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Acute blood biomarker profiles predict 
cognitive deficits 6 and 12 months after 
COVID-19 hospitalization
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Post-COVID cognitive deficits, including ‘brain fog’, are clinically complex, 
with both objective and subjective components. They are common 
and debilitating, and can affect the ability to work, yet their biological 
underpinnings remain unknown. In this prospective cohort study of  
1,837 adults hospitalized with COVID-19, we identified two distinct 
biomarker profiles measured during the acute admission, which predict 
cognitive outcomes 6 and 12 months after COVID-19. A first profile links 
elevated fibrinogen relative to C-reactive protein with both objective and 
subjective cognitive deficits. A second profile links elevated D-dimer relative 
to C-reactive protein with subjective cognitive deficits and occupational 
impact. This second profile was mediated by fatigue and shortness of breath. 
Neither profile was significantly mediated by depression or anxiety. Results 
were robust across secondary analyses. They were replicated, and their 
specificity to COVID-19 tested, in a large-scale electronic health records 
dataset. These findings provide insights into the heterogeneous biology of 
post-COVID cognitive deficits.

Many people develop neuropsychiatric symptoms in the weeks and 
months after SARS-CoV-2 infection1–5, in isolation or within a post-acute 
COVID-19 syndrome6 also known as long COVID. One in eight patients 
receives their first ever neurological or psychiatric diagnosis within  
6 months following COVID-19 (ref. 7). Among these symptoms, cogni-
tive deficits (including ‘brain fog’) are particularly worrisome; they are 
common8–10, persistent11 and they affect the ability to work12.

How post-COVID-19 cognitive deficits develop remains unknown. 
Elucidating the mechanisms is a critical step in identifying potential 
treatments and mitigating the burden of COVID-19. Several hypotheses 
have been formulated, including endothelial damage, neuroinflam-
mation, thrombotic events, viral invasion and hypoxemia13–15. Some 
of these mechanisms might involve acute pathologies with persis-
tent clinical manifestations, whereas others might only emerge in 
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We identified two statistically significant dimensions of covaria-
tion (r = 0.23 and r = 0.17, with P < 0.0001 and P = 0.0010, respectively, 
corrected for multiple comparisons by recording maximum correla-
tions within a permutation test; all other dimensions had P > 0.05). 
These dimensions were robust in split-sample analysis wherein the 
population was randomly split in half 100 times (mean correlation in 
weights between original and split samples in the first dimension: 0.87 
for biomarkers and 0.88 for cognitive scores; in the second dimen-
sion, 0.77 for biomarkers and 0.71 for cognitive scores; permuta-
tion test P < 0.001 for both dimensions and for both biomarkers and 
cognitive scores). The dimensions were also robust in leave-one-out 
cross-validation (r = 0.18 and r = 0.11, both P < 0.0001) and when the 
data were limited to complete cases, with no imputation (first dimen-
sion: r = 0.22, P < 0.0001; second dimension: r = 0.14, P = 0.008, neither 
was significantly different from the original dimensions: P > 0.6).

High fibrinogen is linked with objective and subjective 
cognitive deficits
On the biomarker side, the first dimension of covariation was charac-
terized by a positive weight for fibrinogen and a negative weight for 
CRP (Fig. 2a and Supplementary Table 2). This indicates that the first 
dimension of covariation was driven by elevated fibrinogen with a CRP 
level that was not as high as the fibrinogen would suggest (elevated 
fibrinogen relative to CRP) given that the two tend to be correlated 
at the cohort level (Fig. 2a and Supplementary Table 2). On the cogni-
tive side, this dimension of covariation was driven by a range of defi-
cits across objective and subjective domains (Extended Data Fig. 1), 
which translated into significantly higher C-PSQ (subjective cognitive 
deficit) and lower MoCA score (objective cognitive deficit) at 6 months 
after COVID-19 (Fig. 2b and Supplementary Table 3). This cognitive 
profile was also associated with significantly lower MoCA scores and 
significantly higher C-PSQ at 12 months, but not with differences in 
occupational outcomes (Fig. 2b). In other words, individuals with high 
fibrinogen relative to CRP on admission tend to have signs of objective 
and subjective cognitive deficits at 6 and 12 months after COVID-19.

The effect sizes of the association can be appreciated by com-
paring those in the top vs. bottom half of the cohort along the first 
dimension of covariation. These two sub-cohorts had similar baseline 
characteristics (Table 1, middle columns). Those in the top half of 
the cohort along this first dimension had elevated fibrinogen levels 
compared to those in the bottom half (mean (95% confidence interval 
(CI)) 6.82 (6.72–6.92) versus 5.09 (4.99–5.20) g l−1; Cohen’s d, 1.03;  
Fig. 2c) and similar CRP levels (mean (95% CI) 76.8 (71.3–82.7) ver-
sus 68.2 (63.3–73.5) mg l−1; Cohen’s d, 0.10; Fig. 2d). They had lower 
MoCA at 6 months (25.35 versus 26.01; difference in mean 0.66, 95% 
CI 0.34–0.98; Fig. 2e) and 12 months (26.22 versus 26.85; difference 
in mean 0.63, 95% CI 0.13–1.12; Fig. 2f) and higher C-PSQ at 6 months  
(2.52 versus 1.79; difference in mean 0.72, 95% CI 0.52–0.93;  
Fig. 2g) and 12 months (2.27 versus 1.93; difference in mean 0.34, 95% CI 
0.0009–0.68; Fig. 2h). Predefined clusters characterized by different 
degrees of post-acute impairment were unevenly distributed along 
this dimension: those in the top half of the cohort had more severe 
post-acute impairment (odds ratio (OR) for being severely impaired: 
1.73, 95% CI 1.34–2.24, P < 0.0001; Extended Data Fig. 2). Supplementary 
Fig. 3 shows the correlations between subjective and objective cogni-
tive deficits and occupational outcomes and Supplementary Figs. 4–6 
show other variables separated between top and bottom halves of the 
cohort along the first dimension. No robust association was found 
between the cognitive profile of this first dimension and biomarkers 
measured at the 6-month follow-up (Supplementary Fig. 7).

High D-dimer is linked with subjective cognitive deficits and 
occupational outcomes
On the biomarker side, the second dimension of covariation was driven 
by elevated D-dimer relative to CRP (Fig. 3a and Supplementary Table 4).  

the post-acute phase13,16. Recent animal studies17–20 and in vitro analy-
ses21 are providing insight into how COVID-19 might affect the brain. 
Post-COVID-19 autopsies have revealed multifocal vascular damage and 
microthrombi accompanied by endothelial cell activation22.

Other studies have investigated how biological states during 
the acute phase of COVID-19 predict post-acute outcomes23–25. These 
studies suggest that immunological mechanisms might underpin 
post-acute COVID-19 conditions; however, they provide little informa-
tion about the biology of post-COVID cognitive deficits as the latter 
was either conflated with other conditions into a single post-acute 
COVID-19 score23 or represented as a single self-reported binary (yes/
no) variable24,25. In contrast, post-COVID cognitive deficits are complex 
with both objective and subjective components which may or may not 
impact occupational functioning26. It is possible that these different 
dimensions of ‘brain fog’ are predicted by different biological states 
and that mechanisms underpinning them differ from those underlying 
other complications of COVID-19.

Here we used data from a large prospective longitudinal cohort 
study (the Post-hospitalization COVID-19 (PHOSP-COVID) study; ISCTN 
Registry no. ISRCTN10980107) to discover patterns of association 
between biomarkers measured on admission to hospital for COVID-19 
and post-acute cognitive deficits (measured 6 and 12 months later). 
Both objective and subjective cognitive deficits, as well as occupational 
impact, were measured. We used canonical correlation analysis (CCA), 
an approach employed increasingly in biomedical research to discover 
patterns of covariation between sets of variables27–29. The generaliz-
ability of the findings was tested by seeking to reproduce them in a 
separate population using electronic health records (EHR) data from 
over 90 million patients.

Results
A total of 1,837 patients (mean (s.d.) age, 57.9 (12.4); 36.6% female,  
57.7% male) were part of the PHOSP-COVID cohort (baseline character-
istics in Table 1, first column and Supplementary Table 1).

Factors associated with post-COVID cognitive deficits
The Montreal Cognitive Assessment (MoCA) score (a measurement 
of objective cognitive deficits) at 6 months was significantly asso-
ciated with a range of baseline characteristics, including age, edu-
cation level and several comorbidities (Fig. 1 and Supplementary 
Fig. 1). The cognitive items of the Patient Symptom Questionnaire 
(C-PSQ5,30, a measurement of subjective cognitive deficits) were also 
associated with a range of baseline characteristics including age and 
comorbidities (especially psychiatric or neurological conditions and 
chronic fatigue syndrome (CFS)/chronic pain/fibromyalgia; Fig. 1 
and Supplementary Fig. 2). Younger participants and those whose 
first language is English had significantly worse C-PSQ but better 
MoCA. All these variables were included as covariates in subsequent 
analyses (whether they were significantly associated with cognitive 
outcomes or not).

Two dimensions link biomarkers with cognitive profiles
CCA was used to identify dimensions of covariation linking a set of 
six blood biomarkers measured on admission to hospital (C-reactive 
protein (CRP), D-dimer, fibrinogen, lymphocyte, neutrophil and 
platelet counts; these represent various aspects of health, including 
inflammation, coagulation and immune system reaction) with a set of 
14 cognitive scores measured 6 months later (seven individual items 
of the MoCA and seven individual items of the C-PSQ). All biomarker 
and cognitive values were adjusted for all covariates described in the 
previous section before being input to CCA. Each dimension consists 
of one linear combination of biomarkers (referred to as a biomarker 
profile) and one linear combination of cognitive scores (referred to 
as a cognitive profile) such that the biomarker and cognitive profiles 
are highly correlated.
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Table 1 | Baseline characteristics for the whole cohort and the sub-cohorts that score in the top and bottom half along the 
first and second dimensions of covariation discovered in this study

Cohort Whole cohort Bottom half on first 
dimension

Top half on first 
dimension

Bottom half on 
second dimension

Top half on second 
dimension

Number 1,837 919 918 919 918

Demographics

Age, mean (s.d.) 57.9 (12.4) 58.0 (12.7) 57.8 (12.2) 57.8 (12.6) 58.0 (12.3)

Sex, n (%)

 Female 673 (36.6) 330 (35.9) 343 (37.4) 316 (34.4) 357 (38.9)

 Male 1,060 (57.7) 540 (58.8) 520 (56.6) 553 (60.2) 507 (55.2)

 Missing 104 (5.7) 49 (5.3) 55 (6.0) 50 (5.4) 54 (5.9)

Race, n (%)

 White 1,385 (75.4) 689 (75.0) 696 (75.8) 689 (75.0) 696 (75.8)

 Mixed 26 (1.4) 16 (1.7) 10 (1.1) 14 (1.5) 12 (1.3)

 Asian 217 (11.8) 103 (11.2) 114 (12.4) 117 (12.7) 100 (10.9)

 Black 104 (5.7) 52 (5.7) 52 (5.7) 54 (5.9) 50 (5.4)

 Other 58 (3.2) 31 (3.4) 27 (2.9) 30 (3.3) 28 (3.1)

 Unknown 47 (2.6) 28 (3.0) 19 (2.1) 15 (1.6) 32 (3.5)

Education

 Primary school 40 (2.2) 18 (2.0) 22 (2.4) 17 (1.8) 23 (2.5)

 Secondary school 550 (29.9) 274 (29.8) 276 (30.1) 281 (30.6) 269 (29.3)

 Sixth-form college 237 (12.9) 117 (12.7) 120 (13.1) 114 (12.4) 123 (13.4)

 Vocational qualification 222 (12.1) 108 (11.8) 114 (12.4) 107 (11.6) 115 (12.5)

 Undergraduate university degree 301 (16.4) 150 (16.3) 151 (16.4) 160 (17.4) 141 (15.4)

 Postgraduate qualification 237 (12.9) 122 (13.3) 115 (12.5) 123 (13.4) 114 (12.4)

 Prefer not to say 51 (2.8) 25 (2.7) 26 (2.8) 24 (2.6) 27 (2.9)

 None 50 (2.7) 26 (2.8) 24 (2.6) 29 (3.2) 21 (2.3)

 Missing 149 (8.1) 79 (8.6) 70 (7.6) 64 (7.0) 85 (9.3)

Income, n (%)

 <£19,000 252 (13.7) 116 (12.6) 136 (14.8) 117 (12.7) 135 (14.7)

 £19,001–26,000 207 (11.3) 97 (10.6) 110 (12.0) 107 (11.6) 100 (10.9)

 £26,001–35,000 202 (11.0) 100 (10.9) 102 (11.1) 104 (11.3) 98 (10.7)

 £35,001–48,000 200 (10.9) 103 (11.2) 97 (10.6) 102 (11.1) 98 (10.7)

 >£48,001 439 (23.9) 224 (24.4) 215 (23.4) 227 (24.7) 212 (23.1)

 Prefer not to say 386 (21.0) 198 (21.5) 188 (20.5) 193 (21.0) 193 (21.0)

 Missing 151 (8.2) 81 (8.8) 70 (7.6) 69 (7.5) 82 (8.9)

Is married, n (%)

 Yes 1,034 (56.3) 517 (56.3) 517 (56.3) 523 (56.9) 511 (55.7)

 No 669 (36.4) 334 (36.3) 335 (36.5) 335 (36.5) 334 (36.4)

 Missing 134 (7.3) 68 (7.4) 66 (7.2) 61 (6.6) 73 (8.0)

English as the first language, n (%)

 Yes 1,469 (80.0) 734 (79.9) 735 (80.1) 733 (79.8) 736 (80.2)

 No 244 (13.3) 123 (13.4) 121 (13.2) 133 (14.5) 111 (12.1)

 Missing 124 (6.8) 62 (6.7) 62 (6.8) 53 (5.8) 71 (7.7)

Comorbidities, n (%)

 Cardiovascular condition 826 (45.0) 410 (44.6) 416 (45.3) 400 (43.5) 426 (46.4)

 History of cerebrovascular accident 79 (4.3) 37 (4.0) 42 (4.6) 35 (3.8) 44 (4.8)

 Dementia <10 <10 <10 <10 <10

 Parkinson’s disease <10 <10 <10 <10 <10

 Psychiatric or neurological condition 332 (18.1) 168 (18.3) 164 (17.9) 159 (17.3) 173 (18.8)

 ME/CFS/fibromyalgia/chronic pain 93 (5.1) 45 (4.9) 48 (5.2) 44 (4.8) 49 (5.3)
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Cohort Whole cohort Bottom half on first 
dimension

Top half on first 
dimension

Bottom half on 
second dimension

Top half on second 
dimension

 Diabetes 366 (19.9) 179 (19.5) 187 (20.4) 173 (18.8) 193 (21.0)

 Respiratory condition 507 (27.6) 261 (28.4) 246 (26.8) 249 (27.1) 258 (28.1)

 Rheumatological condition 285 (15.5) 148 (16.1) 137 (14.9) 136 (14.8) 149 (16.2)

 Gastrointestinal condition 391 (21.3) 199 (21.7) 192 (20.9) 194 (21.1) 197 (21.5)

 Endocrine condition 147 (8.0) 71 (7.7) 76 (8.3) 74 (8.1) 73 (8.0)

 Chronic kidney disease 72 (3.9) 37 (4.0) 35 (3.8) 30 (3.3) 42 (4.6)

 History of cancer 134 (7.3) 66 (7.2) 68 (7.4) 67 (7.3) 67 (7.3)

 Chronic infectious disease 38 (2.1) 20 (2.2) 18 (2.0) 22 (2.4) 16 (1.7)

Follow-up

 Number at 6 months, n (%) 1,837 (100.0) 919 (100.0) 918 (100.0) 919 (100.0) 918 (100.0)

 Time at 6 months, median (IQR), days 176 (135–206) 176 (137–206) 177 (133–206) 177 (134–207) 175 (138–205)

 Number at 12 months, n (%) 626 (34.0) 308 (33.5) 318 (34.6) 310 (33.7) 316 (34.4)

 Time at 12 months, median (IQR), days 403 (375–426) 404 (376–426) 402 (374–428) 406 (376–427) 400 (374–426)

Diagnosis of COVID-19

 Positive PCR test, n (%) 1,553 (84.5) 795 (86.5) 758 (82.6) 795 (86.5) 758 (82.6)

 Undocumented method, n (%) 284 (15.5) 124 (13.5) 160 (17.4) 124 (13.5) 160 (17.4)

IQR, interquartile range; ME, myalgic encephalomyelitis.

Cerebrovascular accident

ME/CFS/chronic pain/fibromyalgia

Age

Psychiatric or neurological condition

Diabetes

Chronic kidney disease

Parkinson’s disease

Parkinson’s disease

History of cancer

Endocrine condition

Respiratory condition

Sex: female

Gastrointestinal condition

Rheumatological condition

Chronic infectious disease

Married

Income: >£48,001

English as first language

Dementia

Postgraduate qualification

Postgraduate qualification

Age

History of cancer

Married

Chronic infectious disease

Income: >£48,001

Rheumatological condition

Cerebrovascular accident

Gastrointestinal condition

Cardiovascular condition

Dementia

Respiratory condition

Sex: female

Endocrine condition

Diabetes

Chronic kidney disease

English as first language

ME/CFS/chronic pain/fibromyalgia

Psychiatric or neurological condition

MoCA (6 months) C-PSQ (6 months)

  ***
  ***

 **

  ***

*

  ***

  ***

  ***
  ***

*

  ***

  ***

*

  ***

–5 0 5

Regression coe�icient

–2 0 2 4 6

Regression coe�icient

Cardiovascular condition

–10

Fig. 1 | Factors associated with post-COVID cognitive deficits. Association 
between baseline characteristics and MoCA at 6 months (measuring objective 
cognitive deficits, lower indicate more deficits) and C-PSQ at 6 months 
(measuring subjective cognitive deficits, higher means more deficits). Age was 
z-transformed in this analysis which means that the coefficient corresponds to a 
difference in MoCA/C-PSQ corresponding to a difference of 1 × s.d. in age. Only 
one level of education and one income level are presented (with no education 

and income <£19,000 being taken as references respectively). The same graphs 
with all education and income levels, as well as ethnicity, are presented in 
Supplementary Figs. 1 and 2. n = 1,837 individual participants. Dots indicate point 
estimates and horizontal lines indicate 95% CI. P values were estimated as part 
of a generalized linear model and are two-sided and not adjusted for multiple 
comparisons: oP < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001. NVQ, national vocational 
qualification.

Table 1 (continued) | Baseline characteristics for the whole cohort and the sub-cohorts that score in the top and bottom half 
along the first and second dimensions of covariation discovered in this study
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On the cognitive side, it was driven by a range of deficits across domains 
(Extended Data Fig. 1), which translated into significantly higher C-PSQ 
(more subjective impairment), but not lower MoCA, at 6 months after 
COVID-19 (Fig. 3b and Supplementary Table 5). This cognitive profile 
was also significantly correlated with higher C-PSQ at 12 months and 
with occupational outcomes at 6 and 12 months (Fig. 3b). In other 
words, individuals with high D-dimer relative to CRP tend to have 
subjective cognitive deficits, as well as signs of occupational impact, 
at 6 and 12 months.

Those in the top half of the cohort along this dimension had very 
similar baseline characteristics as those in the bottom half (Table 1; 
right columns). Compared to those in the bottom half of the cohort, 
those in the top half had elevated D-dimer (mean (95% CI) 4.97 × 103 
(4.06–6.07) versus 0.78 × 103 (0.70–0.86) μg l−1 fibrinogen equivalent 
units (FEU); Cohen’s d, 0.77; Fig. 3c), lower CRP (mean (95% CI) 44.8 
(41.3–48.6) versus 115.7 (109.9–121.8) mg l−1; Cohen’s d, 0.90; Fig. 3d), 
higher C-PSQ at 6 months (2.90 versus 1.42; difference in mean 1.48, 
95% CI 1.29–1.68; Fig. 3e) and higher C-PSQ at 12 months (2.51 versus 
1.69; difference in mean 0.82, 95% CI 0.48–1.16; Fig. 3f). They were 
more likely to report impaired ability to work at 6 months (OR = 2.11, 
95% CI 1.25–3.56; Fig. 3g) and 12 months (OR = 1.34, 95% CI 0.82–2.21;  
Fig. 3h) and to report occupational change at 6 months (OR = 1.57, 95% 
CI 1.21–2.05) but not 12 months (OR = 0.91, 95% CI 0.59–1.39). As for the 
first dimension, those in the top half were characterized by more severe 
post-acute impairment based on predefined clusters (OR for being 
severely impaired: 2.20, 95% CI 1.70–2.87, P < 0.0001; Extended Data  
Fig. 2). Supplementary Figs. 8–10 show other variables separated 
between top and bottom halves of the population along the second 
dimension. No robust association was found between the cognitive 
profile of this second dimension and biomarkers measured at the 
6-month follow-up (Supplementary Fig. 7).

Evidence of absence of confounding by pre-COVID cognition
If pre-COVID cognitive function predicts both acute biomarker profiles 
and post-COVID cognitive deficits, then it might confound the associa-
tions identified. We tested this possibility in three different ways using 
data from a subgroup of the PHOSP-COVID cohort who reported their 
subjective cognitive function both before and at 6 months (n = 547) 
and 12 months (n = 205) after COVID using C-PSQ-2 (a subset of items 
from C-PSQ).

We first assessed whether cognitive deficits at 6 and 12 months 
merely reflected pre-existing cognitive deficits by testing whether 
there were significant changes in C-PSQ-2 between before and after 
COVID-19. Cognitive function was found to deteriorate on average fol-
lowing COVID-19 (mean (s.e.m.) change in C-PSQ-2: 0.48 (0.04) between 
before COVID and 6 months after COVID, P < 0.0001 and 0.40 (0.055) 
between before COVID and 12 months after COVID-19, P < 0.0001; 
Extended Data Fig. 3).

Second, we assessed whether pre-existing cognitive deficits pre-
dicted biomarker profiles, which would be necessary to confound the 
associations. Pre-existing cognitive deficits were not associated with 
either biomarker profile (r = 0.043, 95% CI −0.05–0.14, P = 0.36 in the 
first dimension and r = 0.022, 95% CI −0.071–0.12, P = 0.64 in the sec-
ond dimension). This provides evidence that high fibrinogen or high 
D-dimer levels relative to CRP are not more commonly observed in 
people with pre-existing cognitive deficits.

Third, we assessed whether dimensions of covariation are associ-
ated with changes in cognitive function from a pre-COVID baseline. 
Given the relative contributions of C-PSQ items to the dimensions of 
covariation (Extended Data Fig. 1), one can anticipate that C-PSQ-2 
at 6 months would be associated with the second but not the first 
dimension of covariation. This was confirmed (correlation between 
C-PSQ-2 and the second dimension of covariation: r = 0.22, 95% CI 
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–0.5 0 0.5 1.0

CCA coe�icients 

1

3

9

Top half Bottom half

Fibrinogen (g l−1)
(Cohen’s d = 1.03)

0

2

4

6

Top half Bottom half

C-PSQ at 6 months
(Cohen’s d = 0.36)

0

10

20

30

Top half Bottom half

MoCA at 6 months
(Cohen’s d = 0.19)

15

20

25

30

Top half Bottom half

MoCA at 12 months
(Cohen’s d = 0.20)

1

10

100

1,000

Top half Bottom half

CRP (mg l−1)
(Cohen’s d = 0.10)

0

2

4

6

Top half Bottom half

C-PSQ at 12 months
(Cohen’s d = 0.16)

a b d

e f g h

P = 0.0001

NS

P = 0.0012  ***

  ***

  ***

 **

MoCA (12 months)

MoCA (6 months)

Occupational change (6 months)

Di�iculty working (12 months)
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c

Fig. 2 | High fibrinogen is linked with objective and subjective cognitive 
deficits. a,b, A first dimension of covariation links high fibrinogen with relatively 
low CRP to higher C-PSQ at 6 and 12 months (signs of subjective cognitive deficits) 
and lower MoCA at 6 and 12 months (signs of objective cognitive deficits). P values 
are derived from permutation tests, two-sided and not corrected for multiple 
comparisons. c–h, Distribution of different variables between the top half and 

the bottom half of the cohort along this first dimension (n = 768, 1,777, 1,837, 
626, 1,502 and 584 individual participants, respectively). The center of the boxes 
represents the median, their bounds represent the 25th and 75th centiles and the 
lower and upper ends of whiskers represent the smallest/largest values, no further 
than 1.5 × IQR from the box-plot respective end. Distribution of all variables 
investigated is found in Supplementary Figs. 4–6. NS, P > 0.05.
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0.12–0.31, P = 0.0002 at 6 months and r = 0.20, 95% CI 0.048–0.34, 
P = 0.011 at 12 months; correlation with the first dimension of covari-
ation: r = 0.063, 95% CI -0.038–0.16, P = 0.23 at 6 months and r = 0.03, 
95% CI −0.12–0.18, P = 0.72 at 12 months). C-PSQ-2 thus captures sub-
jective cognitive deficits experienced by those scoring high along the 
second dimension of covariation. We found that those scoring higher 
along that dimension had significantly worse changes in cognitive 
function (r = 0.16, 95% CI 0.061–0.26, P = 0.0021 for the change at 
6 months and r = 0.27, 95% CI 0.13–0.41, P = 0.0005 for the change  
at 12 months).

These complementary analyses indicate that associations 
between biomarker profiles and subjective cognitive deficits cannot 
be explained by pre-COVID cognitive function.

Mediation by clinical features and severity of acute illness
The association captured by the first dimension was not signifi-
cantly mediated by any of 14 clinical scales 6 months after COVID 
(capturing fatigue, dyspnea, exercise tolerance, pain, depression 
and anxiety), whereas the association between the biomarker and 
cognitive profiles in the second dimension was significantly medi-
ated by dyspnea (fraction explained, 8.63%, P < 0.001) and fatigue 
(fraction explained, 9.05%, P = 0.004; Fig. 4 and Supplementary 
Table 6).

The associations captured by both dimensions were not signifi-
cantly mediated by severity of the acute illness (captured by a range 
of severity markers; Extended Data Fig. 4) so that they remained sig-
nificant when all mediators were included in the model (direct effect 
for the first dimension, β = 0.26, 95% CI 0.21–0.32, P < 0.001 and for the 
second dimension, β = 0.18, 95% CI 0.11–0.24, P < 0.001).

Independent replication in a large-scale EHR network
To assess the generalizability of the main findings, we reproduced 
the analysis using an independent and structurally different dataset, 
namely the TriNetX Analytics Network, an EHR network of 57 health-
care organizations primarily in the United States covering over 90 
million patients2,3. Within this dataset, all individuals hospitalized with 
COVID-19 were identified and the risk of post-COVID cognitive deficits 
(captured with a range of ICD-10 codes as used in previous studies2,3,31) 
was compared between subgroups within that cohort. Subgroups were 
propensity-score-matched for 82 covariates capturing risk factors for 
COVID-19, for more severe COVID-19 illness32 and for COVID-19 neuro-
logical and psychiatric sequelae2,3, as well as vaccination status.

To seek to replicate the first dimension of covariation, we com-
pared those with acutely high fibrinogen (≥5.88 g l−1, taken to be the 
median of the population before matching) versus acutely low fibrino-
gen (<5.88 g l−1) and normal CRP (n = 1,276 in each cohort after match-
ing; Supplementary Table 7 describes baseline characteristics). Acutely 
raised fibrinogen level was found to be significantly associated with 
post-COVID cognitive deficits (10.19% versus 6.94% incidence at 6 
months in the high- versus low-fibrinogen cohorts; hazard ratio (HR) 
1.46, 95% CI 1.06–2.02, P = 0.019; Fig. 5). Similar results were obtained 
when the maximum CRP level was doubled, but not when no limit was 
set on CRP (Extended Data Fig. 5).

To seek to replicate the second dimension of covariation, we com-
pared those with acutely high D-dimer (≥14,700 μg l−1 (FEU), taken to 
be the median of the population before matching) versus acutely low 
D-dimer (<14,700 μg l−1 (FEU)) and normal CRP (n = 5,722 in each cohort 
after matching; Supplementary Table 8 shows baseline characteristics). 
D-dimer level was found to be significantly associated with post-COVID 
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second dimension (n = 977, 1,777, 1,502, 584, 233 and 252 individual participants, 
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represent the 25th and 75th centile and the lower and upper ends of whiskers 
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Supplementary Figs. 8–10. NS, P > 0.05.
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cognitive deficits (7.51% versus 4.74% incidence at 6 months in the 
high versus low D-dimer cohorts; HR 1.71, 95% CI 1.42–2.07, P < 0.0001;  
Fig. 5). Similar results were obtained when the maximum CRP level was 
doubled (in line with the primary findings) and when no limit was set 
on CRP, unlike the primary findings (Extended Data Fig. 5).

Biomarker and cognitive profiles in the absence of COVID-19
To assess whether the associations between biomarkers and post-acute 
cognitive deficits can occur in other illnesses, we repeated the analy-
ses based on EHR data described above in a pre-pandemic cohort of 
individuals (without COVID-19).

The association between high versus low fibrinogen and post-acute 
cognitive deficit was replicated among individuals without COVID-19 
(n = 6,782 in each cohort after matching; HR 1.20, 95% CI 1.04–1.39, 
P = 0.015, Fig. 5; Supplementary Table 9 shows baseline characteristics) 
and was not significantly moderated by COVID-19 status when the risks 
were compared to those seen in people with COVID-19 (interaction HR 
1.23, 95% CI 0.87–1.75, P = 0.25).

In contrast, the association between high versus low D-dimer and 
post-acute cognitive deficits was not significant in individuals without 
COVID-19 (n = 11,129 in each cohort after matching; HR 1.09, 95% CI 
0.97–1.23, P = 0.14, Fig. 5; Supplementary Table 10 shows baseline char-
acteristics) and there was significant moderation of this association 
by COVID-19 status (interaction HR 1.57, 95% CI 1.26–1.96, P < 0.0001). 
We further explored this moderation by COVID-19 status in a post-hoc 
analysis; individuals with COVID-19 and raised D-dimer were found to 
be at a higher risk of venous thromboembolism (VTE) at 30 d (HR 1.48, 
95% CI 1.11–1.98, P = 0.007) but not ischemic stroke (HR 0.84, 95% CI 
0.50–1.39, P = 0.50) compared to a matched cohort of individuals with 
raised D-dimer but without COVID-19 (Extended Data Fig. 6).

In other words, individuals with high fibrinogen are at an increased 
risk of post-acute cognitive deficits whether they had COVID-19 or not. 
In contrast, high D-dimer is only associated with post-acute cognitive 

deficits in those who had COVID-19, who differed from other people 
with high D-dimer in their risk of peripheral (VTE) rather than central 
(ischemic stroke) thrombosis.

Discussion
This prospective cohort study of 1,837 patients hospitalized for  
COVID-19, augmented with a separate retrospective cohort study of EHR 
data, revealed two distinct dimensions linking acute blood biomarkers 
and post-acute cognitive deficits. A first dimension links high fibrino-
gen (relative to CRP) to objective and subjective cognitive deficits 6 
and 12 months after infection. A second dimension links high D-dimer 
(relative to CRP) to subjective cognitive deficits, as well as occupational 
impact at 6 and 12 months after infection. The latter association was 
partially mediated by shortness of breath and fatigue at 6 months. 
These two dimensions were robust across secondary analyses and 
were broadly replicated in the separate large-scale EHR analysis, which 
also showed that the association with D-dimer is specific to COVID-19, 
unlike the association with fibrinogen.

In contrast to univariate regressions, in which covariations 
between a single biomarker and a cognitive outcome are estimated, 
CCA can capture more complex associations between biomarker and 
cognitive profiles. In particular, univariate regressions between fibrino-
gen (or D-dimer) and cognitive outcomes do not reveal significant 
associations as they fail to capture the important role of CRP in each 
biomarker profile (Supplementary Note 1). Unlike clusters, dimen-
sions of covariation are not mutually exclusive so that individuals 
can score high on multiple dimensions. For instance, someone with 
high fibrinogen and high D-dimer relative to CRP would tend to score 
high on both dimensions and would be at higher risk of objective and 
subjective cognitive deficits and occupational impact.

Besides their statistical significance and robustness, results were 
also clinically meaningful. Individuals in the top half of the cohort along 
the first dimension had a mean C-PSQ at 6 months of 2.52 (out of 7)  
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Fig. 4 | Mediation by other clinical features. Mediation of the associations 
captured in the first and second dimensions of covariation by scales representing 
other aspects of health at 6 months after COVID-19. The names of the scales are 
reported in brackets. P values were estimated using nonparametric bootstrap 
with 1,000 repetitions and are two-sided and not adjusted for multiple 
comparisons: ***P < 0.001. For the second dimension, the P value for fatigue 
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threshold detectable with 1,000 repetitions). FACIT, Functional Assessment of 
Chronic Illness Therapy; BPI, Brief Pain Inventory; SARC-F, Sarcopenia screen; 
ISWT, Incremental Shuttle Walk Test; GPPAQ, General Practice Physical Activity 
Questionnaire; SPPB, Short Physical Performance Battery; PHQ-9, Patient Health 
Questionnaire; PTSD, post-traumatic stress disorder; PCL-5, PTSD Checklist; 
GAD-7, Generalized Anxiety Disorder scale; PAI, Physical Activity Index.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | October 2023 | 2498–2508 2505

Article https://doi.org/10.1038/s41591-023-02525-y

compared to 1.79 for those in the bottom half. This difference could 
occur, for instance, between individuals reporting some versus a lot of 
difficulties in both remembering/concentrating and understanding/
being understood. Similarly, individuals in the top half of the cohort 
along the second dimension had a mean C-PSQ at 6 months of 2.90, 
reporting 40% of symptoms of subjective cognitive deficits on average 
(versus 1.42 or 20% for those in the bottom half). Being in the top half of 
the population along the second dimension was associated with a 6.8% 
absolute risk increase (22.1% versus 15.3%) of changing occupation and 
an 18.5% absolute risk increase of reporting difficulty working (60.2% 
versus 41.7%). Differences in MoCA scores along the first dimension 
were significant but more modest; this might in part reflect the lack of 
sensitivity of the MoCA to detect post-COVID brain fog (as opposed to 
mild cognitive impairment for which it has been validated33).

The associations were specific to biomarkers measured during the 
acute (rather than post-acute) phase and they cannot be accounted for 
simply by more severe illness (as there was no mediation by severity of 
the acute illness) nor by pre-existing cognitive deficits. Various mecha-
nisms might explain how raised fibrinogen during the acute phase of 
COVID-19 can be associated with subsequent cognitive deficits. Fibrino-
gen is both a marker of inflammation (as an acute phase protein34) and 
hypercoagulable states35. It has a central role in coagulation with higher 
fibrinogen levels leading to faster fibrin formation and higher fibrin 
density, strength and stability36. COVID-19 is known to induce a hyper-
coagulable state and to be associated with raised fibrinogen37,38. It is also 
thought that fibrinogen may directly affect the brain due to its unique 
structure containing binding sites for several receptors expressed in 
the nervous system, which might lead to microglial activation, axonal 
damage and binding of amyloid-β39. Raised fibrinogen level without 
raised CRP has been associated with cognitive deficit40 and subse-
quent dementia41. Fibrinogen can only reach the brain parenchyma if 

the blood–brain barrier is compromised, which can be caused by the 
SARS-CoV-2 main protease (Mpro) inducing the death of brain endothe-
lial cells17 or by fibrinogen itself via direct actions on these cells39 (which 
would be compatible with the replication of findings among patients 
with raised fibrinogen but without COVID-19). Raised fibrinogen was 
only associated with post-acute cognitive deficits when raised relative 
to CRP. This might support the hypothesis that this biomarker profile 
results from hypercoagulopathy rather than an acute phase response. 
Another possibility is that raised fibrinogen relative to CRP represents 
delayed presentation to hospital with respect to infection onset, as 
fibrinogen remains elevated after CRP has peaked34. Delayed presen-
tation might have deleterious health consequences that predispose 
to cognitive deficits. To distinguish these possibilities, studies with 
repeated biomarker measurements during the acute phase of COVID-19 
would be informative. Taken together, our findings regarding the first 
dimension of covariation might reflect a combination of hypercoagu-
lable state and the direct effects of fibrinogen on the brain.

Elevated D-dimer level is common during hospitalization with 
COVID-19 (refs. 35,42). It can have different causes43, but levels well 
above the normal limit (as observed for individuals in the top half of 
the cohort along the second dimension) often indicate the presence 
of thrombi44. The link between raised D-dimer and cognitive deficits 
might therefore reflect the presence of microthrombi in the cerebral 
vasculature, which have been observed in autopsies post-COVID-19  
(ref. 22) and which tend to present with raised D-dimer and only mod-
erately raised CRP45. But it might also reflect thromboembolism in the 
pulmonary vasculature. This is supported by the mediation of the asso-
ciation by shortness of breath and the observation in the EHR data that 
raised D-dimer associated with COVID-19 differs from raised D-dimer in 
the absence of COVID-19 in terms of risk of venous thromboembolism 
and post-acute cognitive deficits but not ischemic stroke. In addition, 
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raised D-dimer correlates with reduced pulmonary perfusion in patients 
hospitalized with COVID-19 (ref. 46) and venous thromboembolism is 
thought to be associated with raised D-dimer but normal fibrinogen47, 
which would explain why this mechanism is captured by a separate 
dimension of covariation. It is plausible that COVID-19-induced pulmo-
nary embolisms (PEs) lead to cerebral hypoxia which in turn leads to a 
subtle degree of cognitive impairment, which is subjectively evident 
but not easily objectively measured (as subjective cognitive deficit can 
be a sensitive sign of early decline)48. A separate explanation for the link 
between PE and cognitive deficit is that PE can lead to fatigue49, and 
fatigue can lead to subjective cognitive impairment in the absence of 
objective signs of deficit48. This is supported by the mediation by fatigue 
of the association between D-dimer and cognitive deficits. In summary, 
the association between raised D-dimer and subjective cognitive deficits 
might result from COVID-19-associated coagulopathy causing brain 
microthrombi or PEs with associated hypoxia or fatigue. The fact that 
subjective post-COVID cognitive deficits are associated with blood 
biomarkers might be validating for some patients reporting brain fog26 
and highlights the importance for clinicians to avoid inferring that 
subjective deficits in the absence of objective signs are insignificant 
and cannot have a biological underpinning.

These mechanistic insights might help suggest further studies and 
treatment evaluations. For instance, investigations of brain imaging 
in people with post-COVID cognitive deficits might identify whether 
there is evidence of cerebral ischemia. If this is so, then evaluation of 
anticoagulants during the acute illness in a population at risk might be 
worthwhile. To further test whether post-COVID cognitive deficits can 
result from impaired pulmonary function, lung imaging combined with 
longitudinal cognitive and pulmonary function tests would be informa-
tive. If this proves to be a contributing mechanism, then adequate oxy-
gen support, respiratory physiotherapy and/or enhanced prophylaxis 
for venous thromboembolism might be considered for clinical evalua-
tion. If, in addition, fatigue is confirmed to be an important mediator, 
then adequate support with occupational and physiotherapy could 
also be considered.

As well as the mechanistic insights they provide, the results from 
this study might help in the development of predictive models of 
patients at risk of post-COVID cognitive deficits. Such predictive mod-
els are important to inform prognosis, recruit participants into studies 
aimed at testing prophylactic interventions and stratify interventions 
once they become available; however, the present study has not estab-
lished the predictive value of biomarker profiles. That would require 
a different analytical approach, replication of the findings in a more 
heterogeneous population, integration with other predictors and the 
derivation of a validated predictive rule.

This study has strengths, including its longitudinal nature, large 
sample size, assessment of both subjective and objective cognitive 
function, several robustness analyses and replication (and extension) 
of findings using a large EHR database; however, it also has limita-
tions. First, the cohort was recruited early in the pandemic before the 
emergence of many variants. This is partially mitigated by the repli-
cation using EHR data (not restricted to a specific variant). Second, 
participants in the prospective cohort study were all unvaccinated. 
Third, the study was observational and causal inference should not 
be drawn. While both the prospective cohort study and the retro-
spective EHR-based analyses were well adjusted for a range of covari-
ates, residual confounding cannot be excluded. Fourth, cohorts were 
limited to hospitalized patients and findings might not generalize to 
people who did not require hospitalization but might still be at risk 
of cognitive deficits2. Fifth, we used a pragmatic approach to define 
subjective cognitive impairment based on data available within the 
PHOSP-COVID study (including seven self-rated items; Methods) rather 
than a validated scale. Sixth, this study cannot differentiate cognitive 
deficits that persisted since the acute illness from cognitive deficits that 
emerged after an initial recovery. While both timelines would qualify 

as a long COVID presentation50, they might have different pathogen-
eses, which this study cannot differentiate. Seventh, the replication 
of the results within a large-scale EHR dataset has its own limitations 
(1) objective and subjective cognitive deficits could not be separately 
investigated; and (2) comparison of biomarker profiles could only be 
achieved by creating and comparing cohorts rather than assessing the 
whole spectrum of values.

In summary, this prospective cohort study found two distinct 
dimensions linking acute blood biomarker profiles to post-acute cog-
nitive profiles in patients hospitalized with COVID-19. A first dimen-
sion links raised fibrinogen relative to CRP with both objective and 
subjective cognitive deficits and might reflect immunothrombotic 
events with potential direct effects of fibrinogen on the brain. A second 
dimension links raised D-dimer relative to CRP with subjective but not 
objective cognitive deficits and with evidence of occupational impact. 
This dimension might reflect COVID-19-associated coagulopathy with 
thrombi in the cerebral or pulmonary vasculature. Mechanisms are 
speculative and further studies are needed to better delineate them. In 
the meantime, these biomarker profiles, based on routine blood tests, 
might help in the development of predictive models of post-COVID 
cognitive deficits, which could facilitate prognosis and accelerate 
research into management strategies.
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Methods
PHOSP-COVID study
For our primary analysis, we used data from the Post-hospitalization 
COVID-19 study (PHOSP-COVID), which is a large-scale long-term study 
of 6,134 adults (aged ≥18 years) discharged from a hospital from one 
of 83 National Health Service (NHS) trusts in the UK with a clinical 
diagnosis of COVID-19 (between 29 January 2020 and 20 November 
2021)5,30. For our analysis, we restricted the dataset to ‘Tier 2’ par-
ticipants (n = 2,542) who had undergone additional specific research 
visits alongside routine clinical care. Tier 2 involved data collection 
at three time points: baseline (during hospitalization), at 2–7 months 
post-discharge (which corresponded to an average of about 6 months 
after admission and which we refer to as the 6-month follow-up for 
simplicity) and 12 months after hospital discharge (for a subset of par-
ticipants). Collected measurements included routine clinical data on 
admission, results of blood tests on admission and at follow-up, as well 
as lifestyle, demographics and clinical scales. Patient demographics 
and characteristics of their acute COVID-19 admission, including con-
firmation of their COVID-19 diagnosis, treatments and organ support 
received, were obtained from hospital notes by the study team at each 
site. In this study, we focused on people who had a blood test recorded 
in hospital and completed a MoCA at 6 months so that the latter was 
available for each participant in our analysis.

More details about the study can be found in other papers5,16,30 and 
relevant variables are described below. Written informed consent was 
obtained from all study participants. The study was approved by the 
Leeds West Research Ethics Committee (20/YH/0225) and is registered 
on the ISRCTN Registry (ISRCTN10980107).

Biomarker profiles
A blood sample was collected in participants during admission to 
hospital. When multiple blood samples were drawn, the first one upon 
admission was used. From that sample, the following six laboratory 
measurements were extracted: CRP, D-dimer (converted to FEU units if 
in D-dimer units), fibrinogen, lymphocytes, neutrophils and platelets. 
While the focus of this study was on biomarkers measured on admission 
to hospital, the same laboratory measurements were also acquired at 
the 6-month follow-up and their association with cognitive profiles 
was assessed in a post-hoc analysis. Supplementary Note 2 provides a 
description of the quality control of biomarker profiles.

Cognitive profiles
At the 6-month visit and (for a subset of participants) at the 12-month 
visit, both clinician-acquired and patient-reported clinical scales were 
measured in participants. This study focuses on cognitive measure-
ments at follow-up along two dimensions:

•	 The MoCA, which objectively measures cognitive deficits along 
seven domains: visuospatial and executive function, naming, 
attention, language, abstraction, delayed recall and orientation. 
Scores across domains are added and the maximum total score is 
30 with a cutoff of 26 often used as a screening tool for dementia51.

•	 The C-PSQ, which assesses subjective cognitive deficits based on 
self-reported impairment in seven domains: confusion, short term 
memory loss, difficulty communicating, difficulty understand-
ing or being understood, difficulty concentrating, slowing down 
of thinking and difficulty remembering (Supplementary Note 3 
contains the definition of each item)5.

For both the objective and subjective cognitive deficits scales, 
scores for individual domains were used as input to the CCA (see below).

Occupational impact
Occupational impact was captured in a subset of participants using 
two variables measured at 6 and 12 months. The first variable was the 

answer to a simple question ‘Has your illness affected your ability to 
do your usual work?’ and we refer to those answering positively to this 
question as having ‘difficulty working’. The second variable captures 
changes in occupation and was based on participants reporting that 
their occupation had changed between before and after their COVID-19 
illness. A subset of participants also reported their occupation before 
and after COVID-19. We only recorded a positive outcome in those 
who reported a change in occupation and for whom the occupation 
after COVID-19 was not ‘Working full-time’ (as a change in occupation 
can also reflect an increase in number of hours worked). Similarly, for 
participants who reported a change in occupation and for whom there 
was no information on their occupation before and after their COVID-19 
illness, we reported the change in occupation as ‘unknown’.

Covariates
The following diagnoses (made before the diagnosis of COVID-19) and 
sociodemographic factors were included as covariates in the analysis:

•	 Respiratory condition
•	 Rheumatological condition
•	 Cardiovascular condition
•	 Gastrointestinal condition
•	 Cerebrovascular accident
•	 Dementia
•	 Parkinson’s disease
•	 Psychiatric or neurological condition, captured by a participant 

answering ‘Yes’ to any of the following: (1) depression or anxiety; 
(2) treatment with an antidepressant; (3) treatment by a mental 
health professional; or (iv) other chronic neurological disorder

•	 CFS, fibromyalgia or chronic pain
•	 Diabetes mellitus
•	 Hypothyroidism/hyperthyroidism or other chronic metabolic/

endocrine disorder
•	 Chronic kidney disease
•	 Cancer
•	 Chronic infectious diseases
•	 Educational level (highest level completed) encoded as a cat-

egorical variable with the following eight categories: (1) none; (2) 
primary school; (3) secondary school (GCSE level, NVQ level 1/2 or 
equivalent); (4) sixth-form college (A-levels, NVQ level 3 or equiva-
lent); (5) vocational qualification (NVQ level 4 or equivalent); (6) 
undergraduate university degree or NVQ level 5 or equivalent; (7) 
postgraduate qualification; and (8) prefer not to say

•	 Annual household income encoded as a categorical variable with 
the following categories: (1) <£19,000; (2) £19,001–26,000; (3) 
£26,001–35,000; (4) £35,001–48,000; (5) >£48,001; and (6) prefer 
not to say

•	 Marital status encoded with a single binary variable (married 
versus not)

•	 Whether English was a participant’s first language, as reported by 
the patient and encoded as a binary variable

•	 Sex
•	 Ethnicity

Canonical correlation analysis
CCA is a method used to find linear relationships between two separate 
sets of variables which are both measured in the same individuals. In 
our case, CCA was used to find relationships between blood biomarkers 
on admission to hospital (six variables measured in each individual) 
and 14 individual items of the cognitive assessments at the 6-month 
follow-up (seven items from the MoCA domains and seven items from 
the C-PSQ domains). Each of the six biomarker and each of the 14 cogni-
tive scores were first adjusted for each covariate defined above using 
a generalized linear model and the z score-standardized adjusted 
biomarkers and cognitive scores were input to the CCA. The outputs 
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of CCA were pairs of linear combinations: one linear combination of 
blood biomarkers (a weighted sum of blood test results) and one linear 
combination of cognitive scores (a weighted sum of cognitive items) 
so that the former was maximally correlated with the latter. A linear 
combination of biomarkers summarizes all blood test results by a 
single number: individuals with a particular combination of blood test 
results will score high on that number, whereas others will score low 
and in this sense, we refer to that linear combination as a ‘biomarker 
profile’. The same applies to the weighted sum of cognitive items and 
the resulting ‘cognitive profile’.

Because the biomarker and cognitive profiles are maximally cor-
related, individuals can be represented along a single dimension, which 
links the two (the line of best fit between the biomarker and cognitive 
profiles). We refer to this dimension as a dimension of covariation 
(sometimes also referred to as a mode of covariation). The location 
of individuals along that dimension can be calculated as the mean of 
their biomarker and cognitive profiles.

Once a dimension has been discovered and found to be statisti-
cally significant (see next section), its correlation with other variables 
not used as input to CCA can be calculated to provide further insight 
into the covariation it captures. This can be a correlation with the bio-
marker profile, the cognitive profile or the mean profile (the location 
of an individual along the dimension) depending on the association 
of interest. In this study, we calculated the Pearson’s correlation coef-
ficient between each cognitive profile and the total MoCA score and 
C-PSQ score at 6 months (adjusted for all covariates described above) 
to better understand what the cognitive profile represented (as it was 
made of individual MoCA and C-PSQ items rather than total scores). We 
also calculated correlation between the cognitive profiles at 6 months 
and the total MoCA and C-PSQ scores at 12 months to assess whether 
the association was longer-lasting than 6 months. Cognitive items at 
the 12-month follow-up were not included as input to CCA to provide 
an opportunity to test whether the association discovered using data 
measured at 6-month follow-up can predict outcomes at later time 
points and because they were not available for all individuals. Simi-
larly, we calculated correlation with occupational outcomes (ability to 
work and occupational changes) at 6 and 12 months to provide insight 
into the possible association between dimensions of covariation and 
occupational impact.

Finally, we also assessed whether the dimensions were significantly 
associated with predefined recovery clusters (as defined in a previous 
analysis based on a subset of 767 participants of the PHOSP-COVID 
study5 and here, applied to all participants) based on patient symptom 
questionnaires, physical performance and cognitive assessment data. 
The four resulting clusters, stratifying patients in terms of the sever-
ity of their recovery and the level of subsequent impairment, were 
categorized as follows:

•	 Mild impairment
•	 Moderate impairment with cognitive impairment
•	 Severe impairment
•	 Very severe impairment

Recovery cluster variable was encoded categorically with mild 
impairment used as a reference level.

Statistical analysis
Blood biomarker values were transformed to a log scale when the 
log-transformed variable was found to be more normally distributed 
than the linear-scale variable as determined by a Shapiro–Wilk normal-
ity test. This implied that D-dimer, neutrophils, platelets, CRP and lym-
phocytes were all log-transformed. All input variables to the CCA were 
first adjusted for all covariates specified above using generalized linear 
models in which the CCA inputs (blood biomarker or cognitive item) 
were the dependent variables and the covariates were independent 

variables. Logistic regressions were used for binary variables (for exam-
ple all yes/no answers to C-PSQ items) and linear regressions otherwise. 
Missing data (in terms of adjusted biomarker values or cognitive items) 
were imputed using multiple imputation by chain equation model with 
20 chains and five iterations, using the mice package in R (v.3.14.0). 
Imputed data were then used as input to CCA and Rubin rule was used 
to combine them52. This approach to imputation was used under the 
assumption of missingness at random (that is that conditional on 
covariates and biomarker values, missing data were randomly distrib-
uted across participants). This assumption is justified given the large 
number of covariates and the fact that blood samples were collected for 
all individuals included in this study, so that missing biomarker values 
represent small departure from the protocol (for example a clinician 
forgetting to request part of laboratory investigations) rather than a 
participant not having a blood test at all. The number of imputations 
(number of chains and iterations) was justified by examination of con-
vergence plots and by repeating the whole analysis (including multiple 
imputations and CCA analysis) three times and checking for stability 
of the results across the three repetitions.

To assess whether the dimensions of covariation were statistically 
significant, permutation tests with 10,000 permutations were applied. 
Within each permutation, the subject IDs of the cognitive scores were 
randomly permuted relative to those of the biomarker scores, CCA 
was applied to the result and the maximum correlation coefficient 
achieved (in absolute value) was recorded. Comparison against this 
null distribution of maximum correlation coefficients therefore con-
trols for multiple comparisons across dimensions of covariation.  
The P value for a dimension of covariation was calculated using the 
formula for permutation tests:

P = 1 + n>
1 + n ,

where n = 10,000 is the number of permutations and n> is the number 
of permutations for which the correlation coefficient was greater (in 
absolute value) than that observed in the non-permuted dataset.

Similarly, to assess whether correlations between external vari-
ables (for example occupational outcomes or cognitive scores at 12 
months) and dimensions of covariation were statistically significant, 
the subject IDs for the external variable were permuted 10,000 times 
and the correlation coefficients were calculated for each permutation. 
This leads to null distributions for each correlation coefficient of inter-
est, from which a P value can be calculated using the above formula.

To better appreciate how different variables are distributed along 
dimensions of covariation, we divided the cohort into subgroups based 
on their location along that mode (those above and those below the 
median along the dimension) and we compared the values of different 
variables between the subgroups. Raw data are presented as single 
dots per individual for continuous variables and contingency tables 
for dichotomous variables and effect sizes are summarized as Cohen’s 
d for continuous variables and ORs for dichotomous variables. Only 
complete (not imputed) data are represented in this way to display 
with more transparency the available data (for example this clearly 
shows that MoCA at 12 months had fewer records than MoCA at 6 
months). The association with recovery clusters was reported as 4 × 2 
contingency tables (representing the distribution of individuals over 
the four clusters of severity and between the top and bottom half of 
the cohort along the dimension) and the null hypothesis that being in 
the top or bottom half of the cohort did not affect the odds of being 
severely impaired was tested using Fisher’s exact test.

To assess whether any other aspects of a person’s health in the 
post-acute phase of COVID-19 might mediate the association between 
biomarker and cognitive profiles, individual mediation analyses were 
conducted in which the biomarker profile was the independent vari-
able, the cognitive profile was the dependent variable and the other 
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aspects of individual health were mediators. These aspects were 
encoded by 14 clinical scales capturing ten domains of health, includ-
ing shortness of breath (using the Dyspnea-12 scale), fatigue (FACIT 
fatigue scale), pain (BPI interference and severity scales), sarcopenia 
(SARC-F), cardiopulmonary exercise (ISWT as absolute score and % pre-
dicted), physical activity (GPPAQ occupational and exercise subscales 
and physical activity index), physical performance (SPPB), depression 
(PHQ-9), PTSD (PCL-5) and anxiety (GAD-7 scale). For each mediation 
analysis, the fraction of the association explained by the mediators 
(sometimes referred to as the ratio of the ‘indirect effect’ to the ‘total 
effect’) was tested against the null hypothesis that it equals zero using 
the mediation R package (v.4.5.0).

To assess whether the association between the biomarker and 
cognitive profiles can be entirely explained by severity of the acute ill-
ness, we conducted a single mediation analysis with multiple mediators 
representing different aspects of the acute illness severity, including:

•	 World Health Organization (WHO) clinical progression scale53, 
which is a scale defined by the WHO to capture the level of res-
piratory support needed by patients with COVID-19. It consists of 
four levels: no oxygen required (level 0); supplemental oxygen 
required (level 1); ventilation required (level 2, which we captured 
based on either continuous positive airway pressure ventilation, 
bi-level non-invasive ventilation or high-flow nasal oxygen needed 
at any point during hospital admission); and last, invasive ventila-
tion/oxygenation required (level 3, which was captured as either 
invasive mechanical ventilation or extra-corporeal membrane 
oxygenation). This was encoded as a continuous variable.

•	 National Early Warning Scores (NEWS) on admission to hospital 
(first recorded NEWS from admission). This scale captures the 
degree of departure of physical observations from their normal 
range and is used nationally in the NHS in the UK. It is a score rang-
ing from 0 to 20, which we encoded as a continuous variable. Spe-
cifically, the following scoring is applied for the different physical 
observations and the total score is obtained by summing up the 
scores for the different items:

•	 Respiratory rate (breaths per min): ≤8 (+2 points), 9–11 (+1 point), 
12–20 (0 points), 21–21 (+2 points) and ≥25 (+3 points);

•	 Oxygen saturation: ≤91% (+3 points), 92–93% (+2 points), 94–95% 
(+1 point) and ≥96% (+0 points);

•	 Any supplemental oxygen: no (+0 points) and yes (+2 points);
•	 Temperature: ≤35 °C (+3 points), 35.1–36 °C (+1 point), 36.1–38 °C 

(+0 points), 38.1–39 °C (+1 point) and ≥39.1 °C (+2 points);
•	 Systolic blood pressure (mm Hg): ≤90 (+3 points), 91–100  

(+2 points), 101–110 (+1 point), 111–219 (+0 points) and ≥220  
(+3 points);

•	 Heart rate (beats per minute): ≤40 (+3 points), 41–50 (+1 point), 
51–90 (+0 points), 91–110 (+1 point), 111–130 (+2 points) and ≥131 
(+3 points).

•	 Duration of hospital admission: captured from the participant’s 
health record and recorded as a continuous variable.

•	 Admission to intensive care: captured from the participant’s health 
record and recorded as a dichotomous variable.

•	 Presence of altered consciousness or confusion during admission: 
captured from the participant’s health record and recorded as a 
dichotomous variable.

The residual ‘direct effect’ linking biomarker and cognitive profiles 
after accounting for the above mediators was tested against the null 
hypothesis that it is zero using the lavaan package (v.0.6.14) which uses 
a z statistic to compute a P value.

All statistical analyses were conducted in R v.4.2.0. Statistical 
significance was defined based on a two-tailed P < 0.05.

Robustness analyses
The robustness of the results was tested in four ways. First, random 
split analysis was conducted in which the cohort was randomly split 
in two sub-cohorts of equal size (±1) and the analysis was repeated in 
each sub-cohort. Within each repetition, the coefficients defining the 
biomarker and cognitive profiles (the weights of the weighted sums 
defining those profiles) for the first two dimensions of covariation were 
compared to those in the primary analysis using Pearson’s correlation 
coefficient (one correlation coefficient for the biomarker profile and 
one for the cognitive profile). Because CCA is defined up to the sign of 
the profiles (multiplying both the biomarker and cognitive profiles by 
−1 would be an equivalent result from a CCA point of view), the sign was 
defined so that the maximum correlation coefficient (in absolute value) 
was positive. The 200 correlations thereby generated (100 repetitions 
× two sub-cohorts) were then averaged and reported. To assess whether 
these average correlation coefficients were statistically significant, a 
permutation test was used in which the whole process was repeated 
1,000 times after permuting the subject IDs of the biomarker values 
with respect to the cognitive scores (within each permutation, 100 
random splits of the data were generated and the average correlation 
was calculated). This process generated a null distribution of average 
correlation coefficients against which the initial average correlation 
coefficients could be compared to calculate a P value.

Second, leave-one-out cross-validation was performed. This was 
achieved by leaving one participant out and calculating CCA and dimen-
sions of covariation using data from all the other participants. The bio-
marker and cognitive profiles defined based on all other participants 
were then calculated in the left-out individual. We repeated this process 
across all participants resulting in biomarker and cognitive profiles for 
each participant estimated using data from all the others. The correla-
tion coefficients between the biomarker and cognitive profiles thereby 
estimated for the first two dimensions were calculated and the null 
hypothesis that it equals zero was tested using a t-test.

Third, data were limited to complete cases (those with missing data 
on any biomarker values or cognitive items, or covariates were excluded, 
n = 355) and the correlation between the biomarker and cognitive profiles 
for the first two dimensions of covariation was compared to that observed 
in the whole cohort with imputed data. The results were deemed robust 
in this complete case dataset if the correlations were both significantly 
greater than zero in this restricted sample and were not significantly dif-
ferent from the correlation coefficients in the whole sample.

Fourth, we assessed whether our findings could be attributed to 
pre-COVID cognitive deficits. A large subgroup of the PHOSP-COVID 
cohort (n = 547) was asked, at the 6-month follow-up, to report (retro-
spectively) what their cognitive function was before they had COVID-19 
using a subset of items of the C-PSQ scale. Specifically, they were asked:

 A. Before you had COVID-19, did you have difficulty remembering 
or concentrating?

 B. Before you had COVID-19, did you have difficulty communicat-
ing, for example understanding or being understood? 
They could answer each of these two questions by choosing 
from the following options:
 1. No: 0 points
 2. Yes, some difficulty: + 1 point
 3. Yes, a lot of difficulty: + 2 points
 4. Yes, could not do at all: +3 points

As part of the C-PSQ and during the same follow-up visit, they were also 
asked to answer the following two questions which assessed their cur-
rent cognitive function (and which they could also answer by choosing 
from the four options above):
 C. Currently, do you have difficulty remembering or 

concentrating?
 D. Currently, do you have difficulty communicating, for example 

understanding or being understood?
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Because C and D are two items from the C-PSQ (Supplementary 
Note 3), we refer to the sum of their scores as C-PSQ-2 at 6 months and 
the sum of the scores of answers to questions A and B as the pre-COVID 
C-PSQ-2. Questions C and D were then repeated at 12 months in 205 
participants providing a C-PSQ-2 at 12 months.

This longitudinal dataset containing both pre- and post-COVID 
cognitive scores allowed us to assess whether pre-COVID cognitive 
deficits could explain the associations observed in this study. We 
first assessed whether cognitive deficits at 6 and 12 months merely 
reflected pre-existing cognitive deficits by testing whether there were 
significant changes in C-PSQ-2 between before and after COVID-19. 
We then assessed whether pre-existing cognitive deficits predicted 
biomarker profiles, which would indicate that they might confound 
the association between biomarker and post-acute cognitive pro-
files. Finally, we assessed whether C-PSQ-2 at 6 and 12 months was 
associated with dimensions of covariation (which is important as 
there is no guarantee that limiting C-PSQ to two items encodes the 
kinds of subjective cognitive deficits captured by the two dimen-
sions of covariation) and, if so, whether changes in C-PSQ-2 between 
pre-COVID and 6 and 12 months post-COVID were also associated 
with these dimensions.

Replication and expansion with EHR data
We sought to replicate the findings from the prospective PHOSP-COVID 
study using a retrospective cohort study based on EHR data.

Study design and data collection. We used data from the TriNetX 
Analytics Network, a large-scale federated EHR network which, at the 
time of study, holds anonymized data from over 90 million patients 
within 57 healthcare organizations, primarily in the US. Patient infor-
mation collected on the platform includes demographics, diagnoses 
(encoded as ICD-10 codes), medications and procedures. Using the 
TriNetX platform, cohorts can be created on the basis of inclusion and 
exclusion criteria, matched for confounding variables with a built-in 
propensity-score-matching algorithm and compared for outcomes of 
interest over specified time periods.

Cohorts. Two cohorts were compared to seek to reproduce each of 
the first and second dimensions of covariation, based on the following 
inclusion/exclusion criteria.

Cohort 1 was defined as all patients meeting the following criteria:

•	 (A) The individual was hospitalized with COVID-19 (ICD-10 code 
U07.1) on or after 20 January 2020 (date of first case of COVID-19 
in the United States).

•	 (B1) The individual had a recorded fibrinogen level >5.88 g l−1 
(which was the median value in the cohort defined by criterion 
A) between 4 d before and 2 weeks after their hospital admission 
with COVID-19. The reason for including those with a fibrinogen 
level within 4 d before their COVID-19 diagnosis is that 4 d was 
considered to be the maximum time taken for a SARS-CoV-2 test 
result to become available.

•	 (C) The individual had a recorded CRP level ≤10 mg l−1. The 
reason for including this criterion is that the first dimension 
of covariation was found to be such that raised fibrinogen was 
not accompanied by correspondingly raised CRP (despite the 
correlation between the two at the cohort level). As discussed 
in the Results, this is akin to adjusting for CRP level. Adjusting 
for post-exposure variables (such as CRP) within TriNetX is only 
possible by restricting the cohorts to have the value within a 
specific range.

•	 (D) The individual was still alive at the time of the analysis.
•	 Cohorts 2, 3 and 4 were defined as meeting criteria A, C and 

D as above, but with criterion B1 replaced by B2, B3 and B4, 
respectively:

•	 (B2) The individual had a recorded fibrinogen level ≤5.88 g l−1 
between 4 d before and 2 weeks after their hospital admis-
sion with COVID-19. They could not have had a fibrinogen level 
>5.88 g l−1 within that time window to avoid including those from 
cohort 1 who had a normalized fibrinogen level during this time 
window.

•	 (B3) The individual had a recorded D-dimer level >14,700 μg l−1 
(FEU) (which was the median value in the cohort defined by 
criterion A) between 4 d before and 2 weeks after their hospital 
admission with COVID-19.

•	 (B4) The individual had a recorded D-dimer level ≤14,700 μg l−1 
(FEU) between 4 d before and 2 weeks after their hospital admis-
sion with COVID-19. They could not have had a D-dimer level 
>14,700 μg l−1 (FEU) within that time window to avoid including 
those from cohort 3 who had a normalized D-dimer level during 
this time window.

To seek to replicate the first dimension of covariation, cohort 1 
was matched to and then compared to cohort 2. To seek to replicate the 
second dimension of covariation, cohort 3 was matched to and then 
compared to cohort 4 (see below for details). To explore the importance 
of criterion C in the definitions of cohorts above, the analyses were 
repeated by increasing the limit on CRP to any level ≤20 mg l−1 and by 
removing the criterion altogether.

Finally, to assess whether the same association between biomarker 
and cognitive profiles could be observed in the absence of COVID-19, 
an additional set of four cohorts were defined exactly as cohorts 1–4 
but with criterion A modified by A′:

(A′). The individual was hospitalized on or before 24 July 2019. 
The latter date corresponds to 6 months (180 d) before the first case of 
COVID-19 in the United States, so that all these individuals did not have 
COVID-19 at the time of their biomarker measurements nor during the 
6-month follow-up that ensued.

This resulted in cohorts 1′–4′; cohort 1′ was matched to and com-
pared to cohort 2′ and cohort 3′ was matched to and compared to 
cohort 4′.

Outcomes. We used a time-to-event analysis with a 180-d follow-up. 
The primary outcome was a composite of ICD-10 codes capturing the 
range of diagnostic codes that patients presenting with ‘brain fog’ 
might receive, as defined in our previous studies2,3,31,54. Specifically the 
following codes were used: F05 (‘Delirium due to known physiological 
condition’), F06.8 (‘Other specified mental disorders due to known 
physiological condition’), G93.40 (‘Encephalopathy, unspecified’), 
R40 (‘Somnolence, stupor and coma’), R41 (‘Other symptoms and signs 
involving cognitive functions and awareness’) or R48 (‘Dyslexia and 
other symbolic dysfunction’), F01 (‘Vascular dementia’), F02 (‘Demen-
tia in other disease classified elsewhere’), F03 (‘Unspecified dementia’), 
G30 (‘Alzheimer’s disease’), G31.0 (‘Frontotemporal dementia’), G31.83 
(‘Dementia with Lewy bodies’) and G31.84 (‘Mild cognitive impairment’ 
(MCI)).

In a post-hoc analysis, we explored possible reasons for the signifi-
cant moderation by COVID-19 status of the association between D-dimer 
and post-acute cognitive deficits by propensity-score-matching cohort 
3 to cohort 3′ and comparing the risk of a first ischemic stroke (ICD-10 
code I63) and a first VTE (ICD-10 code I82) within the first 30 d since 
biomarker measurement.

Statistical analysis. In each comparison, the two cohorts being 
compared were propensity-score-matched on covariates which are 
confirmed or suspected risk factors for COVID-19, more severe COVID-
19 illness or subsequent neuropsychiatric consequences of COVID-19, 
including2,3,32,55–57 age, sex, ethnicity, race, socioeconomic deprivation, 
obesity, diabetes, hypertension, ischemic heart disease and other 
forms of heart disease, asthma, chronic lower respiratory diseases, 
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chronic kidney disease, organ transplant, nicotine dependence, other 
substance use disorder, neoplasm (both benign and malignant), 
hematological cancer, chronic liver disease, stroke, dementia, rheu-
matoid arthritis, lupus, psoriasis, disorders involving an immune 
mechanism, psychotic disorders, mood disorders, anxiety disorders, 
insomnia, somnolence, delirium, brain hemorrhage, Parkinson’s dis-
ease, Guillain–Barré syndrome, nerve, nerve root or plexus disorders, 
diseases of myoneural junction and muscle, encephalitis, encepha-
lopathy, dyslexia and other symbolic dysfunctions, MCI, epilepsy, 
convulsions, COVID-19 vaccine, antidepressants (with fluvoxamine in 
particular), antipsychotics (with clozapine in particular) and lithium. 
More details on covariates including ICD-10 codes, can be found in 
Supplementary Note 4.

Matching (1:1) was achieved using a greedy nearest neighbor algo-
rithm with caliper distance of 0.1. For each characteristic, matching 
was considered to be successful where the standardized mean differ-
ence between the cohorts was <0.1 (ref. 58). The propensity score was 
calculated using a logistic regression (implemented by the function 
LogisticRegression of the scikit-learn package in Python 3.7), including 
each of the covariates mentioned above. To eliminate the influence of 
ordering of records, the order of the records in the covariate matrix 
was randomized before matching.

The Kaplan–Meier estimator was used to estimate the incidence 
of each outcome and the log-rank test to test for differences between 
cohorts. HRs with 95% CI were calculated using a Cox proportional 
hazards model.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
For the PHOSP-COVID data, the protocol, consent form, definition and 
derivation of clinical characteristics and outcomes, training materials, 
regulatory documents, requests for data access and other relevant 
study materials are available online at https://www.phosp.org.
For the TriNetX data, the system returned the results of these analyses 
as csv files, which we downloaded and archived. Aggregate data, as pre-
sented in this article, can be freely accessed at https://osf.io/kzhfs/. This 
study had no special privileges. Inclusion criteria specified in Methods 
and Supplementary Information would allow other researchers to 
identify similar cohorts of patients as we used here for these analyses; 
however, TriNetX is a live platform with new data being added daily 
so exact counts will vary. To gain access to the data, a request can be 
made to TriNetX ( join@trinetx.com), but costs might be incurred and 
a data-sharing agreement would be necessary.

Code availability
The code to reproduce the analyses can be accessed via https://osf.
io/kzhfs/.
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Extended Data Fig. 1 | Contributions of each cognitive item to the dimensions 
of covariation. These report the weights of each item in the weighted 
combinations that represent the cognitive profile for each dimension. Note 
that positive weights (for MoCA items) and negative weights (for C-PSQ items) 

do not necessarily imply that individuals who scored high on the dimension of 
covariation had better cognitive outcomes for those items since these items might 
covary with other items with opposite weights. See Supplementary Figs. 5–6, 9 
and 10 for distribution of individual items along dimensions of covariation.
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Extended Data Fig. 2 | Association between dimensions of covariation and clusters of post-acute impairment. Distribution of individuals in the top and bottom 
half of the cohort along both dimensions of covariation in terms of predefined clusters of post-acute impairment. For both dimensions, those who scored in the top 
half of the cohort tended to have more severe impairment.
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Extended Data Fig. 3 | Change in subjective cognitive function between pre- 
and post-COVID. Distribution of the change in C-PSQ-2 (assessing subjective 
cognitive deficits) between a pre-COVID baseline and 6 months (left) or 12 
months (right) post-COVID. The dashed lines represent the mean change. In 
both cases, the change was, on average, significantly greater than zero indicating 
worsening of subjective cognitive function following COVID-19 (mean [s.e.m.] 
change in C-PSQ-2: 0.48 [0.04] between pre-COVID and 6 months post-COVID, 

p < 0.0001; and 0.40 [0.055] between pre-COVID and 12 months post-COVID-19, 
p < 0.0001). At six months, 43/547 participants (7.9%) had better cognition, 288 
(52.7%) had no change, and 216 (39.5%) had worse cognition compared to before 
COVID-19. At 12 months, 12/205 participants (5.9%) had better cognition, 116 
(56.6%) had no change, and 77 (37.6%) had worse cognition compared to before 
COVID-19.
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Extended Data Fig. 4 | Mediation of the associations between biomarker 
and cognitive profiles by markers of severity of infection. No marker reached 
statistical significance. Fraction explained by the mediator are reported as 

negative if they are negatively associated with the cognitive profile. WHO, World 
Health Organization clinical progression scale; ICU, Intensive care unit; NEWS, 
National Early Warning Scores.
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Extended Data Fig. 5 | Associations between biomarkers and post-acute 
cognitive deficits in the EHR data with different constraints on CRP. Kaplan–
Meier curves represent the cumulative incidence of cognitive deficits between 
those with high versus low fibrinogen (or D-dimer) and CRP level ≤ 20 mg/L  

(top panels), or any CRP level (bottom panels). Curves represent the Kaplan–
Meier estimates and shading around curves represents 95% confidence intervals. 
P-values are derived from log-rank tests, two-sided, and not adjusted for multiple 
comparisons.
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Extended Data Fig. 6 | Associations between COVID-19 status and risks of 
venous thromboembolism and ischemic stroke among those with raised 
D-dimer. Comparison between matched cohorts of patients with high D-dimer 
and normal CRP with COVID-19 vs. without COVID-19 in terms of risk of venous 

thromboembolism [VTE] (left) and ischaemic stroke (right). Curves represent the 
Kaplan–Meier estimates and shading around curves represents 95% confidence 
intervals. P-values are derived from log-rank tests, two-sided, and not adjusted 
for multiple comparisons.
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