σ2
w and σ2

z represent the variances of w and z, respectively. The covariance of w and

z can be denoted as σwz, while their correlation is denoted as rwz. Equation (4.4) can

be equivalently expressed in matrix form as:

y = Xβ + ϵ (4.5)

where,

y =



y1

y2
...

yn


, XT =

w1 w2 · · · xn

z1 z2 · · · zn

 , β =

βw
βz

 and ϵ =



ϵ1

ϵ2
...

ϵn


The estimate of the regression coefficient, denoted as β̂, represents an unbiased estimate

of β and can be obtained by performing the following calculation:

β̂ = (XTX)−1XTy

=

∑w2
∑
wz∑

zw
∑
z2


−1∑wy∑

zy


=

 σ2
w σwz

σzw σ2
z


−1σyw

σyz


=

1

σ2
wσ

2
z − σ2

wz

σ2
zσyw − σwzσyz

σ2
wσyz − σwzσyw
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=

β̂w
β̂z



4.5.1 Derivation of R2

The coefficient of determination (R2
y.x1,x2,··· ,xk

) represents the proportion of variation

in the dependent variable y that can be explained by the regressors X. It can be

mathematically expressed as follows:

R2
y.X =

SSR

SST
=
yTXβ̂

yTy
=
yTX(XTX)−1XTy

yTy
=
SyXS

−1
XXSXy

Syy

=
SyX

S
1/2
yy S

1/2
XX

(
SXX

S
1/2
XXS

1/2
XX

)−1
SXy

S
1/2
XXS

1/2
yy

= RyXR
−1
XXRXy

=

(
ryw ryz

) 1 rwz

rzw 1


−1ryw

ryz


=
r2yw + r2yz − 2rywryzrwz

(1− r2wz)

=
r2yw − r2ywr

2
wz + r2ywr

2
wz + r2yz − 2rywryzrwz

(1− r2wz)

= r2yw +
(ryz − rywrwz)

2

(1− r2wz)

= r2yw +
(ryz − rywrwz)

2

(1− r2wz)(1− r2yw)
.(1− r2yw)

= r2yw + r2yz.w(1− r2yw) since ryz.w =
ryz − rywrwz√

(1− r2yw)(1− r2wz)

Moreover, R2 can also be expressed in terms of the test statistics t2, specifically in

the case of univariate linear regression. Considering the linear regression equation (4.3),

the expression for R2
y.w is derived as follows [Proof in the appendix A.3]:

R2
y.w =

t2

t2 + n
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Here, the numerator represents the squared test statistic t2, while the denominator

incorporates both the squared test statistic t2 and the sample size n.

4.5.2 Derivation of MSE

The sum square of error (SSE) can also be simplified as:

SSE = yTy − yTX(XTX)−1XTy

= nσ2
y − n

(
σwy σzy

) σ2
w σwz

σzw σ2
z


−1σyw

σyz


= nσ2

y −
(

n

σ2
wσ

2
z − σ2

wz

)(
σwy σzy

) σ2
z −σwz

−σzw σ2
w


σyw
σyz


= nσ2

y −
(

n

σ2
wσ

2
z − σ2

wz

)[
σ2
zσ

2
yw + σ2

wσ
2
yz − 2σywσyzσwz

]

= nσ2
y − n

σ2
z

(
σyw

σyσw

)2
σ2
wσ

2
y + σ2

w

(
σyz

σyσz

)2
σ2
zσ

2
y − 2 σyw

σwσy

σyz

σzσy

σwz

σwσz
σ2
yσ

2
wσ

2
z

σ2
wσ

2
z

(
1−

(
σwz

σwσz

)2)


= nσ2
y − n

[
σ2
yσ

2
wσ

2
z

(
r2yw + r2yz − 2rywryzrwz

)
σ2
wσ

2
z(1− r2wz)

]

= nσ2
y

[
1−

(
r2yw + r2yz − 2rywryzrwz

1− r2wz

)]

So, the mean squared error (MSE) can be written as:

MSE = σ̂2 =
SSE

n− k − 1

=
n

n− k − 1
σ2
y

[
1−

(
r2yw + r2yz − 2rywryzrwz

1− r2wz

)]
∼= σ2

y

[
1−

(
r2yw + r2yz − 2rywryzrwz

1− r2wz

)]
= σ2

y

[
1−

(
r2yw − r2ywr

2
wz + r2ywr

2
wz + r2yz − 2ryw2ryzrwz

(1− r2wz)

)]
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= σ2
y

[
1−

(
r2yw +

(ryz − rywrwz)
2

(1− r2wz)

)]
= σ2

y

[
1−

(
r2yw +

(ryz − rywrwz)
2

(1− r2wz)(1− r2yw)
.(1− r2yw)

)]
= σ2

y

[
1−

(
r2yw + r2yz.w(1− r2yw)

)]
since ryz.w =

ryz − rywrwz√
(1− r2yw)(1− r2wz)

(4.6)

∴ MSE ∼= σ2
y

[
1−

(
r2yw + r2yz.w(1− r2yw)

)]
= σ2

y

[
1−R2

y.X

]
4.5.3 Derivation of SE

The calculation for obtaining the asymptotic variance-covariance matrix of the regression

coefficient (β̂) is as follows:

V ar(β̂) = σ̂2(XTX)−1

=
σ̂2

n(σ2
wσ

2
z − σ2

wz)

 σ2
z −σwz

−σzw σ2
w

 [
here, σ̂2 ∼= σ2

y

(
1− r2yw − r2yz.w(1− r2yw)

)]

So, the asymptotic distribution of the estimate of the regression coefficients can be

written as

β̂w ∼ N

(
σ2
zσyw − σwzσyz
σ2
wσ

2
z − σ2

wz

,
σ2
z

n(σ2
wσ

2
z − σ2

wz)
σ2
y

(
1− r2yw − r2yz.w(1− r2yw)

))

β̂z ∼ N

(
σ2
wσyz − σwzσyw
σ2
wσ

2
z − σ2

wz

,
σ2
w

n(σ2
wσ

2
z − σ2

wz)
σ2
y

(
1− r2yz − r2yw.z(1− r2yz)

))

4.5.4 MSE when Covariates are Uncorrelated

Considering the regression model (4.4) under the assumption that the covariates w and

z are uncorrelated, denoted by σwz = 0 or rwz = 0, the mean square error (MSE) takes
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on a specific form as derived in equation (4.6) as follow:

MSE = σ̂2 ∼= σ2
y

[
1− r2yw − r2yz

] ∼= σ2
y

[
1−R2

y.X

]
The asymptotic distribution of the estimate of the regression coefficients will be

β̂w ∼ N

(
σwy

σ2
w

,
σ2
y

nσ2
w

[1− r2wy − r2zy]

)
(4.7)

β̂z ∼ N

(
σzy
σ2
z

,
σ2
y

nσ2
z

[1− r2zy − r2wy]

)

4.5.5 Proof of Concept: Gain of Power

Let’s consider the scenario where we want to assess the significance of a specific SNP,

denoted as w. We are interested in testing the hypothesisH0 : βw = 0 versusHa : βw ̸= 0,

but without loss of generality, we assume that βalt is positive.

The asymptotic variance of the estimated effect size, β̂w, is represented by V . Under

the null hypothesis, we can express the probability as follows: P
(
| β̂w−0√

V
| > tα

)
= α.

Under the alternative hypothesis, the power of the test can be obtained as

Q = P
(
| β̂w − βalt√

V
| > tα

)
= P

( β̂w − βalt√
V

< −tα
)
+ P

( β̂w − βalt√
V

> tα

)
= P

( β̂w√
V
<
βalt√
V

− tα

)
+ P

( β̂w√
V
>
βalt√
V

+ tα

)
= Φ

( βalt√
V

− tα

)
+ 1− Φ

( βalt√
V

+ tα

)
= Φ

( βalt√
V

− tα

)
+ Φ

(
− βalt√

V
− tα

)
∼= Φ

( βalt√
V

− tα

)
(4.8)

here, Φ indicates the cumulative distribution function (CDF) of the normal distribution
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which is a monotonically increasing function. As the asymptotic variance V decreases

when an additional covariate is included in the model, the entire term within the Φ func-

tion becomes larger. Consequently, the corresponding term Q increases in magnitude,

resulting in a higher power of the statistical test.

Considering the unconditional regression model represented by equation (4.3), the

Mean Squared Error (MSE) can be approximated as; σ̂2 ∼= σ2
y

(
1− r2wy

)
. Additionally,

the asymptotic distribution of β̂w follows a normal distribution given by

β̂w ∼ N

(
σwy

σ2
w

,
σ2
y(1− r2wy)

nσ2
w

)
(4.9)

Here, σwy represents the covariance between the dependent variable y and the inde-

pendent variable w, σ2
w denotes the variance of variable w, r2wy signifies the squared

correlation coefficient between w and y, and n represents the sample size.

Equations (4.7) and (4.9) demonstrate that incorporating an additional covariate (z)

along with the tested SNP leads to a smaller mean square error (MSE) for β̂w. The

reduction in MSE is quantified as r2zy, which represents a fraction of the trait variance

(σ2
y). Consequently, the standard error of β̂w for the model (4.7) becomes smaller,

thereby enhancing the statistical power to test the effect of a new genetic variant.

These findings imply that incorporating additional covariates, even when uncorre-

lated, in a regression model, can enhance the precision of regression coefficients and

increase statistical power by explaining a portion of the original trait variance. This

mathematical justification supports the practice of conditioning on major single nu-

cleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Notably,

the estimation and testing of βw remain valid under conditioning, as β̂w remains an

unbiased and asymptotically normal estimator of βw in both scenarios.

Though GWAS assumes the simplifying assumption of uncorrelated covariates due to

the index SNPs residing in separate linkage disequilibrium (LD) blocks, similar results
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hold true for correlated covariates. In such cases, the gain in power also depends on the

partial correlation between the covariates (r2yw.z) [Rao (2002)]. These findings highlight

the importance of considering the effects of correlated covariates in GWAS and support

the use of conditioning techniques to improve the accuracy and reliability of genetic

association analyses.

The identification of new genetic variants with increased power is a desirable goal,

but its feasibility depends on various factors such as the nature of the variants (e.g.,

effect sizes), the correlation among the variants, and the sample size. To understand the

nature of changes in power when identifying a new variant, it is necessary to consider the

following different modeling setups, particularly discussed in the context of two variant

situations.

4.5.5.1 Expression of Gain of Power when Fitting a Simple Regression

Model but the True Model is a 2-Variable Model

Let’s consider a scenario where two genetic variants, denoted as w and z, are respon-

sible for the variation in a phenotypic trait of interest, y. However, we mistakenly fit a

null model that includes only one of these variants. The null model can be expressed as:

yi = β∗
wwi + ϵ∗i (4.10)

In this equation, ϵ∗ represents a random error term following a normal distribution,

i.e., ϵ∗ ∼ N(0, σ2). For simplicity, we assume a mean-standardized model without an

intercept term. However, in reality, the phenotypic trait depends on both w and z, i.e.,

yi ∼ N(βww+βzz, σ
2). By considering the wrong null model, the estimated effect of the

tested genetic variant, denoted as β̂∗
w, may be influenced by neighboring variants. We

can express the effect size of a model in terms of the correlation coefficient as follows:

ryw = σyw

σyσw
= βw

σw

σy
and the estimate of the considered regression model (4.10) can be
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obtained as

β̂∗
w =

∑
wiyi∑
w2

i

=

∑
wi(βwwi + βzzi + ϵi)∑

w2
i

= βw + βz

∑
wizi∑
w2

i

+

∑
wiϵi∑
w2

i

∴ E(β̂∗
w) = βw + βz

∑
wizi∑
w2

i

= βw + βz
σwz

σ2
w

= βw + βz

(
σwz

σwσz

)(
σz
σw

)
= βw + βzrwz

(
σz
σw

)
= βw + r2wz

That implies that the estimated effect size of the considered regression model is biased

due to ignoring the effect of the related genetic variant (z). This will be unbiased only

if the two variants are uncorrelated, i.e., r2wz = 0. The variance of the estimated effect

size can be obtained as V (β̂∗
w) =

σ̂2∑
w2

i
; where σ̂2 =MSE = SSE

n−1
. The sum square error

(SSE) can be obtained as:

SSE =
∑

(yi − ŷ)2 =
∑

(yi − β̂∗
ww)

2

=
∑

(y2i − 2β̂∗
wyiwi + β̂2

w∗w2
i )

=
∑

y2i − 2β̂∗
w

∑
wiyi + β̂2

w∗

∑
w2

i

=
∑

y2i − 2

∑
wiyi∑
w2

i

∑
wiyi +

(∑
wiyi∑
w2

i

)2∑
w2

i

=
∑

y2i −
(
∑
wiyi)

2∑
w2

i

= nσ2
y −

n2σ2
wy

nσ2
w

= nσ2
y − n

(
σwy

σwσy

)2

σ2
y

= nσ2
y − nr2wyσ

2
y
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= nσ2
y(1− r2wy)

∴ σ̂2 =
SSE

(n− 1)
=
nσ2

y(1− r2wy)

(n− 1)
≈ σ2

y(1− r2wy)

and V (β̂∗
w) =

σ̂2∑
w2

i

=
σ2
y(1− r2wy)

nσ2
w

That is, the asymptotic distribution of β̂∗
w follows as β̂∗

w ∼ N
(
βw + r2wz,

σ2
y(1−r2wy)

nσ2
w

)
. It

indicates that the asymptotic mean of the effect size is biased, which is coming through

the LD with the neighborhood variant (z), i.e., r2wz, and the asymptotic variance becomes

as same as the single variable model. However, only the difference is that the variation

of the response variable (σ2
y) depends on both of the true effects (w&z).

Neglecting the presence of another true effect (represented by z) in a statistical model

can have a substantial impact on the statistical power of a hypothesis test. The reason

is that the ignored SNP may have a substantial impact on the trait of interest, and by

ignoring it, we eliminate crucial information that could assist in the detection of the SNP

being tested. Assuming that the hypothesis is being tested for the effect described in

the model (4.10) and the true β is positive, then the power of the test can be expressed

as follows:

Power Q∗ = Φ
( βalt√

V
∗ − tα

)
= Φ

(
βalt

√
nσ2

w

σ2
y(1− r2wy)

− tα

)
(4.11)

Consider again the scenario where we are testing the hypothesis for a specific variant

while simultaneously including another uncorrelated true variant in the model. Assum-

ing that the true β is positive, we can determine the power of the test by utilizing the
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asymptotic distribution of β̂w as discussed in equation (4.7) as follows:

Power Q = Φ
( βalt√

V
− tα

)
= Φ

(
βalt

√
nσ2

w

σ2
y(1− r2wy − r2yz)

− tα

)
(4.12)

The quantification of power gain can be determined by calculating the difference between

two expressions of power using equations (4.11) and (4.12), as follows:

Q−Q∗ = Φ

(
βalt

√
nσ2

w

σ2
y(1− r2wy − r2yz)

− tα

)
− Φ

(
βalt

√
nσ2

w

σ2
y(1− r2wy)

− tα

)
(4.13)

When no LD situation holds, equation (4.13) demonstrates that the gain in power

is influenced by various factors, including the correlation between the trait of interest

and the genetic variants (r2yw and r2yz), the variance of the trait (σ2
y), the effect size of

the variant, and the sample size. Notably, the correlation between the trait of interest

and the conditional variant (r2yz) plays a crucial role in determining the magnitude of

power gain. A higher correlation indicates a greater potential for power gain through

conditioning.

However, for both cases described in equations (4.11) and (4.12), the power primarily

depends on the effect size of the variant. In other words, variants with smaller effect sizes

exhibit lower power. Eventually, as the effect size decreases, the power gain achieved

through conditioning becomes negligible, requiring a substantial sample size to observe

any significant power gain.

To further understand the nature of power gain resulting from conditioning, real-life

genetic databases such as the CANDELA Cohort and UK Biobank have been used to

provide empirical evidence and insights into the power gain phenomenon in the demon-

stration section.
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4.5.5.2 Validataion of the Model under the Null Scenario i.e., βw = 0, βz ̸= 0, r2wz ̸= 0

Suppose we are fitting a regression model with two genetic variants (w&z), where

the variant z is causal but w is not. The regression model can be written as yi =

βwwi + βzzi + ϵi, where ϵi ∼ N(0, σ2).The estimate of the effect size βw can be obtained

as

β̂w =

∑
z2i
∑
wiyi −

∑
wizi

∑
ziyi∑

w2
i

∑
z2i − (

∑
wizi)2

and E(β̂w) =

∑
z2i
∑
wi(βwwi + βzzi)−

∑
wizi

∑
zi(βwwi + βzzi)∑

w2
i

∑
z2i − (

∑
wizi)2

=
βw [
∑
z2i
∑
w2

i − (
∑
wizi)

2]∑
w2

i

∑
z2i − (

∑
wizi)2

= βw

= 0 [Under the Null i.e., βw = 0]

This implies that, under the null model (H0 : βw = 0), the mean of the estimated effect

size (β̂w) is zero, even when the causal variant (z) is accounted for in the model. However,

as we discussed in the previous section, if a model is incorrectly treated as a null model,

the mean of the variant effect size (β̂∗
w) becomes biased i.e., E(β̂∗

w) = βw + r2wz ̸= 0,

where r2wz represents the linkage disequilibrium (LD) between the two variants.

In the scenario where the two variants are uncorrelated (i.e., r2wz = 0), the null

model suggests that the mean effect size of the variant will be zero, representing an ideal

situation.

However, if the two variants exhibit linkage disequilibrium (LD) with each other,

indicated by a non-zero squared LD coefficient (r2wz ̸= 0), the null model will no longer

have a mean effect size of zero (E(β̂w) ̸= 0). This is because there is a possibility

of an LD effect originating from the neighboring variant. Consequently, if we have a
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proxy variant located near the causal variant, which itself does not directly impact the

trait, conditioning on the causal variant will reveal that the proxy variant is merely

a result of LD and not causal itself. This scenario frequently occurs in genome-wide

association studies (GWAS), where a causal variant may be mistakenly ungenotyped,

and the association picks that show significant associations may be entirely due to a

proxy variant.

When a fine-mapping approach investigates variant causality, it is necessary to in-

corporate the functional annotations of the genetic variant as well as understand the

biological mechanisms underlying the association signals identified in GWAS [Wang and

Huang (2022)]. So, in the case of evaluating a genetic variant’s causality with a trait,

the aforementioned mathematical model is not practically useful. However, if the ob-

jective is to assess the effect of a specific variant (w) by conditioning on a potential

causal variant (z), our mathematical derivations align with the standard conventions of

genome-wide association studies (GWAS).

4.5.5.3 Validation of the Model when the Conditional Variant has no Effect

(i.e., βz = 0)

Let us consider a regression model with two genetic variants where the effect size of

the conditional genetic variant z has no impact on the phenotypic trait y i.e., βz = 0 or

ryz = 0 (since βz = ryz
σy

σz
). Referring to the asymptotic distribution of effect sizes for a

regression model with two genetic variants discussed in section (4.5.3), we can determine

the asymptotic mean and variance of the other variant w as follows:

β̂w =
σ2
zσyw − σwzσyz
σ2
wσ

2
z − σ2

wz

=
σyw − σwzβz

σ2
w − σ2

wz
βz

σyz
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=
σyw
σ2
w

and V (β̂w) =
σ2
zσ

2
y

n(σ2
wσ

2
z − σ2

wz)

[
1−

(
r2yw + r2yz − 2rywryzrwz

1− r2wz

)]
=

σ2
y

nσ2
w(1− r2wz)

[
1−

(
r2yw + r2yz − 2rywryzrwz

1− r2wz

)]
=

σ2
y

nσ2
w(1− r2wz)

[
1−

r2yw
(1− r2wz)

]
=

σ2
y

nσ2
w

[
1− r2yw − r2wz

(1− r2wz)
2

]

Setting βz = 0 in the 2-variable regression model leads to specific simplifications.

Notably, the asymptotic mean of the effect size, denoted as β̂w, becomes the same as

that of the single variable model. However, there is a difference in the asymptotic

variance, as both the numerator and the denominator have reduced amounts of non-

negative fractions

When there is no linkage disequilibrium (LD) or correlation between the two vari-

ables, i.e., r2wz = 0, the asymptotic variance of β̂w becomes exactly the same as in the

single variable model, that is, v(β̂w) =
σ2
y(1−r2yw)

nσ2
w

.

However, when the variants are in linkage disequilibrium (LD) or are correlated, the

extent of change in the asymptotic variance can be expressed as follows:

V (β̂w)− V (b̂w) =
σ2
y

nσ2
w

[
1− r2yw − r2wz

(1− r2wz)
2

− (1− r2yw)

]
=

σ2
y

nσ2
w((1− r2wz)

2)

(
1− r2yw − r2wz − 1 + r2yw + 2r2wz − 2r2wzr

2
yw − r4wz + r4wzr

2
yw

)
=

σ2
y

nσ2
w((1− r2wz)

2)

(
r2wz − r4wz − 2r2wzr

2
yw + r2ywr

4
wz

)
So, even if the conditioning variant (SNP) is not associated with the trait of interest

(βz = 0), it may still exhibit linkage disequilibrium (LD) with the target SNP, influencing

the asymptotic variance. Considering that the asymptotic variance plays a crucial role

97



in determining statistical power, caution should be made when interpreting the results

if the variants are correlated. The presence of LD between the variants can impact the

precision and reliability of the effect size estimates, which in turn affects the ability to

detect true associations between genetic variants and the trait.

4.6 Mathematical Derivations for Multiple Regression Model

A joint multi-SNP model refers to a statistical framework where a quantitative trait is

influenced by multiple genetic variants. Considering the collective impact of multiple

SNPs (Single Nucleotide Polymorphisms), a joint multi-SNP model can be defined as

y = Xβ + ϵ (4.14)

where, y is an (n× 1) vector of phenotypes of size n, X is an (n×m) genotype matrix,

and β is the (m× 1) vector of joint SNP effects. The joint estimates of this model can

be obtained as β̂ = (XTX)−1XTy and the variance-covariance matrix will be V ar(β̂) =

σ̂2(XTX)−1, where, σ̂2 is the mean square error (MSE) which can be obtained as

σ̂2 =
SSE

n−m− 1

=
(y −Xβ̂)T (y −Xβ̂)

n−m− 1

=
yTy − yTXβ̂ − β̂TXTy + β̂TXTXβ̂

n−m− 1

=
yTy − yTXβ̂ − β̂TXTy + β̂TXTy

n−m− 1

=
yTy − yTX(XTX)−1XTy

n−m− 1

=
yT (I −H)y

n−m− 1
[here, H=X(XTX)−1XT , is a hat matrix ]

For the joint model, the multiple correlation coefficient (R2
y.x1,x2,··· ,xm

) can be ex-
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pressed as

R2
y.x1,x2,··· ,xm

=
SSR

SST

=
yTXβ̂

yTy

=
yTX(XTX)−1XTy

yTy

=
SyXS

−1
XXSXy

Syy

=
SyX

S
1/2
yy S

1/2
XX

(
SXX

S
1/2
XXS

1/2
XX

)−1
SXy

S
1/2
XXS

1/2
yy

= RyXR
−1
XXRXy

4.7 Single-SNP Model vs. Joint-SNP Model

Genome-wide association studies (GWAS) usually test the association between pheno-

typic traits and genetic variants, taking each SNP separately based on a single-SNP

model as

y = xjbj + ϵ ; j = 1, 2, · · · ,m. (4.15)

where, xj is the jth genetic variant and bj is the marginal effect for the SNP j. The

marginal effects for all the genetic variants from a single SNP-based model can be ex-

pressed in a matrix form as

b̂ = D−1XTy

=

(
D

n

)−1
1

n
XTy

= V −1
d

1

n
XTy

∴ Vdb̂ =
1

n
XTy
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where, b̂ is a m×1 vector of marginal SNP effects and D is the diagonal matrix of XTX.

Suppose, V is a covariance matrix of X i.e., V = 1
n
XTX and Vd is a diagonal variance

matrix which is defined as Vd =
D
n
, then it can be shown that the covariance matrix can

be interchanged with the diagonal matrix as V =
√
VdR

√
Vd. Based on this expressions,

the joint SNP effect β̂ can be obtained from the marginal SNP effects (b̂) as

β̂ = (XTX)−1XTy =

(
1

n
XTX

)−1(
1

n
XTY

)
= V −1 1

n
XTY

= V
−1/2
d R−1V

−1/2
d

(
1

n
XTY

)
= V

−1/2
d R−1V

−1/2
d Vdb̂

= V
−1/2
d R−1V

1/2
d b̂

Yang et al. (2012) expressed the estimate of the single SNP model as Db̂ = XTy and

demonstrated the connection with the multi-SNP estimate as β̂ = (XTX)−1Db̂.

4.8 2-Block LM

In genome-wide association studies (GWAS), numerous SNPs have been found to be

associated with variations in different phenotypes. However, certain phenotypes, such

as human pigmentation traits, are primarily influenced by a few key SNPs that explain

a significant proportion of the phenotypic variation. To enhance the power of identifying

new SNPs associated with these traits, it is possible to consider these major SNPs as a

block and condition on them.

Diagram: Classical GWAS Model for Genetic
Association

In this section, I approached the design

matrix of a multiple regression model as a

two-block matrix. The first block consists

of the tested SNPs, while the second block

includes additional covariates such as con-

ditioning SNPs, genetic principal compo-
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nents (PCs), or non-genetic covariates like

age and sex. In classical GWAS, the ge-

netic data is typically adjusted using ge-

netic PCs before performing univariate re-

gression on each SNP individually. Consequently, the major SNPs in the conditioning

block have already been adjusted.

However, when conducting joint or conditional analysis, it becomes crucial to adjust

the tested SNPs to maintain uniformity with the conditioning block. Interestingly, in

their demonstration of conditional analysis for two-block matrix scenarios, Yang et al.

(2012) neglected this adjustment despite using PC-adjusted summary statistics to iden-

tify conditional effects.

4.8.1 Expression of Regression Coefficeints

Suppose, a multiple linear regression setup, where the design matrix, X consists of 2

blocks such as

X = (X1, X2, · · · , Xk︸ ︷︷ ︸
XA

, Xk+1, · · · , Xm︸ ︷︷ ︸
XB

= (XA, XB)

ΣXy =
1

n

XT
Ay

XT
By

 =

ΣAy

ΣBy



ΣXX =
1

n

XT
AXA XT

AXB

XT
BXA XT

BXB

 =

ΣAA ΣAB

ΣBA ΣBB


here, XA is a block of tested SNPs and XB is a set of any other covariates such as

conditioning SNPs, genetic PCs, or other covariates say, age, sex, etc. ΣAA and ΣBB

are invertible, and ΣT
AB = ΣBA. The inverse of the covariance matrix, when the design

matrix has two blocks, i.e., Σ−1
XX can be found with the help of the following formula
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[Lu and Shiou (2002)]

A B

C D


−1

=

(A−BD−1C)−1 0

0 (D − CA−1B)−1


 I −BD−1

−CA−1 I
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Σ−1
XX =

ΣAA ΣAB

ΣBA ΣBB


−1

=

(ΣAA − ΣABΣ
−1
BBΣBA)

−1 0

0 (ΣBB − ΣBAΣ
−1
AAΣAB)

−1


 I −ΣABΣ

−1
BB

−ΣBAΣ
−1
AA I


= n

(XT
AXA −XT

AXB(X
T
BXB)

−1XT
BXA)

−1 0

0 (XT
BXB −XT

BXA(X
T
AXA)

−1XT
AXB)

−1


 I −XT

AXB(X
T
BXB)

−1

−XT
BXA(X

T
AXA)

−1 I


= n

(XT
AXA −XT

AHBXA)
−1 0

0 (XT
BXB −XT

BHAXB)
−1


 I −XT

AXB(X
T
BXB)

−1

−XT
BXA(X

T
AXA)

−1 I

 [where, HB = XB(X
T
BXB)

−1XT
B ]

= n

(XT
A(I −HB)XA)

−1 0

0 (XT
B(I −HA)XB)

−1


 I −XT

AXB(X
T
BXB)

−1

−XT
BXA(X

T
AXA)

−1 I


= n

 (
XT

A(I −HB)XA

)−1 −
(
XT

A(I −HB)XA

)−1
XT

AXB(X
T
BXB)

−1

−
(
XT

B(I −HA)XB

)−1
XT

BXA(X
T
AXA)

−1
(
XT

B(I −HA)XB

)−1



β̂ = Σ−1
XXΣXy
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=

ΣAA ΣAB

ΣBA ΣBB


−1 ΣAy

ΣBy


= n

 (
XT

A(I −HB)XA

)−1 −
(
XT

A(I −HB)XA

)−1
XT

AXB(X
T
BXB)

−1

−
(
XT

B(I −HA)XB

)−1
XT

BXA(X
T
AXA)

−1
(
XT

B(I −HA)XB

)−1

 . 1
n

XT
Ay

XT
By


=

(XT
A(I −HB)XA

)−1
XT

Ay −
(
XT

A(I −HB)XA

)−1
XT

AXB(X
T
BXB)

−1XT
By(

XT
B(I −HA)XB

)−1
XT

By −
(
XT

B(I −HA)XB

)−1
XT

BXA(X
T
AXA)

−1XT
Ay


=

(XT
A(I −HB)XA

)−1
XT

Ay −
(
XT

A(I −HB)XA

)−1
XT

AHBy(
XT

B(I −HA)XB

)−1
XT

By −
(
XT

B(I −HA)XB

)−1
XT

BHAy


=

(XT
A(I −HB)XA

)−1
XT

A(I −HB)y(
XT

B(I −HA)XB

)−1
XT

B(I −HA)y


=

β̂T
A

β̂T
B
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Note that, in the 2-block case, the estimate for the tested SNPs block, β̂T
A =(

XT
A(I −HB)XA

)−1
XT

A(I−HB)y is obtained by conditioning on the second block which

contains already explored major SNPs.

4.8.2 Expression of Regression Coefficients in terms of Residuals

The effects of the conditioning model can also be examined by analyzing the residuals of

regression models. In the scenario where the response variable (y) and the tested SNPs

block (XA) are regressed on the conditioning block (XB), the outcomes of the tested

SNPs block in the 2-block case can be considered as linear models using the residuals.

Suppose, ỹ|B = (I −HB)y and X̃A|B = (I −HB)XA are the residuals, if the response

(y) and tested SNPs block (XA) are regressed on conditioning block (XB); where HB =

XB(X
T
BXB)

−1XT
B and it is idempotent. The estimates of regression coefficients, in the

2-block case, can be expressed in terms of residuals as

β̂ = Σ−1
XXΣXy

=

(XT
A(I −HB)XA

)−1
XT

A(I −HB)y(
XT

B(I −HA)XB

)−1
XT

B(I −HA)y

 [Using, (I −HB)
T (I −HB) = (I −HB)]

=

(XT
A(I −HB)

T (I −HB)XA

)−1
XT

A(I −HB)
T (I −HB)y(

XT
B(I −HA)

T (I −HA)XB

)−1
XT

B(I −HA)
T (I −HA)y


=

(((I −HB)XA)
T (I −HB)XA)

)−1
((I −HB)XA)

T (I −HB)y(
((I −HA)XB)

T (I −HA)XB)
)−1

((I −HA)XB)
T (I −HA)y


=

(X̃T
A|BX̃A|B)

−1X̃T
A|B ỹ|B

(X̃T
B|AX̃B|A)

−1X̃T
B|Aỹ|A
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4.8.3 Derivation of Estimates arising from Yang et al. (2012)

Yang et al. (2012) derived the conditional estimates, considering a design matrix with

having two sets of covariates such as XA and XB, but not as a blocked matrix. The

normal equations for this setup of multivariate regression can be written as

XT
AXAβ̂A +XT

AXBβ̂B = XT
Ay

XT
BXAβ̂A +XT

BXBβ̂B = XT
By

They showed that the estimate for the first block (XA) can be obtained by condi-

tioning on the second block (XB) as follows

β̂A|B = (XT
AXA)

−1XT
Ay − (XT

AXA)
−1XT

AXBβ̂B (4.16)

Yang et al. (2012) also expressed the above conditional estimate in terms of marginal

SNP effects as

β̂A|B = (XT
AXA)

−1XT
Ay − (XT

AXA)
−1XT

AXBβ̂B

= (XT
AXA)

−1XT
Ay − (XT

AXA)
−1XT

AXB(X
T
BXB)

−1XT
By

= (XT
AXA)

−1XT
Ay − (XT

AXA)
−1XT

AXB(X
T
BXB)

−1DB b̂B

= (XT
AXA)

−1DAb̂A − (XT
AXA)

−1XT
AXB(X

T
BXB)

−1DB b̂B (4.17)

where, both β̂A and β̂B are the estimates of the joint multivariate regression model and

b̂B is the univariate regression estimates for the set of covariates on which condition is

applied. If the first set, XA contains just one variable (say,X1), then the equation (4.17)

can be written as

β̂A|B = (XT
1 X1)

−1XT
1 y − (XT

1 X1)
−1XT

1 XB(X
T
BXB)

−1DB b̂B
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= b̂1 − (XT
1 X1)

−1XT
1 XB(X

T
BXB)

−1DB b̂B (4.18)

4.8.4 MSE in Multiple Regression Model

Suppose the two blocks of the design matrix contain m1 and m2 number of covari-

ates in each block, respectively and it has been shown in the previous section that

the coefficient of regression for the first block conditioning on the second block is

β̂A|B =
(
X̃T

A|BX̃
T
A|B

)−1

X̃T
A|B ỹ|B and the variance of this estimate will be Var(β̂A|B) =

ˆ̃σ2
(
X̃T

A|BX̃
T
A|B

)−1

, where, ˆ̃σ2 is the mean square error (MSE) which can be obtained as

MSE = ˆ̃σ2 =
SSE

n−m1 −m2

=
yTy − yTHy

n−m1 −m2

The term yTHy can be found as
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H = X(XTX)−1XT

=
1

n
X(

1

n
XTX)−1XT

=
1

n
XΣ−1

XXX
T

=
1

n

[
XA XB

]
n

 (
XT

A(I −HB)XA

)−1 −
(
XT

A(I −HB)XA

)−1
XT

AXB(X
T
BXB)

−1

−
(
XT

B(I −HA)XB

)−1
XT

BXA(X
T
AXA)

−1
(
XT

B(I −HA)XB

)−1


XT

A

XT
B


= XA

(
XT

A(I −HB)XA

)−1
XT

A −XB

(
XT

B(I −HA)XB

)−1
XT

BXA(X
T
AXA)

−1XT
A

+XB

(
XT

B(I −HA)XB

)−1
XT

B −XA

(
XT

A(I −HB)XA

)−1
XT

AXB(X
T
BXB)

−1XT
B

= XA

(
XT

A(I −HB)XA

)−1
XT

A −XB

(
XT

B(I −HA)XB

)−1
XT

BHA

+XB

(
XT

B(I −HA)XB

)−1
XT

B −XA

(
XT

A(I −HB)XA

)−1
XT

AHB

= XA

(
XT

A(I −HB)XA

)−1
XT

A(I −HB) +XB

(
XT

B(I −HA)XB

)−1
XT

B(I −HA)

= XA

(
XT

A(I −HB)
T (I −HB)XA

)−1
XT

A(I −HB)
T (I −HB) +XB

(
XT

B(I −HA)
T (I −HA)XB

)−1
XT

B(I −HA)
T (I −HA)

= XA

(
X̃T

A|BX̃A|B

)−1

X̃T
A|B(I −HB) +XB

(
X̃T

B|AX̃B|A

)−1

X̃T
B|A(I −HA)
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yTHy = yTXA

(
X̃T

A|BX̃A|B

)−1

X̃T
A|B(I −HB)y + yTXB

(
X̃T

B|AX̃B|A

)−1

X̃T
B|A(I −HA)y

= yTXA

(
X̃T

A|BX̃A|B

)−1

X̃T
A|B ỹ|B + yTXB

(
X̃T

B|AX̃B|A

)−1

X̃T
B|Aỹ|A

= yTXAβ̂A + yTXBβ̂B

= yTXA

[
(XT

AXA)
−1XT

Ay − (XT
AXA)

−1XT
AXBβ̂B

]
+ yTXBβ̂B [Using equation (4.16)]

= yTXA(X
T
AXA)

−1XT
Ay − yTXA(X

T
AXA)

−1XT
AXBβ̂B + yTXBβ̂B

= yTHAy − yTHAXBβ̂B + yTXBβ̂B

= yTHAy + yT (I −HA)XBβ̂B

= yTHAy + yT (I −HA)
T (I −HA)XB

(
X̃T

B|AX̃B|A

)−1

X̃T
B|Aỹ|A

= yTHAy + ỹT|AX̃B|A

(
X̃T

B|AX̃B|A

)−1

X̃T
B|Aỹ|A

= yTHAy + ỹT|AH̃B|Aỹ|A (4.19)

In GWAS, it is common practice to exclude individuals who exhibit close genetic

relationships with all autosomal single nucleotide polymorphisms (SNPs). This is done

to focus on causal variants that are not in linkage disequilibrium (LD) with other genetic

variations [Yang et al. (2011)].

When there is no LD, the individuals are considered genetically pairwise unrelated,

and this allows for simplifications in the mathematical expressions. Specifically, in the

case where the blocks of the design matrix are uncorrelated, denoted as XT
AXB = 0, the

expression for yTHy can be simplified as follows.

yTHy = yTHAy + ỹT|AH̃B|Aỹ|A

= yTHAy + yT (I −HA)
T (I −HA)XB

(
XT

B(I −HA)XB

)−1
XT

B(I −HA)
T (I −HA)y

= yTHAy + yT (I −HA)XB

(
XT

BXB −XT
BHAXB

)−1
XT

B(I −HA)y
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= yTHAy + yTXB

(
XT

BXB

)−1
XT

By = yTHAy + yTHBy (4.20)

4.8.5 Gain of Power in Multiple Regression Model Setting

Considering a multivariate regression case, where the design matrix has only one block

say, XA, then the regression coefficient of the model will be β̂A = (XT
AXA)

−1XT
Ay and

the variance of the estimate, Var(β̂A) = σ̂2(XT
AXA)

−1, where, σ̂2 =MSE = SSE(A)
n−m1−1

and

SSE(A) = yTy − yTHAy = yTy − yTXA(X
T
AXA)

−1XT
Ay.

If the design matrix contains an additional block of a matrix, say, XB, then the

regression coefficient of XA can be obtained by conditioning on the other block XB,

which has been discussed in subsection (3.8.2) asβ̂A|B =
(
X̃T

A|BX̃
T
A|B

)−1

X̃T
A|B ỹ|B and the

the variance can be obtained as, Var(β̂A|B) = ˆ̃σ2
(
X̃T

A|BX̃
T
A|B

)−1

, where, X̃T
A|BX̃

T
A|B =

XT
A(I −HB)XA and ˆ̃σ2 is the mean square error (MSE) of the conditioned model, and

the sum square error of the conditoned model, SSE(A|B), can be shown as

SSE(A|B) = yTy − yTHy

= yTy − yTHAy − ỹT|AH̃B|Aỹ|A [Using the equation (4.19)]

= SSE(A)− ỹT|AH̃B|Aỹ|A

= SSE(A)− a non-negative term

∴ SSE(A|B) ≤ SSE(A)

Eventually, ˆ̃σ2 ≤ σ̂2

The above mathematical simplification indicates that the error sum of square gets a

reduction by the amount denoted as ỹT|A
˜HB|Aỹ|A, which is a non-negative term. This

reduction is achieved by conditioning on an additional set of covariates, represented by

XB. As the standard error or mean square error (MSE) has an inverse relationship with

statistical power and precision, the decrease in MSE leads to an improvement in the
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power to detect new SNPs. Therefore, this reduction in MSE enhances the ability to

discover and identify novel genetic variants with greater power.

When the two blocks of the design matrix are not correlated, i.e., XT
AXB = 0, then

the above simplifications can be shown as β̂A|B =
(
X̃T

A|BX̃
T
A|B

)−1

X̃T
A|B ỹ|B = β̂A and the

the variance, Var(β̂A|B) = ˆ̃σ2
(
X̃T

A|BX̃
T
A|B

)−1

= ˆ̃σ2(XT
AXA)

−1, and the sum square error,

SSE(A|B), can be shown as

SSE(A|B) = yTy − yTHy

= yTy − yTHAy − ỹT|AH̃B|Aỹ|A

= yTy − yTHAy − yTHBy [Using the equation (4.20)]

= SSE(A)− a non-negative term

∴ SSE(A|B) ≤ SSE(A)

Eventually, ˆ̃σ2 ≤ σ̂2

The inequality presented above demonstrates that even if the two blocks of the design

matrix are uncorrelated, incorporating an extra block of covariates or conditioning on

an additional set of covariates in the model can result in a reduction in the mean square

error. This reduction, denoted as yTHBy, is always a non-negative term, indicating that

it will inevitably enhance statistical power.

4.9 3-Block LM

In the classical Genome-Wide Association Study (GWAS), it is common practice to

adjust the genotype data by incorporating genetic principal components (PCs) and other

non-genetic covariates like age and sex. This adjustment helps to account for population

structure and reduce variations that could arise due to such factors. Following the

adjustment, a single-SNP modeling approach is typically employed to generate GWAS
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summary statistics.

Diagram: Proposed Conditional Model for Genetic Association

To address the impact of PCs adjustment in conditional models, I presented a math-

ematical simplification for a multiple regression model. I split the design matrix of a

multiple regression model into three blocks: the tested SNPs block, a set of major SNPs

on which conditioning will be performed, and a covariates block that may include genetic

PCs and non-genetic covariates like age and sex.

To compute the joint or conditional effects from the derived mathematical expres-

sions, GWAS summary statistics are necessary, which are usually calculated using genetic

databases that are covariates adjusted. Additionally, a reference sample with individual-

level genotype data is required to calculate the correlations, and this dataset also needs

to be appropriately adjusted with the covariates.

Suppose, the design matrix is partitioned into three blocks such as XA, XB, and XC ,

and the 3-block joint linear model may be expressed as

y = XAβA +XBβB +XCβC + ϵ (4.21)

The summary statistics published in GWAS typically involve calculations for each

SNP individually, while conditioning on genetic principal components (PCs). To account

for these PCs, we can express the adjusted model for the two blocks of genetic variants
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as follows:

y = XAbA +XCbC + ϵ

y = XBbB +XCbC + ϵ

The above two models can be thought of as a 2-block linear model, and the regression

coefficient of XA conditioning on the covariates block, XC , can be expressed as

b̂A|C =
(
X̃T

A|CX̃A|C

)−1

X̃T
A|C ỹ|C ; where, X̃A|C = (I −HC)XA

= D−1
A|CX̃

T
A|C ỹ|C HC = XC(X

T
CXC)

−1XT
C

∴ DA|C b̂A|C = X̃T
A|C ỹ|C DA|C = X̃T

A|CX̃A|C = XT
A(I −HC)XA

Similarly, the regression coefficient of XB conditioning on the covariates block, XC can

be expressed as

b̂B|C =
(
X̃T

A|CX̃A|C

)−1

X̃T
A|C ỹ|C

= D−1
B|CX̃

T
A|C ỹ|C

∴ DB|C b̂B|C = X̃T
B|C ỹ|C

The above regression coefficients, b̂A|C and b̂B|C , are the univariate regression coeffi-

cients conditioning on the covariates block, and they are usually available in the GWAS

published results, DA|C and DB|C are the diagonal of (X̃T
A|CX̃A|C) and (X̃T

B|CX̃B|C) re-

spectively and ỹ|C is the residual of the regression model after regressing the response y

on XC .
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Diagram: Converting a 3-Block Linear Model to 2-Block by adjusting for the Covariates

4.9.1 Expression of Model Estimates through Residuals

As the genotyped data is usually adjusted with PCs first, so the joint regression model

(4.13) is equivalent to the expression of the following model

ỹ|C = X̃A|CβA|C + X̃B|CβB|C + ϵ (4.22)

where, X̃A|C and X̃B|C are the residuals of the models when both XA and XB are

regressed on XC .

Now, the regression equation (4.22) can be considered as a two-block situation, and

the regression coefficient β̂A|C , can be obtained as equivalently as follow

β̂A|BC =
(
X̃T

A|BCX̃A|BC

)−1

X̃T
A|BC ỹ|BC

here, X̃A|BC = (I−HB|C)X̃A|C and ỹ|BC = (I−HB|C)ỹ|C are the residuals of the models

after regressing both X̃A|C and ỹ|C on X̃B|C respectively, andHB|C = X̃B|C

(
X̃T

B|CX̃B|C

)−1

X̃T
B|C .

The expression of β̂A|BC can be simplified as

∴ β̂A|BC =
(
X̃T

A|BCX̃A|BC

)−1

X̃T
A|BC ỹ|BC
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=
(
X̃T

A|C(I −HB|C)X̃A|C

)−1

X̃T
A|C(I −HB|C)ỹ|C

=M−1X̃T
A|C(I −HB|C)ỹ|C

=M−1X̃T
A|C ỹ|C −M−1X̃T

A|CHB|C ỹ|C

=M−1 X̃T
A|C ỹ|C︸ ︷︷ ︸

DA|C b̂A|C

−M−1X̃T
A|CX̃B|C

(
X̃T

B|CX̃B|C

)−1

X̃T
B|C ỹ|C︸ ︷︷ ︸

DB|C b̂B|C

=M−1DA|C b̂A|C −M−1X̃T
A|CX̃B|C

(
X̃T

B|CX̃B|C

)−1

DB|C b̂B|C (4.23)

where, M = X̃T
A|C(I −HB|C)X̃A|C

Yang et al. (2012) demonstrated a conditional analysis that involves a design matrix

with two sets of covariates. The first set consists of test SNPs, while the second set com-

prises conditioning SNPs. The conditional estimate is expressed in terms of univariate

GWAS summary statistics, which was discussed in section (4.8.3) as:

β̂A|B = (XT
AXA)

−1DAb̂A − (XT
AXA)

−1XT
AXB(X

T
BXB)

−1DB b̂B

Here, β̂A|B represents the conditional estimate of the joint multiple regression model.

The summary statistics b̂A and b̂B are obtained from corresponding univariate regression

models and can be found in the online Gentic databases.

It is worth highlighting that, Yang et al. (2012) expressed the joint estimates or

conditional estimates using univariate GWAS summary statistics, typically adjusted with

genetic principal components (PCs). However, they did not account for the influence of

genetic PCs on the set of tested SNPs.
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4.9.2 Conditional Coefficients with Summary Statistics: Comparison be-

tween 3-Block Approach and Yang’s GCTA Approach

In this thesis, I have calculated the conditional beta coefficients and assessed joint as-

sociations based on the proposed 3-block approach and the GCTA software (introduced

by Yang et al. (2011)). Both methods relied on summary-level statistics from genome-

wide association studies (GWAS) and estimates of linkage disequilibrium (LD) from a

reference sample with individual-level genotype data. I compared the performance of

calculating these coefficients against true values obtained from the original raw data or

individual-level genotype data.

Figure: Conditional beta coefficients were calculated by the 3-Block approach and GCTA
software, and compared with the true conditional coefficients.

The reference sample was obtained from the CANDELA cohort database, consisting

of information on 30 single nucleotide polymorphisms (SNPs). Among these, 7 SNPs
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were used as conditional SNPs, while the remaining 23 SNPs were tested. To validate the

results, we also employed the PLINK software to generate unconditional beta coefficients

and conditional coefficients based on the same set of 7 SNPs. The entire analysis was

conducted using the CANDELA Cohort database.

Using the reference sample SNP information and the unconditional beta coefficients

(summary-level statistics), I calculated the conditional beta coefficients using both the

3-block approach and the GCTA software. The accompanying picture illustrates the true

conditional beta coefficients alongside the values obtained through the 3-block approach

and GCTA software for each of the 23 tested SNPs. The image clearly demonstrates

that the conditional coefficients obtained through the 3-block approach closely align with

the true coefficients for all tested SNPs, outperforming the coefficients derived from the

GCTA software.

4.10 Implementation

In order to address the potential confounding effects of population structure, genetic

studies including GWAS often incorporate principal components (PCs) derived from the

genotype covariance matrix, as well as other non-genetic factors such as age and sex,

as fixed effects in their models. The results of these analyses are then published as

summary-level statistics for GWAS.

To calculate conditional effects using the available summary-level statistics, it is most

realistic to consider the genetic data matrix as a 3-block structure. This entails dividing

the data into three blocks: the tested SNP block, the conditioning SNP block, and the

block containing other covariates such as genetic PCs, age, and sex. By considering this

3-block structure, we can appropriately account for the interplay between the tested

SNPs, the conditioning SNPs, and the relevant covariates, enabling the estimation of

conditional effects.
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The mathematical derivation for conditional effects, based on the 3-block multiple

regression model, has been presented in equation (4.23). To proceed with this derivation,

information is required from the available GWAS unconditional summary level statistics

regarding the effects of major affected SNPs on which the conditioning will be performed.

Since individual-level genotype data are typically not accessible for the entire cohort

due to privacy concerns, additional information such as genetic variant correlations,

represented by R2 matrices, can be computed from a reference cohort that is publicly

available and exhibits similar ethnicity characteristics.

If the raw data or individual-level genotype data are accessible, conditional GWAS

can be performed using the PLINK software [Purcell et al. (2007)]. Additionally, GCTA-

COJO [Yang et al. (2012)] can be employed to calculate conditional GWAS by utilizing

PC-adjusted summary-level statistics from GWAS, a list of major conditioning SNPs,

and a reference cohort with comparable ethnic background. These tools facilitate the

analysis of genetic associations while accounting for the effects of specific conditioning

SNPs on the traits of interest.

It is important to note that the GCTA-COJO software utilizes PC-adjusted summary

statistics, but it does not incorporate adjustment of the reference cohort using genetic

principal components (PCs). As a result, the conditional GWAS results obtained from

GCTA-COJO may differ from the true conditioned GWAS results, particularly in cases

where individual-level data are accessible.

To bridge this gap, the concept of the 3-block regression model, which considers PC-

adjusted summary level statistics and a PC-adjusted reference cohort, can be employed.

By utilizing the derived formulas for conditional effects in the 3-block regression model,

it becomes possible to enhance the accuracy of the conditional GWAS results and ad-

dress the limitation posed by GCTA-COJO’s lack of adjustment for genetic PCs in the

reference cohort.
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4.11 Demonstration

The statistical power of testing the effect of a genetic variant typically increases with

larger sample sizes. This increase in power is due to the reduction in standard error,

improved precision of estimates, and reduced impact of random variation on the results

[William G. Cochran (1977)]. However, when examining the power gain resulting from

conditioning on major variants, equation (4.13) indicates that the gain may initially

increase but stops after reaching a peak. Subsequently, it will decrease and eventually

diminish to zero for a specific sample size. The sample size at which this occurs largely

depends on various factors, such as the effect size and correlation coefficients of both the

target SNP and the conditioned SNP with the trait of interest.

In this study, I have examined the statistical power of a specific SNP in two scenarios:

when it is included uniformly in the regression model and when it is incorporated into

the model while conditioning on one or more major SNPs. I have analyzed the power

curve and the power difference resulting from conditioning. To simplify the analysis,

we have considered three SNPs adjusted with principal components (PCs): rs28777 A,

rs7118677 T , and rs2240751 G. Additionally, we have selected rs1426654 G as the

conditional SNP due to its stronger association with the trait of interest, namely skin

color. These SNPs were chosen from different chromosomes (CHR: 5, 11, 19, and 15,

respectively) to ensure no linkage disequilibrium (LD) among them. The analysis draws

upon real-life genetic databases, including the CANDELA Cohort and UK Biobank, to

provide empirical insights into the nature of power changes resulting from conditioning.

4.11.1 Analysis with CANDELA Cohort Database

In the CANDELA cohort subset, the correlation coefficients (r2) between the melanin

trait (the trait of interest) and the SNPs rs28777 A, rs7118677 T , rs2240751 G, and

rs1426654 G are 0.073, 0.0081, 0.007, and 0.089, respectively. Among these SNPs,
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rs1426654 G has the highest correlation with melanin and is selected as the conditional

SNP. Multiple conditional regression models have been performed separately for each of

the three SNPs, resulting in respective effect sizes of 2.03, 0.633, and 0.798.

The power curve for each of the three variants, along with the power gain due to

conditioning (based on equation 4.13), has shown in figures (a) to (f). These figures

illustrate that the power gain initially reaches its peak and then diminishes as the effect

of conditioning varies with smaller sample sizes. The effect sizes of the variants play a role

in determining the sample size required to observe changes in power gain. For instance,

the SNP rs28777 A with a larger effect size requires approximately 300 sample sizes

to diminish the effect of conditioning. On the other hand, the other two SNPs require

around 4000 sample sizes due to their smaller effect sizes and a weaker association with

melanin.
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(a) Power Comparision due to conditioning; Database:
CANDELA Subset; Tested SNP: rs28777 A

(b) Nature of Gain of Power with different sample
sizes

(c) Power Comparision due to conditioning; Database:
CANDELA Subset; Tested SNP: rs7118677 T

(d) Nature of Gain of Power with different sample
sizes

(e) Power Comparision due to conditioning; Database:
CANDELA Subset; Tested SNP: rs2240751 G

(f) Nature of Gain of Power with different sample sizes
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4.11.2 Analysis with UK Biobank Database

The UK Biobank is one of the world’s largest biobanks where various phenotypic infor-

mation and biological samples have been collected for each of the approximately 500,000

individuals from across the United Kingdom, aged between 40 and 69 at recruitment

[Bycroft et al. (2018)]. Various genetic studies have been conducted based on these

databases to explore the genetic architecture of many complex traits. For example, hu-

man skin and hair color are visible traits that can vary dramatically within and across

ethnic populations. Many genetic variants have already been identified by analyzing the

UK Biobank databases.

To validate the concept of enhancing the power to detect newly associated genetic

variants by conditioning on major SNPs, a specific subset of individuals from the UK

Biobank databases was utilized. The conditional analysis was performed using classical

genome-wide association study (GWAS) models implemented in PLINK [Purcell et al.

(2007)] software.

I considered three tested SNPs: rs11674584, rs4689317, and rs79844047, originating

from chromosomes 2, 4, and 18, respectively. The variant rs1805007 (CHR:16) was cho-

sen as a conditional SNP due to its strongest association (r2yz) with the trait of interest,

skin color. The correlation coefficients between the tested SNPs and the melanin trait

are 0.0003065365, 0.00007807342, and 0.00007920819, respectively, while the conditional

variant exhibits a coefficient of 0.03325878, justifying its selection as a major variant.

The effect sizes of the tested SNPs are observed as 0.0126384, 0.0125183, and 0.0113362,

respectively. Simultaneously, the variances of these variants are 0.489918, 0.150552, and

0.15535407 respectively. Moreover, the phenotype (skin color) in the UK Biobank is a

categorical variable with three categories and the variance (var(y)) is calculated from

the frequency distribution, which is 0.2520505.

The power curve for these variants is presented in figures (g) to (l). In reviewing
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the summary statistics of the tested SNPs, there are negligible differences observed in

terms of correlation coefficients and effect sizes. However, a notable distinction arises in

their variance, with rs11674584 demonstrating the highest variability in comparison to

the other two SNPs.

The power curves for these tested SNPs reveal that larger sample sizes are necessary

to detect the highest difference in power resulting from conditioning. Notably, SNP

rs11674584 showcases the most substantial power gain at a sample size of 20,000, while

the other two SNPs necessitate almost 5 times larger sample sizes (100,000) to observe

a similarly impactful difference in power.
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(g) Power Comparision due to conditioning; Database:
UK Biobank Subset; Tested SNP: rs11674584

(h) Nature of Gain of Power with different sample
sizes

(i) Power Comparision due to conditioning; Database:
UK Biobank Subset; Tested SNP: rs4689317

(j) Nature of Gain of Power with different sample sizes

(k) Power Comparision due to conditioning; Database:
UK Biobank Subset; Tested SNP: rs79844047

(l) Nature of Gain of Power with different sample sizes
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4.12 Conclusions and Discussion

The significance of a genetic association between a specific genetic variant (SNP) and a

phenotypic trait relies on determining its statistical significance. The mean square error

(MSE) plays a crucial role in computing the asymptotic variance of a regression coeffi-

cient, which in turn affects the denominator during the calculation of statistical power.

It is worth noting that the MSE and the standard error of a regression coefficient are

inversely related to statistical power. The main objective of this study is to investigate

the behavior of the MSE in different modelling setups, aiming to understand its impact

on statistical power.

The mathematical derivation of the mean square error (MSE) has been conducted

for two different scenarios within the regression modelling framework to elucidate how

conditioning on an additional or a set of known major single nucleotide polymorphisms

(SNPs) can enhance the power to discover new genetic variants. Firstly, a linear regres-

sion model with two genetic variants (w, a test SNP, and z, a major effect SNP) was

considered, leading to the simplification of the MSE and standard error. Inclusion of

the significant SNP, e.g., (z) in the model shows a reduction in MSE, with the extent of

reduction determined by the partial correlation between the covariates, denoted as r2yz.w

and eventually, increase the power of detecting the effect of tested SNP, w.

Assuming that the two covariates (w & z) are uncorrelated, which is often the case

in genome-wide association studies (GWAS) where the SNPs are located in separate

linkage disequilibrium blocks, the expression of MSE of the tested SNP (w) contains

a reduction term quantifying as r2yz, which represents a fraction of the trait variance

(σ2
y). Notably, the reduction in MSE also occurs if the covariates are correlated. This

implies that incorporating an additional SNP in the model improves the performance of

the new SNP by increasing the precision of the regression coefficient and enhancing the

statistical power, especially if the additional SNP has a major effect.
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An expression for regression coefficients has been derived in a multiple regression

setup, where the design matrix is split into two blocks. One block comprises the tested

Single Nucleotide Polymorphisms (SNPs), while the other block contains a list of major

or conditioning SNPs, genetic principal components (PCs), and non-genetic factors like

age and sex. Additionally, the expression for Mean Squared Error (MSE) has also been

derived. This demonstrates how much the MSE decreases when conditioning on an

additional block of covariates in the model. Mathematically, this reduction in MSE can

be quantified by the term ỹTAH̃B ỹA, which is non-negative and due to the conditioning

on the additional block of covariates. As MSE inversely affects power calculations,

this reduction in MSE leads to increased power in discovering a new set of test SNPs

when conditioning is applied. Moreover, the number of samples in the dataset plays an

important role in calculating power and the gain of power is optimal for intermediate

sample size, as for very large size power is 100% anyway.

Although conditioning can enhance the power to discover new genetic associations

in certain cases, it may not always be effective, particularly for phenotypic traits that

depend on a combination of numerous smaller affected Single Nucleotide Polymorphisms

(SNPs). For instance, in the context of human skin pigmentation, major SNPs related

to skin color and hair color have been identified, and conditioning on these SNPs may

enable the exploration of new associations. However, for complex traits like height and

BMI, hundreds of associated variants with having smaller effects, have been identified,

and there is limited linkage disequilibrium (LD) among them. Consequently, the effect

sizes obtained from a joint analysis are likely to be only marginally different from those

obtained through single-SNP analysis.

The objective of this study is to explore how the ability to detect new genetic asso-

ciations in a genomic region can be enhanced by conditioning on major or index SNPs,

rather than focusing on establishing the causal relationship of the SNPs. Additionally, it
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is reasonable to assume that the SNPs are uncorrelated, as the index SNPs are situated

in distinct linkage disequilibrium (LD) blocks. However, it is worth noting that the same

findings would also apply to correlated SNPs.

The mathematical derivation of power gain through conditioning has been extensively

demonstrated in various regression models where the response or phenotype variable is

continuous. It is worth noting that most morphological variations, such as human den-

tition and pigmentations, exhibit a continuous scale of variation [Carayon et al. (2019)].

However, in anthropological assessment schemes, these variations are often simplified and

categorized into discrete categories for ease of representation. For example, the amount

of melanin pigmentation in the eye, despite being a continuous quantity, is traditionally

analyzed as blue versus brown to indicate the presence or absence of melanin. Initially,

it was believed to follow Mendelian inheritance until quantitative analysis revealed its

complex polygenic nature.

In the context of dental traits, Scott et al. (1997) noted that certain nonmetric traits,

like incisor shoveling, exhibit a ”quasi-continuous” nature. This implies that these traits

can be considered as ordinal or dichotomous, derived from an underlying continuous

quantity. Incisor shoveling, for instance, can be dichotomized into the presence or ab-

sence of curvature based on a specific threshold. In this context, the continuous un-

derlying variable is referred to as a ”latent variable” that corresponds to the assessed

categorical variable.

The work of McCullagh (1980) provides a comprehensive exploration of regression

models tailored to ordinal data, taking into account the existence of an underlying

continuous latent variable. It emphasizes the interpretability of models based on this

scale. However, it acknowledges that the concept of conditioning can also be useful in

generalized linear models (GLMs) settings when a clear latent variable is not present,

though we don’t provide the mathematical details in the context of GLMs.
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In genome-wide association studies (GWAS), case-control study designs are com-

monly employed to investigate the association between genetic variants and a binary

response variable within a single cohort. Logistic regression is the prevailing method,

comparing allele or genotype frequencies between cases and controls while considering

potential confounding factors. However, conditioning in case-control studies presents

challenges due to the complex impact of disease prevalence and allelic effect size on

the power of conditioned GWAS [Pirinen et al. (2012); Zaitlen et al. (2012)]. Conse-

quently, conditional analyses have been infrequently utilized in GWAS, primarily focused

on disease phenotypes in case-control samples. Nevertheless, there are instances where

conditioned GWAS has been successfully applied within this framework. For instance,

a recent study addressed the inherent complexities of the case-control scenario, condi-

tioning a GWAS for Alzheimer’s disease on two well-established disease variants and

identifying novel associations [Mez et al. (2017)]. While the concept of conditioning

is commonly used in the literature, exploring the change in statistical power due to

conditioning in case-control studies remains a promising area for future research.
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5 Prediction Error (PE)

Throughout the preceding chapters, I explored various statistical models, including linear

models and shrinkage methods, for different purposes in genetic association studies, such

as association testing and improving statistical power. These models can be extended for

predictive purposes in new datasets. Thus, it becomes imperative to discuss performance

measures, like prediction error, and understand how these models trade-off between bias

and variance, resulting in improved predictive performance.

In this chapter, I showed a brief illustration of the bias-variance trade-off for linear

models and shrinkage methods, both at a single observation level and collectively. This

demonstration helps predict the same trait from genetic data in new individuals and

effectively utilize these models for accurate predictions and gain valuable insights into

genetic associations.

For example, face GWASes provide insights into the genetic basis of various physical

appearance traits, such as facial features, hair color, and eye color. Genetic associations

from these studies can be used to develop prediction models to estimate an individual’s

appearance using their genetic information. These models can be valuable in forensic

studies, where experts can potentially use them to reconstruct the physical appearance

of unidentified individuals using their DNA remains.

5.1 Prediction Error at a single point (say, x0)

Consider a simple linear regression model as

y = xβ + ϵ ; where, ϵ ∼ N(0, σ2) (5.1)

The estimate of the parameter β using ordinary least squares (OLS) can be obtained

as follows:
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β̂ =

∑
xy∑
x2

=
cov(xy)

var(x)

The mean and variance of the estimate β can be shown as follows:

E(β̂) =

∑
xy∑
x2

=

∑
x(xβ + ϵ)∑

x2
= β

Var(β̂) =

(
1∑
x2

)2

v

[
n∑

i=1

x(xβ + ϵ)

]

=

(
1∑
x2

)2

v
[
β
∑

x2 +
∑

xϵ
]

=

(
1∑
x2

)2 n∑
i=1

x2v(ϵ)

=
σ2∑
x2

=
1

n

[
σ2

Var(x)

]

That is,

β̂ ∼ N

(
β,

1

n

[
σ2

Var(x)

])
Suppose the regression model at a specific value of x0 is y0 = f(x0) + ϵ0, where

f(x0) = x0β and the predictive model at x0 is f̂(x0) = x0β̂. It can be shown that f̂(x0)

is an unbiased estimate of f(x0) that is,

E[f̂(x0)] = E[x0β̂] = x0E[β̂] = x0β = f(x0)

and

V ar[f̂(x0)] = V ar[x0β̂] = x20V ar[β̂] =
x20σ

2

nV ar(x)
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The prediction error of the estimate f̂(x0) can be obtained as follows

Prediction Error (PE) = E[y0 − f̂(x0)]
2

= E[x0β + ϵ0 − x0β̂]
2

= E[ϵ0 − x0(β̂ − β)]2

= E(ϵ20) + x20E(β̂ − β)2

= σ2 + x20Var(β̂)

= σ2

[
1 +

1

n

x20
Var(x)

]
(5.2)

The expression of the prediction error in equation (5.2) indicates that as the sample

size (n) approaches infinity, the prediction error (PE) will converge to the lower bound

of σ2. This lower bound represents the inherent error variance that contributes to the

variability of y. In other words, no matter how large the sample size becomes, there will

always be a residual error due to the inherent variability of the data.

Mathematically, as n tends to infinity:

PE → σ2

This result shows that even with an infinitely large sample, it is impossible to com-

pletely eliminate the prediction error, as there will always be some level of inherent

variability that cannot be explained or predicted by the model.

5.1.1 Conecting Prediction Accuracy to Heritability

In genetic studies, heritability is a measure of the proportion of phenotypic variation in

a trait that can be attributed to additive genetic variation. It represents the extent to

which the genetic makeup of individuals contributes to the observed variability in the

trait of interest. Heritability is often denoted as h2.
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In the context of the additive model described in equation (5.1), the heritability can

be defined as follows:

h2 =
σ2
g

σ2
y

= 1− σ2
ϵ

σ2
y

where, σ2
g is the additive genetic variance, σ2

y is the variation in a trait of interest, and

σ2
ϵ is the variation due to error.

The heritability value ranges from 0 to 1, where 0 indicates that the trait’s variation

is entirely explained by environmental factors, and 1 indicates that the variation is solely

attributed to genetic factors. A heritability value between 0 and 1 suggests that both

genetic and environmental factors contribute to the trait’s variability. Using the training

data, we can estimate the variations in the trait (σ2
y) and the error (σ2

ϵ ), also known as

the mean square error (MSE). With these estimates, we can then calculate the estimate

of heritability (ĥ2).

Based on the prediction error obtained in the equation (5.2), the prediction accuracy

(PA), which will be discussed in detail later, can be expressed as

PA = 1− PE

V ar(y)

= 1− σ2 + x20Var(β̂)

V ar(y)

= 1− σ2

V ar(y)
− x20Var(β̂)

V ar(y)

= h2 − a positive term

From the above expression, it is noticeable that for the linear model in the case of OLS

situation, the highest possible value of the prediction accuracy (PA) is the heritability.

In other words, when the prediction accuracy is equal to the heritability, the model is

performing at its best in capturing the genetic influence on the trait of interest.
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5.2 Prediction Error at a set of (say, m) observations

5.2.1 Simple Linear Model Case

Suppose, we would like to predict the model (5.1) for a set ofm observations of the predic-

tor variable x01, x02, · · · , x0m and the corresponding predicted values are ŷ01, ŷ02, · · · , ŷ0m

whereas the true values of the response values are y01, y02, · · · , y0m. For the set of m

observations of the predictor variable, the prediction error (PE) can be obtained as

PE =
1

m

m∑
i=1

E
[
(y0i − ŷ0i)

T (y0i − ŷ0i)
]

=
1

m

m∑
i=1

E[ϵT0 ϵ0] +
1

m

m∑
i=1

σ2trace
[
x0i(X

TX)−1xT0i
]

= σ2 +
σ2

mnV ar(X)

m∑
i=1

x20i

= σ2 +
σ2

nV ar(X)
V ar(xo)

This expression represents the mean squared error (MSE) between the true response

values y0i and the corresponding predicted values ŷ0i for each observation in the set.

The prediction error quantifies the accuracy of the predictive model in estimating the

true response values for the given predictor variable observations.

5.2.2 Multiple Linear Model Case

Consider a regression model as y = Xβ+ϵ, where, X is the matrix independent predictor

variables and β is the vector of regression coefficients. Then the prediction error (PE)

for the new set of observations at Xp can be obtained as

PE = E
[
(yp −Xpβ̂)

T (yp −Xpβ̂)
]

= E
[
(Xpβ + ϵ−Xpβ̂)

T (Xpβ + ϵ−Xpβ̂)
]
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= E

[(
ϵ−Xp(β̂ − β)

)T (
ϵ−Xp(β̂ − β)

)]
= E

[
ϵT ϵ+ (β̂ − β)TXT

p Xp(β̂ − β)
]

= E[ϵT ϵ] + E
[
(β̂ − β)TXT

p Xp(β̂ − β)
]

= σ2 + σ2trace
[
Xp(X

TX)−1XT
p

]
= σ2 +

σ2

n
trace

[
Xp (V ar(X))−1XT

p

]
(5.3)

5.3 Expression of Prediction Error considering two indepen-

dent covariates (say, w, z)

Following the general expression of prediction error in equation (5.3), let us now focus

on a true regression model that includes two independent covariates (w and z), with

corresponding regression coefficients (βw and βz). The fitted model can be represented

as follows:

ŷ0 = fww0β̂w + fzz0β̂z

where fw, fz are shrinkage factors corresponding to the two covariates, w0, z0 are the

values of the covariates at which the prediction will be made. When both of the shrinkage

factors consider the value one, then it will indicate the OLS situation otherwise the need

for shrinkage.

Now if the response variable is predicted based on only one covariate say, w0 only,

then it will be a situation that the value fw = 1 and fz = 0 and the prediction error can

be derived as

PE = E
[
fww0βw + fzz0βz + ϵ− fww0β̂w − fzz0β̂z

]2
= E

[
ϵ− w0(fwβ̂w − βw)− z0(fzβ̂z − βz)

]2
= E[ϵ2] + w2

0E
[
fwβ̂w − fwβw + fwβw − βw

]2
+ z20E

[
fzβ̂z − fzβz + fzβz − βz

]2
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= σ2 + w2
0f

2
wE[β̂w − βw]

2 + w2
0β

2
w(1− fw)

2 + z20f
2
zE[β̂z − βz]

2 + z20β
2
z (1− fz)

2

= σ2 +
1

n

σ2w2
0f

2
w

V ar(w)
+ w2

0β
2
w(1− fw)

2 +
1

n

σ2z20f
2
z

V ar(z)
+ z20β

2
z (1− fz)

2

= σ2 +
1

n

σ2w2
0

V ar(w)
+ z20β

2
z [Putting, fw = 1 and fz = 0] (5.4)

5.4 Expression of Prediction Error considering Ridge Regres-

sion Model

For a ridge regression model, say, y = Xβ + ϵ, where, the parameter of the model

estimated by the ridge estimator as

β̂λ =(XTX + λI)−1XTy

=
[
I + λ(XTX)−1

]−1
(XTX)−1XTy

=
[
I + λ(XTX)−1

]−1
β̂

=Wλβ̂ where, Wλ =
[
I + λ(XTX)−1

]−1

It can be shown that the ridge estimate is a biased estimate of β that is,

E[β̂λ] =E[Wλβ̂] = Wλβ

and

V ar[β̂λ] =V ar[Wλβ̂]

=WλV ar(β̂)W
T
λ

=Wλ[σ
2(XTX)−1]W T

λ

=σ2
[
I + λ(XTX)−1

]−1
(XTX)−1

[(
I + λ(XTX)−1

)−1
]T

=σ2(XTX + λI)−1(XTX)
[
(XTX + λI)−1

]T
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Suppose a predictve model is yp = Xpβλ + ϵ and the corresponding fitted predictive

model is ŷp = Xpβ̂λ, where, β̂λ is the ridge estimate. Then the prediction error for this

predictive model can be expressed as

PE = E[(yp − ŷp)
T (yp − ŷp)]

= E[(Xpβ + ϵ−Xpβ̂λ)
T (Xpβ + ϵ−Xpβ̂λ)]

= E[ϵT ϵ] + E[(Xpβ̂λ −Xpβ)
T (Xpβ̂λ −Xpβ)]

= σ2 + E[(Xpβ̂λ −Xpβ)
T (Xpβ̂λ −Xpβ)]

= σ2 + E
[
β̂T
λX

T
p Xpβ̂λ − β̂T

λX
T
p Xpβ − βTXT

p Xpβ̂λ + βTXT
p Xpβ

]
[here, β̂λ = Wλβ̂]

= σ2 + E[β̂TW T
λ X

T
p XpWλβ̂ − β̂TW T

λ X
T
p XpWλβ − βTW T

λ X
T
p XpWλβ̂ + βTW T

λ X
T
p XpWλβ

+ β̂TW T
λ X

T
p XpWλβ + βTW T

λ X
T
p XpWλβ̂ − βTW T

λ X
T
p XpWλβ − β̂TW T

λ X
T
p Xpβ

− βTXT
p XpWλβ̂ + βTXT

p Xpβ]

= σ2 + E

[(
(β̂ − β)XpWλ

)T (
(β̂ − β)XpWλ

)]
+ βTW T

λ X
T
p XpWλβ − βTW T

λ X
T
p Xpβ − βTXT

p XpWλβ + βTXT
p Xpβ [As, E(β̂) = β]

= σ2 + E

[(
(β̂ − β)XpWλ

)T (
(β̂ − β)XpWλ

)]
+
[
βTW T

λ X
T
p Xp − βTXT

p Xp

]
(Wλ − I)β

= σ2 + E

[(
(β̂ − β)XpWλ

)T (
(β̂ − β)XpWλ

)]
+ βT (Wλ − I)TXT

p Xp(Wλ − I)β

= σ2 + σ2trace
[
W T

λ X
T
p (X

TX)−1WλXp

]
+ βT (Wλ − I)TXT

p Xp(Wλ − I)β (5.5)

The above expression of prediciton error can be simplified using the singular value de-

composition of the design matrix (X) as

X = UDV T

where, U is a (n × p) orthogonal matrix, V is a (p × p) orthogonal matrix, and D is a
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(p× p) diagonal matrix having diagonal elements as the singular values d1, d2, · · · , dp

Wλ =
[
I + λ(XTX)−1

]−1

=
[
V D2D−2V T + λV D−2V T

]−1

=
[
V D−2(D2 + λIp)V

T
]−1

= V D2(D2 + λIp)
−1V T

So, XWλ = UDV TV D2(D2 + λIp)
−1V T

= UD3(D2 + λIp)
−1V T

Second term of the equation (5.5),

σ2trace
[
XWλ(X

TX)−1W T
λ X

T
]
= σ2trace

[
UD3(D2 + λIp)

−1V TV D−2V TV D2(D2 + λIp)
−1DUT

]
= σ2trace

[
UD3(D2 + λIp)

−2DUT
]

= σ2trace
[
D4(D2 + λIp)

−2
]

The ith element of the above term can be written as

σ2trace
[
D4(D2 + λIp)

−2
]
ii
= σ2

(
d2i

d2i + λ

)2

; for i = 1, 2, · · · , p

Third term of the equation (5.5),

βT (Wλ − I)TXTX(Wλ − I)β

= βT
[
V D2(D2 + λIp)

−1V T − V V T
]T
V D2V T

[
V D2(D2 + λIp)

−1V T − V V T
]

= βTV
[
D2(D2 + λIp)

−1 − Ip
]T
V TV D2V TV

[
D2(D2 + λIp)

−1 − Ip
]
V Tβ

= βTV D2
[
D2(D2 + λIp)

−1 − Ip
]2
V Tβ

Letting, a (p× 1) vector as S = V Tβ, the ith element of the above term can be written
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as

βTV D2
[
D2(D2 + λIp)

−1 − Ip
]2
ii
V Tβ = λ2

(
Sdi
d2i + λ

)2

Finally, the prediction error obtained in the equation (5.5) can be written for the

singular value decomposition of the design matrix X as

PE = σ2

p∑
i=1

(
d2i

d2i + λ

)2

+ λ2
p∑

i=1

(
Sdi
d2i + λ

)2

5.5 Expression of Prediction Error considering general case

For a general linear regression model, y = f(x) + ϵ, where the true mean of the model

can be anything, the expected prediction error of a regression fit f̂(x) at a specific value

x = x0 can be obtained as

PE[f̂(x0)] = E[y0 − f̂(x0)]
2

= E[f(x0) + ϵ0 − f̂(x0)]
2

= E[ϵ0 −
(
f̂(x0)− f(x0)

)
]2

= E[ϵ0]
2 + E

[
f̂(x0)− f(x0)

]2
= E[ϵ0]

2 + E
[
f̂(x0)− E

(
f̂(x0)

)
+ E

(
f̂(x0)

)
− f(x0)

]2
= E[ϵ0]

2 + E
[
f̂(x0)− E

(
f̂(x0)

)]2
+
[
E
(
f̂(x0)

)
− f(x0)

]2
= σ2 +Var

[
f̂(x0)

]
+ Bias2

[
f̂(x0)

]
= Irreducible Error + Variance + Bias2 (5.6)

It is evident that when the model estimate is taken as a simple linear regression fit, i.e.,

f̂(x0) = x0β̂, the equation (5.2) is obtained.
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5.6 Prediction Error at different Shrinkage Factors (f)

Considering the shrinkage factor (f) in the simple linear estimate, it is possible to explain

the behavior of different shrinkage methods for the different values of the shrinkage

factor. The predictive model for the simple linear shrinkage estimate at a particular

value x0 can be expressed as f̂(x0) = x0fβ̂ and the prediction error can be obtained as

PE(f̂(x0)) = E[y0 − f̂(x0)]
2

= E[x0β + ϵ0 − x0fβ̂]
2

= E[ϵ0 − x0(fβ̂ − β)]2

= E(ϵ2) + x20E
[
fβ̂ − β

]2
= E(ϵ2) + x20E

[
fβ̂ − fβ + fβ − β

]2
= E(ϵ2) + x20E

[
f(β̂ − β)− β(1− f)

]2
= E(ϵ2) + x20E

[
f 2(β̂ − β)2

]
+ x20β

2(1− f)2

= σ2 + x20[f
2 var(β̂)︸ ︷︷ ︸

a

+ β2︸︷︷︸
b

(1− f)2]

= Irreducible Error + Variance + Bias2 (5.7)

It is observed from the above expression of prediction error that if the shrinkage factor,

f , takes the value one, then the prediction error (PE) is equivalent to the OLS case, but

trade-off between the variance and bias will be encountered for the different values of

f . Reduction of any value of f less than one, it will cause an increase in the bias but

decrease in the variance. It is also noticeable that both the bias and variances will be

increased for the value of the shrinkage factor greater than one. Based on different values

of shrinkage fractor, f , the bias-variance trade-off has also been discussed in Frank and

Friedman (1993) and subsequently he justified the qualitative behavior of RR, PCR, and
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PLS.

Mathematical Note:

z = af 2 + b(1− f)2

dz

df
= 2af − 2b(1− f) = 0

∴ f̂ =
b

a+ b

z(f̂) = a(
b

a+ b
)2 + b(

a

a+ b
)2

=
ab2

(a+ b)2
+

a2b

(a+ b)2

=
ab

a+ b

Following this note, the optimum value of the shrinkage factor that minimizes the

prediction error can be found as

f̂ =
β2

β2 + V ar(β̂)
=

β2

β2 + 1
n

σ2

Var(x)

=
Var(x)

Var(x) + λ
; letting, λ =

σ2

nβ2

and the prediction error at this optimum value of the shrinkage factor f̂ will be

PE(f̂) = σ2 + x20.

σ2

nV ar(x)
β2

σ2

nV ar(x)
+ β2

= σ2 +
σ2

n
.x20.

β2

β2V ar(x) + σ2

n

(5.8)

It was also shown in the equation (5.2) that the prediction error of a regression model

in the case of OLS situation as

PE(OLS) = σ2

[
1 +

1

n

x20
Var(x)

]
= σ2 +

σ2

n
.x20.

β2

β2V ar(x)
(5.9)
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Comparing the prediction error obtained in equations (5.8) and (5.9), it is observed

that in the case of introducing shrinkage, the prediction error has a larger denominator

than the OLS situation which is a clear indication of getting a smaller prediction error.

On the other hand, once the optimal shrinkage factor is obtained, the linear shrinkage

estimate can be expressed as follows

fβ̂ =

[
Var(x)

Var(x) + λ

]
β̂

Following Frank and Friedman (1993), it is noticeable here that the OLS estimates, β̂,

are differentially shrunk with the increase of the relative value of the shrinkage factor

and decrease of the variance of x. The amount of shrinkage is also controlled by the

value of λ, which is defined as the error variance (σ2) divided by the training sample size

that is, the larger the value of λ, the more differential shrinkage as well as more overall

global shrinkage. It is also noticeable that if the values of the sample size go to infinity

then the value of λ will also go to zero and the optimum value of f will turn into one.

That indicates that it is not necessary to think about the shrinkage if the sample size

goes to infinity.

With the different values of f , the optimal value of prediction error or MSE as well

as the choice of best predictors can be obtained. Since f is the true parameter value and

we don’t usually know this value, we can calculate the estimates of f from the training

data. The estimate of error variance (σ2) can be obtained by fitting the model on the

training data and the var(x) can also be calculated from the training data. With the

help of training data, the distribution of β̂ can be obtained and by plugging in the values

of the estimates, β̂, it is also possible to estimate the value of β2.
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5.7 Prediction Accuracy for different Models

Prediction accuracy is a measure of the association between the response and the predic-

tors. It measures the proportion of variation in the response (y) that can be explained

by the predictors and it is useful in comparing different choices of predictor variables in

any given problem [Rao (2002)]. Mathematically, it can be expressed as

Prediction accuracy, R2 = 1− PE

Var(y)

Here, PE = E[y − ŷ]2, is the unexplained mean residual variance in the test data. It

is observed that R2 goes to unity if the unexplained error variance goes to zero which

means the predictor variables explain the model well. On the other hand, if the predictor

variable fails to predict the model well that is, no significant reduction in error variance

due to the use of predictors, then the prediction accuracy (R2) will tend to be zero. In

the situation when the predictor variables predict the response perfectly, then there will

be no prediction error, and eventually, the prediction accuracy will be one.

Considering the prediction error measured for the true parameter linear regression

model obtained in the equation (5.3), the prediction accuracy can be expressed as

Prediction accuracy, R2 = 1− PE[f̂(x0)]

Var(y)

= 1−

σ2 +Var
[
f̂(x0)

]
+ Bias2

[
f̂(x0)

]
β2var(x) + σ2


In the case of the OLS situation, the prediction accuracy will be

R2 = 1− PE[f̂(x0)]

Var(y)

= 1−

σ2 +Var
[
f̂(x0)

] [
f̂(x0)

]
β2var(x) + σ2
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= 1−

σ2
(
1 + 1

n

x2
0

var(x)

)
β2var(x) + σ2


and in the situation when the shrinkage factor is involved in the linear regression estimate

then

R2 = 1− PE[f̂(x0)]

Var(y)

= 1−

σ2 + 1
n

x2
0f

2σ2

var(x)
+ x20β

2(1− f)2

β2var(x) + σ2
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6 Applied ResearchWork: Dental Morphology Anal-

ysis

6.1 Introduction and Aims

This study investigates the dental shape variation for 70 specimens and 7 groups of spec-

imens (species) such as Homo sapiens (HOMO), Homo neanderthalensis (NEA), Aus-

tralopithecus africanus (AUST), Paranthropus robustus (PROB), Gorilla, Pan troglodytes

(PAN), and Pongo pygmaeus (PONGO). Each of the groups consists of an equal num-

ber of specimens which indicates the data is balanced. To assess the accuracy of speci-

men classification, different geometric morphometric data have been analyzed separately

which are based on 2D, 3D, and deformetrica approaches of data representation.

Various classical and machine learning predictive models have been used to predict

the specimen classes for these datasets. Model performance was assessed using the

average prediction error rate and the maximum prediction error (PE) rate within each

of the predicted classes. Based on the discussion of the previous chapter, I used the

prediction error metrics to classify the specimens and determine the optimal predictive

model by comparing their prediction error rates.

6.2 Data Structure

2D Data

The 2D data contains 103 Procrustes coordinates (206 variables), among which 97

coordinates (194 variables) are based on semi-landmarks and 6 coordinates (12 variables)

are based on main landmarks. It is also found that Centroid size plays an important

role in separating the categories which has been confirmed later by different predictive

modelling approaches.
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Figure: Boxplot showing variation of Centroid Size among Specimens (species)

The total number of covariates analyzed for 2D data is 207, among them 206 are

based on Procrustes coordinates, and one is Centroid size. Centroid size, a widely used

measure in geometric morphometrics, represents the size of an object. It is calculated

as the square root of the sum of squared distances between all landmarks of the object

and its centroid. The centroid is the center of gravity determined by averaging the x

and y coordinates of all landmarks [Klingenberg (2016)].

The 2D dataset has been analyzed in two ways such as

� All Landmarks (Main and Semi-landmark) [206 variables]

� Main Landmark Only [12 variables]

3D Data

The 3D data contains the variables with two types of information. Firstly, the

variables that contain information regarding landmarks and semi-landmarks on the
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Figure: Illustration of landmark-based methods. On the left: 2D landmarks/semi-
landmarks located on the outer enamel surface (OES), including 6 main landmarks and
99 curve semi-landmarks. On the right: 3D landmarks/semi-landmarks situated at the
enamel-dentin junction (EDJ), comprising 4 main landmarks and 128 curve and 1757 sur-
face semi-landmarks [Delgado et al. (2021)]

Curves only. Secondly, all the digitized points which include both landmarks and semi-

landmarks information on the Curves as well as the Surface. So, the dataset has been

analyzed separately as

� Landmark points on Curves Only [125 points = 375 variables]

� Landmark points on both Curves and Surface [5667 variables]

Deformetrica Data

Deformetrica is a method that analyses the 3D data and identifies key locations on

the surface where there is a major change of shape. The amount and direction of change

at those locations are represented by two types of information, ‘Momenta’ and ‘Velocity’.

The two sets of information have been analyzed separately as

� Momenta Data which contains 5376 points on the surfaces and considered them

as variables

� Velocity Data which also contains 5376 variables
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Figure: An illustration of the Deformetrica method, shown on a dental surface. The
amount and direction of shape changes at key locations are represented with arrows.
[https://gitlab.com/jeandumoncel/tools-for-deformetrica/]

6.3 Dimension Reduction Techniques for Prediction (My Con-

tribution)

This chapter focuses on the comprehensive utilization of a 2D data structure to conve-

niently and consistently represent the results of data analysis. This approach enables

us to compare the results within the same avenues, facilitating effective evaluation and

comparison of different dimension reduction techniques and prediction models. The ul-

timate goal is to recommend a modeling technique that minimizes the error in specimen

classifications.

Given that the 2D data consists of a larger number of features (206) compared to the

number of observations (70), it becomes necessary to reduce the dimensionality. Various

dimension reduction techniques can be applied to achieve this reduction, ensuring that

the essential information is retained while reducing the complexity of the data. By

implementing these strategies, we aim to get a reduced number of dimensions, which will

help to compare different prediction modelling techniques and eventually, we can make

recommendations for the most accurate modeling technique for specimen classifications.
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6.3.1 Principal Component Analysis (PCA)

The principal component analysis (PCA) is a widely used dimension reduction method

that transforms a high-dimensional dataset into a lower-dimensional representation while

retaining most of the original data’s variability [Johnson and Wichern (2007)]. The

reduced data set contains a new set of uncorrelated (principal components) that captures

the maximum variance in the original data. The scree plot was plotted to see how

drastically the explained variations are slopping down for different numbers of PCs and

a threshold of explained variation was considered at 0.5% to select top PCs. Based on

this setup, different numbers of PCs were selected for different data structures.

Figure: Scree plot, which represents the proportion of variance captured by each principal
component from the data.

For example, considering the main and semi-landmark (206 variables) in the 2D

data structure, the scree plot above indicates that the variance of PCs falls rapidly, and

considering the threshold of 0.5% variance explained, the top 15 PCs are sufficient. In

addition to top PCs, Centroid size was also used as a covariate. The scatter plot of

Centroid size and PC1 indicated that Centroid size has a fair amount of information for

separating the categories which is later confirmed by the different predictive modeling
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approaches.

Figure: Scatter plot of Centroid Size vs PC1 and PC1 vs PC2.

6.3.2 Between Group Principal Component Analysis (bgPCA)

Between-group principal components analysis (bgPCA) is another dimension reduction

technique that captures group differences in the data set and aims to find principal

components that maximize the between-group variance. This method calculates the

covariance matrix of the group means and then does a principal component analysis

(PCA) on that matrix. Note that, this method is equivalent to a reduced-rank linear

discriminant analysis (LDA).

Figure: Scatter plot of Centroid Size vs bgPC1 and bgPC1 vs bgPC2.

The 2D Procrustes coordinates dataset consists of 7 specimens and 206 variables

derived from landmark-based coordinates. In the R software, the “groupPCA” function

was applied to the (70 × 206) data matrix to compute bgPCs. Initially, this function
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calculates group mean matrices and performs principal component analysis (PCA) to ex-

tract a reduced number of principal components. Considering seven groups, the function

identified 6 bgPCs, all of which were included in the predictive models. Visualizations

displaying the relationships between Centroid size and bgPC1, as well as bgPC1 and

bgPC2, are depicted in the figures above.

6.3.3 Leave-one-out cross-validated group PCA (cv-bgPCA)

Leave-one-out cross-validated group PC (cv-bgPCAs) is another technique to calculate

the reduced dimensions by using the leave-one-out cross-validated process. The data

set was divided into two parts such as train and test data, where train data contains

the information for all individuals except the first. Then the function “prcomp” was

performed on the trained data which returned a list of components. The trained and

test data were then predicted with these components and the principal component scores

were extracted for the train as well as test data. The process was repeated for the whole

data set within a loop in R, which eventually provided us a (70×7) principal component

matrix. The scatter plot of Centroid size vs. cv-bgPC1 and cv-bgPC1 vs. cv-bgPC2

have been shown in the following figures:

Figure: Scatter plot of Centroid Size vs cv-bgPC1 and cv-bgPC1 vs cv-bgPC2.
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6.3.4 tSNE

t-SNE (t-Distributed Stochastic Neighbor Embedding) is also a dimension reduction

technique that reduces the dimensionality of high-dimensional data for visualization in

lower-dimensional spaces [Zhou et al. (2018)]. Unlike PCA and other linear techniques,

t-SNE focuses on retaining pairwise similarities among data points instead of overall

variance. The performance of t-SNE has been checked at different value levels of hyper-

parameter ‘Perplexity’.

Figure: Scatter plot of Centroid Size vs tSNE1, and tSNE1 vs tSNE2. The tSNEs were
calculated at different value levels of the hyperparameter ’Perplexity’
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6.4 Prediction Accuracy with Different Prediction Models (My

Contribution)

The performance of a predictive model depends on how accurately it can predict or

classify a species, and this is evaluated by calculating the “Confusion Matrix”, which

provides the proportion of misclassification for each category. Since the Confusion Ma-

trix is usually very large, the performance of a predictive model is evaluated with the

“average error rate”. But it may be the situation that the average error rates are similar

or very close for different models, and the error rates of each class vary quite a bit.

Therefore, in addition to the average error rate, another metric such as the maximum

misclassification rate for any category was also calculated. In the evaluation of predictive

models, I compared various predictive models based on both the average error rate as

well as groupwise maximum error rate, leading to a comprehensive assessment of their

performance.

The prediction models presented in this study were based on the selected principal

components (PCs) and the bgPCs, as described earlier. Additionally, I included the

covariate centroid size (“Csize”) to gain deeper insights into species classification, as

it demonstrated significance in the scatter plot. Consequently, I evaluated each set of

covariates both with and without the inclusion of the “Csize” variable. The results for

the prediction models were calculated using the following covariate setups:

� Model Accuracy with PCs only

� Model Accuracy with PCs + Centroid Size (Csize)

� Model Accuracy with bgPCs only

� Model Accuracy with bgPCs + Centroid Size (Csize)
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The performance of the different predictive models has been evaluated with different

metrics for the above covariate setup. Firstly, the predictive models considered the

covariates by adding PCs or bgPCs one by one in the models and then applied for the

leave-one-out cross-validation (LOOCV) to measure the performance metrics.

6.4.1 Random Forest (RF) Model

Random Forest (RF) approach has been performed to evaluate how correctly the species

can be classified. It is a widely used classification or regression-based method that grows

many classification trees randomly taking subsamples of the observations as well as

subsamples of the variables and taking an average of them which eventually reduces the

variance. The performance of the RF model has been evaluated with different metrics

for the covariate setup described above. Since the process is random and the results may

vary for executing the model each time, we have run the model at different numbers of

trees and the result has been reported with the highest number of trees i.e., B= 10003,

since this variation reduces when the number of trees increases.

6.4.2 Multinomial Logistic Regression

Since we have a multiclass classification task i.e., 7 groups of species to classify, another

widely used classification approach, Multinomial logistic regression (MLR), has also been

used. This model also predicts different categories with the help of different performance

metrics.

6.4.3 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a statistical method commonly used for pre-

diction and classification tasks. It aims to find a linear combination of features that

maximally separates different classes or categories in a dataset. Considering the above
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covariate setup, LDA has been performed to classify the species and measure the pre-

diction accuracy based on different performance metrics.

6.4.4 K-nearest Neighbour (K-NN)

The k-nearest neighbor approach has been performed to evaluate the performance met-

rics and compare them with other methods as well. It is a memory-based classifier that

classifies or predicts a data point based on the majority class or average of its k-nearest

neighbors in the feature space [Hastie et al. (2009)]. The algorithm calculates the dis-

tance between the new data points and all existing data points in the training dataset

and then selects the K training points with the closest distances. The predicted class

or value for the new data point is then determined by the majority vote or the average

value among these K nearest neighbors.

6.4.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) algorithm is a supervised learning technique used for

classification and regression problems. This method classifies the data points into differ-

ent categories by finding a hyperplane that maximizes the margin between the classes

[Hastie et al. (2009)]. If the data points are non-overlapping, the algorithm can effec-

tively classify them. However, real-world datasets may not be perfectly separable. In

such cases, SVM uses strategies like soft margin to allow limited misclassification while

aiming to find a reasonable separation. This method has also been performed in this

research work to evaluate the performance- of classification metrics and compare them

with other predictive models.

6.4.6 Results

6.4.6.1 Modelling with PCs, with and without Centroid Size
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To classify species, various predictive models were utilized and evaluated for accu-

racy using two metrics obtained from the confusion matrix. The assessment began by

gradually introducing the 15 principal components (PCs), selected based on the scree

plot depicting their maximum variability coverage, in a sequential fashion. Performance

metrics were derived through leave-one-out cross-validation to determine model effec-

tiveness.

The average error rate (OOB) and maximum classification error rate per species were

computed for each number of PCs used in the predictive models. These metrics were

calculated both with and without the inclusion of the centroid size (Csize) variable in

the models. The results were plotted to visualize the relationship between the number

of PCs and the corresponding error rates.

Figure: Average error rate (OOB) and Maximum misclassification rate for any category
when PCs are considered in the model adding one by one along with and without Csize

Incorporating the centroid size variable notably decreased error rates in the models.
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As a significant finding, error plots stabilized sooner when Csize was included, indicating

the efficacy of fewer principal components in evaluating model performance. The ob-

served decrease in error rates at lower PC counts is anticipated as Csize offers valuable

species-distinguishing information (demonstrated in the boxplot in section 6.2), allowing

similar classification performance with fewer additional PC variables.

The inclusion of Csize exhibited a consistent decrease pattern in the error rates, with

minimum levels dropping from approximately 25% to 13%. This trend was observed

across all the predictive models. Notably, models such as random forest, linear dis-

criminant analysis, and support vector machines consistently achieved lower error rates,

regardless of whether the centroid size variable was included in the model or not.

Upon comparing all the models, linear discriminant analysis demonstrated superior

accuracy, particularly when the centroid size was considered in the model. This trend

was consistent with the findings from the maximum classification error rate per species

graphs.

In conclusion, the analysis demonstrated that incorporating the centroid size variable

in the predictive models resulted in improved accuracy. Among the different models

examined, linear discriminant analysis consistently outperformed the others, exhibiting

lower error rates.

6.4.6.2 Modelling with bgPCs, with and without Centroid Size

Similar to the previous scenario, we systematically added 6 between-group princi-

pal components (bgPCs) to the predictive models, considering both the inclusion and

exclusion of the centroid size variable (Csize). The performance of the models was eval-

uated at each step, considering the metrics average error rate (OOB) and the maximum

classification error rate for each species category. These accuracy metrics were plotted

against the number of bgPCs used during the execution of the predictive models.

The inclusion of the centroid size variable played a vital role in reducing error rates,
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Figure: Average error rate (OOB) and Maximum misclassification rate for any category
when bgPCs are considered in the model adding one by one along with and without Csize

resulting in a substantial decrease in the minimum error level. Specifically, the error rates

decreased by approximately 25% to below 12%, representing an improvement over the

models that solely considered principal components (PCs). Notably, the random forest

and linear discriminant analysis models consistently outperformed the other models. In

particular, the random forest model exhibited slightly superior performance, particularly

when the centroid size variable was included in the analysis. This trend was consistent

with the maximum classification error rate graph, which displayed lower error rates for

the random forest model across the species categories.

To summarize, incorporating the centroid size variable in the predictive models sig-

nificantly contributed to the reduction of error rates. The random forest model, in par-

ticular, exhibited better overall performance, particularly when the centroid size variable

was included alongside the bgPCs, rather than with the principal components (PCs).
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7 Applied Research Work: Facial Morphology Anal-

ysis

7.1 Introduction and Aims

Face GWAS is an area of genetic research focused on identifying genetic variants asso-

ciated with facial morphology and traits. It involves analyzing large-scale genomic data

from individuals to investigate the genetic basis of facial features and their variations

within populations [Adhikari et al. (2016b)]. Though the initial face GWAS studies fo-

cused primarily on individuals of European descent [Liu et al. (2012)], researchers have

gradually expanded their investigations to include non-European populations. This ex-

pansion has been instrumental in obtaining a more comprehensive understanding of the

genetic architecture underlying facial variation in humans.

Geometric morphometrics is an area of study that analyzes the shape variation in

facial features using geometric landmarks [Webster and Sheets (2010)]. Procrustes dis-

tances are a crucial component of this approach, as they quantify the differences in

shape between objects or individuals after superimposing and aligning their landmarks.

These distances provide a reliable measure of shape variation and have been widely used

to compare and analyze morphological differences in various biological studies. In the

context of genetic association studies, these Procrustes distances are usually used as

phenotypic measurements and researchers investigate shape-based association analyses

to identify genetic variants linked to specific shape characteristics.

Traditionally GWASs of facial morphology use different phenotyping approaches such

as including qualitative assessment of morphological features on 2D photographs, mea-

surements derived from manual landmarking of 2D photographs, and semi-automatic

analyses of 3D facial images. Each approach has its own drawbacks, such as variations
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in cost, informativity, ease of application, and labor intensiveness. However, fully au-

tomatic landmarking approaches can be a feasible option, which combines automatic

landmarking with manual editing [Liu et al. (2012)].

This study focused on analyzing facial features obtained through a fully automatic

landmarking technique applied to 2D frontal photographs of Latin Americans with di-

verse European, Native American, and African ancestry. The objective was to identify

genetic loci that are significantly associated with various Procrustes distances, treated as

phenotypic traits. This study identified 33 novel genes associated with the facial shape

variation in diverse ethnicities within the CANDELA cohort and some of them overlap

with previous GWAS findings. In addition to that, most of the novel signals identified

here show evidence of statistical replication in other datasets such as European, East

Asian, or African GWAS data.

Notably, one of the novel genes, possibly inherited from the Neanderthals among Na-

tive Americans and East Asians, has been found to contribute to increasing nasal heights

and this result is consistent with the morphological differentiation between Neanderthals

and modern humans. These findings have been published in the journal ‘Communication

Biology’. (DOI: https://doi.org/10.1038/s42003-023-04838-7)

7.2 Methods

7.2.1 Study Sample and Phenotyping

The sample population in this study consisted of 6,486 individuals from the CANDELA

cohort, which was collected across five Latin American countries [Ruiz-Linares et al.

(2014)]. These individuals were genotyped using Illumina’s OmniExpress chip, which

included over 700,000 SNPs. Additionally, they were assessed for various standard co-

variates, including age, sex, BMI, and genetic ancestry estimated from the chip data

[Adhikari et al. (2016b)].
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In this study, the Face++ cloud service platform (https://www.faceplusplus.com)

was used to automatically locate 106 landmarks on frontal 2D photographs obtained from

CANDELA individuals. A subset of these individuals had previously undergone manual

placement of 16 landmarks, which served as a reference for evaluating the robustness of

the Face++ landmarking method [Adhikari et al. (2016b)].

Interclass correlation coefficients and median Euclidean distances were calculated

between the manually placed landmarks and those obtained using both the Face++

platform. These metrics allowed for a comprehensive comparison and evaluation of the

accuracy and consistency of the automated landmarking methods.

Following the Procrustes superposition, inter-landmark distances (ILDs) between 34

landmarks were obtained from the Face++ landmarking method. These landmarks

primarily corresponded to distinct anatomical features [Adhikari et al. (2016b)] which

are shown in the following figure.

Figure (a): The dots on the plot represent the positions of the 34 facial landmarks that
were utilized for the computation of 301 inter-landmark distances; Figure (b): The lines
on the plot depict the 148 inter-landmark distances (ILDs) that exhibited a significant
association with at least one genomic region in the CANDELA dataset.

Taking face symmetry into consideration, we derived a total of 301 distances. These

distances exhibited notable variation and displayed an approximately normal distribu-

tion. A significant correlation was observed between several distances and three head
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angles (pitch, roll, and yaw angle) estimated by Face++, indicating the influence of head

pose. To account for this effect, 76 individuals were excluded with extreme head angle

values and incorporated these angles as covariates in the genetic association tests.

7.3 Results

7.3.1 Overview of GWAS results

Following the application of quality control (QC) filters to the genotype and phenotype

data, association analyses were conducted between inter-landmark distances (ILDs) and

up to 11,532,785 SNPs across a maximum of 5,988 individuals. A significance threshold

of P-value < 5e−8 was used to identify significant associations, in accordance with the

convention for GWAS. In total, 42 genomic regions demonstrated significant associations

with at least one ILD, and among these regions, 148 distances exhibited associations with

at least one of the 42 genomic regions. Notably, nine of these regions had previously been

reported in GWAS studies on facial features, including six regions that were identified

in previous face GWASs conducted within the CANDELA cohort.

7.3.2 Follow-up of newly associated regions: Replication in independent

cohorts

The replication of the newly identified genome regions was validated by examining the

results from independent studies conducted on individuals with different continental

ancestries, including East Asians, Europeans, and Africans. This consideration of diverse

ancestries aligns with the admixed ancestry of the CANDELA individuals.

For East Asians, data was gathered from available frontal 2D photographs and

genome-wide SNP data for 5078 individuals [Zhang et al. (2022)]. In the case of Eu-

ropeans and Africans, associated P-values were extracted from a GWAS meta-analysis

involving data from 10115 Europeans and 78 interlandmark distances (ILDs) [Xiong
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Figure: The combined Manhattan plot displays all significant GWAS findings, with a
threshold set at log(P) > 7.3 (indicated by the red line). Candidate genes identified in
previous GWAS studies are represented by black labels, while the main candidate genes
within the five novel regions are highlighted with red labels.

et al. (2019)], as well as from a GWAS conducted on 3631 Africans, focusing on 34 size

and shape-related facial traits [Null et al. (2022)]. To determine the significance thresh-

old for replication, the Benjamini-Hochberg FDR procedure was employed. Among the

33 regions of interest, 26 showed associations for at least one distance in at least one

of the replication datasets, providing evidence of statistical replication of these genomic

regions across different populations.

7.3.3 Neanderthal introgression in a genomic region 1q32.3 and Nasal height

comparison across the various Ethnicities

One of the novel regions identified in this study, located in chromosome region 1q32.3,

showed replication and association with various Procrustes distances, particularly af-

fecting nasal heights. Interestingly, previous research has reported Neanderthal intro-

gression in this same region, and the evidence of introgression was also observed in the

CANDELA data. Approximately 31% of CANDELA chromosomes were found to carry
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Neanderthal inherited genetic tracts in this region, which displayed significant associa-

tions with Procrustes distances, ultimately leading to an increase in nasal heights.

To gain further insights, a comparison of nasal heights was made between modern hu-

mans and Neanderthals using available data on Neanderthals for equivalent Procrustes

distances. This comparison included 1190 modern human skulls from three continen-

tal populations and data from 10 Neanderthals, revealing that Neanderthals exhibited

notably higher nasal heights. The modern human data was obtained from Howell’s

database [Oxnard (1974)], while the Neanderthal data was sourced from Weaver and

Stringer [Weaver and Stringer (2015)].

Figure: Displayed here are 3D images of a modern human skull and a Neanderthal skull.
Nasal height is represented as a red line, measuring 50.2 mm for the modern human and
63.8 mm for the Neanderthal.

Upon comparing the genomes, it becomes evident that Neanderthal tracts are present

on a Native American chromosomal background. This finding aligns with previous anal-

yses that identified 1q32.3 introgression primarily in Native Americans [Sankararaman

et al. (2016)].
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7.4 My Contribution

Although this research mainly focused on identifying genetic variants associated with fa-

cial traits, the critical concept of power gain through conditioning, a significant chapter

in my thesis, was not applied in this particular area. As part of the research collabora-

tion, I extensively examined the CANDELA cohort dataset, exploring various variables.

This involved investigating a conversion method to enable comparisons across diverse

ancestries and with Neanderthals.

The CANDELA cohort dataset has two different types of variable setups. The GWAS

above, which found a significant association of the Neanderthal-inherited gene, was based

on Procrustes distance between landmarks. However, when comparing between different

species, i.e. the humans and Neanderthals, it is important to compare the actual size (i.e.

in mm), since that is the primary point of difference between the species, as illustrated

above.

To enable this comparison, I developed a conversion method between the two types

of measurements: size-based measurements (in mm) and shape-based measurements

(obtained through the Procrustes process). For this purpose, I used the two kinds

of variables that are available in CANDELA. The first dataset contained background

information, such as country, head size, etc., and various distance measurements for

different facial features in actual scales (e.g., in mm), for example, ’NASION GNASION’

is for nasal height, ’CH CH BREADTH’ is for the width of noses, etc. The second

dataset consisted of landmark-based Procrustes distances for various facial features.

Initially, I started with the various types of variables in the entire dataset and pro-

duced summary statistics for different countries including Brazil, Chile, Colombia, Mex-

ico, and Peru. Next, I extracted the variable ’NASION-GNASION’, which pertained

to nasal height distance, from the CANDELA cohort dataset. I then examined rele-

vant summary statistics for this variable. The background information provided details
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on the number of individuals in each country and how many had information on ’NA-

SION GNASION’.

By doing a pairwise comparison of ’NASION GNASION’ and the equivalent landmark-

based Procrustes distance of nasal height, I transformed the landmark-based Procrustes

distances for CANDELA individuals into actual scales (e.g., in mm), similar to the Ne-

anderthal individuals. I plotted the nasal distances of CANDELA individuals using box

plots, categorized by continent (i.e., Africans, Europeans, and Native Americans). Ad-

ditionally, I included the Neanderthal individuals in the same graph to observe which

continent closely resembled the Neanderthal facial features.

Figure: The box plot illustrates the variation in nasal height between modern humans
and Neanderthals. The P-value (< 0.0001) indicates a significant contrast in nasal height
data between the two groups.

In the end, to evaluate the consistency of the introgression effect, a genome-wide

association study (GWAS) was conducted using the reconstructed actual size measure-

ments, and the results showed that the genetic associations and effect directions were

consistent with the Procrustes distance-based GWAS.
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8 Overall Conclusion

In this doctoral research, I’ve delved into multivariate statistical models for analyzing

genotype-phenotype data. This exploration encompassed both theoretical and computa-

tional methodologies. I’ve shown the connection between linear mixed models, ordinary

least square regression, and shrinkage, simplifying their interrelations. Chapter 3 navi-

gates through various multivariate testing techniques, preceded by an extensive literature

review. I have considered the multivariate test procedures for the Canonical Correlation

setup due to their availability in the literature. Here, I delved into their mathematical

properties within multiple linear regression, establishing their convergence to the chi-

square distribution. Moreover, I demonstrated their equivalence with each other and

the Wald Test, recommending the Wald Test for future studies due to its compatibility

across scenarios.

Chapter 4 contains a significant contribution to the thesis which involves the gain

of power in identifying new associations from conditioning on major genes. Through

various multiple regression settings, I explored the impact of conditioning on statisti-

cal power theoretically and computationally. Theoretical developments revolved around

multiple linear regression models, encompassing diverse design matrix forms. I eluci-

dated power gain considering genetic variant behavior within chromosomes, incorporat-

ing LD structures and proxy variants. To illustrate this concept, I performed analyses

using two genetic databases: the CANDELA cohort and UKBiobank. Specifically, I

derived mathematical expressions for statistical power when the design matrix takes the

form of a 3-Block matrix, clarifying the degree of enhancement in power achieved by

conditioning on a single block. Furthermore, I introduced a mathematical formula, a

3-block approach, to compute conditional results from summary statistics, even with-

out individual-level datasets. Comparing the conditional beta coefficients obtained from
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this 3-block approach with those derived from the GCTA software, I found that the

former closely aligned with the true coefficients for all the tested SNPs, outperforming

the GCTA-derived coefficients.

In prediction, the central aim revolves around optimizing predictive precision over

focusing solely on testing or statistical power. However, the statistical models used in

testing, such as linear models and shrinkage methods, can also be carried out for predic-

tive purposes in new datasets and the predictive ability can be calculated with prediction

accuracy or errors. Chapter 5 delves into the mathematical depiction of prediction errors

across various methods like simple linear regression models and ridge regression. These

formulations elucidate the connection between prediction errors and genetic association

studies, facilitating an understanding of genetic heritability by gauging model prediction

errors.

Chapter 6 and Chapter 7 concentrate on collaborative research related to “Dental

Morphology Data” and “Facial Morphology Data”, respectively. In Chapter 6, various

predictive models such as random forest, linear discriminant analysis, multinomial logis-

tic regression, K-nearest neighbor, and support vector machines were employed to assess

species prediction accuracy based on dental morphology data. The evaluation involved

calculating the “Confusion Matrix”, offering misclassification proportions for each cate-

gory. Since the Confusion Matrix is usually very large, the performance of a predictive

model is evaluated with the “average error rate”. But it may be the situation that the av-

erage error rates are similar or very close for different models, and the error rates of each

class vary quite a bit. Therefore, additional metrics, like the maximum misclassification

rate for any category, were also computed. The analysis demonstrated that incorpo-

rating the centroid size variable in the predictive models resulted in improved accuracy

and upon comparing all the models, linear discriminant analysis demonstrated superior

accuracy. Chapter 7 centered on analyzing facial traits from automatic landmarking of
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2D frontal photographs from individuals with varied ancestries. The aim was to pin-

point genetic loci linked to distinct Procrustes distances treated as phenotypic traits.

Extensive examination of the CANDELA cohort dataset involved exploring variables

and devising a conversion method for cross-ancestral comparisons, including with Nean-

derthals. This exploration revealed 33 new genes associated with facial shape variations

in diverse ethnicities within the CANDELA cohort. Some of these genes overlapped

with previous GWAS findings, with most novel signals showing statistical replication in

other datasets, such as European, East Asian, or African GWAS data. Notably, a novel

gene inherited from Neanderthals among Native Americans and East Asians was found

to impact nasal heights, consistent with Neanderthal and modern human morphological

differences. These discoveries were published in the journal “Communication Biology”.

The mathematical derivation illustrating power gain through conditioning has been

extensively demonstrated in various regression models primarily applied when the re-

sponse or phenotype variable is continuous. However, in practical scenarios, some non-

metric traits, like incisor shoveling, exhibit a “quasi-continuous” nature. This means

these traits can be seen as dichotomous, arising from an underlying continuous quantity.

In such cases, this continuous underlying variable is termed a “latent variable” that cor-

responds to the evaluated categorical variable. In that case, the concept of conditioning

can also be useful in generalized linear models (GLMs) settings when a clear latent vari-

able is not present, though we don’t provide the mathematical details in the context of

GLMs.

In genome-wide association studies (GWAS), the trait of interest is often binary,

indicating a categorical variable with two categories denoting the presence or absence of

the outcome. Logistic regression is typically used to analyze the association between ge-

netic variants and such categorical outcomes, considering confounding factors. However,

the coefficient of regression (β) is unbiased in the presence of uncorrelated confounders
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in linear regression setup but not in the logistic regression case. Consequently, condi-

tional analyses in GWAS using logistic regression have been limited, mainly focusing

on disease phenotypes in case-control studies. Binary responses are common in various

study designs like case-control studies, cohort studies, clinical trials, and twin studies.

Case-control studies often employ logistic regression to explore the relationship between

genetic variants and binary responses within a single cohort. However, conditioning in

these studies poses challenges due to the complex interplay of disease prevalence and

allelic effect size on conditioned GWAS power. While conditioning is well-established,

further exploration of its impact on statistical power in case-control studies remains an

area for future research.
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A APPENDICES

A.1 Computational methods for mixed models

Bates (2010) discussed the computational methods for the ”lme4” package which pro-

vides R functions to fit and analyze linear mixed models, generalized linear mixed mod-

els, and nonlinear mixed models. These models are called mixed-effects models because

they incorporate both fixed-effects parameters, which apply to an entire population or to

certain well-defined and repeatable subsets of a population, and random effects, which

apply to the particular experimental units or observational units in the study. Here, it

has been discussed the general form of the mixed models that can be represented in the

”lme4” package and the computational approach embodied in the package. In the mixed

effect model, the n-dimensional response variable y, maybe on a continuous scale or they

may be on a discrete scale, such as binary responses or responses representing a count,

and the q-dimensional random effect vector, B is always continuous. The conditional

distribution of (y|B = b) is the multivariate Gaussian distribution of the form

(y|B = b) ∼ N(Zb+Xβ, σ2In)

where, In denotes the identity matrix of size, n. The conditional mean, E(y|B = b),

depends on b only through the value of the linear predictor, Zb + Xβ, X is the n × p

model matrix, β is a p-dimensional coefficient vector, Z is the n×q model matrix for the

q-dimensional vector valued random effect variables, B. The unconditional distribution

of B is also multivariate Gaussian distribution as

B ∼ N(0,Σ)
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As a variance-covariance matrix must be positive semidefinite. It is convenient to express

the mixed model in terms of a relative covariance factor, Λθ which is a q × q matrix,

depending on the variance-component parameter, θ, and generating the symmetric q× q

variance-covariance matrix, Σ, according to

Σθ = σ2ΛθΛ
T
θ

A linear transformation, (B = Λθu )has been made on the random effect B to formulate

it in terms of a spherical random effect variable u such that the conditional mean or the

linear predictor may be reformed as

γ(u) = E(y|B = b) = ZΛθu+Xβ

here, u ∼ N(0, σ2Iq) and this spherical formulation allows to work with singular covari-

ance matrices, which regularly arise in practice.

The estimates of the parameters in a mixed model are determined as the values that

optimize an objective function either the likelihood of the parameters given the observed

data, for maximum likelihood (ML) estimates, or a related objective function called

the REML criterion. As this objective function must be evaluated at many different

values of the model parameters during the optimization process, the evaluation of the

objective function and the computational methods for maximum likelihood fitting the

linear mixed model involve repeated applications of the penalized least squares (PLS)

method. In particular, the PLS problem is to minimize the penalized weighted residual

sum of squares,

r2(θ, β, u) = ρ2(θ, β, u) + ||u||2

over (θ, β)T , where, ρ2(θ, β, u) is the weighted residual sum of squares. The reason for

the word ”penalized” is that the term ||u||2, penalizes models with larger magnitude
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values of u.

For the purpose of statistical inference, it is always interesting to deal with the

conditional probability density of u|y, and the unnormalized conditional density can be

written as

h(u|y, θ, β, σ) = fy|u(y|u, θ, β, σ)fu(u|σ)

and to obtain the conditional density, h needs to be normalized by dividing by the value

of the integral

L(θ, β, σ|y) =
∫
Rq

h(u|y, θ, β, σ)du

On the deviance scale, the unnormalized conditional density can be written as

−2log(h(u|y, θ, β, σ)) = (n+ q)log(2πσ2) +
||y − ZΛ(θ)u−Xβ||2 + ||u||2

σ2

= (n+ q)log(2πσ2) +
d(u|y, θ, β)

σ2

here, d(u|y, θ, β) = ||y − ZΛ(θ)u−Xβ||2 + ||u||2 is the discrepancy function and it has

the form of a penalized residual sum of squares in which ||y − ZΛ(θ)u − Xβ||2 is the

residual sum of squares for y, u, θ and β and the second term, ||u||2, is a penalty on the

size of u.

In the so-called ”pseudo-data” approach, the discrepancy function can be written as

the squared length of a block matrix equation

d(u|y, θ, β) =

∣∣∣∣∣
∣∣∣∣∣
y
0

−

ZΛ(θ) X

Iq 0


u
β

 ∣∣∣∣∣
∣∣∣∣∣
2

The term“pseudo data” reflects the fact that we have added q ”pseudo observations”

to the observed response, y, and to the linear predictor, γ(u) = ZΛθu +Xβ, in such a

way that their contribution to the overall residual sum of squares is exactly the penalty
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term in the discrepancy. It is seen that the form of the discrepancy is a quadratic form

in both u and β. Furthermore, because we require that X has full column rank, the

discrepancy is a positive-definite quadratic form in u and β that is minimized at ũ and

β̃ satisfying

ΛT (θ)ZTZΛ(θ) + Iq ΛT (θ)ZTX

XTZΛ(θ) XTX


ũ(θ)
β̃(θ)

 =

ΛT (θ)ZTy

XTy
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A.2 Parameter estimation and inference in the linear mixed

model

Gumedze and Dunne (2011) discussed the parameter estimation for the different com-

ponents of the linear mixed model and inference procedures for the fixed effects, random

effects, or a combination of both, and random effects are discussed in this paper. The

widely used linear mixed model (LMM) is given by

y = Xβ + Zµ+ ϵ

where, yn×1 is a vector of responses, Xn×p is a design matrix for the fixed effects, βp×1

is a vector of fixed effect parameters, Zn×q is a design matrix for the random effects,

uq×1 is a vector of random effect. It is assumed that u and ϵ follow independent and

multivariate Gaussian distribution such thatu
ϵ

 ∼ N

(0
0

 , σ2

G(γ) 0

0 R(ρ)

)

where,γ and ρ are r × 1 and s × 1 (with s ≤ n(n + 1)/2) vectors of unknown variance

parameters corresponding to u and ϵ, respectively. If the random terms are correlated

then the dimension of γ may excced q, i.e. γ may be of dimension r ≤ q(q + 1)/2.

Following ?, the variance-covariance matrix of the data, y can be written as

var(y) = σ2(ZGZT +R) = σ2H

where

H = ZGZT +R

The matrix H consists of two components that are used to model heteroscedasticity
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and correlation: a random-effects component ZGZT and a within-group component

R. In some applications, the within-group component R is used to directly model the

variance–covariance matrix of the data without incorporating random effects in the

model to account for dependence among observations.

Joint estimation of fixed and random effects

There are many methods for obtaining the joint estimates of the fixed and random

effects [Searle et al. (1992)]. These methods include Henderson’s mixed model equation,

Goldberger’s approach of predicting future observations, techniques based on two-stage

regression, linearity in y, partitioning of y, and Bayes estimation. Here, Henderson’s

mixed model equations have been discussed because it produces sampling variances for

the estimators and it has a connection with the maximum likelihood estimation of the

variance parameters. Hendeson assumed u and y to be jointly Gaussian distributed as

u
y

 ∼ N

( 0

Xβ

 , σ2

 G GZT

GZ H

)

Henderson maximized the log-joint distribution of (y, u) to obtain estimators of β and u.

However, this logarithmic function is not a log-likelihood function as u is not observed.

The marginal distribution of u is

u ∼ N(0, σ2G)

and the conditional distribution of y given uis

y|u ∼ N(Xβ + Zu, σ2R)
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Hence, the log-joint distribution of (y, u) is given by

logf(y, u) = logf(y|u) + logf(u)

= −1

2
nlogσ2 + logR + (y −Xβ − Zu)TR−1(y −Xβ − Zu)/σ2

− 1

2
qlogσ2 + logG+ uTG−1u/σ2

= −1

2
(n+ q)logσ2 + logR + logG+ (y −Xβ)TR−1(y −Xβ)/σ2

− 1

2σ2
uT (ZR−1ZT +G−1)u− 2(y −Xβ)TR−1Zu

Now, the estimates of β and u can be obtained by solving the score equations

XTR−1(y −Xβ̂)−XTR−1Zũ = 0

ZTR−1(y −Xβ̂)− (ZTR−1Z +G−1)ũ = 0

These equations are called the mixed model equations (MMEs) as proposed by Hen-

derson (1975) and the equations can be written in matrix form as

XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1


β̂
ũ

 =

XTR−1y

ZTR−1y

 (A.1)

Gilmour et al. (1995) rewrote the mixed model equation (2.8) as

Cψ = W TR−1y (A.2)

where, W = [XZ], ψ = (βT , uT )T and C = W TR−1W +G∗+ with

G∗ =

0 0

0 G
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and

G∗+ =

0 0

0 G−1


where, the superscript ” + ” denotes the Moore-Penrose inverse. Assuming H is known,

the fixed effects parameters β can be estimated by generalized least square (GLS) to

obtain

β̂ = (XTH−1X)−1XTH−1y (A.3)

which is the best linear unbiased estimator (BLUE) of β. If X is not full rank, then any

generalized inverse (XTH−1X)− is used instead of (XTH−1X)−1 to obtain a solution for

β. The resulting solution for β is not unique and is no longer unbiased. However, Xβ̂

is unique and unbiased for Xβ.The computational challenge of using GLS to estimate

β is that it requires the inverse of H which is an n × n matrix. In contrast, the joint

estimators for β and u can be obtained by solving either (A.1) or (A.2), i.e.,

ψ̃ = C−1W TR−1y

Lemma 1:

The solution for β and u from solving the MMEs, for G and R known, are given by

β̂ = (XTH−1X)−1XTH−1y

ũ = GZTH−1(y −Xβ̂)

with corresponding variance matrices

var(β̂) = σ2[(XTH−1X)−1XTHH−1X(XTH−1X)−1] = σ2(XTH−1X)−1
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and

var(ũ) = σ2GZTPHPZG = σ2GZTPZG (A.4)

respectively, where P = H−1−H−1X(XTH−1X)−1XTH−1 . It can also be written that

var(ũ− u) = σ2G− var(ũ)

which unlike (A.4) takes into account the variability of u and can therefore be useful for

constructing confidence intervals for u.

Parameter Estimation for Variance

Maximum likelihood (ML) and Residual Maximum Likelihood (REML), also known as

restricted maximum likelihood, are now standard methods for estimating variance pa-

rameters for both balanced and unbalanced data. The main attraction of these methods

is that they can handle a much wider class of variance models than simple variance com-

ponents. ML estimators of the variance parameters are biased downwards, especially

in small samples, because they do not take into account the degrees of freedom lost

in the estimation of the fixed effects [Lin and McAllister (1984); Swallow and Monahan

(1984)]. Hence, REML estimation of the variance parameters is preferable to ML estima-

tion. ML estimation of the variance parameters has been discussed by several researchers

(e.g.,[Hartley and Rao (1967)]. ML and REML estimation for variance parameters in

linear mixed models has been discussed here:

Maximum likelihood Method

The marginal distribution of y in the linear mixed model is given by N(Xβ, σ2H)

and hence the marginal log-likelihood function of y is [Hartley and Rao (1967)]

lML(β, ϕ; y) = −1

2

[
nlog2π + nlogσ2 + log|H|+ (y −Xβ)TH−1(y −Xβ)

σ2

]
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where, ϕ = (kT , σ2)T , k = (γT , ρT )T . Differentiating the marginal log-likelihood function

with respect to β, σ2 and kj; j = 1, · · · , r + s yields the partial derivatives and setting

equal to zero gives

XT Ĥ−1Xβ̂ = XT Ĥ−1y

nσ̂2 = (y −Xβ̂)T Ĥ−1(y −Xβ̂)

tr(Ĥ−1 ˜̂
jH) =

1

2
(y −Xβ̂)T Ĥ−1 ˜̂

jHĤ
−1(y −Xβ̂) (A.5)

Solving the above equation yields the maximum likelihood estimators

β̂ = (XT Ĥ−1X)−1XT Ĥ−1y

σ̂2 =
1

n
(y −Xβ̂)T Ĥ−1(y −Xβ̂)

Solving (A.5), the solution for kj must be found which depends on β̂ and σ̂2.

Residual Maximum Likelihood (REML)

The downward biasedness of ML estimators of the variance parameters, hidden in H,

can be overcome by using residual maximum likelihood (REML) estimation [Anderson

and Bancroft (1952); Patterson et al. (2006)]. REML maximizes the likelihood of linearly

independent error contrasts, i.e. independent contrasts of linear combinations of the

data y, orthogonal to the design matrix X. The linear combinations are chosen as

KTy so that KTy is of maximal rank but is free of the fixed effects β. These linear

combinations are the residuals obtained after fitting the fixed effects hence the name

residual maximum likelihood. For y ∼ N(Xβ, σ2H) and KTX = 0, it can be written as

KTy ∼ N(0, σ2KTHK) and the residual (REML) log-likelihood function is

lR(ϕ;K
Ty) = −1

2

[
(n−p)log2π+(n−p)logσ2+log|KTH−1K|+ 1

σ2
yTK(KTH−1K)−1KTy

]
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where, ϕ = (kT , σ2)T , k = (γT , ρT )T . Patterson and Thompson (1971) derived the

probability distribution ofKTy by carefully choosingK as an[n−p]×nmatrix whose rows

are [n− p] linearly independent rows of [I −X(XTX)−1XT ]. Since [I −X(XTX)−1XT ]

is symmetric, idempotent and has rank [n − p], it can be expressed as KKT such that

KTK = I. Patterson and Thompson [1971] argued that since E(KTy = 0, KTy lies in

the error space, and hence contains no information about the fixed effects, but it does

contain information about the variance parameters. Then the REML log-likelihood

function (ignoring constants) for the model is

lR(ϕ; y) = −1

2

[
(n− p)logσ2 + log|H|+ log|XTH−1X|+ 1

σ2
(y −Xβ̂)T Ĥ−1(y −Xβ̂)

]
= −1

2

[
(n− p)logσ2 + log|H|+ log|XTH−1X|+ yTPy

σ2

]

where, β̂, the GLS estimate of β, and P are given in Lemma 1. Differentiating the

REML log-likelihood function with respect toσ2 and kj; j = 1, 2, · · · , r + s and setting

equal to zero and solving gives a REML estimator for the error variance as

σ̂2 =
yT P̂ y

n− p

which should be computed iteratively since it depends on k̂ through P . The REML

estimate for kmust also be found iteratively [Gilmour et al. (1995)].

Iterative Schemes

To calculate the ML or REML estimates of the variance of the variance parameters,

related iterative procedures have been discussed and a comparison has also been made.

The iterative methods are:

� Newton-Raphson (NR)

� Fisher Scoring (FS)
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� Average Information (AI) algorithm

The theory of inferential procedures used for the estimated parameters in the linear

mixed model has also been discussed separating into different sections as follows

� Inference for fixed effects

� Inference for variance parameters

� Inference for random effects

� Inference on a combination of fixed and random effects
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A.3 Expression of R2 in terms of z-Score

Let us consider a simple linear regression model as:

y = xβ + ϵ; where, ϵ ∼ N(0, σ2)

The ordinary least square (OLS) estimate of the parameter β can be obtained as

β̂ =

∑
xy∑
x2

= R
σy
σx

We know that,

R2 = 1− MSE

var(y)

∴MSE = σ̂2
e = σ2[1−R2]

We also know that,

v(β̂) =
MSE

nvar(x)
=

σ̂2
e

nσ2
x

=
σ2[1−R2]

nσ2
x

The test statistic:

z2 =
β̂2

var(β̂)

=
R2 σ2

y

σ2
x

σ2[1−R2]
nσ2

x

=
nR2

1−R2

⇒ z2

n
=

R2

1−R2
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⇒ 1 +
z2

n
= 1 +

R2

1−R2

⇒ 1−R2 =
1

1 + z2

n

∴ R2 =
z2

z2 + n
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