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A B S T R A C T

With the decreasing cost of green technologies and the increasing ambitions to reach the net-zero carbon
emissions target, more communities are engaged in renewable deployment and energy-intensive technologies
such as heat pumps and electric vehicles will be intensively adopted in the near future. The integration of these
appliances in lower grid levels will likely require grid reinforcements. However, some of these appliances are
flexible and there is an opportunity to explore their flexibility potential to optimise the investment costs further.
This paper proposes an optimal design strategy for a grid-connected site that returns the renewable generation
and storage’s optimal sizing capacities and the required network reinforcement capacity. The novelty of the
work is integrating network upgrade costs and considering flexibility from distributed flexible resources across
planning and operation. The problem is formulated as a mixed integer piecewise linear problem, with the
capacities of generation, storage and network upgrade as decision variables. The piecewise linear cost function
related to the upgrade costs figuring in the objective function is then recast as a mixed-integer problem, and
the flexible resources are modelled through an approximation method as a single virtual flexible asset. The
application of the strategy on the Perth West smart city project as a case study demonstrates the importance
of considering flexibility in the planning phase. The costs related to the storage system can decrease by up to
76%, and the overall costs by up to 35%, with the highest levels of savings, reached for the highest rates of
electric vehicle adoption.
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1. Introduction

The energy sector is the largest responsible for greenhouse emissions
with a share of around 75% [1]. Energy-related CO2 emissions are
estimated to increase from 33 GT in 2015 to 35 Gt in 2050 under
current and planned policies [2], and if the objectives of the Paris
summit agreement are to be met, the share of renewables need to
increase from 25% to 85% by 2050 [2]. Thanks to the dropping prices
of renewable technologies, reaching almost 80% drop in 10 years [3],
increased integration of renewable sources is ongoing. The idea of
being less impacted by electricity prices and more energy-independent
becomes attractive, and renewable deployment is on a steady rise
across utility, commercial, and residential sectors.

To reduce costs using renewables, accurate sizing should be per-
formed during the planning phase to decide on the right capacities
of renewable technologies. Different strategies are presented in the
literature to minimise the costs of investing in a renewable system.
The most popular algorithms are linear programming and their derived
models such as mixed integer linear programming (MILP) [4] and
robust optimisation (RO) [5], and heuristics algorithms, e.g., particle
swarm optimisation (PSO) [6], grey wolf [7], and differential evolu-
tion (DE) [8]. Fewer works consider the optimal combination of both
generation and storage capacities. The majority of works on storage
sizing consider the capacity of the generation (solar panels and/or
wind turbines) to be fixed and known in advance [8–10]. The most
common objective for the strategies is minimising the investment costs
for the renewable system, and fewer papers consider other objectives
such as increasing energy autonomy [6] or decreasing CO2 emissions.
For grid-connected sites, no work integrates the network upgrade cost,
i.e., installation of new transformers and reinforcement of existing
lines, into the objective function.

Although there are studies that analyse the impact of the integration
of new technologies such as PV, electric vehicles (EVs) and heat pumps
(HPs) on the grid [11–13], and suggest models for the optimised
upgrade [11,13], to the best of our knowledge, there is no work that
integrates the network costs into the sizing models that perform the
sizing for grid-connected sites.

Moreover, one of the constraints that sizing needs to account for
is the supply–demand balance, i.e., demand is considered inelastic and
has to be met at all times. However, with the emergence of flexible
assets and their integration in lower grid levels, there is an opportunity
to explore the flexibility to increase energy efficiency and drive the
costs even lower when accomplishing the infrastructure investments.
Activating flexibility from distributed assets to optimise the operational
costs at the distribution level is recurrent in the literature and takes
many forms such as solving network congestion [14–16], minimising
power loss [17] or addressing voltage deviation [16]. Fewer papers
in the literature consider flexibility in the planning phase. Xie et al.
[8] considered the flexibility of HPs in the battery sizing model, but
network capacity upgrade was not considered. Crozier et al. [18]
conducted an analysis of the impact of EV’s controlled charging on
the required network upgrades. However, the study did not take other
flexible resources into account and the optimal renewable system sizing
was not considered.

Table 1 summarises the different microgrid optimisation strategies
that are found in the literature. They can be structured into three
categories: sizing models that optimise the renewable system costs,
models that return the optimal network upgrade required to support the
integration of new technologies into the grid, and models that optimise
the costs during the operation phase by considering flexibility. In the
first category, the size of renewable power supply is optimised to serve
different purposes such as system cost reductions or CO2 emissions
reduction. A detailed overview of the different methods for microgrid
sizing can be found in [19,20]. The sizing is a crucial step of the
planning phase as it allows decision-makers to have an idea of the
2

investment costs. However, the proposed models in the literature for
Nomenclature

𝜂𝑐ℎ𝑏 , 𝜂𝑑𝑖𝑠𝑏 Charging and discharging battery 𝑏 effi-
ciency

𝜂𝑐ℎ𝑒𝑣 , 𝜂
𝑑𝑖𝑠
𝑒𝑣 Charging and discharging EV battery 𝑒𝑣

efficiency
𝜅𝑥 The unit price of equipment 𝑥
𝑎𝑣𝑎𝑖𝑙 Availability period of EV 𝑒𝑣
𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 Maximum (dis)charging rate of battery 𝑏
𝑝𝑐ℎ∕𝑑𝑖𝑠𝑒𝑣 Maximum (dis)charging rate of EV battery

𝑒𝑣
𝐸𝑏, 𝐸𝑏 Minimum and maximum state of charges of

battery 𝑏
𝐸𝑒𝑣, 𝐸𝑒𝑣 Minimum and maximum state of charges of

EV battery 𝑒𝑣
𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 Minimum (dis)charging rate of battery 𝑏
𝑝𝑐ℎ∕𝑑𝑖𝑠
𝑒𝑣

Minimum (dis)charging rate of EV battery
𝑒𝑣

𝐴𝐹 Annuity Factor
𝐶𝑖𝑚𝑝(𝑡) Wholesale energy prices at time step 𝑡
𝐸0
𝑏 The initial state of charge of battery 𝑏

𝐸𝑎𝑟𝑟
𝑒𝑣 , 𝐸𝑎𝑟𝑟

𝑒𝑣 State of charge at arrival and departure of
EV battery 𝑒𝑣

𝐺(𝑡) Global horizontal irradiance of the site at
time step 𝑡

𝐿𝑇 Lifetime
𝑁𝑂𝐶𝑇 Nominal operation temperature
𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 (𝑡) (Dis)charging power of battery 𝑏 at time

step 𝑡
𝑝𝑐ℎ∕𝑑𝑖𝑠𝑒𝑣,𝑎𝑔𝑔 (𝑡) Aggregated (Dis)charging power of EV fleet

at time step 𝑡
𝑝𝑐ℎ∕𝑑𝑖𝑠𝑒𝑣 (𝑡) (Dis)charging power of EV battery 𝑒𝑣 at

time step 𝑡
𝑃𝑖𝑚𝑝(𝑡) Import power at time step 𝑡
𝑃𝑝𝑒𝑎𝑘 Maximum import power
𝑃𝑃𝑉 Nominal PV panels capacity
𝑝𝑃𝑉 (𝑡) Output power of the PV panels at time step

𝑡
𝑃 𝑟
𝑃𝑉 (𝑡) Rated power solar of the site at time step 𝑡

𝑟 Discount Factor
𝑇 (𝑡) Ambient temperature of the site at time

step 𝑡
𝑇𝑒𝑓𝑓 Temperature coefficient of power

grid-connected sites do not account for the grid connection point, and
the sizing is generally performed under the assumption that the site will
keep the same grid connection capacity. This may limit the efficiency of
the model as reinforcing the network may reduce the costs. The second
category is a part of the planning phase too. An estimation of the re-
quired network upgrade that will support the increasing energy demand
is conducted, and the estimates are computed under the assumption
that the demand will be supplied from the grid connection point. To the
best of our knowledge, no work conducts the estimate in the presence
of a local renewable system that supplies the site. The third category of
strategies studies the potential of some distributed assets in providing
flexibility to reduce operational costs or to defer network upgrades.
Nevertheless, the potential of these assets was never exploited from a
renewable system sizing perspective. Thereby, a strategy that optimises
the costs across the three categories is worth investigating.

This paper proposes a sizing model for a grid-connected site that

explores flexibility from distributed assets and accounts for the network
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Table 1
Microgrid optimisation strategies proposed in the literature.

Ref Purpose Resources Methods

Renewable
system costs

Network
upgrade costs

Operational
costs

Generation Storage Flexible
loads

[4] ✓ ✓ ✓ MILP

[6] ✓ ✓ ✓ PSO

[8] ✓ ✓ ✓ DE

[9] ✓ ✓ MILP

[10] ✓ ✓ LP

[11] ✓ ✓ ✓ LP

[12] ✓ ✓ ✓ ✓ ✓ iterative

[13] ✓ ✓ MILP

[14] ✓ ✓ ✓ ADMM

[15] ✓ ✓ Bi-level
programming

[16] ✓ ✓ ✓ two-stage
stochastic
programming

[17] ✓ ✓ LP

[18] ✓ ✓ ✓ LP

[21] ✓ ✓ ✓ Iterative

[22] ✓ ✓ ✓ MILP

[23] ✓ ✓ LP

[24] ✓ ✓ ✓ ✓ MILP

[25] ✓ ✓ ✓ ✓ iterative
price-
negotiation

This paper ✓ ✓ ✓ ✓ ✓ ✓ MILP
upgrade costs. The proposed model is technology-agnostic and inte-
grates flexibility from heterogeneous flexible assets, i.e., thermostatic,
deferrable and storage-like assets. Moreover, it integrates the cost of
the required network upgrades into the objective function. We apply
the proposed model to the Perth West smart city project, which is a
greenfield project located in the west of Perth city, UK, and we investi-
gate the impact of considering flexibility during the planning phase on
the design decisions of the system, i.e., size of renewable generation,
size of the storage system and the required network infrastructure to
support the system. The key novelties of the paper can be summarised
as follows:

• Unlike existing optimal sizing models that return the optimal
capacity sizes of generation and/or storage, we model the optimal
sizing of a grid-connected site that considers the costs of network
reinforcements and returns, in addition to the optimal generation
and storage sizes, the optimal upgrade capacity,

• We integrate the operational flexibility from distributed flexible
resources into the proposed sizing model. Taking account of the
flexibility of distributed assets during the planning phase can
be beneficial and help in deferring infrastructure upgrades and
reducing investment costs. The method is scalable and can be
applied to heterogeneous sources of flexibility.

• We apply the model to a real-world case study and demonstrate
that the co-optimisation of power system investment with the
operation of local flexible resources decreases investment costs
related to the renewable system.

The rest of the paper is structured as follows. Section 2 formu-
ates the sizing problem as a mixed integer non-linear problem. In
ection 3, we present a MILP reformulation of the MINLP model and an
pproximate aggregation model that reduces the scale of the problem.
3

The resulting formulation is tested on a case study that is presented
in Section 4, and Section 5 concludes the paper and opens on future
works.

2. Problem formulation

Greenfield microgrid sites present a potential opportunity for the
decarbonisation target since their energy system can be designed to
maximise the operational value of flexible energy assets. Optimisation
across local energy infrastructure and coordination of flexibility will
reduce infrastructure costs and unlock new revenue streams for flexible
asset owners.

In this section, we present a mathematical formulation for the opti-
mised microgrid investment that integrates the flexibility from distribu-
tion resources to return the optimal generation and storage capacities
and the optimal grid capacity required to support the connection of the
site to the grid.

We consider Perth West smart city project as a case study, therefore,
the formulation will focus on solar generation and battery energy stor-
age systems (BESS) as clean energy assets and EVs as flexible resources.
We note that the formulation can be straightforwardly extended by
including other distributed resources such as wind turbines and/or
other sources of flexibility such as thermal and interruptible loads.

2.1. Objective

The optimal sizing problem of a site is initially formulated as a
mixed-integer non-linear programming (MINLP) model that aims at
minimising the annualised total costs of the system. The total costs
include (1) upgrade costs for network infrastructure, (2) capital costs
for purchasing, installing and maintaining the equipment, and (3) op-

erational costs of buying electricity from the network. The investment
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costs are divided by an annuity factor 𝐴𝐹⋅ to reflect the yearly cost,

with 𝐴𝐹⋅ =
1− 1

(1+𝑟)𝐿𝑇 ⋅

𝑟 , 𝑟 refers to the discount factor and 𝐿𝑇 ⋅ to the
quipment lifetime. The investment costs for the PV and BESS are
ssumed to be linear to their nominal capacity, with 𝜅⋅ being the unit
rice of the equipment.

𝑜𝑠𝑡𝑎𝑛𝑛𝑡𝑜𝑡𝑎𝑙 =𝐶𝑜𝑠𝑡𝑎𝑛𝑛𝑢𝑝𝑔 + 𝐶𝑜𝑠𝑡𝑎𝑛𝑛𝑐𝑎𝑝 + 𝐶𝑜𝑠𝑡𝑎𝑛𝑛𝑜𝑝

=
𝐶𝑜𝑠𝑡𝑢𝑝𝑔
𝐴𝐹𝑢𝑝𝑔

+
𝐶𝑜𝑠𝑡𝑃𝑉𝑐𝑎𝑝
𝐴𝐹𝑃𝑉

+
𝐶𝑜𝑠𝑡𝑏𝑐𝑎𝑝
𝐴𝐹𝑏

+
∑

𝑡
𝐶𝑖𝑚𝑝(𝑡)𝑃𝑖𝑚𝑝(𝑡)

=
𝑓 (𝑃𝑝𝑒𝑎𝑘)
𝐴𝐹𝑢𝑝𝑔

+
𝜅𝑃𝑉 𝑃𝑃𝑉
𝐴𝐹𝑃𝑉

+
𝜅𝑏𝐸𝑏
𝐴𝐹𝑏

+
𝑇
∑

𝑡
𝐶𝑖𝑚𝑝(𝑡)𝑃𝑖𝑚𝑝(𝑡)

(1)

e consider the upgrade costs to be a piecewise linear function of the
eak demand [13]:

(𝑃𝑝𝑒𝑎𝑘) = 𝑎𝑖𝑃𝑝𝑒𝑎𝑘 + 𝑏𝑖 if 𝑃𝑝𝑒𝑎𝑘 ∈]𝑢𝑖, 𝑢𝑖+1] (2)

here 𝑢𝑖+1 is the upper bound of the 𝑖th segment of the cost function
nd 𝑢0 is the lower bound for the interval definition of 𝑃𝑝𝑒𝑎𝑘. 𝑏𝑖 is

interpreted as the cost of producing and replacing a new transformer to
support the required capacity. For example, if we have two transform-
ers 𝑇1 and 𝑇2 supporting capacities up to 𝐶𝑎𝑝1 and 𝐶𝑎𝑝2 respectively
then 𝑏𝑖 will be assigned the cost of 𝑇2 for 𝑃𝑝𝑒𝑎𝑘 in the range of
]𝐶𝑎𝑝1, 𝐶𝑎𝑝2]. 𝑎𝑖 is the unit cost of reinforcing and expanding existing
lines.

The objective function becomes:

𝐶𝑜𝑠𝑡𝑎𝑛𝑛𝑡𝑜𝑡𝑎𝑙 =
𝑎𝑖𝑃𝑝𝑒𝑎𝑘 + 𝑏𝑖

𝐴𝐹𝑢𝑝𝑔
+

𝜅𝑃𝑉 𝑃𝑃𝑉
𝐴𝐹𝑃𝑉

+
𝜅𝑏𝐸𝑏
𝐴𝐹𝑏

+
𝑇
∑

𝑡
𝐶𝑖𝑚𝑝(𝑡)𝑃𝑖𝑚𝑝(𝑡),

𝑃𝑝𝑒𝑎𝑘 ∈]𝑢𝑖, 𝑢𝑖+1]

(3)

We note that the objective function can integrate other costs such as
the CO2 emissions costs [26] and battery degradation costs [27].

2.2. Constraints

The optimisation problem is subject to several constraints that we
explain in detail in this subsection.

−𝑃𝑝𝑒𝑎𝑘 ≤ 𝑃𝑖𝑚𝑝(𝑡) ≤ 𝑃𝑝𝑒𝑎𝑘, ∀𝑡 ∈  (4)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 ≤ 𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 (𝑡) ≤ 𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 , (a)

𝐸𝑏 ≤ 𝐸0
𝑏 +

𝑡
∑

𝑡0

(𝜂𝑐ℎ𝑏 𝑝𝑐ℎ𝑏 (𝜏) −
𝑝𝑑𝑖𝑠𝑏 (𝜏)

𝜂𝑑𝑖𝑠𝑏

).𝛿𝑡 ≤ 𝐸𝑏, (b)

∀𝑡 ∈ 

(5)

𝑝𝑃𝑉 (𝑡) = 𝑃𝑃𝑉 𝑃 𝑟
𝑃𝑉 (𝑡)

𝑃 𝑟
𝑃𝑉 (𝑡) =

𝐺(𝑡)
1000

[

1 − 𝑇𝑒𝑓𝑓
(

𝑇 (𝑡) + 𝐺(𝑡)(𝑁𝑂𝐶𝑇−20)
800 − 25

)] (6)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑝𝑐ℎ∕𝑑𝑖𝑠
𝑒𝑣

≤ 𝑝𝑐ℎ∕𝑑𝑖𝑠𝑒𝑣 ≤ 𝑝𝑐ℎ∕𝑑𝑖𝑠𝑒𝑣 (a)

𝐸𝑒𝑣 ≤ 𝐸𝑎𝑟𝑟
𝑒𝑣 +

𝑡
∑

𝑡𝑎𝑟𝑟

(𝜂𝑐ℎ𝑒𝑣 𝑝
𝑐ℎ
𝑒𝑣 (𝜏) −

𝑝𝑑𝑖𝑠𝑒𝑣 (𝜏)
𝜂𝑑𝑖𝑠𝑒𝑣

).𝛿𝑡 ≤ 𝐸𝑒𝑣,∀𝑡 ∈ 𝑎𝑣𝑎𝑖𝑙 (b)

𝐸𝑎𝑟𝑟
𝑒𝑣 +

𝑎𝑣𝑎𝑖𝑙
∑

𝑡𝑎𝑟𝑟

(𝜂𝑐ℎ𝑒𝑣 𝑝
𝑐ℎ
𝑒𝑣 (𝜏) −

𝑝𝑑𝑖𝑠𝑒𝑣 (𝜏)
𝜂𝑑𝑖𝑠𝑒𝑣

).𝛿𝑡 = 𝐸𝑑𝑒𝑝
𝑒𝑣 (c)

(7)
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⎩

⎧

⎪

⎨

⎪

⎩

𝑝𝑑𝑖𝑠𝑏 (𝑡) − 𝑝𝑐ℎ𝑏 (𝑡) +
∑

𝑒𝑣
𝑝𝑑𝑖𝑠𝑒𝑣 (𝑡) −

∑

𝑒𝑣
𝑝𝑐ℎ𝑒𝑣 (𝑡)

+𝑝𝑃𝑉 (𝑡) − 𝑙𝑜𝑎𝑑(𝑡) + 𝑝𝑔𝑟𝑖𝑑 = 0, ∀𝑡 ∈ 
(8)

𝑃𝑉 , 𝐸𝑏 ∈ N+ (9)

Constraint (4) limits the maximum power that can be exchanged
with the grid. The system of equations in (5) defines the operational
limits of the battery; Eq. (5)(a) sets the lower and upper limits 𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 ,
𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 on the charging/discharging power of the BESS 𝑝𝑐ℎ∕𝑑𝑖𝑠𝑏 over
the horizon  of the study, and Eq. (5)(b) limits the capacity of the
battery 𝐸𝑏(𝑡) to the range [𝐸𝑏, 𝐸𝑏]. The capacity limits of PV generation
are expressed in (6). The output of the PV panels is the product of
the nominal power of the PV system 𝑃𝑃𝑉 and the rated solar power
of the site 𝑃 𝑟

𝑃𝑉 , the latter is computed using different weather in-
ormation [28], such as the global horizontal radiance of the site 𝐺,
he temperature of the site 𝑇 , the temperature coefficient of power
𝑒𝑓𝑓 and the nominal operation temperature 𝑁𝑂𝐶𝑇 . For each EV,
e integrate the operational constraints that are similar to the BESS

onstraints ((7)(a) and (7)(c) ) with one additional constraint requiring
he energy in the EV battery at departure 𝐸𝑑𝑒𝑝

𝑒𝑣 to be at a certain level
Eq. (7)(b)). We note that the EVs are characterised by an availability
eriod which is expressed through the set 𝑎𝑣𝑎𝑖𝑙. The supply–demand
alance is expressed in Eq. (8). The constraint (9) imposes the returned
ominal power and capacity to be integers. The optimisation problem
s to select the optimal PV nominal power, BESS nominal capacity and
rid connection capacity that minimise the annualised total costs:

min
𝑃𝑉 ,𝐸𝑏 ,𝑃𝑃𝑒𝑎𝑘

𝐶𝑜𝑠𝑡𝑎𝑛𝑛𝑡𝑜𝑡𝑎𝑙

s.t. (4) - (9)
(10)

3. Problem reformulation

The two main limitations of the MINLP formulation are:

• The presence of the non-convex piecewise linear part in the
objective function, which is non-solvable by LP solvers;

• The large number of EVs to integrate into the formulation. The
number of EV constraints to include are in the order of 𝑑𝑁 where
𝑑 is the number of days considered in the set  and 𝑁 is the
number of EVs. This will result in a resource limitation issue.

In the following subsections, we present a mixed-integer linearisa-
tion of the piecewise term of the objective function and an approximate
representation of the collection of EVs.

3.1. MILP reformulation of the MINLP model

In the formulation of the problem, the objective function includes a
non-linear term 𝑓 (𝑃𝑝𝑒𝑎𝑘) related to the upgrade costs for the network
infrastructure. Though there exist solvers for this type of problem,
their resolution becomes intractable and computationally expensive
with the increase of the problem size, while MILP presents a good
trade-off of computational performance and solution accuracy [29] for
large problems. We reformulate the problem as MILP by adopting the
method proposed by Trecate et al. [30]. We define three auxiliary
variables: 𝛿 binary vector variable of size 𝑛 − 1 (𝑛 being the number
of segments in the piecewise function), 𝑧 real vector variable of size
𝑛 − 1 and 𝑧𝑠𝑢𝑚 scalar real variable. The variable 𝑧𝑠𝑢𝑚 will replace the
expression 𝑓 (𝑃𝑝𝑒𝑎𝑘), and the additional mixed-integer linear constraints

to be included in the formulation of the problem are presented in (11),
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where 𝜖 is a small tolerance, and 𝑚𝑖 and 𝑀𝑖 are defined as in (12).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝑢𝑛 − 𝑢0) ∗ 𝛿𝑖 ≤ −(𝑢𝑖+1 − 𝑃𝑝𝑒𝑎𝑘) + (𝑢𝑛 − 𝑢0), 𝑖 ∈ [0, 𝑛 − 1]

(𝑢1 − 𝑢𝑛 − 𝜖) ∗ 𝛿𝑖 ≤ (𝑢𝑖+1 − 𝑃𝑝𝑒𝑎𝑘) − 𝜖, 𝑖 ∈ [0, 𝑛 − 1]

𝛿𝑖 − 𝛿𝑗 ≤ 0, 𝑖 ∈ [1, 𝑛 − 1], 𝑗 ∈ [1, 𝑖[

(𝑀1 − 𝑚0) ∗ 𝛿0 − 𝑧0 ≤ −𝑎1𝑃𝑝𝑒𝑎𝑘 + (𝑀1 − 𝑚0 − 𝑏1)

(𝑀0 − 𝑚1) ∗ 𝛿0 + 𝑧0 ≤ 𝑎1𝑃𝑝𝑒𝑎𝑘 + (𝑀0 − 𝑚1 + 𝑏1)

(𝑚1 −𝑀0) ∗ 𝛿0 − 𝑧0 ≤ −𝑎0𝑃𝑝𝑒𝑎𝑘 − 𝑏0

(𝑚0 −𝑀1) ∗ 𝛿0 + 𝑧0 ≤ 𝑎0𝑃𝑝𝑒𝑎𝑘 + 𝑏0

−𝑀𝑖𝛿𝑖−1 + 𝑧𝑖−1 ≤ 0, 𝑖 ∈ [2, 𝑛 − 1]

𝑚𝑖𝛿𝑖−1 − 𝑧𝑖−1 ≤ 0, 𝑖 ∈ [2, 𝑛 − 1]

−𝑚𝑖𝛿𝑖−1 + 𝑧𝑖−1 ≤ (𝑎𝑖 − 𝑎𝑖−1)𝑃𝑝𝑒𝑎𝑘 + (𝑏𝑖 − 𝑏𝑖−1) − 𝑚𝑖, 𝑖 ∈ [2, 𝑛 − 1]

𝑀𝑖𝛿𝑖−1 − 𝑧𝑖−1 ≤ −(𝑎𝑖 − 𝑎𝑖−1)𝑃𝑝𝑒𝑎𝑘 + (𝑏𝑖 − 𝑏𝑖−1) +𝑀𝑖, 𝑖 ∈ [2, 𝑛 − 1]

𝑧𝑠𝑢𝑚 =
𝑛−1
∑

𝑖=0
𝑧𝑖

(11)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑚0 = 𝑎0𝑢0 + 𝑏0
𝑀0 = 𝑎0𝑢𝑛 + 𝑏0
𝑚1 = 𝑎1𝑢0 + 𝑏1
𝑀1 = 𝑎1𝑢𝑛 + 𝑏1
𝑚𝑖 = (𝑎𝑖 − 𝑎𝑖−1)𝑢0 + (𝑏𝑖 − 𝑏𝑖−1), ∀𝑖 ∈ [2, 𝑛]

𝑀𝑖 = (𝑎𝑖 − 𝑎𝑖−1)𝑢𝑛 + (𝑏𝑖 − 𝑏𝑖−1), ∀𝑖 ∈ [2, 𝑛]

(12)

The system (10) becomes:

min
𝑃𝑃𝑉 ,𝐸𝑏 ,𝑃𝑝𝑒𝑎𝑘 ,𝛿,𝑧

𝑧𝑠𝑢𝑚

s.t. (11)
(13)

he MILP approximation of an MINLP model with a piecewise function
f 𝑛 segments will need 2(𝑛 − 1) + 1 auxiliary variables and (𝑛−1)(𝑛+10)

2
dditional constraints.

.2. Approximate aggregation model of DERs

While the consideration of DER flexibility in the planning phase is
mportant as it may lead to significant savings in investment, it can
resent a challenge in terms of scalability. The number of DERs to be
eployed in future sites is estimated to be high and integrating their
onstraints in the MILP can be computationally burdensome even for
he most powerful solvers. In this paper, we adopt the method of ap-
roximate aggregation found in [31]. The method starts by modelling
he individual assets as polytopes: 𝑃 = {𝑥|𝐴𝑥 ≤ 𝑏}, and then gives an

outer approximation of their Minkowski sum. The outer approximation
may lead to a larger set compared to the exact Minkowski sum. The
recovery of a feasible solution from an infeasible solution returned by
the outer approximation is presented in the Appendix.

The approximate aggregation can be applied to different flexible
assets, e.g., deferrable, thermostatic and storage-like loads. In the case
study, we consider the EVs for the flexibility provision. Therefore, in
the following, we will focus on EV aggregation modelling. The polytope
representation of the constraints associated with an EV is:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝐈 𝟎
−𝐈 𝟎
𝟎 𝐈
𝟎 −𝐈

𝜂𝛤𝑡𝑟𝑖
𝛤𝑡𝑟𝑖
𝜂
𝛤𝑡𝑟𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

[

𝑝𝑐ℎ𝑒𝑣
𝑝𝑑𝑖𝑠𝑒𝑣

]

≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝐏𝐦𝐚𝐱
𝐞𝐯

𝟎
𝐏𝐦𝐚𝐱
𝐞𝐯

𝟎

𝐄𝐞𝐯 − 𝐄𝟎
𝐞𝐯

𝐄𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(14)
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⎣

−𝜂𝛤𝑡𝑟𝑖 − 𝜂 ⎦ ⎣ 𝐞𝐯 ⎦

t

here 𝐈 and 𝟎 are respectively the one and zero vectors of dimension
 | with  is the horizon of optimisation, 𝜂 the efficiency of the EV
attery, 𝛤𝑡𝑟𝑖 is the lower triangular matrix of shape | |, 𝐄𝐞𝐯 − 𝐄𝟎

𝐞𝐯, 𝐄𝟎
𝐞𝐯

nd 𝐏𝐦𝐚𝐱
𝑒𝑣 are vectors of dimension | |, 𝐸𝑒𝑣 is the maximum capacity

of the EV battery and 𝐸0
𝑒𝑣 its initial capacity. The values of the vector

𝐏𝐦𝐚𝐱
𝑒𝑣 are defined as follows:

𝑚𝑎𝑥
𝑒𝑣 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑝𝑐ℎ𝑒𝑣 , if 𝑡 ∈ 𝑎𝑣𝑎𝑖𝑙

0, otherwise
(15)

where 𝑎𝑣𝑎𝑖𝑙 is the availability period of the EV limited by 𝑡𝑎 and 𝑡𝑑
which refer respectively to the EV arrival and departure times.

We assume that all EVs have the same efficiency 𝜂. Under this
assumption, all EVs will share the same 𝐴 matrix and Eq. (16) will
apply. In case the EVs do not share the same 𝐴 matrix, i.e., they do
not have the same efficiency, 𝜂, they can be aggregated following the
method detailed in [31].

𝑃𝑎𝑔𝑔 = {𝑧|𝐴𝑧 ≤
𝑁
∑

𝑖
𝑏𝑖}, 𝑧 =

𝑁
∑

𝑖
𝑥𝑖 and 𝑥𝑖 ∈ 𝑃𝑖 (16)

Applying (16) on the EV polytope representation, we derive the list of
EV constraints to integrate into the MILP:
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⎢

⎢

⎢

⎢

⎢

⎣

𝐈 𝟎
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𝟎 𝐈
𝟎 −𝐈

𝜂𝛤𝑡𝑟𝑖 − 𝛤𝑡𝑟𝑖
𝜂

−𝜂𝛤𝑡𝑟𝑖
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𝜂

⎤
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[
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]

≤
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⎢
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⎢

⎢

⎢

⎢
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⎥

⎥

⎥

⎥
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(17)

where the superscript 𝑖 refers to the EV’s index and 𝑁 is the total
umber of EVs. The variables (𝑝𝑐ℎ𝑒𝑣𝑖 )𝑖∈[1,𝑁] and (𝑝𝑑𝑖𝑠𝑒𝑣𝑖

)𝑖∈[1,𝑁] are substituted
y the couple variables 𝑝𝑐ℎ𝑒𝑣,𝑎𝑔𝑔 and 𝑝𝑑𝑖𝑠𝑒𝑣,𝑎𝑔𝑔 , and the number of constraints
s reduced from 6𝑁| | to 6| |.

.3. Final MILP sizing model

The proposed model for the PV-BESS sizing considering flexibility
rom home EV charging and network upgrade costs is expressed as
ollows:
in
𝑥

𝐶𝑜𝑠𝑡𝑙𝑖𝑛

s.t.
(5), (6), (8), (9), (11), (17)

(18)

here:

𝑜𝑠𝑡𝑙𝑖𝑛 =
𝑧𝑠𝑢𝑚
𝐴𝐹𝑖𝑛𝑓

+
𝜅𝑃𝑉 𝑃𝑃𝑉
𝐴𝐹𝑃𝑉

+
𝜅𝑏𝐸𝑏
𝐴𝐹𝑏

+
𝑇
∑

𝑡
𝐶𝑖𝑚𝑝(𝑡)𝑃𝑖𝑚𝑝(𝑡)

(19)

nd 𝑥 = {𝑃𝑃𝑉 , 𝐸𝑏, 𝑃𝑝𝑒𝑎𝑘, 𝛿, 𝑧, 𝑝𝑐ℎ𝑒𝑣,𝑎𝑔𝑔 , 𝑝
𝑑𝑖𝑠
𝑒𝑣,𝑎𝑔𝑔 , 𝑝

𝑐ℎ
𝑏 , 𝑝𝑑𝑖𝑠𝑏 }

. Case study

Perth West (Fig. 1) is a Greenfield project located in the west
f Perth city, UK. Its developers aim to deliver an inclusive, green
conomic growth agenda. This will include the incorporation of clean

echnologies to serve smart city growth and support decarbonised
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Fig. 1. Perth West, a smart city project located on the western edge of the city of
Perth, UK. The project supports 25+ hectares of commercial land and 3500 houses. It
will have a network connection to the Burghmuir substation, and will be connected
to the DRECO energy park, which is a part of the development and includes solar
generation and battery storage.

energy, heat and transport. Lamberkin Villages Urban Innovation is the
residential area within the Perth West site which will have 3,500 resi-
dential units [32]. In this case study, we investigate the optimal green
set-up considering flexibility from EVs for the Lamberkin Villages.

4.1. Settings of the site

Since the site is not developed yet, information on the population,
house type and insulation is limited. We base the estimation of the
domestic consumption on Profile Class 2 (Domestic Economy 7 Cus-
tomers) as provided by UKERC Energy Data Centre [33]. The dataset
provides the half-hourly electricity consumption of a household under
the Economy 7 tariff,1 for autumn, winter, spring, summer and high
summer weekday, Saturday and Sunday. As the site hosts around 3500
residential units, the load profile was up-scaled by a factor of 3500 to
approximate the overall electricity consumption from the residential
premises of the site (Fig. 2(a)). We note that it is acceptable to directly
scale up the energy profile because the method used to extract it
includes averaging over a representative sample of customers that
captures the diversity within the customer class [33].

Fig. 2(b) shows the solar energy output as a ratio of the nominal
capacity of a solar system for the location of Perth based on 2019
weather data [34]. We took 𝑇𝑒𝑓𝑓 (=0.045) and 𝑁𝑂𝐶𝑇 (=45.5 ◦C).
The overall cost of a utility-scale PV is 770.8 £/kW [3] and includes
the hardware, installation expenses and soft costs such as the sales tax
and the transmission lines. The overall cost of a utility-scale battery is
162.36 £/kWh [35].

The site will be connected to the distribution network via the
Burghmuir substation. The upgrade costs depend predominantly on
the installed transformer/substation and the cables/overhead lines that
connect the installed transformer(s) to the site. These costs were taken
from the DNO proposals. For confidentiality issues, we are not able to
publish the upgrade costs in detail. For a capacity lower than 0.76 MW,
the site will need no reinforcement and the existing infrastructure can
support the site demand. Beyond that capacity, new transformers will
need to be installed. The curve of the costs follows a stepwise trend,
as presented in Eq. (2), with 8 segments giving costs associated with
capacity reinforcements ranging from 0.75 kW to 54.8 kW.

For the wholesale prices, we use historical data for the year 2021
from the EPEX platform as an estimate for future energy prices. Nev-
ertheless, we note that in the future, the prices can have unpredictable

1 Economy 7 tariff is a time-of-use tariff adopted in the UK with 2 rates
(off-peak and peak rates)
6

Fig. 2. Simulation data.

behaviour due partially to future carbon taxes and mainly due to
unstable geo-political circumstances. Fig. 2(c) shows the average half-
hourly prices, the mean price is around 117.84 £/MWh with 90% of
the prices being less than 200 £/MWh. For residential EV demand, we
consider the statistics from the report [36] that estimates ∼ 1 vehicle
per household in the region combined with the projection study done
in [37] that estimates that 17% of cars would be electric by 2032 in the
low uptake scenario and 57% in the high uptake scenario. As the site
will host 3500 residential units, we included 595 EVs for the low uptake
scenario and 1994 EVs for the high uptake scenario. The following
additional assumptions are also made:

• All EVs are available at home from 9 pm to 7 am;
• The home charging power rate is 7 kW;
• The level of charge of batteries at arrival ranges between 20%

and 60%;
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Fig. 3. Simulation results for the objective function Fig. 3(a) and the decision variables Figs. 3(b), 3(c) and 3(d).
Table 2
EV parameters.

Parameter Value

𝐶𝑚𝑎𝑥 {80, 100} kWh

Depth of discharge 80%

Availability [8 pm – 7 am]

SOC𝑎𝑟𝑟
[0.2–0.4] for 𝐶𝑚𝑎𝑥 = 80
[0.4–0.6] for 𝐶𝑚𝑎𝑥 = 100

SOC𝑑𝑒𝑝 80%

High uptake scenario 56%

Low uptake scenario 17%

Average car per household 1

• The level of charge at departure must be greater than 80%;
• 75% of the EVs have a capacity of 80 kWh and 25% a capacity

of 100 kWh.

he lifetime (𝐿𝑇 ) of the PVs, battery and infrastructure costs are
onsidered to be 25, 10 and 35 years respectively and the discount
actor 𝑟 of the renewable projects is 5%. The simulation data and EV
arameters are summurasied in Fig. 2 and Table 2 respectively.

.2. Results & sensitivity analysis

The results of the strategy are shown in Fig. 3. Fig. 3(a) displays
he LCOE for both uptake scenarios under three options: ‘No flex’ for
he business case where no flexibility is activated, SC when the smart
harging option is activated and V2G when the vehicle to grid option
s activated. The high EV uptake scenario has greater costs compared
o the low EV uptake scenario, and for each EV uptake scenario the
reatest cost is linked to the ‘No flex’ option and the lowest cost is
eached for the V2G option. However, the decrease is moderate for the
ow EV uptake scenario (18% decrease between the highest and the
owest cost options) and steep (35%) for the high EV uptake. Those
esults suggest that the overall costs will increase with the increase
7

of EVs in the network regardless of the selected flexibility scenario.
However, the higher the rollout of EVs, the more significant the impact
of activating flexibility on the overall costs will be.

In the results of Fig. 3(b), the activation of flexibility (SC or V2G)
increases the peak by only 1 MW for the low uptake scenario, while in
the case of high EV uptake, the peak import augmented by 7 MW. For
both uptake scenarios, the SC and V2G options require more network
upgrades compared to the ’No flex’ option, this increase is attributable
to the SC and V2G strategies aiming at importing more energy from
the grid during the off-peak periods to minimise the overall costs. This
result shows the importance of considering the network upgrade as
part of the objective function. Using conventional sizing strategies, the
peak import is set to be fixed to the current network capacity, and this
leads to sub-optimal solutions as it limits the exploitation of the full
capability of operational flexibility.

Figs. 3(c) and 3(d) show respectively the optimal PV and BESS
capacities. From Fig. 3(c), we see a decrease in the optimal PV capacity
over the options. In the high uptake scenario, the capacity decreases by
46% and 65.2% for the respective SC and V2G options relatively to the
‘No flex’ option, the same decrease rates in the low uptake scenarios
are 19.2% and 48%. This proves the benefit of activating flexibility.
The activation of SC cancels the impact of the EV uptake, i.e., the
PV capacity is not impacted by the uptake scenario. The V2G option
fully exploits the value of the EVs flexibility, under this option high
EV uptake needs less PV capacity compared to the scenario of low EV
uptake.

Similarly to the PV optimal capacity, we can see from Fig. 3(d) a
decrease in the optimal battery capacity over the different options. In
the high uptake scenario, the capacity decreases by 64% and 76% for
the respective SC and V2G options relatively to the ‘No flex’ option,
these decrease rates in the low uptake scenarios are 33% and 56.4%.
The uptake scenario drastically impacts the battery’s size if flexibility is
not activated. Almost twice as much battery capacity is needed for the
high uptake scenario compared to the low uptake scenario. SC cancels
the impact of the EV uptake and both uptake scenarios lead to the
same optimal battery capacity in this case. The activation of flexibility
will be crucial for higher EV adoption as the required PV and battery
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Fig. 4. State of Charge (SOC) of the batteries.
Fig. 5. Impact of PV and battery costs variation on investment costs Fig. 5(a), optimal reinforcement capacity Fig. 5(b), optimal PV capacity Fig. 3(c) and optimal BESS capacity
Fig. 5(d).
capacity may become unfeasible to implement (challenge to maintain
large batteries and/or secure a large area to implement a large PV
capacity).

Fig. 4 shows the SOC behaviour of the utility battery and the
aggregated EV battery on a winter day for the high uptake scenario.
In Fig. 4(a), we notice that all the options (e.g., no flexibility, SC and
V2G) have similar charging patterns: battery keeps charging until prices
reach the peak (around 19 h) and then discharge. The difference in
battery capacity comes from the fact that the battery in the ‘non flex’
scenario is larger so that it can discharge to support the charging of EVs
when the wholesale prices are higher. The EVs can avoid this in the ‘SC’
option where they can shift their charging to more economic slots, in
Fig. 4(b), the charging stops around 1 am for the SC option when the
wholesale price increases and resumes at 2 am when the prices drop. In
this same period, we see an EVs’ discharge for the V2G scenario, which
supports the utility battery discharge to fulfil the load which allows the
utility battery capacity to be smaller.

According to [3,35], the projected costs of utility-scale PV and BESS
are estimated to be in the ranges of [697, 885] £/kW and [71, 203]
8

£/kWh respectively. We took those intervals as the basis for the sen-
sitivity analysis and we vary the cost of utility-scale PVs and batteries
in a range of [600 £/kW - 900 £/kW] and [50 £/kWh - 350 £/kWh]
respectively to analyse the impact of technology costs on the decision
variables. Fig. 5 shows the results of this analysis. It is noticeable that
the PV cost has less impact on the decision variables compared to the
battery cost, i.e., for a fixed BESS cost, the peak import, the PV and
BESS nominal capacities are almost non-varying across the varying PV
cost. This is supported by the results presented in Table 3 that displays
the coefficients and the intercept of linear models fitted to link each
decision variable to the relation 𝑎𝑃𝑉 𝐶𝑜𝑠𝑡𝑃𝑉 + 𝑎𝐵𝐸𝑆𝑆𝐶𝑜𝑠𝑡𝐵𝐸𝑆𝑆 + 𝑏. The
table shows that the coefficients associated with the PV cost are always
less than the coefficients associated with the BESS cost.

In Fig. 5(c), the nominal PV capacity sees a steep decrease of 50%
when the BESS cost increases from 100 £/kWh to 150 £/kWh. A lower
BESS cost allows the deployment of a higher PV capacity because the
excess generation can be profitable if stored using low-cost batteries.
The BESS capacity follows a similar pattern as the PV capacity. It sees,
as shown in Fig. 5(d), a steep decrease of 70% when the BESS cost
increases from 100 £/kWh to 150 £/kWh. The PV cost variation is
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Table 3
Fitted linear models.

PV cost coeff BESS cost coeff Intercept

𝐿𝐶𝑂𝐸 15.7 kW 72.57 kWh 30.55 £

Peak 0.7 kW2/£ 56.31 kW.kWh/£ 167 kW

𝑃𝑃𝑉 −11.75 kW2/£ −76.71 kW.kWh/£ 44.26 kW

𝐸𝑏 14.13 kW.kWh/£ −629.22 kWh2/£ 184.49 kWh

shown to have a noticeable impact when the cost of the BESS is 100
£/kWh. In this case, the nominal BESS capacity varies in a range of
1.4 MWh. The peak import varies remarkably for BESS costs in the
range [50 £/kWh - 150 £/kWh], beyond this range, the peak stagnates
at a value of around 17.5 MW. The high variation of the results for
BESS costs in [50 £/kWh - 150 £/kWh] that then stabilise beyond
150 £/kWh is explained by the fact that this range presents the BESS
costs that are profitable compared to the price of the utility grid. In
this case, the site relies more on generated and stored energy. Beyond
150 £/kWh, it becomes more beneficial for the site to rely more on
the energy extracted from the grid. Similarly to the decision variables,
the objective function 𝐿𝐶𝑂𝐸 shows more sensitivity to the BESS cost
han to the PV cost. This suggests that the future prices of utility-scale
atteries will have a crucial role in the transition to the net-zero target
ince lower BESS costs imply higher adoption of clean energy, lower
osts and minimal grid reinforcement.

. Conclusion

In this paper, we presented an optimal sizing model that computes
he optimal capacities for a grid-connected microgrid and considers, in
ddition to the renewable system investment costs, the grid connection
osts that depend on the peak import. The model accounts for the
lexibility of distributed assets in the planning phase and studies its
mpact on the results. The results demonstrated that the consideration
f flexibility can help decrease the renewable system investment costs
nd that the adoption of renewable systems will rely mainly on the
ecrease in storage system costs. The costs related to the storage system
an decrease by up to 76%, and the overall costs by up to 35%, with
he highest levels of savings reached for the highest rates of electric
ehicle adoption. Integrating the costs of network reinforcement into
he model showed that upgrading the network will be economically
eneficial by allowing more energy to be imported in periods of cheaper
holesale prices. In future work, the proposed strategy will be extended

o include power flow constraints and improved with a robust version
hat accounts for the uncertainties from the load and the wholesale
rices. Other costs will be considered such as the battery degradation
ost, emissions costs and costs for flexibility provision.
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Appendix. Feasible solution recovery

The formula that recovers a feasible solution 𝐱 from an infeasible
approximate solution is as follows:

min
𝑥𝑖 ,𝑖=1,…,𝑁

‖

‖

‖

‖

‖

‖

𝑧 −
𝑁
∑

𝑖=1
𝑥𝑖
‖

‖

‖

‖

‖

‖

s.t. 𝐴𝑖𝑥𝑖 ≤ 𝑏𝑖, 𝑖 = 1,… , 𝑁

(A.1)

where 𝑧 refers to the outer approximation.
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Corrigendum to “Optimal sizing for microgrids integrating distributed 
flexibility with the Perth West smart city as a case study” [APEN 336, 
2023 [120846]] 

Chaimaa Essayeh *, Thomas Morstyn 
School of Engineering, University of Edinburgh, EH9 3JL Edinburgh, UK 

The authors regret to inform the readers that there was an error in 
describing the results. Where it should be 'annualised total costs', it is 
written LCOE. This error figures in:  

1. Top-left figure of the results in the graphical abstract,  
2. Caption of Figure 3.a,  
3. First sentence of subsection 4.2,  

4. Last paragraph of subsection 4.2 (in math mode),  
5. Figure 5.a: caption and y-axis,  
6. Table 3: the first column of the first row,  
7. Table 3: 30.55 £ should be £30.55k last column first row. 

The authors would like to apologise for any inconvenience caused. 
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