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Abstract

Inferring the parameters of time series models from observed data is essential across

many areas of science. Bayesian statistics provides a powerful framework for this pur-

pose, but significant challenges arise when time series models are misspecified due to

complexities in the underlying process (e.g., heterogeneity in the modelled population,

or when parameter values fluctuate over time), inaccurate numerical approximation of

the forward model (e.g., in models involving differential equations), or the presence of

non-stationary, non-independent error terms. We introduce a series of models and com-

putational strategies for dealing with misspecification in time series inference problems,

with a particular focus on time series problems arising in epidemiology and problems

involving ordinary differential equations.

The models and inference strategies discussed include: 1. A generalisation of the

Poisson renewal model to allow heterogeneous behaviour between local and imported

cases, which we use to show that accounting for such heterogeneous behaviour is essen-

tial for accurate inference of the time-varying reproduction number (Rt); 2. A Bayesian

nonparametric approach to flexibly learn time variation in Rt, which we show is capable

of learning accurate and precise estimates of the parameter; 3. Estimates of the gradient

and the error in the log-likelihood arising from numerical approximation of differen-

tial equations derived from a posteriori error analysis; and 4. A flexible noise process

accommodating correlated and heteroscedastic error terms and whose form can be

inferred from time series data using kernel functions. We motivate our methodological

innovation by a comprehensive examination of the biases in inference that result from

insufficiently accurate numerical approximation of differential equations, as well as

time series inverse problems and models drawn from epidemiology, hydrology, and

cardiac electrophysiology.
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Chapter 1

Introduction

1.1 Motivation

A wide range of scientific phenomena involve time-varying observables. The rate at

which water flows through a river, the number of people presently infected with a

particular disease, or the current flowing out of a cell are a few selected examples of

such time-varying outputs. These observable quantities are recorded at a discrete set of

points in time, yielding a time series, which is often assumed to obey some parametric

model derived from scientific theory. Often, the next step is to learn which values of the

model parameters are compatible with the observed data. Developing computational

tools to perform this task of model parameterisation more efficiently, practically, and

accurately is the main goal of this thesis.

Many subfields of computational biology are replete with challenging time series

inference problems. However, this thesis focuses particularly (though not exclusively) on

epidemiological time series inference problems (see Chapter 1, §1.3). Epidemiological

modelling of infectious disease depends heavily on the analysis of time series data.

Time-varying data in infectious disease epidemiology often involves cases, deaths,

or prevalence; these data can be used to inform the progression of an epidemic or

the effectiveness of interventions intended to control an epidemic by fitting them to

appropriate models of the transmission of an infectious disease through a population.

Throughout the thesis, we generally adopt a Bayesian approach. Bayesian statistics

provides a powerful formalism for updating our beliefs about parameter values con-

ditional on observed data, and is attractive for its principled handling of uncertainty

in recovered parameter estimates (as discussed further in Chapter 2). However, per-

forming Bayesian inference for time series models involves a number of challenges.
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12 CHAPTER 1. INTRODUCTION

Many of these challenges are because scientific models inevitably fail to account for all

of the observed variation in real data. In some cases, these challenges can be addressed

through the development of more realistic models, which, for example, more compre-

hensively account for various features of the modelled system. However, more complex

models are more difficult to fit to data and more likely to suffer from problems with

practical identifiability, requiring care in the development and deployment of inference

algorithms and, where possible, the collection of more comprehensive data. Thus, the

appropriate level of model complexity to explain a particular dataset may be difficult to

determine in advance, and this choice must be guided by the information in the data

and the modelling or inference task at hand.

Models involving differential equations are widespread in computational biology

and other fields, and because the outputs of these models must typically be approxi-

mated using numerical methods, additional difficulties may arise. Even once a differen-

tial equation system has been determined whose true solution is an appropriate model

for the data, discrepancies between the true solution and its numerical approximation

may interfere with Bayesian inference for the parameters of the model. However, highly

accurate numerical approximation may be prohibitively computationally expensive, par-

ticularly during inference where large numbers of simulations of the same differential

equations at different parameter values must be performed.

Observed time series data will almost always be affected by a variety of unmodelled

influences. In these cases, even correctly specified and accurately computed determin-

istic models must incorporate a stochastic component to capture all the variation in

observed data. Standard choices for this component such as independent and identi-

cally distributed Gaussian noise are justifiable in some cases, but they are inaccurate

models of data affected by heteroscedasticity or autocorrelation, which may occur, for

example, in time series where observation noise scales with the magnitude of the signal

(heteroscedasticity) or when measurement are unable to capture short-term fluctuations

in observables (autocorrelation).

1.2 Aims of the thesis

In this thesis, we aim to develop and apply a series of models and Bayesian inference

strategies which address the challenges described in §1.1 above. Specifically, we aim to:

1. Develop more accurate models for biological phenomena;

2. Develop a flexible framework for accurately learning time variation in model
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parameters;

3. Demonstrate the importance of highly accurate numerical approximation of ODEs

when performing inference for their parameters, and efficiently infer the ODE

parameters while controlling numerical error in the parameter posteriors;

4. Learn accurate parameter posteriors even in the presence of non-stationary het-

eroscedastic and autocorrelated noise.

5. Develop reliable and reusable software for performing all of these inference tasks

(see Chapter 2, §2.5).

Throughout the thesis, a key focus is on applying novel methodologies to relevant bio-

logical problems. The problem which motivates the first portion of the thesis, and which

provides the context in which we address points 1 and 2 above, is drawn from epidemi-

ology, and concerns the development of effective inference algorithms for learning the

time-varying reproduction number (Rt) from incidence data. We aim to develop a more

accurate stochastic renewal model of infectious disease outbreaks incorporating differ-

ing transmission risk between local and imported cases, in order to increase the accuracy

of Rt estimates when such heterogeneities are present in the population. Subsequently,

we aim to develop a flexible framework for efficiently learning patterns of time variation

in Rt; however, our work here is generally applicable to other problems in epidemiology

and biology where choosing the appropriate model complexity is challenging.

The remainder of the thesis chiefly focuses on inference for differential equation mod-

els. We first aim to motivate and introduce our investigations of differential equations

via a study of compartmental differential equation models as used in epidemiology,

where we will show that the outputs of these models can be subject to significant

uncertainty arising from parameter uncertainty or inaccuracy in numerical solvers. Sub-

sequently, we aim to study inference for differential equations more broadly, addressing

point 3 above, and we will demonstrate the importance of controlling the error on the

likelihood to ensure accurate inference and develop methods for doing this efficiently.

In the final chapter of the thesis, we will address point 4 above by developing a flexible

noise process which can more accurately capture heteroscedasticity and time-varying

autocorrelation in the error terms than the simpler, standard assumptions typically

made when fitting time series data to differential equation models.
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1.3 Context of the thesis

The doctoral studies which led to this thesis commenced in October of 2019. My

original goal was to develop Bayesian inference algorithms for misspecified time series

models, drawing on several motivating examples from cardiac electrophysiology and

electrochemistry which are known to suffer from misspecification. The work on general

noise processes, which appears as Chapter 8 in this thesis, was my first work in this

direction.

However, before working further on the problem of misspecification in general, or

on electrophysiological applications, the COVID-19 pandemic struck England about

halfway through the first year of my doctoral studies. Realizing that many of the

techniques for learning parameters from time-varying data that I was studying were

applicable to COVID-19 time series data, I selected epidemiology as a central area of

application for my computational work. I involved myself in several collaborative

projects developing and applying computational modelling to relevant questions in

understanding and controlling the spread of COVID-19. The research underlying

Chapters 3 and 5 in this thesis arose from these projects. Epidemiology, including for

diseases other than COVID-19, remains an important area for further methodological

innovation and application of inference methods, as discussed further in Chapters 4

and 9.



Chapter 2

Background

Overview

This chapter provides a review of the background material which underlies the research

presented later in the thesis. First, we provide an overview of the principles of Bayesian

inference. Next, we discuss some of the methods which are used to perform Bayesian

inference. We also provide some background information on differential equations and

the algorithms which are used to numerically approximate their solutions. Additionally,

we define appropriate likelihood functions which can be used to perform inference for

the parameters of models involving ordinary differential equations.

Finally, we discuss epidemiological time series data and the variety of models which

have been developed of the spread of an infectious disease.

Publications

Although this chapter primarily concerns general background information, Figure 2.1 in

this chapter was taken from the following preprint on which I was co-author:

• K. Gallagher,† I. Bouros,† N. Fan,† E. Hayman,† L. Heirene,† P. Lamirande,†

A. Lemenuel-Diot, B. Lambert, D. J. Gavaghan, and R. Creswell: “Epi-

demiological Agent-Based Modelling Software (Epiabm),” arXiv:2212.04937

(2022). [Gallagher et al., 2022]

(†= joint first authorship.)

Contributions to [Gallagher et al., 2022]: I contributed to the supervision of the

project, made suggestions on the writing and revision of the manuscript, led the

15



16 CHAPTER 2. BACKGROUND

students who were working on the software implementation, and designed the

majority of the figure which appears as Figure 2.1 in this thesis (with the exception

of the portion of the figure indicating places with variable members).

Additionally, some material in this chapter (portions of §2.3) is taken from

[Creswell et al., 2023c].

2.1 Bayesian Inference

2.1.1 Data and Models

Our data consist of observations y = (y1, y2, . . . , yN ); each yi ∈ Yi ⊆ Rn. For the data,

we propose a STATISTICAL MODEL (S,P), where S is the SAMPLE SPACE (all possible

realisations of y) and P is a finite or infinite set of probability distributions on S . We label

the elements of P by unique values of the PARAMETERS θ, i.e., P = {p(y|θ) : θ ∈ Θ}; Θ
is the PARAMETER SPACE.

Example 1 The observed data are y = (1.2, 3.43,−0.325). We model the data according to

yi
IID∼ N (µ, σ), for σ > 0, µ ∈ R; i.e., with a statistical model (S = R3,P = {N (y|(µ, µ, µ), σI) :

σ > 0, µ ∈ R}) where I is the 3× 3 identity matrix. The parameter space is two-dimensional:

Θ = {(σ, µ) : σ > 0, µ ∈ R}.

Sometimes, statistical models are constructed in order to characterize relationships

or trends that may exist in the observations without containing any direct description

of the physical mechanisms which gave rise to the data (this is common, for example,

in regression modelling). We use the term mechanistic models to refer to those models

which are parameterized by quantities with a direct biological or physical interpretation,

and aim to summarize in mathematical equations the actual physical processes which

generated the data (see, e.g., [Hilborn and Mangel, 2013, Baker et al., 2018]). Mechanis-

tic models may be deterministic or stochastic. Deterministic mechanistic models are

often used in concert with some assumed form of stochasticity in the observed data: see

§2.3.3.

2.1.2 Likelihood functions

The LIKELIHOOD takes the same form as the joint probability density of the data, but

treated as a function of θ, with the data treated as fixed. Thus, the likelihood is not
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a probability distribution of θ. Higher values of the likelihood indicate a value of

θ which gives a better fit to the data. The form of the likelihood follows from the

statistical model adopted for the data. The likelihood encompasses both assumptions

about the mechanistic process underlying the system or experiment as well as the

noise or error properties of the observed data. To avoid numerical underflow error,

computations involving the likelihood are typically done on the log scale and involve

the LOG-LIKELIHOOD: log(p(y|θ)). Throughout this thesis, we reserve the calligraphic

L(θ|y) notation to refer to the log-likelihood, while we use L to refer to the likelihood

function itself.

Example 2 The data y = (y1, y2, . . . , yN ) are modelled according to yi ∼ N (µi, σ), i.e., as

independent (but not identically distributed) Gaussian. The log-likelihood for the parameters

µ = (µ1, µ2, . . . , µN ) and σ is:

L(µ, σ|y) = log(p(y|µ, σ)) = −N

2
log(2π)−N log(σ)− 1

2σ2

N∑
i=1

(yi − µi)
2. (2.1)

2.1.3 Inference

In many fields of scientific inquiry, statistical models are proposed as explanations of

observable phenomena. Once experimental data are collected, a ubiquitous research

task is to identify which values of the parameters θ are compatible with the data. This

task, known in various settings as INFERENCE or the INVERSE PROBLEM, is central to all

of the research presented in this thesis.

Some approaches to inference yield a single, best fit estimate of θ for a particular

dataset y. One such approach is the method of MAXIMUM LIKELIHOOD, which selects

the value of θ which maximizes the likelihood function:

θ̂ = arg max
θ∈Θ

log(p(y|θ)).

In general, likelihood functions are not convex, and the maximum likelihood esti-

mation relies on non-convex optimisation algorithms in order to find θ̂ (e.g., CMA-

ES [Hansen et al., 2003]).

However, methods such as maximum likelihood, which yield only a best fit estimate

of θ, are of limited usefulness in many scientific applications; rather, information about

the uncertainty in θ implied by the data is needed. In such applications, the probability

distribution of θ conditional on y, which provides not only a point estimate of θ (i.e.,
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the mean or median of the distribution) but also information about its uncertainty

implied by the data is more useful. Information about the uncertainty in θ is essential to

satisfactorily answer many scientific questions.

Example 3 In epidemiology, a common inference task is to learn the TIME DEPENDENT

REPRODUCTION NUMBER, Rt (the expected number of secondary cases caused by each primary

infection)—values of Rt > 1 indicate that an infectious disease will continue to spread, while

values Rt < 1 indicate that an outbreak will die out. However, even if the best fit Rt to a

particular incidence time series falls below 1, it would be imprudent to conclude on this basis

that the disease is under control if, say, a 75th percentile estimate of Rt were still greater than

1. Only when the probability that Rt > 1 is at a suitably small value should the disease be

treated as under control. For this reason, inference for Rt has often adopted a Bayesian approach,

e.g., [Thompson et al., 2019, Creswell et al., 2022].

2.1.4 Bayes’ Rule

Bayes’ Rule [Bayes and Price, 1763] states:

p(θ|y) = p(y|θ)p(θ)
p(y)

. (2.2)

That is, the POSTERIOR distribution of θ (i.e., p(θ|y)) is the product of the likelihood,

p(y|θ) and the PRIOR, p(θ) over the MARGINAL LIKELIHOOD, p(y).

The prior expresses our beliefs about the values of θ before observing any data. The

prior is a central aspect of Bayesian inference. The choice of prior can be guided by

many considerations. In problems where the parameters must be constrained to fall in

certain intervals, or knowledge about their possible values is available from previous

experiments, the prior distribution is a natural way to incorporate this knowledge into

inference. In other problems, it is desirable for the prior to have as little influence on the

inference results as possible, letting the shape of the posterior be dominated by the data

(i.e., the likelihood function). Careful selection of the prior is an essential step when

performing Bayesian inference.

Priors are often selected from a parametric family of distributions (e.g., a Gaussian

distribution); the parameters of the prior distribution are termed HYPERPARAMETERS.

(Similarly, when the posterior distribution is expressed as a member of a parametric

family of distributions, we may refer to its parameters as hyperparameters.) When

performing inference, the hyperparameters of the prior may be set to fixed values

representing the assumption of a particular fixed prior distribution; or the prior hyper-
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parameters may themselves be treated as unknown and assumed to obey their own

prior distribution, termed a HYPERPRIOR, and inferred along with the other parameters

of the model.

The marginal likelihood:

p(y) =

∫
Θ
p(y|θ)p(θ)dθ, (2.3)

is challenging to calculate in practical problems where no analytical result exists and

Θ often contains at least several dimensions. However, the marginal likelihood’s lack

of dependence on θ means that it can be viewed as a mere normalisation term for

the posterior, and characterization of the location and shape of the UNNORMALISED

POSTERIOR, p(y|θ)p(θ), is sufficient to learn θ.

2.2 Bayesian inference in practice

2.2.1 Conjugate priors and motivation for sampling methods

In certain problems, the posterior eq. (2.2) is expressible as some standard probabil-

ity distribution whose hyperparameters are closed-form functions of the data. This

convenient situation often depends upon the choice of a CONJUGATE PRIOR—a distri-

butional assumption for the prior such that the posterior is a distribution from the same

parametric family, with updated hyperparameters.

Example 4 The data y = (y1, y2, . . . , yN ), where each yi is a non-negative integer, are modelled

according to yi
IID∼ Poisson(λ). We choose a gamma prior1 for the unknown parameter λ; i.e.,

p(λ) = gamma(α, β). The posterior distribution of λ is given by:

p(λ|y) = gamma

(
α+

∑
i

yi, β +N

)
. (2.4)

Because the gamma distribution is a conjugate prior for the Poisson likelihood, the posterior

can also be expressed as another gamma distribution whose hyperparameters are closed-form

expressions of the data. Once the conjugate posterior has been derived, it is fast to compute.

Unfortunately, for many likelihoods arising in scientific applications, a conjugate prior

does not exist.
1Throughout this thesis, we parametrise the gamma distribution with a SHAPE α and RATE β such that

its density function is: f(x) = βα

Γ(α)
xα−1e−βx.
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Assuming that we can evaluate both the likelihood and the prior, eq. (2.2) allows

us to calculate the unnormalised posterior at any particular value of θ, but pointwise

evaluations of the unnormalised posterior are not on their own useful. What we want

the posterior to tell us are what values of θ are compatible with the data, and how much

uncertainty there is in these values—i.e., we want the moments and percentiles of the pos-

terior. However (as we mentioned above in relation to the marginal likelihood), because

p(y|θ)p(θ) is not expected to be analytically integrable the moments and percentiles are

in general computationally expensive to obtain.

In easy problems (say, dim Θ = 1) where evaluations of the likelihood are fast, inte-

grals of p(y|θ)p(θ) could be evaluated using quadrature or similar numerical methods.

Somewhat equivalently, the unnormalised posterior could be computed on a dense grid

of θ values, and the shape and location of the posterior could easily be obtained from

the graph of the unnormalised posterior on these values. However, in most problems of

scientific interest, Θ is potentially high-dimensional and evaluations of the likelihood

are slow, and thus any naïve grid-based calculation is prohibitively slow. For these

reasons, in most applied Bayesian inference the unnormalised posterior must be interro-

gated using specialized algorithms. Specifically, we next describe two broad classes of

algorithms which are used for this purpose: variational inference and sampling.

2.2.2 Variational Inference

In VARIATIONAL INFERENCE, the posterior is assumed to be well-approximated by some

member of a set of tractable distributions Q = {qϕ(θ) : ϕ ∈ Φ} [Blei et al., 2017]. The

appropriate hyperparameters ϕ of the approximate posterior are selected by minimiza-

tion of the KL-divergence between q(θ) and the posterior p(θ|y). Variational inference

is advantageous for its speed and scalability. However, challenges of the method in-

clude that for poor choices of Q the approximate posterior may differ significantly from

the actual posterior, calculation of the KL-divergence can be difficult, and inefficient

or non-convergent minimization algorithms will cause slow performance or further

inaccuracy.

2.2.3 Sampling

Sampling methods perform Bayesian inference by generating samples from the posterior

distribution. Once enough samples have been collected, the relevant properties of the

posterior, such as its mean and percentiles, can simply be approximated from the

empirical distribution of the samples. In particular, for a function f integrable on Θ′, we
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have by the law of large numbers:

∫
Θ′

f(θ)p(θ)dθ ≈ 1

K

K∑
k=1

f(θ(k))

for sufficiently large K, where p is a probability density supported on Θ′, and θ(k)

are distributed according to p. Note that, e.g., the mean of the posterior can thus be

approximated from posterior samples using f(θ) = θ; p(θ) = p(θ|y) in this formula.

A widely used class of algorithms for generating samples from a posterior distribu-

tion are MARKOV CHAIN MONTE CARLO (MCMC) methods. These algorithms involve

the construction and simulation of a Markov chain whose equilibrium distribution is

the posterior. Many MCMC algorithms are variants of the METROPOLIS-HASTINGS

algorithm, which is described in Algorithm 1 [Metropolis et al., 1953, Hastings, 1970].

This algorithm proposes new values of θ according to a proposal distribution, and

then either accepts or rejects them with a probability given by the ratio of the posterior

density at the proposed value to the posterior density at the current value in the chain

(corrected by the ratio of the proposal densities at the current value to the proposed

value)—this is the variable denoted r in Algorithm 1. This procedure causes the sampler

to move towards regions of higher posterior density while exploring the parameter

space; the equilibrium distribution of the Markov chain constructed in this way is the

targeted posterior distribution [Metropolis et al., 1953, Hastings, 1970].

Algorithm 1 Metropolis-Hastings MCMC

1: Set the initial state θ(0)

2: Set k = 0
3: while k < Num. iterations do
4: Draw θprop according to the proposal density g(θprop|θ(k))
5: Calculate r = min

(
1, p(y|θ

prop)p(θprop)g(θ(k)|θprop)

p(y|θ(k))p(θ(k))g(θprop|θ(k))

)
6: Draw u ∼ uniform(0, 1)
7: if u ≤ r then
8: θ(k+1) = θprop (accept)
9: else

10: θ(k) = θ(k) (reject)
11: end if
12: Set k = k + 1
13: end while
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Assessment of convergence

The set of samples {θ(k)} obtained according to an MCMC sampler such as Algorithm 1

is only informative of the posterior distribution once the Markov chain which generated

it has converged to its equilibrium distribution. Convergence can be assessed by running

multiple MCMC chains, initialized at different positions in parameter space, and then

computing the Gelman R̂ statistic [Gelman et al., 2013]. R̂ measures the ratio of the

variance within a chain to the variance between chains; values of R̂ near one (e.g.,

R̂ < 1.05) suggest that the different chains may have “mixed” with each other, i.e., are

moving around the same region of parameter space; if these chains were initialized in

different locations, it is possible that the chains may have converged to a posterior mode.

However, small values of R̂ may still be obtained even when chains have not converged

to the equilibrium distribution (for example, in a multimodal posterior, where all chains

have happened to meet in one of the modes but are not exploring the full posterior); for

this reason, MCMC algorithms should be deployed with caution, likelihood or posterior

surfaces should be visualised to the extent possible, and care should be taken that

MCMC chains are initialized in diverse locations in parameter space.

Efficient proposal distributions

The efficiency of the Metropolis-Hastings sampler and its variants is closely tied to

the shape of the proposal density, denoted g(θprop|θ(j)) in Algorithm 1. If the proposal

distribution generates proposed parameter values which are too widely dispersed, only

a small proportion of the proposals will be likely under the posterior, and the rejection

rate of the algorithm will be too high. However, if the proposal distribution has too

small a variance, the Markov chain will only be able to move around the parameter

space slowly.

For this reason, more efficient MCMC samplers do not employ a fixed proposal distri-

bution, and instead automatically tune the proposal based on the shape of the posterior

distribution being explored. One algorithm employing this strategy is the HAARIO-

BARDENET ADAPTIVE COVARIANCE sampler [Haario et al., 2001, Johnstone et al., 2016].

This sampler uses a multivariate Gaussian proposal distribution, with the covariance

matrix of the proposal being set adaptively based on the previously accepted samples in

the chain.
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Gradient-based sampling

Another strategy for improving the efficiency of MCMC sampling is to use information

about the gradient of the posterior with respect to the parameters to generate proposals

in regions of parameter space where the posterior density is higher. Such proposals

are more likely to be accepted, increasing the efficiency of the chain in exploring the

posterior. Additionally, before the chain has converged, the gradient information may

help the chain move towards the posterior modes more efficiently than is possible with

non-gradient-based samplers, particularly in high dimensional parameter spaces. Some

of the standard gradient-based MCMC samplers are HAMILTONIAN Monte Carlo and

the NO-U-TURN sampler [Gelman et al., 2013].

Gibbs sampling

In some situations, the conditional posteriors for each element of θ (i.e., p(θ1|y, θ2, . . . , θM ),

and so forth) are easy to sample from, even though the joint posterior of all elements of

θ (i.e., p(θ1, . . . θM |y)) is still intractable and requires MCMC sampling for inference. In

these situations, it may be attractive to employ the GIBBS sampler, which is a special case

of Metropolis-Hastings. The Gibbs sampler generates a Markov chain by drawing a new

value for each parameter in turn directly from its conditional distribution, conditional

on the chain’s current values for all the other parameters.

In many problems, the conditional posteriors are not easy to sample from, and the

Gibbs sampler is not an appropriate choice. When conditional posteriors are readily

available, however, the Gibbs sampler is attractive as it avoids the need for specifying

or tuning a proposal density and rejecting proposals. However, it may be inefficient

because (in its most simple form) it only updates one parameter at a time, and thus

cannot make diagonal moves through the parameter space. In some cases, this deficiency

can be addressed by performing sampling from the conditional posteriors of multivariate

blocks of parameters rather than each parameter individually.

Another strategy for improving the efficiency of Gibbs sampling is the COLLAPSED

Gibbs sampler, in which, when sampling for, say, θ1, some or all of the other parameters

θ2, . . . , θM are marginalized out.

Example 5 The model has two parameters, θ1 and θ2. A collapsed Gibbs sampler is derived

in which the next value of θ1 in the chain is sampled according to θ
(k+1)
1 ∼ p(θ1|y), where

p(θ1|y) =
∫
p(θ1|y, θ2)dθ2. Thus, θ1 gets updated without having to depend on the chain’s

current value of θ2.
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Efficient collapsed Gibbs sampling may depend on analytic integrability of some of

the conditional posteriors, which is often not possible. However, in problems where

this is possible (which often involve an appropriate conjugate prior), it can lead to very

efficient MCMC samplers by integrating out the dependence on nuisance parameters.

2.3 Forward and inverse problems involving ordinary differen-

tial equations

2.3.1 Time series data and ODEs

We assume that time series data {yi}Ni=1; yi ∈ Yi ⊆ Rn; y = (y1, . . . , yN ) ∈ Y are

measured at time points {ti}Ni=1. These data are believed to be related to some FORWARD

MODEL F : Θ → X , which, for each value of the parameter vector θ, defines some

model output x ∈ X . It is useful to distinguish the output of the forwards model (which

is often continuous over time) from the typically discrete observed data (which may

also be assumed to depend on other functionals of the model output not included in

the forward map), so we introduce the OBSERVATION OPERATOR H : X → Y which

maps outputs from the forward model to the sample space. The following example

(Example 6) illustrates the usage of these two functions. For a more rigorous treatment

of this framework, see [Capistrán et al., 2022].

Example 6 The data consist of measurements of the size of a population, y1, y2, . . . , yN recorded

at time points t1, t2, . . . , tN . The size of the population f(t) is modelled according to the logistic

growth model,

f(t) =
k

1 + (k/p0 − 1) exp(−rt) ,

with the unknown parameters growth rate r, carrying capacity k, and initial population size

p0 [Clerx et al., 2019]. The forward model is F(r, k, p0) = f(t) as defined above, and the

observation operation isH(F(r, k, p0)) = (f(t1), f(t2), . . . , f(tN )).

We are specifically interested in forward maps involving deterministic ORDINARY

DIFFERENTIAL EQUATIONS (ODES) in time, i.e., where the model outputs x are the

solutions to:
dx

dt
= h(t, x, θ);

x(t = t0) = x0

(2.5)

for some RIGHT-HAND-SIDE (RHS) function h which is informed by scientific theory,

and an initial condition x0 at the initial time t0. Eq. (2.5) is an ordinary differential



2.3. ORDINARY DIFFERENTIAL EQUATIONS 25

equation because it involves derivatives of the STATE x with respect to one independent

variable (in our case, time). Eq. (2.5) has been written as a first order equation (i.e., only

involving the first order derivative of x); higher order differential equations may be

rewritten as systems of first order equations.

ODEs are used throughout the biological and physical sciences to express dynamic

processes; a few examples amongst the myriad of their application areas include epi-

demiology [van der Vegt et al., 2022], hydrology [Kavetski et al., 2003], cardiac electro-

physiology [Whittaker et al., 2020], and population dynamics [Shertzer et al., 2002].

2.3.2 Numerical solution of ODEs

For some RHS functions h, eq. (2.5) can be solved analytically, i.e., an analytical expres-

sion for x(t) can be derived. However, this is rarely observed for the ODEs used in

scientific problems. Instead, most forward maps of interest in scientific applications

must be approximated using numerical algorithms.

A wide range of algorithms have been developed which generate an approximation

to x(t) when F involves an ODE [Gautschi, 1997]. Typically, these algorithms first

generate a pointwise approximation to x(t) consisting of values {x̂j}Jj=0 on a grid

of solver time points {tj}Jj=0, and then use interpolation of these points to generate

an approximate solution x̂(t) at arbitrary time points within the time interval under

consideration.

If the numerical scheme is appropriate, x̂(t) approximates x(t) but still inevitably

involves some error. The accuracy can be characterized by the LOCAL TRUNCATION

ERROR (the error introduced by each iteration of the solver, i.e., in advancing from tj

to tj+1) and the GLOBAL TRUNCATION ERROR (the difference between x̂(t) and x(t) at

a particular time t, e.g., at the final time point). The properties of the local and global

truncation error depend on the choice of solver used to generate x̂(t).

Example 7 One of the simplest numerical solvers for ordinary differential equations is the

Forward Euler method on a uniform grid. Given a first order differential equation eq. (2.5) and

the value at the initial condition x(t = t0), this method constructs an approximate solution

{x̂i}Jj=0 on a time grid {ti = t0 + j∆t}Jj=0 according to:

x̂0 = x(t = t0);

x̂j+1 = x̂j +∆th(tj , x̂j), j = 1, . . . , J − 1.
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The local truncation error of the solver is given by:

x(t1)− x̂1 = x(t0) + ∆tx′(t0) +
∆t2

2
x′′(t0) +O(∆t3)− x(t0)−∆th(t0, x(t0))

=
∆t2

2
x′′(t0) +O(∆t3),

which, for small ∆t, is proportional to ∆t2.

Fixed step size solvers

Most simply, the grid of solver time points, {tj}Jj=0, may be set in advance, as in

Example 7. In the simplest case, the grid would be uniform, corresponding to a uniform

solver time step of ∆t = tj+1 − tj . To improve the accuracy of the solution, ∆t must be

refined to smaller values.

Uniformly spaced grids are likely to be inefficient, because the spacing of grid points

needed to achieve a given level of accuracy in the solution depends on the rate at which

h is changing in time, and this required spacing could vary significantly over the time

interval on which the ODE is being solved. In particular, in regions of time where

h is changing rapidly, a high density of solver grid points is required to capture the

behaviour of the solution; conversely, when h is changing slowly, larger spacing between

grid points can be tolerated without causing much error.

For this reason, non-uniform solver grids are preferred in most problems. Because

the regions of time where higher or lower densities of grid points are needed are typically

not known in advance, algorithms have been developed which adaptively tune the step

size based on the local features of the solution as the ODE is being solved.

Adaptive step size solvers

More sophisticated ODE solvers select the grid of solver time points {tj}Jj=0 based on

the properties of the ODE being solved. Typically, these algorithms work by requiring

that the user pre-specify a TOLERANCE, which is some threshold that the local truncation

error should not exceed (often expressed as an absolute value and/or a value relative to

the magnitude of the solution). At each iteration of the solver, the error in the solution

caused by advancing from solver grid point tj to tj +∆tj is estimated; if the magnitude

of this error exceeds the tolerance, ∆tj is repeatedly refined to a smaller value until

the estimated error falls below the threshold. Conversely, if the magnitude of the

estimated error already falls significantly below the threshold, a higher value of ∆tj will
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be attempted for the subsequent solver iteration.

2.3.3 Inference for ODE parameters

For any given parameter values, deterministic models will always yield the same out-

puts. Stochastic models, however, incorporate randomness, and repeated simulations of

a stochastic model at the same parameter values may yield different outputs. However,

both deterministic and stochastic models of biological phenomena may fail to capture all

of the observed variation in real observations. This is because many real observations are

affected by a variety of influences—for example, fluctuations arising from imperfections

in the measurement devices—which are difficult or impossible to incorporate into a

mechanistic model of the process. For this reason, forward models are often combined

with an additional stochastic component representing otherwise unmodelled elements

(for example, processes involved in the measurement of the signal). Many choices are

possible for this stochastic measurement or error component.

Assuming a deterministic forward model F , the measurement stochasticity in the

observations is often incorporated in an additive form, such that the data are proposed

to have been generated according to:

y = H(F(θ)) + ε, (2.6)

where ε is an appropriately specified (multivariate) random variable expressing the

noise process. In Chapter 8, we study flexible multivariate distributions which may be

used to model ε. However, throughout this thesis we also make use of noise processes

which we express in the form:

yi = Hi(F(θ)) + εi, (2.7)

whereHi is the ith component of the observation output, and εi is a random variable

modelling the noise term on observation yi.

IID Gaussian noise

A standard choice for εi is

εi
IID∼ N (0, σ). (2.8)
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With this choice of εi, the log-likelihood of the data is (cf. Example 2):

L(θ, σ|y) = −N

2
log(2π)− N

2
log(σ2)− 1

2σ2

N∑
i=1

(yi −Hi(F(θ)))2. (2.9)

The IID Gaussian assumption can be justified on several grounds, including the prin-

ciple of maximum entropy (i.e., that the IID Gaussian is the distribution which makes

the fewest additional assumptions beyond the mean and variance of the process), as

well as the central limit theorem (i.e., that the noise terms εi should be modelled as

arising from the additive contributions of many approximately independent random

variables) [Lambert et al., 2023]. However, much real time series data does not obey the

IID Gaussian noise distribution.

Autoregressive noise

Another choice for εi is:

εi = ρεi−1 + νi (2.10)

where the parameter ρ ∈ [−1, 1], and ν
IID∼ N (0, σ

√
1− ρ2).

This noise process, termed AUTOREGRESSIVE ORDER 1 or AR(1), involves positive

correlation between the noise terms for ρ > 1. Such correlation may be appropriate

when, for example, signals are measured very frequently, or models are misspecified

causing persistent underestimation or overestimation of the signal at certain regions of

time even at the best fit parameter values [Lei et al., 2020b, Lambert et al., 2023].

Because the distributional assumption for ε determines the form of the likelihood

function, the assumed form of the noise process has a significant effect on the shape

of the posterior distribution. In particular, failing to account for positive correla-

tion in the noise terms can cause ODE parameter posteriors to have insufficient vari-

ance [Lambert et al., 2023]. For this reason, the noise process used to fit a time series

should be selected carefully.

2.4 Statistical models of infectious disease

Epidemiological time series data often includes one or more of PREVALENCE, the number

of individuals in the population who are infected at a particular time point; INCIDENCE,

the number of new infections arising at a particular time point; and DEATHS. A wide

variety of models of the spread of an infectious disease through a population have been
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developed; selecting an appropriate model and fitting it to incidence or prevalence time

series data is essential to understanding and forecasting the spread of a disease, and

evaluating the effects of interventions intended to control the spread of a disease.

We divide the most widely used models of infectious disease time series data

into three broad categories: AGENT-BASED models, COMPARTMENTAL models, and

STOCHASTIC RENEWAL models.

2.4.1 Agent-based models

Agent-based models (ABMs) (or individual-based models, IBMs) involve the simula-

tion of a population of individuals and their actions and interactions. Probabilistic or

deterministic rules for how the infection spreads from one individual to another, and

how long an infection lasts within an individual, are pre-specified, and these rules are

simulated for an artificial population for the specified time interval.

Different ABMs vary widely in how they model the population and infection, and

how detailed their simulation rules are. The COVIDSIM model is an illustrative example.

CovidSim was initially developed for influenza modelling, and subsequently adapted

for COVID-19, where it was influential in determining government policy in Eng-

land [Adam, 2020, Ferguson et al., 2020a, Ferguson et al., 2006, Ferguson et al., 2020b].

The geographical region under consideration is divided into cells, and cells into micro-

cells which represent the smallest geographical units. Within microcells, individuals

are assigned to households and places. Individuals are initially classified as susceptible

to the disease; if infected, they progress through a series of disease states representing

different levels of severity, and may ultimately die or recover. Infected individuals may

transmit the disease to susceptible individuals via a series of transmission modes which

are illustrated in Figure 2.1.

Complex agent-based models such as CovidSim are useful for simulating the effects

of realistic interventions and studying the interplay of disease transmission and demo-

graphic or geographic factors, but they are slow to run and difficult to parameterise.

The CovidSim model, for example, contains over 900 parameters [Edeling et al., 2021].

Fitting even a small fraction of these to time series data via methods such as MCMC

would be prohibitively computationally expensive. Thus, several categories of simpler,

faster models are also employed in epidemiology.
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Figure 2.1: Schematic description of the modes of disease transmission implemented in
the CovidSim model (this figure from [Gallagher et al., 2022]).

2.4.2 Compartmental models

Compartmental models divide the population into a number of compartments represent-

ing different diseased or non-diseased states and specify the rates at which individuals

move from one compartment to another. These models are often expressed using

differential equations.

Example 8 A simple deterministic compartmental model for modelling epidemics is the SIR

(susceptible-infected-recovered) model [Weiss, 2013]. This model keeps track of the number of

susceptible individuals S (those who can be infected with the disease), infected individuals I

(those who are currently infectious with the disease), and recovered individuals R (those who

have recovered from the disease and are assumed immune). In the simplest case, births and deaths

are neglected, and the model is expressed by the following system of differential equations:

dS

dt
= −βSI

N

dI

dt
= β

SI

N
− γI

dR

dt
= γI,
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where β > 0 is the spreading rate of the disease, γ > 0 is the recovery rate, and N > 0 is the

total size of the population. The system additionally requires the specification of initial conditions

for each compartment (S(t = 0), I(t = 0), R(t = 0)).

More sophisticated compartmental differential equation models incorporate fur-

ther compartments (e.g., an exposed compartment representing individuals who have

been infected but are not yet infectious to others) and dynamics (e.g., movement of

individuals from the recovered compartment back to the susceptible compartment to

represent waning immunity) to relax the simplistic assumptions inherent in the SIR

model [van der Vegt et al., 2022].

2.4.3 Stochastic renewal models

Renewal equations assume that cases of an infectious disease arise from historical

cases, with the number of new cases arising at a particular time point depending

on the historical case counts, the generation time distribution (amount of time be-

tween primary and secondary infections), and a time-varying REPRODUCTION NUM-

BER giving the expected number of secondary infections caused by each primary

case [Fraser, 2007, Nishiura and Chowell, 2009, Thompson et al., 2019]. An appropri-

ate discrete probability distribution is used to model the observed cases arising in

discrete time (usually daily).

2.4.4 Reproduction numbers

The reproduction number, the expected number of secondary infections caused by each

primary case, is a readily interpretible parameter for predicting whether an epidemic

will continue to grow and evaluating the effects of interventions or behavioural changes

intended to control the spread of a disease. Some epidemiological models (e.g., the

stochastic renewal model described above) are directly parameterised in terms of a

reproduction number; in other models, the reproduction number may be computed as

a function of the inferred model parameters. We distinguish several different formal

definitions of the reproduction number in the epidemiological context.

The BASIC REPRODUCTION NUMBER is the expected number of cases generated by

one primary case, assuming that everyone in the population is susceptible to the disease.

It is often denoted R0.

TIME-DEPENDENT or EFFECTIVE reproduction numbers indicate the expected num-

ber of cases generated by each primary case, at a particular point in time, i.e., accounting
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for (amongst other factors) a decrease in the proportion of the population which is

susceptible as the disease spreads. Time-dependent reproduction numbers are often

denoted Rt.

Two formal definitions of Rt are in wide use [Fraser, 2007]. The case reproduction

number measures the expected number of cases generated by a primary case who was

infected a time t over the course of their infectious period, accounting for changes

in the level of transmissibility that may occur during this period. Meanwhile, the

instantaneous reproduction number measures the expected number of cases that would

be generated by a primary case who was infected at time t, if the level of transmissibility

were to remain constant from time t onward.

Inference of the reproduction number in the presence of heterogeneity between local

and imported cases, and the development of flexible models of time variation in Rt, are

the subjects of the next two chapters of this thesis (§3 and §4).

2.5 Software implementations

The reliability and reproducibility of research in computational biology depends upon

the development of well-documented, tested, and open-source software libraries. Addi-

tionally, many of the algorithms described in this chapter and used in this thesis (e.g.,

MCMC samplers and numerical solvers for ODEs) involve computationally expensive

procedures, which require high-quality, optimised software to execute with reasonable

runtimes.

For the software implementations developed for this thesis, we draw upon the PROB-

ABILISTIC INFERENCE FOR NOISY TIME SERIES (PINTS) Python library [Clerx et al., 2019].

This library implements classes for expressing time series inference problems, as well

as a wide range of optimisation algorithms and MCMC samplers which can be used to

perform maximum likelihood estimation and Bayesian inference via MCMC. The mod-

els and algorithms described in the rest of the thesis are accompanied by open-source

software libraries written primarily in Python, and have been designed to interface

with the PINTS classes and MCMC samplers where possible. To increase the reliability

and reusability of the developed software, a variety of software engineering techniques

including open source GitHub repositories, unit testing, and continuous integration

have been employed throughout this thesis. Each chapter (from Chapter 3 to Chapter 8)

contains a section indicating details of the software which was developed to perform

the research in that chapter.



Chapter 3

Modelling heterogeneity in onwards

transmission risk between local and

imported cases

Overview

Poisson renewal models are convenient tools for inferring time-varying reproduction

numbers (Rt) from incidence time series data. However, these models assume that the

risk of onwards transmission is the same for all individuals in the population; when pop-

ulations are composed of multiple groups behaving in different ways, this assumption

may be violated. We introduce a generalisation of a widely used stochastic branching

process model of infectious disease incidence to allow heterogeneous behaviour between

two groups in the population. Using this model, we focus on the distinction between

local cases (those infected in the territory under consideration) and imported cases

(those infected elsewhere before travelling to the territory under consideration). Using

data from the early COVID-19 outbreak in selected countries and regions worldwide,

we show that failing to account for potentially heterogeneous behaviour between local

and imported cases may significantly bias inference results for Rt. Finally, we draw on

age-structured and transmission network data from Hainan, China and Hong Kong to

parameterise our model, and infer more accurate estimates of Rt for these territories

accounting for heterogeneity between local and imported cases at the beginning of the

COVID-19 outbreak.

33
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Publications

The research presented in this chapter was published as:

• R. Creswell,† D. Augustin,† I. Bouros,† H. J. Farm,† S. Miao,† A. Ahern,† M. Robin-

son, A. Lemenuel-Diot, D. Gavaghan, B. Lambert, and R. N. Thompson: “Hetero-

geneity in the onwards transmission risk between local and imported cases affects

practical estimates of the time-dependent reproduction number,” Philosophical

Transactions of the Royal Society, A, vol. 380 (2022). [Creswell et al., 2022]

(†= joint first authorship.)

Contributions: The paper cited above ([Creswell et al., 2022]) was written as part

of a collaborative project conducted by the 2020–2021 SABS Epidemiology stu-

dent cohort in the software engineering module. SABS (the EPSRC Sustainable

Approaches to Biomedical Science: Responsible and Reproducible Research Cen-

tre for Doctoral Training) assigns first-year doctoral students to small groups

working on research and industry-motivated software projects. My role in the

epidemiology project was demonstrator and group lead for branching process

models. In this role, I worked directly with the students and supervised and

contributed to the software development, data processing, data analysis, model

derivation, generation of figures, and interpretation of results appearing in the

paper; these contributions were made in collaboration with the student working

on the branching process who also did much of the coding implementation. My

work was additionally performed in collaboration with the other demonstrator

on the project (David Augustin), who also derived the generalisation of the pos-

terior distribution of Rt with heterogenous imported cases; with the other SABS

Epidemiology students making occasional contributions to software development

and data analysis; and with Robin Thompson and the other senior supervisors of

the project.

This thesis chapter uses the same model, datasets, and figures as the publication

[Creswell et al., 2022], but much of the text has been rewritten and reorganized.

Discussion and analysis of the sliding window method of regularization has been

expanded as this is an important comparator method for the results presented in

Chapter 4 of this thesis. Other parts of the introduction and discussion have been

abbreviated relative to the published paper.
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3.1 Introduction

Several summary statistics are widely used (either in near-real time, or retrospectively)

to describe the current status of an outbreak of an infectious disease, predict the future

number of cases, or evaluate the effects of interventions designed to control the disease

[Parag et al., 2022]. One of the most readily interpretable and widely used summary

statistics for this purpose is the time-varying reproduction number Rt (introduced in

§2.4.4), which specifies the expected number of secondary infections caused by each

primary case. Values of Rt > 1 indicate that an outbreak will tend to grow, while values

Rt < 1 indicate that the number of new cases will tend to fall. When, for example,

Rt > 1, its magnitude immediately indicates what proportion of transmission must be

halted to bring an outbreak under control: for example, if Rt = 2, an intervention halv-

ing the number of transmissions might be targeted in order to prevent further growth

of the outbreak. Throughout the COVID-19 epidemic, Rt has been widely estimated

in different locations and used to assess appropriate policy responses, or the effective-

ness of past interventions (e.g., [Flaxman et al., 2020, Li et al., 2021, Parag et al., 2021,

Brauner et al., 2021, Mendez-Brito et al., 2021]).

A variety of modelling approaches can be employed to learn Rt from available

data. One approach is to fit stochastic renewal models, which assume that new

cases arise from historical cases according to a distribution of generation times rep-

resenting the time elapsed between a primary and secondary infection [Fraser, 2007,

Nishiura and Chowell, 2009]. Our focus in this chapter is on the Poisson renewal model,

which assumes that the number of new cases on day t (It, or incidence) obeys:

It ∼ Poisson (RtΛt) , where Λt =
t−1∑
s=1

wsIt−s. (3.1)

In this equation, the ws terms represent the discretized generation time distribution,

i.e., conditional on a primary case infecting a secondary case, ws is the probability of

the primary case taking between s− 1 and s days to cause the secondary case, and we

thus have
∑∞

s=1ws = 1 and 0 ≤ ws ≤ 1. We call Λt the transmission potential, and

Rt, the unknown parameter of the model, is the time-varying reproduction number.

Advantages of the Poisson renewal model include that it requires only incidence data

and an estimate of the generation time to fit, and (with the specification of an appropriate

conjugate prior) enables computationally efficient Bayesian inference for Rt. Fast and

widely used software implementations for learning Rt are available which rely on the
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Poisson renewal model [Cori et al., 2013, Thompson et al., 2019].

However, this simple version of the Poisson renewal model assumes that the popula-

tion is homogenous in its risk of onwards transmission. This may not be the case. Work

on the COVID-19 pandemic has indicated that subgroups of the population in differ-

ent residential settings [Ladhani et al., 2020], with different ages [Thompson et al., 2020,

Davies et al., 2020, Keeling et al., 2021b, Lovell-Read et al., 2022, Pooley et al., 2022], or

with different vaccination statuses [Keeling et al., 2021a, Sachak-Patwa et al., 2021] have

varying risks of transmitting COVID-19 or becoming infected with it. Another key sub-

group of the infected population are imported cases: those who became infected with

the disease elsewhere, before travelling to the region for which Rt is being calculated.

Recent work shows that discriminating between local and imported cases is essential

for accurate inference of Rt, and that treating imported cases as if they were infected

locally may cause significant overestimation of Rt [Thompson et al., 2019]; however,

underpinning this previous work is the assumption that local and imported cases are

identical in their risks of onwards transmission. This assumption may be violated when

local and imported cases behave differently.

In this chapter, we introduce a model that allows local and imported cases to differ

in their risks of onwards transmission, and, by fitting this model to data from the

COVID-19 outbreak in selected regions worldwide, we demonstrate the importance of

accounting for heterogeneity between local and imported cases for accurate estimation

of Rt.

The importance of differing transmission risk for the interpretation of an incidence

time series is illustrated in Figure 3.1, where we show how a particular incidence time

series could have been generated by a range of possible transmission scenarios. This

has significant implications for the optimal policy response to control an outbreak of an

infectious disease. If transmission is driven by imported cases, the appropriate inter-

ventions may include measures such as quarantine of international arrivals; however,

if transmission is driven by local cases, more useful interventions would be those that

reduce transmission amongst the local population.

3.2 Methods

3.2.1 Bayesian inference for Rt

Our method is an extension of the Cori method for estimating the unknown parameter

Rt from incidence data {It} [Cori et al., 2013, Thompson et al., 2019]. In this method,
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Figure 3.1: Diagram of heterogeneous transmission between local and imported cases.
Schematic illustration of how a particular incidence time series (top) could have arisen
from two different transmission scenarios (bottom left and bottom right). In the bottom
left, imported cases are more transmissible than local, and most local infections are
infected from imported cases. In the bottom right, imported cases are less transmissible
than local (e.g., due to an effective quarantine policy), and transmission is driven by
other local cases. Both scenarios lead to the same observed incidence time series but
differ significantly in the source of the infections and the appropriate policy response.

Rt is allowed to take a separate value for each day t. A gamma distributed prior is

placed on each daily Rt value with shape parameter α and rate parameter β. Using the

conjugate relationship between the gamma prior and the Poisson likelihood (eq. (3.1)),

the posterior for Rt can be calculated analytically (see Example 4 in Chapter 2).

In [Thompson et al., 2019], the Cori method is extended to separately account for

local and imported cases; however, these two groups of cases are still assumed to have

the same risk of onwards transmission.

3.2.2 Regularization of the Rt posterior via sliding windows

Naïve computation of the posterior of Rt using the conjugate relationship as described

above may lead to highly imprecise estimates of Rt which exhibit spurious fluctuations

from day to day, due to the lack of sufficient data to inform precise daily estimates of

the parameter.

For this reason, the Cori method regularizes the Rt posterior via a sliding window
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heuristic technique. When calculating the posterior distribution for Rt, it is assumed that

Rt remained constant for the previous τ days; the set of incidence data (It−τ , . . . , It) is

thus used to compute the posterior update for Rt. τ is a hyperparameter of the method,

and must be tuned by the user.
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Figure 3.2: Effect of sliding window width on inference for Rt. (Top) incidence data
generated from the Poisson renewal model, with Rt prespecified as a step function.
(Middle) Rt inferred from this data using the Cori method without a sliding window
looking backwards. (Bottom) Rt inferred from these data using the Cori method with
two different choices of the sliding window width.

By using more data to inform each daily estimate of Rt, the sliding window technique

enables smoother and more precise estimates of the parameter and reduces overfitting.

However, larger values of the sliding window width τ make the method slower to detect

changes in Rt—an example of tradeoff between bias and variance. We illustrate this

effect in Figure 3.2. Incidence data was generated from t = 1 to t = 100 according to the
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Poisson renewal model, eq. (3.1), using a step function Rt profile:

Rt =

1.3 t < 50

0.7 t ≥ 50,

and values of ws resembling the serial interval of COVID-19 ([Nishiura et al., 2020]; we

provide full details of our serial interval in §3.2.5). Then, we used the Cori method to

infer Rt from the generated synthetic incidence data. We used a gamma prior on Rt

with α = 1 and β = 0.2, resulting in a prior mean and standard deviation both equal to

5. Without using a sliding window, the posterior for Rt is extremely imprecise, and the

posterior median fluctuates drastically over time about the true value of the parameter.

Conversely, the posteriors obtained using the sliding window (τ = 7 and τ = 28) are

smoother in time and have significantly less uncertainty; however, the step change in Rt

is not learned accurately but instead a gradual change in Rt is inferred as the sliding

window slides over the true change point in the parameter. Thus, tuning of the sliding

window width τ must be guided by the desired level of precision in the posterior and

the time scale over which changes in Rt are expected.

3.2.3 Modelling heterogeneous transmission between local and imported
cases

We assume that each local case will generate an average of Rt infections, while each

imported case will generate ϵRt for some ϵ ≥ 0 indicating the relative transmission risk

of an imported case compared to a local case. Values of ϵ < 1 indicate imported cases

causing on average fewer infections than local cases, while ϵ > 1 indicates that imported

cases are more infectious. In this parameterisation, Rt characterizes the reproduction

number of local transmission (rather than reflecting an average of local and imported

transmission).

We denote the total number of new cases which arise at time step t by It. It is

composed of local cases I loc
t and imported cases I

imp
t , i.e., It = I loc

t + I
imp
t . We model

the expected number of local cases according to:

E
[
I loc
t |{I loc

k }t−1
k=0, {I

imp
k }t−1

k=0, ϵ, Rt, w
]
= Rt

t∑
s=1

(I loc
t−s + ϵI

imp
t−s )ws. (3.2)

where w is the discretized serial interval distribution, i.e., ws is the probability that the

time between successsive cases in a transmission chain is s time steps (in our applied
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modelling we use the serial interval, i.e., the time between symptom onsets, rather than

the generation time, i.e., the time between infections, as it is more directly observable

from data on known infectors and infectees, and has a similar mean [Svensson, 2007]).

For notational convenience, we define the transmission potential:

Λt(w, ϵ) =

t∑
s=1

(I loc
t−s + ϵI

imp
t−s )ws.

We use the Poisson distribution to model the stochasticity in the number of local

cases appearing at each time step. Thus, the likelihood for the local incidence data

within the sliding window of width τ , {I loc
k }tk=t−τ , conditional each time step on the

previous local and imported incidence data, is given by:

P ({I loc
k }tk=t−τ |{I loc

k }t−τ−1
k=0 , {I imp

k }t−1
k=0, ϵ, Rt, w) =

t∏
k=t−τ

(RtΛk(w, ϵ))
I loc
k exp(−RtΛk(w, ϵ))

I loc
k !

.

(3.3)

We place a gamma prior on Rt with shape hyperparameter α and rate hyperparame-

ter β. Using the conjugate relationship between this prior and the likelihood eq. (3.3),

the posterior for each Rt can be computed analytically, according to:

p(Rt|w, ϵ, I≤t) = gamma

(
Rt, α+

τ∑
k=0

I loc
t−k, β +

τ∑
k=0

Λt−k(w, ϵ)

)
, (3.4)

where, for brevity, I≤t denotes the historical incidence data {{I loc
k }tk=0, {I

imp
k }tk=0}.

3.2.4 Modelling uncertainty in the serial interval distribution

The discretized generation time distribution w appearing in the posterior for Rt, which

we approximate by the serial interval, is a property of the disease and outbreak being

modelled, and in our approach the value of w must be specified in order to infer Rt.

When neglecting uncertainty in w, eq. (3.4) can be used directly to infer Rt. However, if

the knowledge of the serial interval distribution is subject to considerable uncertainty,

it may be desirable to propagate this uncertainty to the inference results for Rt. In this

section, we describe our procedure, used for the results in this chapter, for incorporating

uncertainty in the serial interval distribution into our posterior estimates of Rt.

We assume that uncertainty in w is characterized by a set of n equally plausible serial

interval distributions {w(i)}ni=1. Such a set of samples may arise, for example, from

sampling of the posterior distribution for w when learning this parameter from data
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of known infector–infectee transmission pairs (e.g., [Nishiura et al., 2020]). For each

separate plausible w(i), we compute a posterior distribution for Rt conditional on w(i)

according to eq. (3.4). Next, we combine these separate posteriors according to:

p(Rt|ϵ, I≤t) =
1

n

n∑
i=1

p(Rt|w(i), ϵ, I≤t); (3.5)

this procedure approximates a marginalization over the distribution expressing our

beliefs about the value of w, and the resultant posterior p(Rt|ϵ, I≤t) incorporates the

uncertainty in the serial interval distribution reflected by the samples {w(i)}ni=1.

3.2.5 Selection and processing of data

Using our proposed model, we inferred Rt at the beginning of the COVID-19 outbreak

in a range of regions worldwide. These regions were considered appropriate for our

modelling approach because they published daily incidence data in which local and

imported cases where distinguished. The full details of each COVID-19 dataset are

presented in §3.3. We additionally inferred Rt for the MERS outbreak in Saudi Arabia;

this dataset distinguished between cases infected by other humans (treated as local in

our analysis) and cases likely infected from the animal resorvoir of the disease (treated

as imported in our analysis).

To infer Rt for COVID-19, we used the serial interval distribution estimated in a

previous study by fitting (via MCMC) a log-normal distribution to infector–infectee

transmission pairs [Nishiura et al., 2020]. We used the MCMC samples which were

obtained using both probable and certain infector-infectee pairs and correcting for

right-truncation (the fact that infector–infectee pairs with longer serial intervals may

not yet have been observed when the dataset of infector–infectee pairs was collected).

We randomly selected n = 1000 MCMC samples of the log-normal parameters from

[Nishiura et al., 2020] for use in our inference procedure (eq. (3.5)); for each set of plau-

sible log-normal parameters, we obtained a discretized vector of daily values ws by

integrating the continuous serial interval distribution over each day, as described by

[Cori et al., 2013], Appendix 11.

3.2.6 Tuning model hyperparameters

We set the hyperparameters of the gamma distribution prior on Rt according to α = 1;

β = 0.2. This results in a prior with a mean and standard deviation both equal to five.

The prior mean substantially above 1 ensures that we will tend not to infer Rt < 1 (i.e.,
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the outbreak is under control) unless evidence for this exists in the data, while the large

prior standard deviation ensures that the prior is relatively uninformative.

For COVID-19, we tuned τ = 6 representing a weekly sliding window. For MERS,

we set τ = 27, due to the smaller magnitude of incidence for that disease in the outbreak

studied.

3.3 Results

3.3.1 Effect of differing relative transmissibility between local and imported
cases on inference for Rt
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Figure 3.3: Effect of choices of ϵ on inference for Rt. (a) Incidence data for COVID-19,
with local and imported cases distinguished, for three selected regions: Ontario, Canada
(left); New South Wales, Australia (middle), and Victoria, Australia (right). (b) For each
region, the inferred profile of Rt values using our model, with three different choices
for ϵ: 0.25 (blue), 1 (gray), and 2 (red). Shaded regions indicate the central 95% of the
posterior. The gray horizontal line indicates the Rt = 1 threshold.

First, we study the effect of assumptions made about the relative transmissibility of local

and imported cases on the obtained posterior distributions for Rt (Figure 3.3). We first

performed this analysis at the beginning of the COVID-19 outbreak for three regions:

1. Ontario, Canada (Figure 3.3a left). Data on the incidence of lo-

cal and imported cases were obtained from 1 March 2020 to 20 April

2020 [Government of Ontario, 2021]. Any cases who reported travelling outside
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Figure 3.4: Effect of choices of ϵ on inference for Rt, additional regions I. (a) Incidence
data for COVID-19, with local and imported cases distinguished, for three selected
regions: Australian Capital Territory (left); Queensland, Australia (middle), and South
Australia (right). (b) For each region, the inferred profile of Rt values using our model,
with three different choices for ϵ: 0.25 (blue), 1 (gray), and 2 (red). Shaded regions
indicate the central 95% of the posterior. The gray horizontal line indicates the Rt = 1
threshold.

Ontario within the 14 day period prior to the onset of symptoms were counted

as imported. Any cases whose recent travel was unknown were treated as if they

had been infected locally.

2. New South Wales, Australia (Figure 3.3a middle). Data on the incidence

of local and imported cases were obtained from 1 March 2020 to 13 April

2020 [Price et al., 2020]. Any cases who were reported as “overseas acquired”

were counted as imported, and cases with unknown origin were treated as if they

had been infected locally.

3. Victoria, Australia (Figure 3.3a right). Data on the incidence of local and imported

cases were obtained from 1 March 2020 to 13 April 2020 [Price et al., 2020]. Any

cases who were reported as “overseas acquired” were counted as imported, and

cases with unknown origin were treated as if they had been infected locally.

For each region, we consider three different choices of the parameter ϵ. First, we

made the default assumption [Thompson et al., 2019] that local and imported cases

have the same transmission risk, i.e., ϵ = 1 (Figure 3.3b, gray). We also considered the



44 CHAPTER 3. HETEROGENEOUS IMPORTED CASES

Mar 
01

Mar 
08

Mar 
15

Mar 
22

Mar 
29

Apr 
05

Apr 
12

Date (2020)

0

2

4

6

8

10

Nu
m

be
r o

f c
as

es

Tasmania
Local cases
Imported cases

Mar 
01

Mar 
08

Mar 
15

Mar 
22

Mar 
29

Apr 
05

Apr 
12

Date (2020)

0

10

20

30

40

50

Nu
m

be
r o

f c
as

es

Western Australia

Mar 
01

Mar 
08

Mar 
15

Mar 
22

Mar 
29

Apr 
05

Apr 
12

Date (2020)

0

2

4

6

8

Lo
ca

l r
ep

ro
du

ct
io

n
nu

m
be

r (
R t

)

= 0.25
= 1
= 2.0

Mar 
01

Mar 
08

Mar 
15

Mar 
22

Mar 
29

Apr 
05

Apr 
12

Date (2020)

0

2

4

6

8

10

Lo
ca

l r
ep

ro
du

ct
io

n
nu

m
be

r (
R t

)

(a)

(b)

Figure 3.5: Effect of choices of ϵ on inference for Rt, additional regions II. (a) Incidence
data for COVID-19, with local and imported cases distinguished, for two selected
regions: Tasmania, Australia (left); Western Australia (right). (b) For each region, the
inferred profile of Rt values using our model, with three different choices for ϵ: 0.25
(blue), 1 (gray), and 2 (red). Shaded regions indicate the central 95% of the posterior.
The gray horizontal line indicates the Rt = 1 threshold.

situation where imported cases on average generate fewer infections than local (ϵ = 0.25,

Figure 3.3b, blue) and where imported cases cause on average twice the infections of

local cases (ϵ = 2.0, Figure 3.3b, red). The different choices of ϵ lead to significantly

different posterior distributions for Rt. Larger imposed values of ϵ correspond to smaller

Rt estimates, as expected because in the case of more infectious imported cases, less

transmission must be attributed to the local cases.

Next, we performed the same analysis for a more comprehensive selection of regions

where data discriminating between local and imported cases were available. These

datasets included:

1. The early COVID-19 outbreak in Australian Capital Territory, Queensland, South

Australia, Tasmania, and Western Australia (Figures 3.4 and 3.5). Data were

obtained from [Price et al., 2020]. Any cases who were reported as “overseas

acquired” were counted as imported, and cases with unknown origin were treated

as if they had been infected locally.

2. The early COVID-19 outbreak in New Zealand (Figure 3.6).
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Figure 3.6: Effect of choices of ϵ on inference for Rt, additional regions III. (a) Incidence
data for COVID-19, with local and imported cases distinguished, for two selected
regions: New Zealand (left); Hawaii (right). (b) For each region, the inferred profile of
Rt values using our model, with three different choices for ϵ: 0.25 (blue), 1 (gray), and 2
(red). Shaded regions indicate the central 95% of the posterior. The gray horizontal line
indicates the Rt = 1 threshold.

Data were obtained from the New Zealand COVID Dashboard

[Institute of Environmental Science and Research, 2022]. Cases labelled in

the dashboard as “imported” or “import-related” were assumed to be imported

cases, with all other cases assumed to be local cases.

3. The early COVID-19 outbreak in Hawaii (Figure 3.6). Data were obtained from

[State of Hawaii Department of Health Disease Outbreak Control Division, 2022].

Cases labelled in the dataset as having recent “travel history” were assumed to be

imported cases, with all other cases assumed to be local cases.

4. The 2014–2015 Middle East respiratory syndrome (MERS) outbreak in Saudi

Arabia (Figure 3.7). Data were obtained from [Thompson et al., 2019]. Cases that

reported contact with camels were assumed to be imported, while the remainder

of cases were assumed to be local. For the analysis of MERS, we used a serial

interval given by a gamma distribution with mean 6.8 days and standard deviation

of 4.1 days [Thompson et al., 2019]. We additionally used a longer sliding window

width of τ = 27.
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Figure 3.7: Effect of choices of ϵ on inference for Rt for MERS. (a) Local incidence data
for MERS for Saudi Arabia. (b) Imported incidence data for MERS for Saudi Arabia. The
cases labelled as imported are those believed to be infected from the animal reservoir.
(c) The inferred profile of Rt values using our model, with three different choices for ϵ:
0.25 (blue), 1 (gray), and 2 (red). Shaded regions indicate the central 95% of the posterior.
The gray horizontal line indicates the Rt = 1 threshold.

Our results for these additional regions provide further evidence that the choice of ϵ may

have a significant effect on Rt estimates. In regions with few local and imported cases

(e.g., Australian Capital Territory) the effect of the value of ϵ on Rt is less pronounced,

and the posteriors of Rt corresponding to different choices of ϵ largely overlap in certain

regions of time. However, for those incidence time series containing enough local

cases for Rt posteriors to deviate significantly from the prior, and a large proportion of

imported cases relative to the number of local cases, the different choices of ϵ considered

here can lead to highly divergent posteriors for Rt: this is particularly apparent in

Queensland, Australia and New Zealand, where the posteriors for the different choices
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of ϵ show little overlap for much of the time interval considered.
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Figure 3.8: Effect of ϵ on inference for Rt. (a) The posterior mean Rt for Ontario, Canada
(left), New South Wales, Australia (middle), and Victoria, Australia (right) for various
values of ϵ (y-axis of each panel). Dashed black lines indicate the Rt = 1 threshold. (b)
As a function of ϵ, the dates on which the inferred values of Rt cross policy-relevant
thresholds. For Ontario, the date indicated is the first date when the estimated Rt value
is above one and remains so for the remainder of the time period considered; for New
South Wales and Victoria, the date indicated is the first date on which the estimated Rt

value is below one and remains so for the remainder of the time period considered. (c)
As a function of ϵ, the proportion of the time period that Rt > 1. For (b) and (c), the
quantities are computed for the posterior mean Rt (gray) as well as the 2.5th percentile
(yellow) and the 97.5th percentile (green) of the posterior for Rt.

Next, we considered a continuous range of ϵ values (rather than just three discrete

choices of the parameter) for the same three regions that were studied in Figure 3.3.

We again computed the effect of ϵ on inference for Rt, and visualised the results with

a particular focus on two policy-relevant questions: “Is Rt greater than (or less than)
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1?” and “For what proportion of the time was Rt > 1?” These results are shown in

Figure 3.8. In Figure 3.8a, we plot the posterior mean estimate of Rt for a range of values

of ϵ between 0.1 and 2.4; in all three regions considered, the choice of ϵ significantly

shifts the times when the posterior mean of Rt is inferred to switch from above to below

1 or vice versa. In Figure 3.8b, we plot as a function of ϵ the first day when the posterior

mean of Rt goes above 1 and remains above one for the rest of the time period (Ontario),

or the first day when the posterior mean of Rt falls below 1 and remains below it for

the rest of the time period (New South Wales and Victoria). Smaller assumed values

of ϵ are observed to lead to significantly earlier dates for inferring that Rt has climbed

greater than 1 in Ontario, and significantly later dates for inferring that Rt has fallen

below 1 in New South Wales and Victoria. Finally, in Figure 3.8c, we plot the proportion

of the time period when the posterior mean estimate of Rt is above one; in line with our

earlier results, smaller values of ϵ lead one to conclude that Rt is greater than 1 for a

larger proportion of the time period.

3.3.2 Realistic values of ϵ

Our results in §3.3.1 demonstrate that the value of ϵ has a significant effect on the

recovered posteriors when learning Rt for the COVID-19 outbreak across a wide range

of countries and regions. Incidence time series data is not on its own informative of the

value of ϵ, making the parameter difficult to set without other sources of data. In this

section, we study two regions where additional data which can be used to approximate

ϵ is available: Hong Kong (using transmission networks) and Hainan, China (using

age-structured contact data).

A previous study in Hong Kong [Liu et al., 2021] reconstructed the transmission

network of COVID-19 cases in that country from 23 January 2020 to 8 January 2021.

Using their network ([Liu et al., 2021], Table 1), we used the ratio of the outdegree of

imported cases (0.74) and the outdegree of local cases (3.68) to approximate the value

of ϵ = 0.2. In the left panel of Figure 3.9b, we compare the posterior of Rt computed

using this value of ϵ = 0.2 to the posterior of Rt computed using the default value of

ϵ = 1.0. The results show that with the default choice of ϵ = 1.0, Rt is significantly

underestimated in the later stages of the outbreak relative to the choice of ϵ = 0.2.

Next, we considered Hainan, China, where demographic information for local and

imported cases, including their age groups, has been collected in a previous study

[Wu et al., 2020]. Using an age-structured contact matrix for China [Prem et al., 2017]

(see §5.3), we computed the expected number of daily contacts for local and imported
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Figure 3.9: Inference for Rt using realistic values of ϵ. (a) Incidence data for COVID-19,
with local and imported cases distinguished, for two selected regions: Hong Kong (left);
Hainan, China (right). (b) For each region, the inferred profile of Rt values using our
model, with two different choices for ϵ: 1 (gray), and a value of ϵ estimated based on
data which informs this parameter (green, see text for details). Shaded regions indicate
the central 95% of the posterior. The gray horizontal line indicates the Rt = 1 threshold.

cases based on their ages; we then approximated ϵ as the ratio of the expected number

of contacts for imported cases to the expected number of contacts for local cases. This

procedure yielded the approximation for Hainan of ϵ = 0.785. In the right panel of

Figure 3.9b we compare the posterior of Rt for Hainan using ϵ = 0.785 to that computed

using ϵ = 1.0; only minor differences are apparent between the two assumptions.

3.4 Discussion

Summary statistics such as Rt are valuable for monitoring the spread of an infectious

disease and informing policy decisions. In this chapter, we have introduced a generali-

sation of the widely-used Cori method for inferring Rt to account for differing risks of

onwards transmission between local and imported cases. By using our model to infer Rt

at the beginning of the COVID-19 outbreak in a range of countries worldwide, we have

shown that, if local and imported cases differ in their risk of onwards transmission, fail-

ing to account for this may cause Rt to be significantly overestimated or underestimated.
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We found that our modelling approach was also applicable to the MERS outbreak in

Saudi Arabia, in which we treated cases infected by animals (often believed to be camels

[Haagmans et al., 2014]) as imported and cases infected amongst the human population

as local.

The correct value for the relative transmissibility of imported cases to local cases

(ϵ) is difficult to determine in general, and may vary from region to region. Values of ϵ

both above and below 1 are plausible: for example, with an effective home quarantine

program on all international arrivals, ϵ would be expected to be below 1; conversely,

in the absence of such interventions, and in a region where imported cases are more

likely to be drawn from the most mobile subsets of the population, values of ϵ greater

than 1 would be plausible. In our work, we considered two different approaches for

parameterizing ϵ: transmission networks (Hong Kong) and comparing the age structure

of the local and imported cases to contact matrix data (Hainan, China). If sufficient data

were available, ϵ could also be approximated from, e.g., contact tracing data.

However, an advantage of our approach is that it does not require such data which

is often not available. Once plausible values of ϵ have been determined, for example by

one of the strategies mentioned above, the method can be applied as long as local and im-

ported cases are distinguished. This differs from the recent approach [Tsang et al., 2021],

which is more flexible by allowing independent values of Rt for local and imported

cases, but requires the origin of local cases to be available (i.e., local cases infected by

imported cases must be counted separately from local cases infected by other local

cases): this data is often not available.

In Hong Kong, our model indicated that failing to account for heterogeneity between

local and imported cases could lead to significant underestimation of Rt in certain

regions of time. This is particularly important, since underestimation of Rt may cause

policy makers to inaccurately conclude that a disease outbreak is under control when

in fact sustained local transmission is still ongoing. Our results in Hainan, China did

not indicate a significant effect of ϵ on inference for Rt; however, our estimate for ϵ in

Hainan was likely highly approximate, as it was driven only by the difference in age

distribution between local and imported cases. More accurate values of ϵ, informed by,

e.g., transmission networks, may lead to different conclusions.

Our model involves several simplifying assumptions, which enable fast inference

but may influence the results. First, we assumed that ϵ takes a constant value throughout

the time period for which Rt is being inferred. More realistically, ϵ would be allowed

to change over time. For example, new policies affecting international arrivals or
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changing behaviours in the population could shift the relative transmissibility of local

and imported cases. It would be straightforward, however, to adapt our method to

involve a time-varying ϵ. Additionally, our model considers only one heterogeneity

in the population: that between local and imported cases. In fact, populations are

composed of many subgroups who may have differing risks of onwards transmissibility,

and more realistic models would account for these factors (e.g., superspreading events).

Finally, we assume that perfect knowledge of local or imported status is available for

each case; however, in some incidence datasets which discriminate between local and

imported cases, some cases are categorized as unknown.

An additional simplifying assumption made in this chapter is that the local cases

arising at each day could be described by the Poisson distribution. Due to conjugacy

between the Poisson likelihood and gamma prior on Rt, this choice enables fast accu-

rate inference for Rt. However, the Poisson distribution is not an accurate model of

overdispersed incidence series: those in which variance in daily incidence is larger than

the mean. As we discuss further in Chapter 4, further work is necessary to develop

and implement efficient inference methods which do not rely on a conjugate prior: this

would enable the use of, for example, negative binomial renewal models, which can

capture additional variance in the data and would lead to more accurate estimates of

posterior uncertainty in Rt when overdispersion is present.

In our model, imported cases may have a different transmissibility but any cases

which they infect locally are treated no differently than local cases infected by other

local cases. Thus, our model could not be realistically applied to the situation where

imported cases and local cases differ in the variants they tend to be infected with, and

different variants have differing levels of transmissibility (see, e.g, [Challen et al., 2021]):

such situations would require more complex models.

Throughout this chapter, we relied heavily on the sliding window heuristic method

to regularize our posterior distributions for Rt. However, our results in Figure 3.2

indicate how the results of the sliding window method depend upon tuning of the

window width parameter τ , and the relatively large values of τ used to analyse the

real data in this chapter (τ = 6 and τ = 27) may have hurt our ability to detect rapid

changes in Rt. In the next chapter, we propose an alternative approach for leveraging

information across multiple data points to increase the precision of Rt estimates, while

retaining the ability to learn rapid changes in Rt the data provide evidence that such

changes exist.
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3.5 Data and software

The Python software implementation of the model is available at https://github.

com/SABS-R3-Epidemiology/branchpro. All data and scripts used to gener-

ate the results are available at https://github.com/SABS-R3-Epidemiology/

transmission-heterogeneity-results.

https://github.com/SABS-R3-Epidemiology/branchpro
https://github.com/SABS-R3-Epidemiology/branchpro
https://github.com/SABS-R3-Epidemiology/transmission-heterogeneity-results
https://github.com/SABS-R3-Epidemiology/transmission-heterogeneity-results


Chapter 4

A flexible Bayesian nonparametric

method for detecting rapid changes

in disease transmission

Overview

Inferring precise estimates of the time-varying reproduction number (Rt) from incidence

data requires combining information from consecutive time points, using methods

such as the sliding window method used in Chapter 3. Drawing upon the Pitman-

Yor process from Bayesian nonparametrics, and a previously developed framework

for restricting this process such that it can be readily applied to time series data, we

introduce an alternative inference approach for Rt which we term “EpiCluster.” This

approach assumes that Rt is piecewise constant, and infers the number of times that Rt

changes (and the locations of these changes) from the data. By specifying an informative

prior on the hyperparameters governing the process, EpiCluster automatically favours

parsimonious fits and prevents overfitting.

First, we use EpiCluster to learn Rt for a range of synthetic examples, and compare

its results to the sliding window approach described in Chapter 3 and another state-

of-the-art method. We show that EpiCluster is capable of learning highly precise and

accurate estimates of Rt. Next, we use EpiCluster to learn Rt for the early COVID-19

outbreak in selected regions worldwide, where it detects changes in Rt corresponding

to the introduction of known interventions. Finally, we apply EpiCluster to time series

incidence data for measles, SARS, and smallpox, and compare its results to existing

methods on these diseases.

53
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Publications

The contents of this chapter were published as:

• R. Creswell, M. Robinson, D. Gavaghan, K. V. Parag, C. L. Lei, and B. Lam-

bert: “A Bayesian nonparametric method for detecting rapid changes in disease

transmission,” Journal of Theoretical Biology, vol. 558 (2023). [Creswell et al., 2023a]

Contributions: I conducted the development of the model and inference algo-

rithm, software development, data analysis, and interpretation and visualisation

of results. Figure 1 from [Creswell et al., 2023a], which is reproduced as Figure 4.1

in this chapter, was designed and drawn by Ben Lambert, based in part on discus-

sions with me. Ben Lambert also made contributions to the software, including

writing the function to generate synthetic data, and a portion of the R script

used to run EpiFilter (an existing method which we use as a comparator for our

method). All authors made contributions and suggestions to the writing and

revision of [Creswell et al., 2023a], and some of these contributions are reflected

in the wording of parts of this chapter.

The methods and results sections in this chapter follow the equivalent sections of

the paper very closely (with most of the supplementary content of the paper in-

cluded in the results section of this chapter), while the introduction and discussion

have been more extensively rewritten for the thesis chapter.

4.1 Introduction

In Chapter 3, we extended the renewal model approach for inference of Rt to account

for heterogeneous transmission risks between local and imported cases. We showed that

accounting for this heterogeneity is important for accurate inference of Rt. However,

in that analysis we continued to rely upon the sliding window heuristic method for

regularizing the Rt posterior trajectories (see §3.2.2). As illustrated in our earlier results

in Figure 3.2, this heuristic technique helps to increase the precision and smoothness of

the posterior estimate of Rt over time, but it comes at a cost of making rapid changes in

Rt impossible to learn, particularly when the sliding window width is tuned to a large

value.

Existing approaches for inferring Rt have employed several other assumptions about

the time variation of the parameter: in addition to the assumption of piecewise-constant

Rt within a sliding window of a given prespecified length [Wallinga and Teunis, 2004,
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Thompson et al., 2019], smooth variation controlled by a Gaussian filter has also been

employed [Abbott et al., 2020, Parag, 2021], as well as the assumption that the Rt is

piecewise constant with the optimal number of segments inferred according to a criterion

derived from information theory [Parag and Donnelly, 2020].

In this chapter, we introduce a different modelling approach for learning Rt from in-

cidence time series within a renewal model framework. Our method (called EpiCluster)

also makes the assumption that Rt is piecewise constant. However, unlike the existing

approaches mentioned above, no assumptions are made about the number of times that

Rt should change (i.e., the number of constant regimes), the sizes of the regimes (which,

in our approach, need not be equal), or the location of the times when Rt jumps to a

new value. Instead, we aim to learn an appropriate number and location of regimes

from the incidence data itself.

We adopt a Bayesian approach, due to the importance of quantifying uncertainty

in Rt and its changes (e.g., Example 3). To learn the division of the Rt values into

constant regimes, we use a prior distribution over configurations of the time points

into consecutive clusters (each cluster having its own value of Rt) which is derived

from the Pitman-Yor process [Pitman and Yor, 1997]. For appropriate values of the

hyperparameters of this process, we can incorporate our prior preference for sparsity

in the number of changepoints and thus prevent overfitting. Our approach based on

the Pitman-Yor process is an example of a Bayesian nonparametric model. Such models

are parameterised by a potentially infinite set of parameters; for any particular dataset,

the complexity of the model can scale with the complexity and size of that dataset

[Ghahramani, 2013].

Although we tune our prior such that sparsity in the number of change points

in Rt is preferred, we (by default) express no prior knowledge about the timings of

interventions or other changes in Rt, and the locations of any inferred changes in Rt are

driven entirely by the data. This differs from existing approaches to assess the effects

of interventions, in which particular timings are included explicitly in the model or

prior (e.g., [Dehning et al., 2020, Flaxman et al., 2020, Brauner et al., 2021]). This makes

EpiCluster a particularly useful tool for retrospectively determining the effectiveness of

interventions in an unbiased way, since assumptions concerning intervention timing

[Soltesz et al., 2020] or modelling [Sharma et al., 2020] may significantly affect estimates

and their interpretation.

Additionally, in order to fit our model to data, we employ a highly efficient MCMC

algorithm which samples the assignments of the time points into regimes. We derive this
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sampler by exploiting a conjugate relationship between the renewal model likelihood

and the prior on Rt. Our inference algorithm enables EpiCluster to be fit to typical

disease incidence time series data with a runtime of several seconds to several minutes,

depending on the length of the time series and the inferred complexity of the inferred

Rt profile.

The rest of this chapter is organized as follows. In §4.2, we provide the full de-

tails of our model and inference algorithm. Next, in §4.3 we use EpiCluster to learn

Rt from simulated data with known Rt values. Our results show that in both real

time and retrospectively, EpiCluster is adept at identifying rapid changes in Rt of

the sort that may occur after effective interventions are imposed [Dehning et al., 2020,

Flaxman et al., 2020, Brauner et al., 2021]. Our results on synthetic data also show that

EpiCluster is able to learn slow, gradual changes in Rt by automatically fitting a “lad-

der” of piecewise constant steps across the period of change, but alternative methods

(e.g., [Thompson et al., 2019, Creswell et al., 2022, Parag, 2021]) may outperform when

Rt changes slowly. In §4.3, we use EpiCluster on real data from the COVID-19 outbreaks

in Australia and Hong Kong. On these datasets, we detect changepoints in Rt corre-

sponding to the imposition of known interventions. Finally, in the second portion of

§4.3, we apply EpiCluster to outbreaks of other diseases.

4.2 Methods

4.2.1 Renewal process model

As discussed in §2.4.4, the instantaneous reproduction number, Rt, represents the

average number of secondary cases that would be generated by an infected case at time

t assuming that future transmission remains the same as at time t [Fraser, 2007]. We

assume that the data consist of a series of daily case counts1 for each day, t, from t = 1

to t = T : {It}Tt=1 and that the case counts are perfectly known. These case counts are

modelled according to Poisson renewal model discussed in Chapter 3, eq. (3.1),

It ∼ Poisson (RtΛt) , where Λt =
t−1∑
s=1

wsIt−s, (4.1)

1Technically, the renewal equation is formulated in terms of infections rather than cases, but, since we
use the serial interval distribution in place of the generation time distribution, we keep with defining It as
a case count.
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Figure 4.1: Pitman-Yor based inference for the time-varying reproduction number. (A)
A schematic representation of our modelling assumptions: Rt is piecewise constant over
time. (B) We do not prespecify K (the number of pieces of Rt), but instead allow our
inference algorithm (see Algorithm 2) to explore the space over partitions (top). This
results in posterior uncertainty in the Rt profile (bottom).

where, as before, Rt ≥ 0 is the time-varying reproduction number on day t, Λt ≥ 0 is

the transmission potential, and the ws terms represent the generation time distribution

(which we approximate by the serial interval).

4.2.2 Model of changing Rt

Exchangeable partition probability functions and the Pitman-Yor process

Here, we assume that the Rt profile can be decomposed into a number of regimes within

which Rt is constant. Our goal is to avoid prespecifying the location of changepoints—

representing the boundary between two different Rt regimes—nor their count, since

these choices can bias analyses, but rather to learn an appropriate configuration of the

time points into regimes using Bayesian inference. We develop a probabilistic model

of the division of the time points into regimes. To do so, we use a Pitman-Yor process

[Pitman and Yor, 1997]2 to account for a probabilistic decomposition of data points into

clusters and, following [Martínez and Mena, 2014], we adjust this model to account

for the time series nature of our data. The remainder of this subsection serves as a

brief review of this model, starting with a treatment of the nonparametric clustering

of unordered data points via exchangeable partition probability functions (EPPFs) and

followed by appropriate modifications for the time series case (see §4.2.2).

2Also known as the two-parameter Poisson-Dirichlet process.
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In the standard clustering problem, we have a set [T ] = {1, . . . , T} (i.e., the labels

of T data points), which we would like to divide into K mutually exclusive subsets

{A1, . . . , AK} such that ∪kAk = [T ] where none of the Ak are empty. We denote the set

of all such groupings by P[T ]; each element of P[T ] is called a partition. Random variables

ΠT taking values in P[T ] are termed random partitions of [T ]. A random partition has the

property of exchangeability if its probability distribution can be written as a symmetric

function p of the subset sizes, i.e.,

Prob(ΠT = {A1, . . . , AK}) = p(n1, . . . , nK)

where nk = |Ak| (i.e. nk is the size of the subset, Ak).

Under these conditions p is known as an EPPF. A more complete treatment of the

concept of EPPFs can be found in [Pitman, 2002, Lijoi and Prunster, 2010]. A fairly

general EPPF, which we will employ in this work, is derived from the Pitman-Yor

process, a generalisation of the Dirichlet process [Teh, 2010]. This EPPF is given by

[Pitman, 2002, eq. (3.6)]:

p(n1, . . . , nK |θ, σ) =
∏k−1

i=1 (θ + iσ)

(θ + 1)T−1↑

K∏
j=1

(1− σ)nj−1↑, (4.2)

where xm↑ :=
∏m−1

j=0 (x + j), and σ ∈ [0, 1) and θ > −σ are the two hyperparameters

governing the process: σ is called the discount parameter, which essentially controls

how the number of regimes, K, grows with the size of the dataset; θ is called the strength

parameter with larger values giving greater weight to series with more regimes. In the

limit σ → 0, a Pitman-Yor process becomes a Dirichlet process which permits a slower

growth (of order log T as opposed to T σ) in the number of regimes with increases in

data size [Pitman, 2002, section 3.3].

Applicability of EPPFs to time series problems

Unlike the general clustering problem, in the time series case, the data points have an

ordering which the clusters must respect. For example, consider an incidence series

of length three: (I1, I2, I3). For this series, allowable effective reproduction number

allocations include: {{I1, I2, I3}}, where all the data points are generated from a process

with the same effective reproduction number: i.e. there is a single regime (K = 1);

{{I1}, {I2, I3}}, where the first data point was generated from a process with one effec-

tive reproduction number and the latter two data points from a process with a different
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one: i.e. there are two regimes (K = 2); {{I1, I2}, {I3}}, where the first two points are

grouped; and {{I1}, {I2}, {I3}}, where each data point is generated from a process with

a different reproduction number: i.e. there are three regimes (K = 3).

An allocation which would be disallowed is: {{I1, I3}, {I2}}, where the first and

third data points come from the same process which is distinct from that governing

the second. Whilst, it is possible that transmission could return to a previous level, it

is an assumption of our modelling process that only consecutive data points share the

same Rt. By avoiding recurrence to historical regimes, we ensure that the changepoints

identified are straightforward to interpret.

For a given EPPF, p′, we can obtain a distribution p which is supported only on

those partitions which respect an ordering of the labels using the following result

[Martínez and Mena, 2014]:

p(n1, . . . , nK) =


1
K!

 T

n1, . . . , nK

 p′(n1, . . . , nK), if allowable partitioning

0, otherwise,

(4.3)

where the large bracketed term indicates the multinomial coefficient.

Combining eqs. (4.3) and (4.2), we obtain the following result for the prior distribu-

tion on the sequence of regime sizes in the time series case:

p(n1, . . . , nK |θ, σ) =
T !

K!

∏k−1
i=1 (θ + iσ)

(θ + 1)T−1↑

K∏
j=1

(1− σ)nj−1↑

nj !
. (4.4)

4.2.3 Hyperparameters of the process

In order to learn parsimonious assignments of the time points into regimes, our prior,

given by eq. (4.4), should favour configurations consisting of longer regimes. We favour

longer regimes because they mitigate against overfitting—for typical data, the likelihood

of the renewal process would be maximised by assigning each time point to its own

cluster with an idiosyncratic value of Rt; the resulting profile of Rt values will tend

to be jagged and exhibit spurious fluctuations. Additionally, longer regimes have the

advantage of allowing more data to be leveraged in order to learn more precise estimates

of Rt. However, by favouring longer regimes, it is possible that we miss shorter term

fluctuations in Rt—this is akin to the issue of choosing window lengths for a number of

existing methods; see, e.g., [Thompson et al., 2019].

Eq. (4.4) induces a marginal distribution over the number of clusters whose mean
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has been derived as [Martínez and Mena, 2014, Pitman, 2002, eq. (3.13)]:

E[K] =
(θ + σ)T↑

σ(θ + 1)T−1↑
− θ

σ
, (4.5)

for σ ̸= 0. For small values of the hyperparameters θ and σ, E[K] is significantly smaller

than the number of time points T , and the marginal distribution of K places little weight

on values of K close to T , thus preferring sparsity in the number of clusters.

4.2.4 Tuning process hyperparameters

As discussed above, values of θ and σ such that a priori there are expected to be substan-

tially fewer clusters than time points are attractive as they can help prevent overfitting.

These parameter values may be tuned based the degree of prior knowledge about

changes in Rt: if, a priori, Rt is not expected to change over the time period where

inference is being performed, θ and σ should be chosen such that the marginal prior on

the number of regimes is centered near 1 regime; alternatively, if Rt is a priori expected to

fluctuate drastically, θ and σ can be chosen such that the marginal prior on the number

of regimes places more weight on greater numbers of regimes.

We use the following heuristic strategy to tune θ and σ for the results in this chapter:

we set θ = 0 and choose σ as a function of T such that E[K] = 1.5 (with the appropriate

value of σ selected by numerical optimisation of eq. (4.5)); this represents a prior belief

that Rt is generally constant over the time series, but allows flexibility to add clusters

when the data provides evidence that they are needed. For a time series of length

T = 100, our choice of prior hyperparameters induces a marginal distribution over

the number of clusters whose 2.5th percentile is one cluster and 97.5th percentile is

four clusters. In Figure 4.3 and Figure 4.12 (see §4.3 below), we use EpiCluster to

perform inference for Rt for a grid of different values of the hyperparameters θ and

σ. As discussed below, in these results, we observe some degree of sensitivity to

hyperparameter choices, but the existence of a wide range of hyperparameter values

for which estimated Rt values remain broadly compatible, with similar changepoint

locations.

4.2.5 Marginal likelihood of the data

In this section, we calculate the marginal likelihood of the data conditional on a particular

arrangement of the time points into regimes, which involves integrating out Rt with

respect to its prior distribution. This marginal likelihood enables efficient inference for
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the posterior distribution over regime configurations via MCMC sampling (see § 4.2.6).

The marginal likelihood for an incidence series conditional on a particular set of

subset sizes n1, . . . , nK (see §4.2.2) can be written as a product of marginal likelihoods

for each regime:

p(I1, . . . , IT |n1, . . . , nK) =
K∏
k=1

Lk(Ik,1, . . . , Ik,nk
|I−k), (4.6)

where Ik,j denotes the jth data point in regime k, and Lk is the marginal likelihood of

the data in the kth regime, which we assume is conditional on all cases observed prior

to regime k (denoted by I−k). We derive the regime-specific marginal likelihoods using

the renewal model (eq. (4.1)):

Lk(Ik,1, . . . , Ik,nk
|I−k) =

∫ ∞

0
p(Rk)

nk∏
j=1

Poisson(Ik,j |RkΛk,j)dRk,

where Λk,j is the transmission potential calculated for the jth time point in regime k, Rk

is the value of the effective reproduction number for the kth regime, and p(Rk) is the

prior on Rk.

We choose a gamma distribution prior for Rk with shape parameter α and rate

parameter β.3 With this choice of prior, the integral in the formula for the regime-

specific marginal likelihood can be evaluated analytically, resulting in:

Lk(Ik,1, . . . , Ik,nk
|I−k) =

βα

Γ(α)
Γ

α+

nk∑
j=1

Ik,j

β +

nk∑
j=1

Λk,j

−(α+
∑nk

j=1 Ik,j)

×
nk∏
j=1

Λ
Ik,j
k,j

Ik,j !
,

where Γ(·) is the gamma function.

Additionally, with the gamma prior on Rk, the posterior distribution of each Rk,

conditional on the data assigned to regime k, is given by the conjugate gamma posterior

(see Chapter 3):

p(Rk|Ik,1, . . . , Ik,nk
, I−k) = gamma(Rk|shape = α+

nk∑
j=1

Ik,j , rate = β +

nk∑
j=1

Λk,j). (4.7)

3p(R|α, β) = βα

Γ(α)
Rα−1e−βR.



62 CHAPTER 4. DETECTING CHANGES IN DISEASE TRANSMISSION

As prior hyperparameters, we follow the same procedure as in Chapter 3 and select

α = 1 and β = 0.2. With this choice, the prior mean and standard deviation are both

equal to 5. The high standard deviation provides a relatively uninformative prior, and

the high mean ensures that the outbreak is unlikely to be determined as under control

(since > 81% of prior probability is for Rt > 1) unless there is considerable evidence to

suggest otherwise.

4.2.6 Inference

At particular values of the hyperparameters σ and θ, the target posterior of regime

configurations, which we denote by p(n1, . . . , nK |I1, . . . , IT , σ, θ) is proportional to the

product of eq. (4.4) and eq. (4.6):

p(n1, . . . , nK |I1, . . . , IT , σ, θ) ∝ p(I1, . . . , IT |n1, . . . , nK)× p(n1, . . . , nK |θ, σ).

For brevity, we suppress the dependence on cases and hyperparameters and denote

the unnormalised posterior by p(γK), where γK := (n1, . . . , nK) indicates a particular

configuration of the time points into K regimes.

Inference for this posterior is performed via Markov Chain Monte Carlo (MCMC)

which provides a distribution over the number of regimes by jumping between models

of different numbers of parameters. We use the same split-merge-shuffle structure as

[Martínez and Mena, 2014]. Each step of our MCMC algorithm is given in Algorithm 2,

and we now describe it.

Different configurations of the time points into regimes are explored through the

use of split, merge, and shuffle proposals. The split proposal takes an existing regime and

proposes to split it into two regimes at some randomly located changepoint. The merge

proposal takes two consecutive regimes and proposes to merge them into one. Both

of these proposals consider an update to the total number of regimes, thus allowing

the sampler to explore the marginal posterior distribution over the number of regimes.

Additionally, the shuffle proposal shifts the boundary between two consecutive regimes,

thus keeping the same number of regimes but efficiently exploring uncertainty in the

location of a changepoint. At each iteration of the MCMC sampler, we make one shuffle

proposal and randomly choose whether to make a split or merge proposal, with the

MCMC tuning parameter q giving the probability of making the split proposal. For the

results presented in this chapter, we fix q = 0.5. The acceptance probabilities for the

split, merge, and shuffle proposals are derived in [Martínez and Mena, 2014] and are
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given by min(1, αe), with e ∈ {split,merge, shuffle}.

αsplit is calculated by:

αsplit =

(1− q)(T − 1)
p(γK+1)
p(γK) , if K = 1,

1−q
q

p(γK+1)
p(γK)

nsplittable(ns−1)

K , if K > 1,

where nsplittable is the number of splittable regimes (i.e., those with more than one

time point assigned to them) in the original configuration, and ns is the length of the

regime selected for a split; γK is the current regime configuration, and γK+1 is the split

configuration.

The corresponding quantity for a merge move is given by:

αmerge =


q

1−q
p(γK−1)
p(γK)

K−1
n∗

splittable(ns+ns+1−1) , if K < T,

q(T − 1)
p(γK−1)
p(γK) , if K = T,

where n∗
splittable is the number of splittable regimes in the proposed configuration, and

ns and ns+1 are the sizes of the regimes which are proposed to be merged; γK−1 is the

merged regime configuration.

The equivalent quantity for a shuffle move is given by:

αshuffle =
p(γ∗K)

p(γK)
,

where γ∗K is the shuffled configuration obtained from γK as described in Algorithm 2.

The values of Rt are updated using Gibbs steps conditional on the current regime

configuration using eq. (4.7).

For all EpiCluster results presented in this chapter, we run four separate MCMC

chains, two initialised with all time points assigned to a single regime (i.e. K = 1) and

the other two initialised with all time points assigned to their own singleton regime

(i.e. with K = T ). We assessed convergence of our MCMC algorithm (Algorithm 2) by

monitoring convergence in K, the number of regimes. To do so, we computed the R̂

statistic [Gelman et al., 2013] and required R̂ < 1.05. Once convergence was determined,

we discarded the first 50% of each of the MCMC chains as warm-up and combined the

rest of the samples in order to calculate posterior percentiles and means.
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Algorithm 2 One step of the MCMC sampler.
1: q ← User specified value (MCMC tuning parameter)
2: K ← Current number of regimes
3: for k in 1, . . . ,K do ▷ Update the Rt via Gibbs steps.
4: Draw a value for Rt in the kth regime from its conditional posterior, eq. (4.7).
5: end for
6: if K = 1 then
7: q ← 1
8: else if K = T then
9: q ← 0

10: end if
11: Sp ∼ Bernoulli(q) ▷ Draw binary variable to allow random choice between split and merge proposals.
12: if Sp = 1 then ▷ Perform a split proposal.
13: Uniformly at random propose a regime to split.
14: Uniformly at random propose an index within that regime at which to split.
15: Accept the split regime configuration with probability αsplit.
16: else ▷ Perform a merge proposal.
17: Uniformly at random propose a regime (not the last) which will be merged with following regime.
18: Accept the merged regime configuration with probability αmerge.
19: end if
20: K ← Current number of regimes
21: if K > 1 then ▷ Perform a shuffle proposal.
22: Uniformly at random propose a regime j (not the last) to shuffle.
23: Uniformly at random propose an index within either regime j or j + 1 to be the new changepoint

between these two regimes.
24: Accept the shuffled regime configuration with probability αshuffle.
25: end if

4.2.7 Comparator methods

In §4.3, we compare the posterior distribution for Rt yielded by our nonparametric

method to those yielded by two comparator methods. This first is the Cori sliding

window method from Chapter 3 [Cori et al., 2013, Thompson et al., 2019], which as-

sumes that Rt is constant over a sliding window of τ days looking backwards. The

sliding window width has a significant effect on the posterior and the effective bias-

variance trade-off. As a result, we consider two choices of τ (7 days and 28 days)

when applying the method to synthetic data. The second comparator is the EpiFil-

ter method [Parag, 2021], which applies sequential Bayesian smoothing and controls

change in Rt under a random walk prior.

Runtimes

We ran the sliding window method using the branchpro Python pack-

age [Creswell et al., 2022]. We ran the EpiFilter method through its R pack-

age [Parag, 2021]. Using our software library and typical consumer hardware (3.6GHz

CPU), EpiCluster takes from several seconds to several minutes to learn the posterior,
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depending on the complexity of the Rt profile. By comparison, the sliding window

method and EpiFilter methods are effectively instantaneous to compute on the time

series studied here.

4.2.8 Handling imported cases

Some of the real data examples we consider (see §4.3) consist of case counts in locations

where a substantial proportion of the case loads are due to imported cases. To account for

this, we adapt our renewal model using the methods described above in Chapter 3 (i.e.,

[Creswell et al., 2022]). In summary, cases are classified as either local or imported. Local

cases {I loc
t }Tt=1 (denoted simply It for brevity) are those arising from local transmission

in the spatial region under consideration, while imported cases {I imp
t }Tt=1 are those who

were infected elsewhere before travelling to the region. Thus, imported cases contribute

to local transmission, but did not arise from it. We allow local and imported cases to

have different risks of onwards transmission by weighting the imported cases by some

number ϵ > 0, as defined in Chapter 3, and we set ϵ to appropriate values (see §4.2.9 and

§3.3.2). The default choice of ϵ = 1 corresponds to an equal risk of onwards transmission

between local and imported cases. Note, any case and any subsequent lineages begot by

an imported case are classified as local: it is only the rate at which newly imported cases

infect others which is assumed to differ from purely local transmission.

We adapt eq. (4.1) to model the dynamics of local cases It, resulting in:

It ∼ Poisson

(
Rt

t−1∑
s=1

ws(It−s + ϵI
imp
t−s )

)
, (4.8)

where Rt is the effective reproduction number that characterises local transmission on

day t. For problems where imported cases are not considered, we use eq. (4.1).

4.2.9 Real incidence data

We fit to real case incidence data for local and imported COVID-19 cases for three

regions: Victoria and Queensland in Australia and Hong Kong. In each of these three

locations, we used cases with dates given by the date of symptom onset. We selected

these regions as they exhibit a variety of different trends in Rt: a gradual decrease

in Victoria, a more rapid decrease in Queensland, and a fall in Rt followed by the

sudden appearance of a second wave in Hong Kong. Data for the Australian regions

were obtained from the Australian national COVID-19 database [Price et al., 2020]; data
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for Hong Kong were obtained from the Hong Kong Department of Health COVID-19

database [Hong Kong Department of Health, 2022]. For the Australian states, cases of

unknown origin were assumed to be local, and in Hong Kong, all cases other than those

listed as “imported case confirmed” were treated as local.

The proportion of cases whose local or imported status is unknown varies signif-

icantly from region to region. For the time periods we considered, 57% of cases in

Victoria, 8% of cases in Queensland, and 20% of cases in Hong Kong were not confirmed

as either local or imported in the datasets and thus were treated as local. This assump-

tion, if incorrect, would tend to bias our estimates for the reproduction number towards

larger values, as we attribute as many cases as possible to local transmission.

We assumed ϵ = 1 in eq. (4.8) for Victoria and Queensland; however, for Hong Kong,

transmission networks suggest that imported cases were significantly less infective

than local cases [Liu et al., 2021], so we set ϵ = 0.2, according to the methods described

in §3.3.2. In all three instances, we assumed that under-reporting and delays were

negligible given the strong surveillance in these countries. We note that since different

assumptions for ϵ tend to shift rather than warp the inferred Rt series, they are unlikely

to affect the position of changepoints.

Whereas in Chapter 3 we incorporated uncertainty in the serial interval distribution

into our estimates of Rt (see §3.2.4), in this chapter we neglect uncertainty in w and use a

single distribution for this parameter. The method described in §3.2.4 could be straight-

forwardly adapted to EpiCluster, if uncertainty in the serial interval were considered

highly important, but this would come at the cost of significant extra computational

runtime.

4.3 Results

EpiCluster reliably estimates sudden changes in Rt in retrospective analyses

To evaluate the performance of our model, we generated synthetic incidence data

using eq. (4.1) where the Rt profile was known (see Figure 4.2). We considered three

Rt profiles: one with a precipitous decline in Rt (“fast drop-off”); another, with a

decline in Rt followed by a later resurgence (“fast resurgence”; we included this profile

since resurgences may be more difficult to infer than declines in transmission strength

[Parag and Donnelly, 2022]); and another with a more gradual decline in Rt (“slow

drop-off”). The fast drop-off and slow drop-off time series were initialized with 5

cases on each of three days preceding the beginning of simulation, while the fast
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Figure 4.2: Recovering synthetic Rt profiles in retrospective analyses. We generated
synthetic case data (panel A) using the Poisson renewal model (eq. (4.1)) with three
prespecified profiles for Rt (dashed red lines in panels B / C / D). In panel B, we show
the inferred Rt profile using a sliding window method [Thompson et al., 2019] for two
different choices of the sliding window size (τ = 7 and 28 days). In panel C, we show
the inferred Rt profile using the EpiFilter method [Parag, 2021]. In panel D, we show
the inference results when using EpiCluster to recover Rt. The hyperparameters θ and σ
were set as described in §4.2.3. In panels B, C and D, shaded regions indicate the central
90% of the posterior distribution of Rt, while the central line indicates the posterior
mean, and the background gray line indicates Rt = 1.

resurgence was initialized with 5 cases on each of fifty days preceding the beginning of

simulation. Simulations for fast drop-off and slow drop-off used the COVID-19 serial
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Figure 4.3: Effect of θ and σ on inference for Rt. We used the same slow drop-off
synthetic data from Figure 4.2, and performed inference for Rt using the indicated fixed
values of θ and σ, the two hyperparameters of the Pitman-Yor process (see eq. (4.4)). In
all panels, shaded regions indicate the central 90% of the posterior distribution of Rt,
while the central line indicates the posterior mean.

interval [Nishiura et al., 2020], while the fast resurgence used the Ebola serial interval

as estimated for the 2014 West African Outbreak [Van Kerkhove et al., 2015].

In Figure 4.2, we compare Rt estimates from our method with those from two

comparator methods: the sliding window method [Thompson et al., 2019] with two

different choices of the sliding window width (7 days and 28 days), and the EpiFilter

method [Parag, 2021].
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Figure 4.4: Posterior mean estimates of Rt in the fast resurgence synthetic example.
Using the fast resurgence Rt profile (Fig. 4.2), we repeated the generation of synthetic
data 10 times and performed inference for Rt for each synthetic dataset. Panel A shows
the posterior means according to the sliding window method [Thompson et al., 2019]
for two different choices of the sliding window size (τ = 7 and 28 days). In panel B, we
show the inferred mean Rt profiles using the EpiFilter method [Parag, 2021]. In panel C,
we show the inferred means using EpiCluster. The hyperparameters θ and σ were set as
described in §4.2.3.

Across the three Rt profiles considered, the estimates from the sliding window

method lag behind the true values (Fig. 4.2B), since the windows are inherently backward-
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looking—the longer the window width, the longer the moving average and the slower it

is to respond to changes in Rt; the estimates are also very variable. The EpiFilter method

fares better and is able to reliably infer downward shifts in Rt (Fig. 4.2C), corresponding

to suppression; this method overly smooths over the upward tick in transmission in the

fast-resurgence example. Our method performs favourably in the two “fast” examples

(Fig. 4.2D). Like the EpiFilter method, our approach is less able to infer resurgence than

suppression [Parag and Donnelly, 2022]. In the slow example, our piecewise-constant

method approximates the linear decline in Rt with a staircase-like profile, which is

better estimated by EpiFilter. In Figure 4.3, we show the effect of changing the hyper-

parameters of our method on inference for the slow drop-off example on the number

and location of the regimes which are learned. As the two hyperparameters, θ and σ

increase, more weight is given to a partitioning consisting of more regimes (see also Fig.

4.1), and the staircase steps become finer.

To account for stochastic variation in the synthetic data generation, we repeated

inference for the fast resurgence example 10 times (Fig. 4.4). For the three methods, the

posterior means are qualitatively similar across all runs, suggesting that these results

are consistent across different realisations of the renewal process. The results in this

figure indicate that the strong performance achieved by EpiCluster in Figure 4.2 (Fast

resurgence), where the increase in Rt is detected, is consistent across realisations of

the renewal process. We further investigated these inference results in Figure 4.5. At

t = 200, before the increase in Rt, the inference results are consistent between replicates

of the synthetic data generation and EpiFilter infers a precise and accurate value of

Rt around 0.5 for all synthetic datasets. At t = 250, EpiFilter consistently learns that

Rt > 1 for all synthetic datasets, although there is significant variability from replicate

to replicate in the inferred posterior variance. This is unsurprising given that different

replicates correspond to different incidence series, which vary in how much information

they provide about the resurgence in Rt. Finally, at t = 295, EpiCluster consistently

learns posteriors of Rt which are near the true value and place little probability mass on

values Rt < 1 for all synthetic data replicates.

In the fast drop off and fast resurgence examples, EpiCluster estimates Rt with

low bias and high precision. This is because the Rt profiles in the simulated examples

align well with the assumptions made in our modelling: namely, that the Rt profile

is piecewise-constant. We now consider Rt profiles with notable deviations from this

assumption. In Figure 4.6, we compare the same methods on both noisy (left and middle

columns) and oscillatory Rt profiles. When the magnitude of the noise is low (left
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Figure 4.5: Posterior distributions of Rt in the fast resurgence synthetic example
at selected time points. Using the fast resurgence Rt profile (Fig. 4.2), we repeated
the generation of synthetic data 10 times and performed inference for Rt for each
synthetic dataset. In each panel, we show the inferred posterior distribution for Rt using
EpiCluster at the indicated time point. One box indicates the inferred posterior for each
replicate of the synthetic data generation, with the box indicating the central 50% of the
posterior and the lines spanning the central 90% of the posterior. The dotted red lines
indicate the true value of Rt at that time point. The hyperparameters θ and σ were set
as described in §4.2.3.

column), the results mirror those from the previous example. When the noise level

increases (middle column), all methods are late to predict the precipitous decline in Rt,

and EpiFilter provides a better quantification of uncertainty than the nonparameteric

model. For the sinusoid example (right column), EpiFilter performs best, since the

assumptions underpinning that method—that Rt follows a random walk—are closer to

the reality of the generated data.

To evaluate the comparative inference performance of the methods quantitatively,

for each Rt profile studied in Figures 4.2 and 4.6, we repeated the generation of synthetic

data 100 times and studied the distributions of mean squared error (MSE) between the

inferred posterior mean of Rt and the true Rt profile for each method. These distribu-
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Figure 4.6: Recovering noisy and oscillatory Rt profiles in retrospective analyses. We
generated synthetic case data (panel A) using the Poisson renewal model with three
prespecified profiles for Rt (dashed red lines in panels B / C / D). The Rt profiles
were calculated using step functions with additive IID Gaussian noise of standard
deviation 0.025 (left) and 0.1 (middle). In the right column, we show results when Rt

follows a sine wave. In panel B, we show the inferred Rt profile using a sliding window
method [Thompson et al., 2019] for two different choices of the sliding window size
(τ = 7 and 28 days). In panel C, we show the inferred Rt profile using the EpiFilter
method [Parag, 2021]. In panel D, we show the inference results when using EpiCluster
to recover Rt. The hyperparameters θ and σ were set as described in §4.2.3. In panels
B, C and D, shaded regions indicate the central 90% of the posterior distribution of
Rt, while the central line indicates the posterior mean, and the background gray line
indicates Rt = 1.



4.3. RESULTS 73

0.00 0.02 0.04 0.06
MSE

Fr
eq

ue
nc

y

Fast drop off
Epicluster
=7
=28

Epifilter

0.0 0.5 1.0 1.5 2.0
MSE

Fr
eq

ue
nc

y

Fast resurgence
Epicluster
=7
=28

Epifilter

0.00 0.05 0.10 0.15 0.20
MSE

Fr
eq

ue
nc

y

Slow drop off
Epicluster
=7
=28

Epifilter

0.00 0.02 0.04 0.06 0.08 0.10
MSE

Fr
eq

ue
nc

y

Low noise
Epicluster
=7
=28

Epifilter

0.00 0.02 0.04 0.06
MSE

Fr
eq

ue
nc

y
High noise

Epicluster
=7
=28

Epifilter

0.0 0.5 1.0 1.5 2.0 2.5
MSE

Fr
eq

ue
nc

y

Sine wave
Epicluster
=7
=28

Epifilter

Figure 4.7: Quantifying inference performance for Rt on synthetic data examples.
For each synthetic Rt profile in Figure 4.2 (top row) and Figure 4.6 (bottom row), we
generated incidence data and performed inference 100 times. We then calculated the
mean squared error (MSE) between the posterior mean and the true Rt profile for each
inference method. The distributions (estimated via kernel density estimation) of MSE
values for each dataset and method are shown.

tions of MSE values, estimated via kernel density estimation, are shown in Figure 4.7.

For the majority of the examples, EpiCluster tended to produce Rt estimates with the

lowest MSE values followed by EpiFilter, with the sliding window methods performing

worse. On the sinusoid example (Figure 4.6, right column), EpiFilter achieves lower

MSE values than EpiCluster, presumably because the changes in Rt were more gradual

in this case.

EpiCluster is effective at detecting sharp changes in transmission in real-time

The results thus far have considered retrospective analysis of outbreaks; these analyses

are important for understanding the timing and impact of interventions following their

imposition (e.g. [Flaxman et al., 2020, Brauner et al., 2021]). But, in unfolding epidemics

of novels pathogens, it is crucial to know in as close to real time as data allows whether
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transmission changes rapidly either after an intervention is instituted or after it is

discontinued. In this section, we compare how the three Rt estimation methods fared

in inferring an epidemic resurgence in real-time: as new case data becomes available

subsequent to a jump upwards in transmission. We used the same fast resurgence data

as in Fig. 4.2 and fit each method for a series of datasets of different lengths. Each

of these datasets began at the same point (at t = 0); the datasets ended at different

points. The endpoints ranged from 5 days to 35 days post-resurgence with gaps of 5

days between them.
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Figure 4.8: Real-time estimation of a resurgence in Rt. We used the same fast resurgence
synthetic data from Figure 4.2 and performed inference for Rt based only on the time
series up till the number of days after the resurgence indicated in the legend. In the left
panel, we show the mean inferred Rt profile using the EpiFilter method [Parag, 2021].
In the right panel, we show the results when using EpiCluster to recover the mean of Rt.
The hyperparameters θ and σ were set as described in §4.2.3. The background gray line
indicates Rt = 1.

The posterior means of the inferred Rt series are shown in Fig. 4.8, while the full

posteriors are shown in Fig. 4.13. The results illustrate that all three methods needed

considerable data post resurgence to infer changes in transmission. For each series,
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EpiCluster generally fared best in inferring the timing and magnitude of resurgence,

with the posterior uncertainty interval reliably including the true Rt profile.

Data generating processes with greater variability pose issues for all methods and

EpiFilter generally performs best

Variation in transmissibility across different individuals within a population can lead

to greater variation in cases than is accounted for by a Poisson renewal model, and

different pathogens vary in their degree of overdispersion [Lloyd-Smith et al., 2005]:

SARS, for example, is prone to many superspreading events [Shen et al., 2004]; whereas

pneumonic plague exhibits less variation in offspring cases [Lloyd-Smith et al., 2005].

To study the robustness of EpiCluster under more variable data generating processes,

we generated data using the fast drop-off Rt profile and a negative binomial (NB)

renewal model with inverse-dispersion parameter κ > 0: as κ → ∞, the NB model

approaches the Poisson, so low values of κ therefore correspond to more overdispersed

data. Using the fast drop-off Rt profile, we generated case data under different values

of κ, and, for each series, we fit the sliding window, EpiFilter and EpiCluster methods.

The results are shown in Fig. 4.9. When κ is large (i.e., the data are effectively gener-

ated from a Poisson distribution), the results match those observed in Fig. 4.6. As the

data generating process exhibits more variation, all methods perform worse: generally

failing to correctly identify the change in Rt and inferring a highly noisy Rt profile

with many spurious fluctuations. However, the sliding window and EpiFilter methods

generally produced more robust estimates in the presence of strong overdispersion.

EpiCluster estimates sharp changes in Rt for real COVID-19 incidence series

Next, we performed retrospective inference of Rt for the early COVID-19 outbreaks in

three selected regions: Victoria and Queensland, Australia, and Hong Kong (these are

the same datasets which were analysed in Chapter 3; see §3.2.5 and §4.2.9), which were

selected for the variety of transmission profiles they encompass. The Rt estimates for

these regions are shown in Figure 4.10 again comparing the sliding window approach

(panel B) with the EpiFilter approach (panel C) and EpiCluster (panel D).

The first case of COVID-19 in Australia was reported in Victoria state on 25th

January 2020 [Storen and Corrigan, 2020]. Subsequently, Victoria quickly became a

hub of transmission and declared a state of emergency on 16th March, including a

ban on non-essential gatherings of over 500 people [Storen and Corrigan, 2020]. On

18th March, more restrictions on movement followed with indoor public gatherings
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Figure 4.9: Effect of negative binomial noise on posterior estimates of Rt. We used the
same fast drop-off Rt profile from Figure 2 but generated data according to a negative
binomial renewal process with the inverse overdispersion (kappa) indicated at the top
of each column. In panel B, we show the inferred Rt profile using a sliding window
method [Thompson et al., 2019] for two different choices of the sliding window size
(τ = 7 and 28 days). In panel C, we show the inferred Rt profile using the EpiFilter
method [Parag, 2021]. In panel D, we show the inference results when using EpiCluster
to recover Rt. The hyperparameters θ and σ were set as described in §4.2.3. In panels
B, C and D, shaded regions indicate the central 90% of the posterior distribution of
Rt, while the central line indicates the posterior mean, and the background gray line
indicates Rt = 1.

of more than 100 people banned and restrictions in aged care facilities introduced

across Australia [Storen and Corrigan, 2020]. On the 22nd March, the state Premier

announced that Victoria would implement a shutdown of all non-essential activity

across the state [Storen and Corrigan, 2020]. The sliding window approach (Fig. 4.10B)

and EpiFilter (Fig. 4.10C) both estimated declines in transmission starting around 22nd

March; EpiCluster infers a sharper decline around 25th March. All methods inferred

that transmission subsequently remained below the level for sustained transmission,
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apart from an uptick in transmission estimated from EpiCluster coinciding with a burst

of cases around 10th April, which likely reflects a violation of the assumptions of the

model (the burst of cases causing this spike in the inferred Rt value only lasts one day,

and thus may by occurring due to noise in the reported data rather than a genuine

change in Rt).

The first case of COVID-19 in Queensland, Australia occurred on 29th January

2020 [Storen and Corrigan, 2020], and the first wave began in early March. All three

estimation methods inferred that, since imported cases were the dominant cause of

the wave, there was relatively low community transmission, and the bulk of local Rt

estimates were below 1 (Fig. 4.10). All methods inferred a decline in transmission

beginning around the 16th March—the date when Victoria declared a state of emergency,

and Australia introduced a self-isolation requirement for all international arrivals—

and EpiCluster estimated a rapid decline on 17th March. To combat the insurgence of

imported cases, the Queensland Premier announced that the state would restrict access

to the border on 24th March: this included termination of all rail services and border road

closures [Storen and Corrigan, 2020], and EpiCluster inferred a small decline occurring

on this date.

Hong Kong, like Singapore and Taiwan, was quick to act on learning of the outbreak

of COVID-19 in Wuhan, China, and the government enacted intensive surveillance cam-

paigns and declared a state of emergency on 25th January, 2020 [Cowling et al., 2020,

Fig. 1]. On the 7th February 2020, Hong Kong introduced prison sentences for any-

one breaching quarantine rules [OT&P Healthcare, 2022]. This date broadly coincides

with the decline in Rt detected across all three methods, and the decline detected by

EpiCluster is especially rapid.

Hong Kong’s second wave of COVID-19 began in March 2020 driven by imported

cases from North America and Europe [Parag et al., 2021], and all three methods detect

an increase in the local Rt shortly after 15th March. Policy responses to this wave

by the Hong Kong government included a quarantine requirement on international

arrivals (effective 19th March; [Xinhua News Agency, 2020]), a ban on foreign travellers

(effective 25th March; [OT&P Healthcare, 2022]), and a ban on gatherings of more than

four people (effective 27th March; [OT&P Healthcare, 2022]); a significant decrease in

Rt is detected by all three methods around the times when these interventions were

imposed. The EpiCluster results mirror the timing of this intervention most closely,

suggesting that there was a short time lag between when the interventions were imposed

and their effect.
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To explore the sensitivity of our estimates for Hong Kong to the hyperparameters of

the method, we performed a series of sensitivity analyses where these parameters were

fixed at different values and inference was performed (Fig. 4.12). These experiments

illustrate that, as either of the hyperparameters are increased, the Rt profile comprises

a greater number of regimes, and there is greater uncertainty in the Rt estimates. The

qualitative behaviour of the majority of estimates, however, remains the same, with a

large decline in transmission around 7th February 2020 and a resurgence in mid March.

EpiCluster estimates sharp changes in Rt for other disease outbreaks

To study the applicability of EpiCluster to infectious diseases other than COVID-19, we

applied the method to several outbreaks: the 1972 Smallpox outbreak in Yugoslavia,

the 1861 Measles outbreak in Hagelloch, Germany, and the 2003 SARS outbreak; these

datasets were obtained from the EpiEstim package [Cori et al., 2013]. These results are

shown in Figure 4.11 and show Rt estimates excluding an initial period when cases

are low, since these early data are more likely to be unreliable due to data limitations.

In all three outbreaks, EpiFilter learns the smoothest Rt profile, while EpiCluster in-

fers a more jagged Rt series with high uncertainty and larger, rapid fluctuations in

the value of the effective reproduction number. For SARS, the large variation in Rt

inferred by EpiCluster is almost certainly due to the model’s assumptions being vio-

lated, and we return to this point in the discussion. For these outbreaks, the sliding

window method [Thompson et al., 2019] learns an Rt which resembles the results from

EpiCluster but typically with smaller and smoother fluctuations in the value of Rt.

4.4 Discussion

EpiCluster assumes that Rt is piecewise constant, and presents a flexible approach for

learning the locations and duration of each constant regime of Rt. When Rt does truly

change rapidly (Figure 4.7), we observed that EpiCluster could outperform existing

methods in accurately recovering Rt from incidence data. Thus, the method might be

particularly appropriate to apply in situations where disease transmission is believed to

have suffered some rapid change in time (for example, the immediate institution of a non-

pharmaceutical intervention such as a lockdown or social distancing). In such situations,

EpiCluster provides a principled, data-driven approach to evaluating whether and when

the intervention affected transmission. However, when rates of disease transmission

change more gradually over time (for example, if non-pharmaceutical interventions
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intended to control spread of the disease are relaxed gradually), other methods which

can directly learn gradual changes in Rt (such as EpiFilter) may be more appropriate.

It is likely that some of the rapid changes in Rt detected by EpiCluster on the

COVID-19 time series (Fig. 4.10) reflect violations of the model assumptions, rather

than genuine changes in the transmission of the disease, and further work is required

to adapt the framework presented in this chapter to handle more complex processes.

EpiCluster relies on the Poisson distribution (eq. (4.1)) for its stochastic renewal model;

this distribution does not accurately account for the fact that many infectious diseases—

including smallpox, measles, and SARS (which we analysed in Fig. 4.11)—exhibit

significant variation in transmissibility from person to person [Lloyd-Smith et al., 2005].

These factors would be more accurately captured by an overdispersed renewal

model, e.g., the negative binomial distribution [Lloyd-Smith et al., 2005]. If we incorpo-

rated such a distribution into the renewal model underlying EpiCluster, we anticipate

that the method may be able to infer Rt more robustly for diseases characterized by het-

erogenous transmission or superspreading, with fewer spurious clusters and dramatic

changes in Rt value.

Unfortunately, an appropriate conjugate prior does not exist for the negative bino-

mial distribution. The MCMC sampler which we derive in §4.2 could not be applied in

this situation, and inference would be slower and more challenging. Further method-

ological work on non-conjugate inference is needed.

Our approach additionally assumes that the incidence data are perfect, when in

fact reporting biases are present [Gostic et al., 2020, Pitzer et al., 2021]. Our approach

could be modified to correct Rt estimates for reporting biases [Gostic et al., 2020]; in the

absence of these corrections, we anticipate that the changepoints we have inferred for

Rt on real data may be biased by several days.

Bayesian nonparametric methods such as EpiCluster are attractive for their ability

to allow model complexity to scale with the volume and complexity of the data, and

this principle could enable wider applications of Bayesian nonparametrics throughout

epidemiology, representing an advance upon any methods which require the number of

parameters used to represent the underlying process to be determined in an ad hoc way.

However, nonparametric methods such as EpiCluster depend on process hyperpa-

rameters which do require user tuning. (This situation is not dissimilar to the sliding

window width hyperparameter which we used to perform inference in Chapter 3.) In

this chapter, we proposed a heuristic strategy for tuning the two process hyperparame-

ters of EpiCluster (θ and σ) as a function of the number of time points such that a priori
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few changepoints in Rt were expected; this assumption causes the method to prevent

overfitting. Our sensitivity analyses (Figure 4.3 and Figure 4.12) show that EpiCluster

produces sensible and compatible inference results for a range of hyperparameter val-

ues. Further work may help to develop a more flexible, hierarchical inference approach

in which hyperpriors are placed on the process hyperparameters, and these are then

themselves inferred from the data. An example of this approach has been developed

for Dirichlet processes, in which a gamma prior is placed on the concentration hyperpa-

rameter of a Dirichlet process and then this hyperparameter is updated according to a

Gibbs sampler [Escobar and West, 1995].

We developed EpiCluster within the stochastic renewal model framework (which

we also used in Chapter 3). Despite the usefulness of such stochastic models for learning

Rt, more complex models which enable more detailed specification of certain features of

the population are also useful for epidemiological research (see §2.4). Thus, in the next

chapter, we move away from the stochastic renewal model and begin our investigations

of compartmental differential equation models of infectious disease outbreaks.

4.5 Data and software

The Python software implementation of the model is available at https://github.

com/SABS-R3-Epidemiology/epicluster. All data and scripts use to gener-

ate the results are available at https://github.com/SABS-R3-Epidemiology/

epicluster-results.

https://github.com/SABS-R3-Epidemiology/epicluster
https://github.com/SABS-R3-Epidemiology/epicluster
https://github.com/SABS-R3-Epidemiology/epicluster-results
https://github.com/SABS-R3-Epidemiology/epicluster-results
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Figure 4.10: Learning Rt from early COVID-19 epidemic incidence curves in three
locations. Data on local and imported cases from the early COVID-19 pandemic in three
selected regions is shown in panel A. In panel B, we show the inferred Rt profile using a
sliding window method [Thompson et al., 2019] for two different choices of the sliding
window size (τ = 7 and 28 days). In panel C, we show the inferred Rt profile using the
EpiFilter method [Parag, 2021]. In panel D, we show the inference results when using
EpiCluster to recover Rt. The hyperparameters θ and σ were set as described in §4.2.3. In
panels B, C and D, shaded regions indicate the central 90% of the posterior distribution
of Rt, while the central line indicates the posterior mean, and the background gray
line indicates Rt = 1. Vertical dotted lines indicate policy-relevant dates. For Victoria:
1: ban on non-essential gatherings of over 500 people; 2: movement restrictions and
ban on indoor gatherings of over 100 people; 3: shutdown of all non-essential activity.
Queensland: 1: border restrictions and termination of rail services. Hong Kong: 1: state
of emergency declared; 2: prison sentences introduced for those breaking quarantine; 3:
compulsory quarantine of all arrivals; 4: ban on foreign travellers; 5: ban on gatherings
over four people.
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Figure 4.11: Learning Rt profiles for non-COVID outbreaks. Data on local cases for
three selected outbreaks are shown in A. In panel B, we show the inferred Rt profile
using a sliding window method [Thompson et al., 2019] for two different choices of
the sliding window size (τ = 7 and 28 days). In panel C, we show the inferred Rt

profile using the EpiFilter method [Parag, 2021]. In panel D, we show the inference
results when using EpiCluster to recover Rt. The hyperparameters θ and σ were set as
described in §4.2.3. In panels B, C and D, shaded regions indicate the central 90% of the
posterior distribution of Rt, while the central line indicates the posterior mean, and the
background gray line indicates Rt = 1.
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Figure 4.12: Effect of θ and σ on inference for Rt for the Hong Kong COVID-19 dataset.
We used the Hong Kong data from Figure 4, and performed inference for Rt using the
indicated fixed values of θ and σ, the two hyperparameters of the Pitman-Yor process
(see eq. (4.4)). In all panels, shaded regions indicate the central 90% of the posterior
distribution of Rt, while the central line indicates the posterior mean.
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Chapter 5

Accounting for uncertain contact

structure and the accuracy of

numerical approximation in

compartmental models

Overview

Alongside the stochastic renewal process models that we employed in Chapters 3 and 4,

compartmental differential equation models such as SIR (see Example 8 in Chapter 2)

are workhorses of epidemiological modelling. In this chapter, we analyse two significant

forms of uncertainty in the simulated outputs of epidemiological compartmental models.

First, we consider compartmental models which include age structure; these models

take as an input parameter a contact matrix specifying the rate of contact between each

age group in the population. Although contact matrices may be set to fixed values, the

finite survey data from which they are estimated may in fact correspond to significant

uncertainty in the values of the contact matrix. In a synthetic study, we demonstrate

that uncertainty in the values of the contact matrix may lead to significant discrepancy

in forward simulations of the SEIR model.

Subsequently, we analyse another potentially significant source of uncertainty in

the solution of compartmental models: insufficiently accurate numerical integration of

the underlying differential equations. We show that insufficient solver step sizes can

significantly bias the simulated number of cases and deaths, and in particular, we show

that a 1-day solver step size is not sufficiently accurate for simulation of cases and deaths

85
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at a daily resolution. Our results motivate the use of adaptive step size solvers for such

models. We additionally show how interventions expressed as step functions can cause

further inaccuracies in the simulation of compartmental models, and demonstrate that

smoothing approximations can significantly increase the accuracy of model simulations

when interventions are involved.

Motivation

One of the primary goals of the publication [van der Vegt et al., 2022] and the associated

notebooks, from which this thesis chapter is adapted, was to provide a pedagogical

resource for newcomers to the field of epidemiological modelling, teaching them some

of the ways in which compartmental models can be used and some of the things that

can go wrong with them. For this reason, the focus in this chapter is in exploring the

modelling concepts, explaining potential pitfalls of these models, and setting up the

work on inference for differential equations which appears later in the thesis, rather

than building a highly realistic compartmental model of the transmission of COVID-19

or any other specific disease outbreak.

Publications

The contents of this chapter are derived from a portion of:

• S. A. van der Vegt,† L. Dai,† I. Bouros,† H. J. Farm,† R. Creswell,† O. Dimdore-

Miles,† I. Cazimoglu, S. Bajaj, L. Hopkins, D. Seiferth, F. Cooper, C. L.

Lei, D. Gavaghan, and B. Lambert: “Learning transmission dynamics mod-

elling of COVID-19 using comomodels,” Mathematical Biosciences, vol. 349

(2022). [van der Vegt et al., 2022]

(†= joint first authorship.)

Contributions: The research underlying this chapter was conducted as part of

a collaboration between the Doctoral Training Center (DTC) at Oxford and the

COVID-19 International Modelling Consortium (CoMo). The Como Consortium

was formed in 2020 in response to the COVID-19 outbreak, and was engaged

in the development and deployment of infectious disease modelling to inform

COVID-19 policy, in collaboration with public health officials in 40 countries in

Asia, Africa, North America, and South America. In October 2020, I volunteered
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to join the organizing team for a collaboration between the CoMo Consortium and

Oxford’s DTC. Amongst other work, this collaboration developed an R software

library and a series of R notebooks containing code, figures, and results illustrating

the application of compartmental models to COVID-19 data. This collection of

notebooks was published as part of a special issue in Mathematical Biosciences

[van der Vegt et al., 2022].

This thesis chapter is derived from two of the notebooks, “The importance of

uncertainty in age-specific contact patterns for quantifying COVID-19 risk,” and

“On the numerical solution of compartmental models.” I was the primary au-

thor of these two notebooks and handled the data analysis, code sections, and

interpretation of results contained within them. All authors of the paper made

contributions and suggestions to the writing and revision of the notebooks, and

some of these contributions are reflected in the wording of parts of this chapter.

5.1 Introduction

The Poisson renewal model of the incidence of an infectious disease, eq. (3.1), underlies

our work in Chapters 3 and 4. As we have shown, this model is highly attractive for the

immediate interpretability of its unknown parameter (Rt), the rapid inference enabled

by a conjugate relationship between the Poisson model and the gamma prior on Rt,

the ease of incorporating flexible models of time variation in Rt (e.g., sliding windows

or EpiCluster), and requiring only incidence data and an estimate of the generation

time distribution or serial interval distribution for fitting. For these reasons, the Poisson

renewal model is a powerful tool for monitoring and analysing outbreaks of infectious

disease.

However, eq. (3.1) suffers from several disadvantages. It assumes that the population

is homogeneous and well-mixed, failing to account for the effects on transmission of, e.g.,

spatial or age structure. It does not model the fact that, for serious diseases, a significant

proportion of cases may subsequently die. These limitations can be addressed using

another modelling framework for infectious diseases: compartmental models, which we

introduced in Example 8, Chapter 2. Compartmental models assume that each member

of the population can be classified as belonging to one of a finite number of diseased

(or non-diseased) states. Examples of typical states used in compartmental models

include susceptible (describing individuals who can be infected with the disease, but

are not currently), recovered (individuals who have recovered from the disease and may
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have full or partial immunity), and infected (individuals who have the disease and may

spread it to others). Model complexity can be increased as necessary for a particular

modelling or inference task by adding more specialized disease states. For example,

multiple infected states corresponding to different levels of transmissibility or severity,

exposed states where individuals have been infected but are not yet infectious to others

(representing the latent period of a disease), or an absorbing state representing death

can be used. States can also be added for different age groups, spatial subsets, or other

characteristics of the population. Given a set of states, compartmental models express

the rates at which individuals move from one state to another, yielding a system of

differential equations.

Compartmental models have been widely adopted for modelling the COVID-19

pandemic, e.g., [Birrell et al., 2021, Dehning et al., 2020], where they have enabled the

specification of more complex and more realistic processes underlying the transmission

of the virus. However, the additional flexibility of the compartmental modelling frame-

work comes at the cost of simulation and inference potentially being more challenging

than in the Poisson renewal model. Thus, in this chapter, we present an analysis of

two particular problems inherent in the simulation of compartmental models, and we

illustrate the importance of these problems by running compartmental model simu-

lations. First, we study compartmental models which include age structure. Because

the mortality of many diseases is highly variable between different age groups, age

structured models are useful, but they require the specification of a contact matrix giving

the rates of contact between the various age groups. Contact matrices are informed

by survey data, e.g., [Prem et al., 2017], which may not be numerous enough to inform

highly precise estimates of the contact matrix.

Compartmental models are defined in terms of ordinary differential equations

(ODEs) which in general have no analytical solution. Thus, an essential step in the

simulation of compartmental models is numerical approximation of the ODEs using

an appropriate solver. Thus, we conclude this chapter by providing an analysis of

the effects of inaccuracy in the ODE solver on the numbers of cases and deaths in a

compartmental model. Later in this thesis (Chapters 6 and 7), we will study the effects

of solver inaccuracy on model simulation and parameter inference in more detail and

for a wide range of different models; the results in this chapter provide a preliminary

motivation for the importance of ensuring solver accuracy.
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5.2 Methods

In this section, we define the three compartmental models which will employ to run

simulations of a synthetic outbreak of an infectious disease.

5.2.1 The SEIRD model

A straightforward and more realistic extension of SIR (Chapter 2, Example 8), the SEIRD

model, adds an exposed state, representing individuals who have been exposed to the

disease but are not yet infectious to others, and a death state, representing individuals

who have died of the disease. This model is given by:

dS

dt
= −βSI (5.1)

dE

dt
= βSI − κE (5.2)

dI

dt
= κE − (γ + µ)I (5.3)

dR

dt
= γI, (5.4)

dD

dt
= µI, (5.5)

where β > 0 is the spreading rate of the disease, κ > 0 is the rate at which individuals

move from exposed to infectious, γ > 0 is the recovery rate, and µ > 0 is the death rate.

5.2.2 Adding age structure to the SEIRD model

Age is a major risk factor for more severe symptoms of many diseases, so accounting

for the contact patterns of different age groups is particularly important for quantifying

the risk that each age group faces. We extend the SEIRD model to include age structure

by assuming that each member of the population belongs to one of a finite set of age
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groups. The system of differential equations is:

dSi

dt
= −βSi

∑
j

Ci,jIj (5.6)

dEi

dt
= βSi

∑
j

Ci,jIj − κEi (5.7)

dIi
dt

= κEi − (γi + µi)Ii (5.8)

dRi

dt
= γiI, (5.9)

dDi

dt
= µiI, (5.10)

where Si indicates susceptibles belonging to the ith age group, and so forth. We allow

age-structured values of γi and µi, because the rates of recovery and death can be highly

age-dependent. Ci,j is the contact matrix, discussed in detail in the next section §5.2.3.

This model provides no mechanism for individuals to move from one age group to

another. Thus, it is appropriate for simulation over shorter time scales in which aging of

the population is not expected to be a significant factor.

5.2.3 Contact matrix data

In the age-structured SEIRD model, differing rates of contact between age groups are

modelled using the contact matrix, Ci,j ≥ 0. Each element of Ci,j is proportional to the

expected number of daily contacts that individuals of age group i have with individuals

of age group j.

We obtain country-specific estimates of the contact matrix in 152 countries from

[Prem et al., 2017]. These contact matrices are constructed from survey data, in which

participants in the study record their contacts throughout the day and include infor-

mation on the age and location of each contact. For each country, a contact matrix is

provided for four different locations where people may mix with others: at home, at

school, at work, and elsewhere. For a contact matrix, C, each element, Ci,j , indicates the

expected number of contacts someone from age group i has per day with people from

age group j, which is given by:

Ci,j =
total # contacts between i and j

size of group i
. (5.11)

Because Cj,i has the size of group j as its denominator, typically Ci,j ̸= Cj,i due to

demographic patterns, meaning contact matrices are not typically exactly symmetric.
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Figure 5.1: Location-specific contact matrices for the United Kingdom (UK). Contact
matrix data for the UK published by [Prem et al., 2017], with contacts divided into four
locations indicated at the top of each matrix: home, school, work, and other.

Since the age-demographics of a population affect its contact matrices, a contact ma-

trix estimated for a given country should not be repurposed for another without due

care [Arregui et al., 2018].

In the contact matrices provided by [Prem et al., 2017], the oldest age group is 75–80

year olds; in the remainder of this section, we assume that the contact patterns are the

same for individuals aged 80+. This may be a strong assumption, since it neglects the

change of circumstances that may occur for many in this age group.

The contact matrices for the United Kingdom are shown in Figure 5.1. These matri-

ces illustrate rich contact patterns for the UK, which are markedly different between

locations. At school, unsurprisingly, students mix with many others of similar ages. At

home, there is considerable intergenerational mixing. At work, there is more uniform

mixing—the vast majority between people of working age. These suggest a common

transmission pattern, in which schoolchildren, who have the most daily contacts, infect

one another. They then pass infection onto their parents at home, who then pass their

infection onto work colleagues.

To use the location-specific contact matrix data in our model, eq. (5.6), we sum the
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four location-specific contact matrices:

Ci,j = Chome
i,j + Cschool

i,j + Cwork
i,j + Cother

i,j .

5.3 The importance of uncertainty in age-specific contact pat-

terns for compartmental model simulations

5.3.1 Bootstrapped sampling of the UK contact matrices

When performing forward simulations of the age-structured SEIRD model or when

fitting these models to data, the contact matrix is typically provided as a fixed input.

However, using point estimates for the contact matrix neglects the considerable un-

certainty inherent in them. Thus, we now investigate the sensitivity of the outputs of

the age-structured SEIRD model to the uncertainty in contact matrix estimates. To do

so, we use bootstrapped samples of the contact matrix to represent this uncertainty.

The bootstrap algorithm works by selecting a random sample (with replacement) of

the survey respondents, and a contact matrix is then constructed on the basis of this

sample of respondents. Across many such samples, the set of contact matrices provides

a measure of uncertainty in the number of daily contacts across different age groups.

We obtain bootstrapped samples of the contact matrix using the socialmixr library

which accesses the POLYMOD data [Funk, 2020, Mossong et al., 2017]. Uncertainty in

the contact matrix, estimated via the bootstrap procedure, has previously been used as

part of a study to compute age-structured estimates of the immunity levels needed to

eliminate transmission of measles [Funk et al., 2019].

We base our analysis on the age-structured population of the UK and generate

200 bootstrapped contact matrix draws to represent its uncertainty. In Figure 5.2, we

show the variation in within-age-group daily contacts: i.e., we plot the samples of the

diagonal elements of the contact matrix. The plot shows that ages 5–20 (i.e., mostly

school children) have the greatest variation in contacts. Most likely, this is because this

age group has the most contacts.

5.3.2 The influence of contact matrix uncertainty on epidemic dynamics

To explore the sensitivity of model outputs to the elements of the contact matrix, we

simulate the age-structured SEIRD model for one year for each bootstrapped sample of

the contact matrix. We use the following fixed values for the other parameters of the
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Figure 5.2: Uncertainty in diagonal elements of the UK contact matrix. For each age
group, the distribution of the number of contacts members of that age group have with
other members of their age group estimated from the bootstrap samples of the contact
matrix is shown. Each boxplot indicates the median (central line) and the 25th and 75th
percentiles (bottom and top of the box). The whiskers extend from the 25th percentile
minus 1.5 times the interquartile range (IQR) to the 75th percentile plus 1.5 times the
IQR; samples falling outside the whiskers are indicated by dots.

Figure 5.3: Uncertainty in age-structured SEIR model simulations arising from uncer-
tainty in the contact matrix. (left) the size of the I compartment (as a proportion of the
population size in that compartment) over time for the 15–20 age group, with the blue
line indicating the median and the shaded region the central 90% of the simulations for
each bootstrap sample of the contact matrix. (right) as left, but for the 75+ age group.

model [van der Vegt et al., 2022]: β = 0.46, κ = 1
5.5 , γi =

1
7(1− IFRi), µi =

1
7 IFRi where

IFRi is the infection fatality ratio for the ith age group as reported by [Verity et al., 2020]

for COVID-19.
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Because COVID-19 exhibits significant variation in mortality across age groups,

its IFR values are a useful choice for studying the effect of contact matrix uncertainty.

However, we note that due to the simplicity of our compartmental model, our simulation

outputs are unlikely to resemble the actual course of the COVID-19 outbreak in the

United Kingdom. See, e.g., [Birrell et al., 2021, Dehning et al., 2020], for more realistic

compartmental models of the COVID-19 outbreak.

As an initial condition, we assume that 0.1% of the population is infectious, with the

remainder of the population susceptible. No interventions or behavioural changes are

included.

In Figure 5.3, we plot the central 90% quantiles computed from these simulations of

the infectious population size for two age groups: 15–20 year olds and the 75+ age group.

In both age groups, the results show marked uncertainty in the peak infectious counts

but with more substantial variation for the older age group—a result that is particularly

worrying given the greater risk of severe disease faced by older individuals for diseases

such as COVID-19 [Verity et al., 2020]. Although, in our simulations, those in the 75+

age group see fewer daily contacts than those in the younger 15-20 age group (see Figure

5.1), the SEIR model simulations for the 75+ age group show more uncertainty than

those for the 15-20 age group. This is due to the large relative uncertainty in the number

of contacts for the 75+ age group indicated by the bootstrap samples (Figure 5.2).

Next, we examine the proportion of individuals infected with the disease at the end

of the year, which we plot in Figure 5.4. Here, we consider only those individuals who

have survived infection. This plot shows that those aged 5–20 are the most likely to have

been infected: mainly because these individuals have the highest number of contacts

and, because of this, are important drivers of infections within the population. Figure

5.4 also illustrates the pronounced uncertainty in the proportion exposed to infection in

the oldest age groups.

Finally, in Figure 5.5, we study the effect of uncertainty in the contact matrix on the

number of individuals that die of the infection. Although younger people are more

likely to be infected due to their higher number of contacts, deaths occur mainly in the

elderly, as expected based on the age-structured IFR which was used to parametrise our

simulations. The bootstrapped samples of the contact matrix generate a wide range of

deaths, particularly in the oldest age groups.
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Figure 5.4: Uncertainty in proportion ever infected arising from uncertainty in the
contact matrix. After running the SEIRD simulation for 1 year, we computed the pro-
portion of each age group who had ever been in the infectious compartment (including
those that subsequently died or recovered). The boxplots indicate the distribution of this
proportion across the bootstrap samples of the contact matrix. Each boxplot indicates
the median (central line) and the 25th and 75th percentiles (bottom and top of the box).
The whiskers extend from the 25th percentile minus 1.5 times the interquartile range
(IQR) to the 75th percentile plus 1.5 times the IQR; samples falling outside the whiskers
are indicated by dots.
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Figure 5.5: Uncertainty in proportion dying arising from uncertainty in the contact
matrix. After running the SEIRD simulation for 1 year, we computed the proportion of
each age group who have died from the disease. The boxplots indicate the distribution
of this proportion across the bootstrap samples of the contact matrix. Each boxplot
indicates the median (central line) and the 25th and 75th percentiles (bottom and top of
the box). The whiskers extend from the 25th percentile minus 1.5 times the interquartile
range (IQR) to the 75th percentile plus 1.5 times the IQR; samples falling outside the
whiskers are indicated by dots.

5.3.3 Discussion

Many infectious diseases are predominantly spread from close contact with infected

individuals and exhibit a strong relationship between age and risk of severe disease.

Thus, mathematical models of disease transmission often depend on estimates of age-

specific contact patterns. Sensitivity analyses of models with respect to contact matrix

inputs are essential. Our results in this section indicate that considerable uncertainty

exists in the values of the contact matrix for the United Kingdom on the basis of the

contact data from [Funk, 2020, Mossong et al., 2017], and this uncertainty corresponds

to a significant variation in model outputs.

There are a range of factors which the bootstrapped approach to uncertainty quan-

tification, as employed in this section, does not consider. The algorithm assumes that

the original survey from which the contact matrices are calculated is representative

of the underlying population, which may not be true. For example, if contact data

are collected primarily from an urban area in a country whose population is mostly

rural, the resulting contact matrices would likely be unrepresentative of the country as a

whole. Because the bootstrap algorithm does not allow for such biases in quantifying
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uncertainty, it likely understates the true population-level uncertainty.

5.4 Data and software

The original R notebooks from which this thesis chapter is derived

are available at https://github.com/Como-DTC-Collaboration/

como-models-math-biosci. The R package implementing the models is

available at https://github.com/Como-DTC-Collaboration/como-models.

https://github.com/Como-DTC-Collaboration/como-models-math-biosci
https://github.com/Como-DTC-Collaboration/como-models-math-biosci
https://github.com/Como-DTC-Collaboration/como-models




Chapter 6

Understanding the impact of

numerical solvers on inference for

differential equation models

Overview

Most ordinary differential equation (ODE) models used to describe biological or physical

systems must be solved approximately using numerical methods. In this chapter, we

study parameter inference for models involving differential equations. Perniciously, even

those solvers which seem sufficiently accurate for the forward problem, i.e., for obtaining

an accurate simulation, may not be sufficiently accurate for the inverse problem, i.e.,

for inferring the model parameters from data. We show that for both fixed step and

adaptive step ODE solvers, solving the forward problem with insufficient accuracy can

distort likelihood surfaces, which may become jagged, causing inference algorithms to

get stuck in local “phantom” optima. We demonstrate that biases in inference arising

from numerical approximation of ODEs are potentially most severe in systems involving

low noise and rapid nonlinear dynamics. We reanalyse an ODE changepoint model

previously fit to the COVID-19 outbreak in Germany and show the effect of the step

size on simulation and inference results. We then fit a more complicated rainfall-runoff

model to hydrological data and illustrate the importance of tuning solver tolerances to

avoid distorted likelihood surfaces. Our results indicate that when performing inference

for ODE model parameters, adaptive step size solver tolerances must be set cautiously

and likelihood surfaces should be inspected for characteristic signs of numerical issues.

99
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Publications

The contents of this chapter are available as a preprint at:

• R. Creswell, K. M. Shepherd, B. Lambert, C. L. Lei, M. Robinson, and D. J. Gav-

aghan: “Understanding the impact of numerical solvers on inference for differen-

tial equation models,” arXiv:2307.00749 (2023) [Creswell et al., 2023c]

This manuscript is currently submitted to Journal of the Royal Society Interface.

Contributions: I was the primary author of this preprint and conducted the investi-

gation, methodology, theoretical analysis bounding the error in the log-likelihood,

software implementations, and visualisation of results appearing in this chapter.

Katherine Shepherd conducted preliminary work on smoothing approximations

(based on a different ODE model) which informed the work presented §6.5. All

authors of [Creswell et al., 2023c] made contributions and suggestions to the writ-

ing and revision of the preprint, and some of these contributions are reflected in

the wording of parts of this chapter.

6.1 Introduction

In this chapter, we focus on the problem of inference for ODEs, which inevitably involves

a sequence of numerical simulations of the ODE at different parameter values. We

present a series of results elucidating the interplay between solver accuracy and biases

in likelihoods and inference results.

In addition to finding widespread application in epidemiological modelling, ODEs

are widely used throughout computational biology and other scientific fields (e.g.,

hydrology [Kavetski et al., 2003], cardiac electrophysiology [Whittaker et al., 2020], and

population dynamics [Shertzer et al., 2002]). Thus, in this chapter, our treatment is more

general and we do not focus exclusively on epidemiological problems. Our theoretical

results are proved for ODE systems in general, and we then study an illustrative toy

model drawn from mechanics (the driven oscillator) before studying inference problems

involving real data drawn from both epidemiology and hydrology.

Numerical algorithms for solving the forward problem introduce error, but the

properties of this error are generally well understood and can be controlled. In solvers

using a fixed time step (discussed in §6.4.1), the error can be reduced by decreasing the

size of the time step [Gautschi, 1997]. In solvers in which the time step is set adaptively

(discussed in §6.4.2), the error is typically controlled through user-specified relative and
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absolute tolerances on the local truncation error (the error in the solution introduced by

a single time step of the solver) [Dormand and Prince, 1980]. Our focus in this chapter is

on the interplay between the numerical approximations inherent in the forward problem

and the inverse problem, which consists of learning values of the parameters that are

compatible with an observed time series. As discussed in the earlier chapters of the

thesis, some widely used approaches to the inverse problem include optimisation of an

objective function which measures the quality of fit between the model and the data

(e.g., maximum likelihood), or Bayesian approaches which generate samples from the

posterior distribution of the parameters (e.g., Markov chain Monte Carlo (MCMC)).

These approaches to the inverse problem require the forward problem to be solved

at multiple different parameter values. The errors in each numerical solution of the

forward problem, even when individually small, are liable to introduce significant bias

to inference results.

The rest of this chapter is organised as follows. In §6.2, we present the widely

used independent and identically distributed Gaussian noise log-likelihood function

for fitting ODE models and derive a bound on the error in this log-likelihood arising

from the use of an approximate solution to the ODE. On the basis of this bound, and

results presented subsequently, we argue that the biases in inference results arising from

numerical solvers are likely to be most severe in systems which have low noise and

rapid nonlinear dynamics. In §6.3, we study two broad classes of ODE solvers: those

involving a fixed time step, and those involving a time step set adaptively to control the

error on the solution. Using forward simulations of a compartmental epidemiological

model, we show that adaptive step size solvers can be significantly more efficient than

fixed steps solvers. In §6.4, we study the effects that solver inaccuracy may have on

inference, and illustrate this using synthetic data. Additionally, in §6.5, we study how

smoothing approximations can reduce the influence of numerical error on computation

of the likelihood. Finally, in §6.6 and §6.7 we consider inference of ODE models for

real data series. in §6.6 we reanalyse an ODE model of disease transmission fit to the

COVID-19 outbreak in Germany and show that, when using a solver with a fixed time

step, the choice of time step can alter inference and simulation results, and in §6.7 we

fit a rainfall-runoff model to hydrological data to illustrate the pitfalls of performing

parameter inference using an adaptive step size solver with insufficient local tolerances.
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6.2 Effects of numerical error on computation of the log-likelihood

6.2.1 Log-likelihood function for an ODE model

We assume that time series data {yi}Ni=1; yi ∈ Rn are measured at time points {ti}Ni=1.

These data are believed to obey some function g : Rl → Rn of x(t; θ) ∈ Rl, where x is

the solution to an ordinary differential equation:

dx

dt
= h(t, x, θ);

x(0) = x0,

(6.1)

for some function h which is informed by scientific theory and parameterised by the

(potentially unknown) values θ ∈ Rm.

We assume that the noise in the data obeys the standard independent and identically

distributed (IID) Gaussian noise model (eq. (2.9)):

log p(y1, . . . , yN |θ, σ) = −
N

2
log(2π)− N

2
log(σ2)− 1

2σ2

N∑
i=1

(yi − g(x(ti; θ)))
2. (6.2)

6.2.2 Error in the log-likelihood arising from approximation of the forward
solution

The data are assumed to obey the IID Gaussian log-likelihood, eq. (6.2). We assume

that x(ti; θ) is the true solution to the ODE at time point ti, which is unavailable and

approximated by x̂i. The deviation between x(ti; θ) and x̂i at any time point is given by

the global truncation error, e(ti):

e(ti) = x(ti; θ)− x̂i.

In general, e(ti) is unknown, although, for particular numerical solvers, its magnitude

may be bounded by some function of the step size or some other quantity which can be

used to tune the accuracy of the solver.

The log-likelihood available to the inference algorithm takes the same form as eq.

(6.2), but computed using the numerical approximation x̂i instead of x(ti; θ). For brevity,

we denote the accurate log-likelihood by L, and we denote the log-likelihood computed
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using a numerical approximation by L̂, which is given by

L̂ = −N

2
log(2π)− N

2
log(σ2)− 1

2σ2

N∑
i=1

(yi − g(x̂i))
2. (6.3)

For brevity, let gi = g(x(ti; θ)) and ĝi = g(x̂i). We have:

|L̂ − L| =
∣∣∣∣∣− 1

2σ2

N∑
i=1

(yi − ĝi)
2 +

1

2σ2

N∑
i=1

(yi − gi)
2

∣∣∣∣∣ (6.4)

=
1

2σ2

∣∣∣∣∣
N∑
i=1

(yi − gi)
2 − (yi − ĝi)

2

∣∣∣∣∣ (6.5)

≤ 1

2σ2

N∑
i=1

∣∣(yi − gi)
2 − (yi − ĝi)

2
∣∣ (6.6)

=
1

2σ2

N∑
i=1

∣∣g2i − ĝ2i − 2yi(gi − ĝi)
∣∣ (6.7)

=
1

2σ2

N∑
i=1

|(gi − ĝi)(−2yi + ĝi + gi)| (6.8)

≤ 1

2σ2

N∑
i=1

|gi − ĝi| |−2yi + ĝi + gi| (6.9)

≤ 1

2σ2

N∑
i=1

|gi − ĝi| (|yi − ĝi|+ |yi − gi|) (6.10)

≤ 1

2σ2

N∑
i=1

|gi − ĝi| (2|yi − gi|+ |gi − ĝi|) . (6.11)

To proceed further, we impose the assumption of Lipschitz continuity of the observation

function g with Lipschitz constant K, i.e., |g(x1)− g(x2)| ≤ K|x1−x2| for all x1, x2 ∈ Rl.

We thus bound:

|g(x(ti; θ))− g(x̂i)| ≤ K|x(ti; θ)− x̂i| (6.12)

= K|e(ti)|. (6.13)



104 CHAPTER 6. INFERENCE FOR ODE MODELS

Using this in eq. (6.11), we have:

|L − L̂| ≤ 1

2σ2

N∑
i=1

K|e(ti)| (2|yi − g(x(ti; θ))|+K|e(ti)|) (6.14)

=
1

2σ2

N∑
i=1

K2|e(ti)|2 + 2K|e(ti)||yi − g(x(ti; θ))| (6.15)

=
N∑
i=1

(
K2

2σ2
|e(ti)|2 +

K

σ2
|e(ti)||yi − g(x(ti; θ))|

)
. (6.16)

Assuming that the yi are distributed according to the specified IID Gaussian likelihood,

and that the likelihood is evaluated at the same parameter values that generated the

data, we can easily compute the expectation of the bound. We have:

Eyi∼N(g(x(ti;θ)),σ) [|yi − g(x(ti; θ))|] =
√

2

π
σ

so the bound follows:

Eyi∼N(g(x(ti;θ)),σ)

[
|L − L̂|

]
≤

N∑
i=1

(
K2

2σ2
|e(ti)|2 +

√
2

π

K

σ
|e(ti)|

)
. (6.17)

We observe an inverse relationship between σ and the expectation of the bound of

|L − L̂|when e(ti) is held constant. Thus, when a solver is tuned to yield a particular

global truncation error e(ti), we expect the absolute bias in the log-likelihood as a result

of using this solver to be more severe at smaller values of σ. Additionally, at a fixed

level of σ, we expect the bias in the log-likelihood to decrease as the global truncation

error is decreased.

6.3 Effects of ODE solvers on forward simulations

6.3.1 Fixed step and adaptive step ODE solvers

A wide range of numerical algorithms have been developed to obtain approximate

solutions to ODEs of the form given in eq. (6.1). These algorithms typically work by

computing an approximate solution on a grid of time points (in general, distinct from

the time points where the data are located) and then using an interpolation algorithm to

obtain the solution at intermediate time points.

Most simply, the grid of solver time points can be prespecified in advance (we refer
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to such methods as fixed time step solvers). However, in general, it is inefficient to

use the same time step throughout the entire time range on which the ODE is being

solved, particularly when solved repeatedly over a range of parameters. Solvers can

employ large time steps in regions where the solution and its gradients change gradually

without causing much error in the solution; however, in regions where the derivative

changes rapidly, small time steps are required to maintain a low error. This motivated

the development of ODE solvers which adjust the step size throughout the time domain

over which the ODE is solved. While fixed step solvers are still commonly used, adaptive

step solvers are standard in high performance computing and are widely implemented

in software libraries for ODE solving.

When using an adaptive step size solver, the user does not specify a step size, but

rather a local error tolerance. The algorithm then selects a time-varying sequence of step

sizes such that the local error in the solution falls below the specified tolerance. The

total number of time steps used by the solver thus depends on the selected tolerance

and the properties of the solution. Typically, an interpolation scheme is then used to

obtain the solution at intermediate time values. Tolerances can be expressed either as an

absolute value or relative to the magnitude of the solution. In many implementations,

both are available to the user: for example, the SciPy library allows the user to specify

both an absolute tolerance atol and a relative tolerance rtol, and chooses step sizes

such that the magnitude of the local truncation error on the solution x does not exceed

atol+ rtol|x| [Virtanen et al., 2020].

6.3.2 Effect of integrator step size on the SEIRD model

We now revisit the SEIRD model from Chapter 5. We set its parameter values to be rep-

resentative of transmission of the Delta variant of SARS-CoV-2: β = 0.714, κ = 1
3.7 , γi =

1
7(1− IFR), µi =

1
7 IFR [van der Vegt et al., 2022, Verity et al., 2020]. As in Chapter 5, we

note that although these parameter choices ensure that our simulation outputs are not

wildly unrealistic, due to the simplicity of the modelling approach taken in this section

our simulation outputs are not intended to resemble the actual outbreak of the Delta

variant in the United Kingdom or any other country. We solve the model using the

forward Euler method, for two different choices for the solver step size. The first is

a daily time step, which might be considered a reasonable choice given that we are

interested in simulating daily cases and deaths. We also consider a much smaller time

step of 0.001 days. The daily deaths and cases are plotted in Figure 6.1. The results

indicate that for the SEIRD model with these parameters, a step size of 1 day results in
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Figure 6.1: Effect of daily solver time step on simulations of daily deaths and cases.
(left) daily deaths simulated from the SEIRD model using the Forward Euler solver with
two different choices of the step size. (right) daily incidence simulated from the SEIRD
model using the Forward Euler solver with two different choices of the step size.

substantial differences in simulation outputs relative to a time step of 0.001 days. The

larger step size resulted in a higher peak case load which occurred later than observed

with the finer time step. It also delayed the peak in deaths.

6.3.3 Adaptive step size solvers for compartmental models

The chief advantage of numerical solvers such as the uniformly spaced forward Euler

used above, which take a fixed grid of time points on which to calculate the approximate

solution, is their ease of implementation. However, as seen above, these methods suffer

because:

1. To obtain an accurate solution, the solver step size must be set to some small value,

but it is often unknown how small this value should be to ensure a reasonable

approximation.

2. When the solver step size is set to a small value, the method may be impractically

slow.

Both of these defects are addressed by adaptive step size methods. In these, the user

specifies not a step size but a tolerance—some relative or absolute value which the

local error in the approximate solution should not exceed. Then, the solver algorithm

selects the appropriate step size in order for the solution to meet this tolerance, using the

theoretical error properties of the solver and various techniques for step size adaptation.

Adaptive solvers are able to vary the step size over the course of the solve, selecting

very small values only in those regions of time where this is necessary, such as where

the solution is changing rapidly over time, and otherwise increasing the step size to
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larger values. For this reason, they are much more efficient than fixed step solvers

[Gautschi, 1997].

A wide variety of approaches to step size adaptation have been proposed. At each

step, these methods typically use an estimator of the error introduced at that time step,

and then—at least roughly—they select the largest possible step such that the threshold

imposed by the user-supplied tolerance is not exceeded.

In order to demonstrate the advantages of adaptive step solvers, in Figure 6.2, we

compare the performance of the forward Euler solver with a fixed, small step size to that

of the LSODA adaptive step size solver [Hindmarsh and Petzold, 2005]. Both methods

are seen to achieve similarly accurate solutions. However, we note the significant speed

advantage of the LSODA solver, which here is roughly two orders of magnitude faster

(see Table 6.1).

Deaths Incidence
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Euler, dt=0.001 Day

LSODA (adaptive step)

Figure 6.2: Comparison of simulations of the SEIRD model computed using adaptive
and fixed step solvers. (left) daily deaths simulated from the SEIRD model using the
fixed-step Forward Euler solver and the LSODA solver. (right) daily incidence simulated
from the SEIRD model using the fixed-step Forward Euler solver and the LSODA solver.

Solver Runtime
Forward Euler ∆t = 0.001 Day 1.885 seconds

LSODA 0.022 seconds

Table 6.1: Runtimes for the simulations plotted in Figure 6.2. The simulations were
performed in R version 4.2.1 on a 2.42 GHz core.

6.4 Effects of ODE solvers on inference

To study the interplay between ODE solvers and inference, we introduce the following

differential equation problem which describes an oscillatory system with damping and



108 CHAPTER 6. INFERENCE FOR ODE MODELS

forcing:

m
d2x

dt2
+ c

dx

dt
+ kx = F (t).

The model has three parameters which will be treated as unknown: (m, c, k). In clas-

sical mechanics, these represent the mass, damping coefficient, and spring constant

respectively. F (t) represents the forcing function or stimulus, and in this chapter takes a

variety of forms throughout our results. This damped and forced oscillator is described

by a second order differential equation; to apply ODE solvers straightforwardly, we

rewrite it as a first order differential equation of two state variables:

d

dt

(
x

ẋ

)
=

(
ẋ

F (t)
m − c

m ẋ− k
mx

)
, (6.18)

where ẋ = dx/dt. Structural identifiablity of the ODE model was assessed using the

SIAN toolbox [Hong et al., 2019], which showed that the unknown parameters were

structurally identifiable.

Typical log-likelihood surface shapes

We now consider the influence of the two numerical solution methods for parameter

inference. Because fixed step solvers use the same grid throughout parameter space,

while adaptive step solvers may employ different grids at different parameter values,

these two classes of solvers differ in the characteristics of the error that they may

introduce into the likelihood function.

For the inference results presented in this chapter, we fix atol to a value of 10−9

and tune rtol to control the accuracy of the solver. Adaptive step sizes have been

implemented for a wide variety of ODE solver algorithms. For our subsequent inference

results, we focus on Runge-Kutta methods of the form RKp(q), which use the qth order

method to estimate the error (and thus control the time step), while making the actual

steps using the pth order method [Dormand and Prince, 1980]. Runge-Kutta methods

are not described in detail here for brevity—they are widely used and details can be

found in many standard texts (for example, [Gautschi, 1997]). We rely on the SciPy

adaptive time step Runge-Kutta implementation, which employs a quartic interpola-

tion polynomial for RK5(4) and a cubic Hermite interpolation polynomial for RK3(2)

[Virtanen et al., 2020].

We illustrate this by computing the likelihood surface for the k parameter in the

oscillator problem, eq. (6.18). 75 evenly spaced data points were generated from and
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including t = 0 to t = 50 from the model with an exact solution, using true parameter

values k = 1, c = 0.2, m = 1, initial conditions of x(t = 0) = 0, ẋ(t = 0) = 0, and

F (t) =

1, t < 25,

0.9, t ≥ 25.

Then IID Gaussian noise was added to the solution at each of the sampled locations

with σ = 0.01. Holding all other parameters fixed at their true values, the log-likelihood

was calculated for a range of values of k, using three different ODE solvers. First, the

exact solution to the ODE was used to compute the accurate (‘True’) likelihood. Next,

the Forward Euler solver with a fixed time step of ∆t = 0.01 was used. Finally, we used

the RK5(4) solver, but with its relative tolerance tuned so the observed magnitude in the

error in the log-likelihood at the true parameter values was equal to that produced by

the Forward Euler solver (for this problem, this resulted in relative tolerance tuned to

0.00944). These results are shown in Figure 6.3.

At the true parameter value, both solvers result in a slight underestimation of the

log-likelihood. Across the parameter range considered, the fixed time step solver results

in a log-likelihood which is shifted relative to the true one, but retains the smooth,

unimodal shape. However, the adaptive step solver results in a log-likelihood surface

which in addition to being shifted exhibits jagged, discontinuous fluctuations. In the

remainder of §6.4, we examine these two phenomena in more detail.

6.4.1 Fixed time step solvers

Forward Euler solver

One of the simplest numerical solvers for ordinary differential equations is the Forward

Euler method with a uniform step size ∆t (see Chapter 2, Example 7). This solver

is easily implemented and thus has achieved wide usage despite its simplicity and

typically mediocre performance.

Forward Euler has been used for inference in some recent high-profile epidemiologi-

cal research where ∆t was set to a value comparable to the time scale of the behaviour of

the system (e.g., [Birrell et al., 2021, Dehning et al., 2020]). Whether these applications

are representative of the use of Forward Euler more generally is unclear, but our results

in §6.6 indicate that such choices of ∆t may alter both forward model solutions and

parameter inference results.
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Figure 6.3: Comparison of log-likelihood surfaces calculated using fixed step and
adaptive step solvers. Log-likelihood for the parameter k calculated from data gener-
ated from the oscillator model eq. (6.18), with all other parameters held at their true
values. The log-likelihood was calculated from eq. (2.9) using the exact solution (True),
a Forward Euler solver with a fixed time step ∆t = 0.01, and an adaptive step RK5(4)
solver with tolerance tuned such that at the true parameter values (vertical line) it
introduces the same magnitude of error in the log-likelihood as the fixed step Forward
Euler solver (corresponding to a relative tolerance of 0.00944).
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Inference for the damped, driven oscillator using Forward Euler

We now exemplify the impact of using Forward Euler with insufficiently small time

steps on inference by using synthetic noisy data generated from the (accurate) solution

of eq. (6.18). 25 evenly spaced data points were generated from and including t = 0

to t = 5 from the model using true parameter values k = 1, c = 0.2, m = 1, an initial

condition of x(t = 0) = 0, ẋ(t = 0) = 0, and F (t) = 1. Then, IID Gaussian noise was

added to the solution at each of the sampled locations with σ = 0.1. Holding all other

parameters fixed at their true values, the log-likelihood was calculated for a range of

values of k, using the Forward Euler solver with various time steps.

Figure 6.4 shows the impact of using Forward Euler on the likelihood surface. The

results show the typical effect of a fixed step solver with insufficiently small time steps:

the likelihood surface maintains a smooth shape, but it is shifted relative to its true

location. The longest time step considered in this study, ∆t = 0.1, causes substantial

inaccuracy in the likelihood even though ∆t = 0.1 is small compared to the time scale

of the dynamics of the system and the system with F (t) = 1 contains no discontinuities

or other challenging features.

As the step size is refined, the log-likelihood curves converge. This suggests a

diagnostic technique which could be incorporated into inference algorithms: once the

optimal parameter values have been determined, the log-likelihood should be evaluated

at those parameter values with the step size on the solver slightly adjusted; if the solver

is sufficiently accurate, the value of the log-likelihood should not be a strong function of

the step size.

6.4.2 Adaptive step size solvers

Adaptive step size solvers enable increased efficiency in obtaining accurate solutions to

ODEs. However, when used in inference problems, they can convert a smooth likelihood

surface into a rough one, characterized by rapid (and entirely phantom) changes in the

likelihood which interfere with inference algorithms. These inaccuracies in the likelihood

can be observed even at tolerances in the solution error where further refinements do

not visibly influence the solution. For example, in cardiac electrophysiology, jagged

parameter likelihoods have been observed with adaptive step size ODE solvers with

tolerances as low 10−7 [Johnstone, 2018, Mirams, 2018]. Next, we investigate the origin

of the jagged likelihoods using synthetic data from the oscillator model described in eq.

(6.18).
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Figure 6.4: Damped oscillator inference using Forward Euler. (Left) Synthetic data
for the damped driven oscillator. The curved line indicates the accurate solution to the
ODE with these parameters, while the points indicate the noisy data. (Center) Solution
for oscillator computed using a Forward Euler solver with four different choices for the
time step ∆t. (Right) Log-likelihood for the parameter k calculated from the noisy data,
with all other parameters held at their true values. The log-likelihood was calculated
from eq. (2.9) using a Forward Euler solver with four different choices for the time step
∆t.

Inference for the damped, driven oscillator using an adaptive step size solver

We first study the effects of adaptive time step solvers on inference using the model

system that was introduced at the beginning of §6.4 (eq. (6.18)). Here, we set the input

stimulus according to

F (t) =

1, t < tchange,

f1, t ≥ tchange.
(6.19)

Thus, f1 controls the strength of a pulse provided to the system at t = tchange.

First, we consider the problem where f1 = −1 and tchange = 2.5 for different choices

of the RK5(4) solver tolerance. 25 evenly spaced data points were generated from and

including t = 0 to t = 5 from the model, using true parameter values k = 1, c = 0.2,

m = 1 and an initial condition of x(t = 0) = 0, ẋ(t = 0) = 0. Then, IID Gaussian noise

was added to the solution at each of the sampled locations with σ = 0.1. Holding all

other parameters fixed at their true values, the log-likelihood was calculated for a range

of values of k, using the RK5(4) solver with various tolerances. These results are shown

in Figure 6.5. At insufficient tolerances, the log-likelihood surface exhibits significant

erroneous jaggedness. Notably, visual changes between the forward simulations are

minor even at tolerances which cause drastic differences in the log-likelihood.

Next, we fix the adaptive solver tolerance and study how introducing more rapid

changes in the system’s behaviour affects the log-likelihood surface. In Figure 6.6, we
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Figure 6.5: Damped oscillator inference using adaptive time step Runge-Kutta. (Left)
Synthetic data for the damped driven oscillator. The curved line indicates the accurate
solution to the ODE with these parameters, while the points indicate the noisy data.
(Center) Solution for oscillator computed using an RK5(4) solver with three different
choices for the relative tolerance (indicated by tol in the legend). (Right) Log-likelihood
for the parameter k calculated from the noisy data, with all other parameters held at
their true values. The log-likelihood was calculated from eq. (2.9) using an RK5(4) solver
with three different choices for the tolerance.
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Figure 6.6: Damped oscillator model: forward simulations and inference using an
adaptive solver. Time series data and parameter likelihood surfaces are shown for four
values of f1 in the oscillator problem: eqs. (6.18) & (6.19). For each value of f1, the top
plot shows the accurate ODE solution (line) and noisy synthetic data (points) generated
from it. The bottom plot panels show the corresponding log-likelihood surface for k
over an interval centred on the true value, k = 1, while all other parameters are held
at their true values. For generating the likelihood surfaces, an RK5(4) solver was used
with rtol = 10−3.
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Figure 6.7: Damped oscillator model: likelihood discontinuities caused by variation
in the number of adaptive steps. The log-likelihood surface for the parameter 5 in the
oscillator problem (black solid line) and the number of time points used by the adaptive
step size ODE solver in the calculation of each value of the likelihood (blue dashed line)
are shown. An RK5(4) solver was used with rtol = 10−3.

fix tchange = 25 and consider four different values of f1 and plot the likelihood surface

for the model parameter m calculated according to an RK5(4) solver with rtol = 10−3.

For each value of f1, 75 evenly spaced data points were generated on the interval from

and including t = 0 to t = 50, using parameter values k = 1, c = 0.2, and m = 1. IID

Gaussian noise was added to the solution at each of the sampled locations with σ = 0.01.

The likelihood was then calculated over a range of values of k, with all other parameters

held at their correct values. For f1 = 1, the stimulus F (t) is constant over time, and

the likelihood surface appears smooth. However, as f1 is adjusted so the stimulus is

a stronger pulse, the likelihood becomes jagged with large deviations away from the

true likelihood surface. (This is an example of a challenging RHS which could be made

more tractable for inference using smoothing approximations, which we analyse in §6.5.)

Overall, these results indicate that the more rapid the changes in a system’s behaviour,

generally the tighter solver tolerances are required to solve the inverse problem.

A fundamental point to note is that these inaccuracies arise because different values

of the parameters represent different forward problems, and the solver selects a different

sequence of step sizes for each. When the solution contains regions of rapid change,

differences in the positions of the solver time steps, and, particularly, the inevitably

discontinuous jumps in the total number of time steps used by the solver, cause errors

in the likelihood. This phenomenon is investigated more closely in Figure 6.7. For this

study, the oscillator model eq. (6.18) was again used. 50 evenly spaced data points were

generated on the time interval from and including t = 0 to t = 10, with tchange = 5 and
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f1 = −5, using parameter values m = 1, c = 0.2, and k = 1. IID Gaussian noise was

added to the solution at each of the sampled locations with σ = 0.01. The likelihood for

k was calculated as before and is plotted in Figure 6.7. In this case, the figure is restricted

to a very narrow range of k values, and the total number of time points selected by the

adaptive solver for the calculation of the likelihood at each value of k is overlaid on the

plot. Here, the large jumps in the likelihood correspond to the addition or removal of a

solver time point. Smaller spikes and jaggedness where the total number of solver time

points is constant correspond to shifting of the solver time points.

Effect of jaggedness on inference algorithms

The jagged spikes appearing in the likelihood surface as a result of insufficiently accurate

adaptive step size solvers plague computational inference algorithms. A common

approach to Bayesian inference is to use the Metropolis MCMC algorithm, or variants

of it [Gelman et al., 2013]. This algorithm generates a sequence of parameter values

via a Markov chain whose stationary distribution is the posterior distribution of the

parameters. Given the most recent parameter values in the chain θold, the Metropolis

algorithm proposes new parameter values θprop according to a proposal distribution

and then accepts θprop with a probability of:

r = min

(
1,

p(θprop)

p(θold)

p(y|θprop)

p(y|θold)

)
,

where p(θprop) is the prior and p(y|θprop) is the likelihood. To illustrate the detrimental

effects of jagged errors in the likelihood, we consider a situation where θold and θprop

have identical values under the prior and the accurately computed likelihood (this is

a plausible assumption when θold and θprop are nearby), but we assume that the log-

likelihoods at these two parameter values computed using the numerical approximation

differ by some factor c driven by numerical error in the adaptive step size solver (i.e.,

log p(y|θprop) = log p(y|θold) − c, for c > 0). This assumption of a jump in computed

likelihood values at nearby parameter values is analogous to the spikes appearing in

the log-likelihood in our results in Figures 6.6 and 6.7.

Under these assumptions, log r = −c or r = exp(−c). For a value of c = 10 (smaller

than many of the magnitudes of spikes observed in our results), the probability of

accepting the proposal is less than 1 in 20,000. Even a relatively small jump of magnitude

c = 3 will be traversed by the sampler with a probability of only about 5%. Although

these computations are based on simplistic assumptions, they suggest that even minor
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warping of the log-likelihood may severely restrict the ability of a Metropolis-Hastings

sampler (or similar inference algorithm) to traverse the parameter space efficiently.

6.4.3 The impact of observation error magnitude on inference and sampling
performance

In this section, we empirically study the effects of different levels of observation noise

on inference. We performed Bayesian inference using MCMC for the oscillator problem

with varying levels of noise in the data. We considered two values of σ (0.01 and 0.1)

to generate the data, fixed f1 = −1, and otherwise generated data exactly as described

for Figure 6.6. We set a uniform prior on [0.1, 1.5] for the three model parameters m, c,

and k, and a uniform prior on [0, 1] for the σ. Three MCMC chains were run, initialized

at random samples from the prior (with the same MCMC starting point being used

for both choices of the true σ). 1500 iterations of MCMC were performed using the

Haario-Bardenet adaptive covariance algorithm as implemented in PINTS to sample

from the posterior [Haario et al., 2001, Clerx et al., 2019]. The MCMC chains for the m

parameter are plotted in the left column of Figure 6.8 using the RK5(4) solver with

rtol = 10−3, while the right column of Figure 6.8 shows the chains using the same

solver but with more accurate tolerances of rtol = 10−8.

At the lowest noise level considered (σ = 0.01), the three MCMC chains using the

less accurate solver move towards the true value of the parameter but fail to mix with

each other. Instead, each chain remains stuck in a narrow region of parameter space near

the true parameter value, corresponding to the phantom local maxima in the likelihood

surface observed in Figure 6.6. Reducing the solver tolerance to 10−8 was, however,

sufficient to ensure chain mixing, indicating that the lack of convergence was purely

an artefact of using an inaccurate solver. At the highest level of noise considered here

(σ = 0.1), the three MCMC chains mix well for either tolerance choice,1 which can be

explained by our bound given in eq. (6.11): that larger σ values lead to gentler variation

in the log-likelihood surface and so easier exploration by inference algorithms.

1We note that, for this level of noise, the centers of the sampling distributions are shifted slightly away
from the true parameter value because the noise limits our ability to estimate this parameter.
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Figure 6.8: Effect of noise on MCMC convergence. Data were generated according to
the same specifications as for Figure 6.6, with f1 = −1, and the indicated values of σ.
Inference was performed for the three parameters m, c, and k, as well as σ, via adaptive
covariance MCMC [Haario et al., 2001] with three independent chains initialized at
random samples from the prior (uniform on [0.1, 1.5] for the model parameters, and
uniform on [0, 1] for σ). 1500 MCMC iterations were performed. The plots show the
three chains for the m parameter. (Left) Forward simulation was performed using the
RK5(4) solver with rtol = 10−3. (Right) Forward simulation was performed using the
RK5(4) solver with rtol = 10−8.
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6.5 Smoothing forcing terms to reduce numerical errors in the

likelihood

As indicated by our results in Figure 6.6, discontinuities in the right-hand side (RHS)

of an ODE can lead to substantial errors in the likelihood when adaptive step size

solvers are used. In general, errors in the likelihood arising from numerical errors in

the solution can be reduced by refining the tolerance of the adaptive solver. However,

when the RHS suffers from a discontinuity, the required solver tolerance to obtain an

acceptable likelihood surface may employ a prohibitively large grid of solver points.

Several approaches to remove discontinuities from the RHS have been developed to

enable more accurate forward simulations, including smoothing approximations and

solving the ODE separately within regions where the RHS is continuous [Stewart, 2011].

These techniques may be particularly advantageous when performing inference. In this

section, we study the effects on the computation of the log-likelihood of one of these

approaches, which is to smooth discontinuities in the RHS of the ODE. Smoothing is

often a particularly appropriate assumption for biological models, where a continuous

rather than an instant change may in fact more realistically represent the true behaviour

of the system. For example, in epidemiology, interventions (such as the introduction of

a vaccination campaign) may be naively represented by discontinuous step functions

in the RHS of a compartmental epidemiological model; however, a function smoothly

moving between two values (corresponding to the intervention reaching its full effect

gradually over an appropriate period of time) is both more realistic and more tractable

for numerical solvers for the forward problem [van der Vegt et al., 2022].

The hyberbolic tangent function (tanh) is a useful smooth approximation to a step

function. In the forced oscillator problem, we can use tanh to approximate the step

function stimulus, (6.19), with f1 = −1 according to:

F smooth(t) = − tanh

(
t− tchange

a

)
(6.20)

where a is a tuning parameter controlling the level of smoothing, with larger values of

a leading to a more gradual change in the stimulus, and tchange is the time when the

stimulus changes in value.

To examine the effect of the smoothing approximation on inference, we computed

the likelihood surface for the k parameter in the forced oscillator model using a variety

of choices for the smoothing parameter, with results shown in Figure 6.9. Using f1 = −1
and tchange = 2.5, 25 evenly spaced data points were generated from and including t = 0
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Figure 6.9: Effect of tanh-smoothing on likelihood surface. (a.) Synthetic data for the
damped driven oscillator. The curved line indicates the accurate solution to the ODE
with these parameters, while the points indicate the noisy data. (b.) The three considered
forms of the stimulus. a = 0 indicates the unsmoothed stimulus (eq. (6.19)), while the
positive values of a indicate the tanh-smoothed stimulus according to eq. (6.20). (c.)
Solution for oscillator computed using an RK5(4) solver with relative tolerance 10−3,
with three different forms of the stimulus, at the true parameter values. (d.) Log-
likelihood for the parameter k calculated from the noisy data, with all other parameters
held at their true values. The log-likelihood was calculated from eq. (6.2) using an
RK5(4) solver with relative tolerance 10−3.

to t = 5 from the model with an accurate solver (the RK5(4) solver with relative tolerance

set to 10−8), using true parameter values k = 1, c = 0.2, m = 1 and an initial condition

of x(t = 0) = 0, ẋ(t = 0) = 0. Then, IID Gaussian noise was added to the solution at

each of the sampled locations with σ = 0.1. Holding all other parameters fixed at their

true values, the log-likelihood was calculated for a range of values of k, using the RK5(4)

solver with relative tolerance tuned to 10−3. The likelihood was computed using both

the original step function stimulus eq. (6.19) (indicated in Figure 6.9 by a = 0), as well

as the smooth approximation eq. (6.20) with two different choices of a > 0. Without

smoothing, we observe significant jagged biases in the likelihood, as expected due to the

insufficient solver tolerance. However, with smoothing of the RHS, a smooth, tractable
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likelihood surface is obtained despite the mediocre solver tolerance. This is despite the

fact that all forward simulations are visually very similar. This is in accordance with our

results in Figure 6.5, where even visibly small changes in the forward solution may hide

the fact that there lurks substantial distortions of the likelihood surface.

6.6 Fixed step solvers applied to an SIR change point model of

the spread of COVID-19 in Germany

As discussed in the previous chapter (Chapter 5), a widely used class of differential

equation models in epidemiology are compartmental models, which divide the popula-

tion into a number of compartments representing different diseased or non-diseased

states and specify the rates at which individuals move from one compartment to an-

other [van der Vegt et al., 2022]. A simple yet commonly used example is the SIR model

(susceptible-infected-recovered) [Weiss, 2013]. This model keeps track of the number

of susceptible individuals S(t) (those who can be infected with the disease), infected

individuals I(t) (those who are currently infectious with the disease), and recovered

individuals R(t) (those who have recovered from the disease and are assumed im-

mune). Neglecting births and deaths, the model is expressed by the following system of

differential equations:
dS

dt
= −λSI

N
(6.21)

dI

dt
= λ

SI

N
− µI (6.22)

dR

dt
= µI, (6.23)

where λ > 0 is the spreading rate of the disease, µ > 0 is the recovery rate, and N > 0 is

the total size of the population. The system additionally requires the specification of

initial conditions for each compartment (S(0), I(0), R(0)). I(0) must exceed zero for an

infection to spread.

The qualitative behaviour of the SIR model can be determined by the basic repro-

duction number, R0, where

R0 =
λ

µ
.

Assuming that S(0) ≈ N and I(0) > 0, when R0 > 1, the number of infected individuals

will tend to grow, for R0 < 1, the number of infected individuals will fall. Thus, fitting

an SIR model to infection data, and estimating the spreading rate λ and reproduction



6.6. SIR CHANGE POINT MODEL 121

number R0, are important steps in understanding and predicting the progression of an

epidemic.

An extension to the standard SIR model has λ vary over time, allowing the model

to capture changes in the spread of a disease caused by behavioural changes or gov-

ernment policy. In the aftermath of the outbreak of COVID-19 in Europe in early 2020,

an SIR model allowing changes in λ through time was used in a high profile paper

which attempted to capture the impact of major public health policy interventions on

COVID-19 transmission in Germany [Dehning et al., 2020]. The authors used the model

eqs. (6.21)–(6.23), discretised with a one day time step, equivalent to a Forward Euler

solver with ∆t = 1:

St = St−1 − λ(t)∆t
St−1It−1

N
(6.24)

It = It−1 + λ(t)∆t
St−1It−1

N
− µ∆tIt−1 (6.25)

Rt = Rt−1 + µ∆tIt−1. (6.26)

The initial condition was given by an unknown parameter I0 = I(0). The system

was closed with R(0) = 0 and S(0) = N − I0. The spreading rate λ was assumed

to be a continuous function of time and was allowed to shift at three time points,

whose locations were estimated from the data. Specifically, these three time points,

ti, i ∈ {1, 2, 3} denoted the times at which λ began to (linearly) change to a new, constant

value, and the time taken for these shifts was dictated by durations di. The λ profile

then has the following piecewise representation:

λ(t) =



λ0, t < t1,

λ0 +
λ1−λ0

d1
(t− t1), t1 ≤ t < t1 + d1,

λ1, t1 + d1 ≤ t < t2,

λ1 +
λ2−λ1

d2
(t− t2), t2 ≤ t < t2 + d2,

λ2, t2 + d2 ≤ t < t3,

λ2,+
λ3−λ2

d3
(t− t3) t3 ≤ t < t3 + d3,

λ3, t3 + d3 ≤ t.

Additional features of the model included a reporting delay and a weekly modula-

tion. The reporting delay was characterised by a single parameter D indicating the

number of days between the time at which new infections occur and the time at which

they are reported. The modulation accounts for the weekly periodicity evident in the
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data and is characterised by two parameters fw and Φw. This significant periodicity

likely arises from processes involved in the reporting of COVID-19 cases and deaths

[Gallagher et al., 2023]. Specifically, cases Ct are modelled by:

Ct = (1− f(t))Inew
t−D, (6.27)

where

f(t) = (1− fw)

(
1−

∣∣∣∣sin(π

7
t− 1

2
Φw

)∣∣∣∣) , (6.28)

where Inew
t = St−1 − St. [Dehning et al., 2020] assumed a Student-t distribution with

four degrees of freedom and multiplicative noise for the likelihood, such that the

likelihood for observed cases Ĉt was given by:

p(Ĉt|θ, σ) = Student-tν=4(mean = Ct(θ), scale = σ
√
Ct(θ)),

where θ = (λ0, λ1, λ2, λ3, t1, t2, t3, d1, d2, d3, µ,D, I0, fw,Φw, σ) is the full vector of pa-

rameters for the differential equation model, and Ct(θ) is the deterministic solution

which may be computed using a range of different time steps. The prior distributions

for the parameters are given in Table 6.2.

Parameter Prior
λ0 log normal(log(0.4), 0.5)
λ1 log normal(log(0.2), 0.5)
λ2 log normal(log(0.125), 0.5)
λ3 log normal(log(0.0625), 0.5)
t1 N(2020 March 9, 3 days)
t2 N(2020 March 16, 1 day)
t3 N(2020 March 23, 1 day)
di log normal(log(3), 0.3)
µ log normal(log(0.0625), 0.2)
D log normal(log(8), 0.2)
I0 half Cauchy(100)
fw beta(0.7, 0.17)
Φw Von-Mises(0, 0.01)
σ half Cauchy(10)

Table 6.2: Prior distributions for parameters in the SIR changepoint model.
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6.6.1 Effect of time step on the forward solution

We first study the effect of assuming ∆t = 1 day on forward simulations of the model.

We set up the forward simulations using the same settings that [Dehning et al., 2020]

used to generate their Figure 2. The parameters of an SIR model without change points

or weekly modulation (i.e., a single value of λ, µ, D I0, and σ) were inferred from

an early period of the German daily reported COVID-19 cases, from 2 March 2020 to

15 March 2020. The posterior median values of these parameters (excepting λ) were

then used to generate forward simulations according to the full model without weekly

modulation (eqs. (6.24)–(6.27)), with one change point, and pre-specified values of λ0

and λ1.

As in [Dehning et al., 2020], the first set of simulations considered how different lev-

els of social restrictions could influence the course of disease transmission, as measured

by cases. Three levels of social restrictions (assumed to be captured by different λ values)

are considered, which each yield two sets of simulations: one corresponding to Forward

Euler with ∆t = 1 day (as in [Dehning et al., 2020]) and another with ∆t = 0.1 days.

The results of this are shown in Figure 6.10A. Our second set of simulations, shown in

Figure 6.10B, considered only our “strong” social distancing scenario and explored three

different times at which the change in λ might occur (e.g., if a public health intervention

were implemented at different times). These simulations illustrate how, for constant

values of the parameter λ, using a model with a large time step generally leads to a

substantial underestimation of case counts relative to a model with a smaller time step,

particularly during the (crucial) growth phase of the epidemic.

6.6.2 Effect of time step on the posterior distributions

We also studied the effect of the time step on parameter inference for the full model

(eqs. (6.24)–(6.28)) using the German daily cases data from 2 March 2020 to 21 April 2020

as was done in [Dehning et al., 2020]. Inference was performed using the PyMC3 No-

U-Turn MCMC Sampler (NUTS) [Salvatier et al., 2016, Gelman et al., 2013] using the

model developed by [Dehning et al., 2020], modified to allow the 0.1 day step size. To

initialize the chains, automatic differentiation variational inference [Kucukelbir et al., 2017]

as implemented in PyMC3 [Salvatier et al., 2016] was performed to generate an approxi-

mate posterior (which, however, does not capture correlations between the parameters).

Four MCMC chains were then initialized by sampling from this approximation of the

posterior. The chains were run for 500 iterations of NUTS, with the first 100 discarded

as burn-in, and convergence assessed by requiring that R̂ < 1.05 [Gelman et al., 2013].
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Figure 6.10: COVID-19 model: forward simulations using Forward Euler. In both (a)
and (b), the top panel shows three different pre-specified trajectories of λ(t), and the
bottom panel shows the number of daily cases resulting from these trajectories for each
choice of the time step ∆t.
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Figure 6.11: COVID-19 model: inference using Forward Euler (Left) Real data and
model fits for the number of daily COVID-19 cases in Germany over the period 2 March
2020 to 21 April 2020. Note that the model fits for ∆t = 1 and ∆t = 0.1 overlap almost
completely. (Right) Inferred basic reproduction number over time for the Germany
COVID-19 data, using the SIR model with change points in λ (eqs. (6.24)–(6.28)) and
two different values for the ODE solver time step, ∆t. In both panels, lines indicate the
posterior median and shaded regions indicate the central 95% of the posterior.
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These results are shown in Figure 6.11.

Both models achieve a near identical visual fit to the data, using the median values of

the recovered parameters. However, the parameter estimates of the two models differed.

We focus on the posterior distribution for the basic reproduction number R0, which is

calculated using the MCMC samples of the joint posterior for (λ, µ). The one day time

step results in overestimation of R0 (by approximately 10% relative to the 0.1 day time

step) during the early stages of the epidemic (i.e., before the first change point). This is

because, during the growth phase of the epidemic, the larger time step results in slower

growth for a given λ value (cf. Figure 6.10), meaning a larger λ value is estimated to

compensate. During the later stages of the epidemic, the values of R0 are more similar

between the two models. Additionally, the change point locations are not much affected

by the choice of time step (though, this is expected as the change points have fairly

informative priors).

Our results indicate that while the discrete version of the SIR change point model

using ∆t = 1 appears visually to obtain a good fit to German COVID-19 data, the

growth parameters of the discrete model using this time step vary markedly from those

recovered using ∆t = 0.1, and thus care should be taken in the deployment of such

discrete models and the reporting of their results.

6.7 Numerical errors arising in rainfall-runoff models of river

streamflow data

In this section we use real data from the French Broad River at Asheville, North Carolina

to investigate the impact of adaptive solvers in performing inference for rainfall-runoff

models used in hydrology [Schoups and Vrugt, 2010, Schoups et al., 2010].

Rainfall-runoff models divide the flow of water through a river basin into several

spatially grouped components representing different hydrological processes. The model

we consider here is governed by a system of five ODEs:

dSi

dt
= Precip(t)− InterceptEvap(t)− EffectPrecip(t) (6.29)

dSu

dt
= EffectPrecip(t)−UnsatEvap(t)− Percolation(t)− Runoff(t) (6.30)

dSs

dt
= Percolation(t)− SlowStream(t) (6.31)
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Term Definition Description
Si Interception storage Water which strikes vegetative sur-

faces.
Su Unsaturated storage Storage of water in the soil above

the water table.
Ss Slow reservoir Water moving to the river via perco-

lation.
Sf Fast reservoir Water moving to the river via sur-

face runoff.
z River discharge Water flowed out of the river at the

measuring location.
f(S, a) 1−e−aS

1−e−a Nonlinear flux function.
Precip(t) Precipitation Areal precipitation in the river

basin, provided as input to the
model.

Evap(t) Evaporation Evaporation from the river basin,
provided as input to the model.

InterceptEvap(t) Evap(t)f(Si/Imax, αi) Evaporation from interception.
EffectPrecip(t) Precip(t)f(Si/Imax,−αi) Effective precipitation which

reaches unsaturated storage.
UnsatEvap(t) max(0,Evap(t) −

InterceptEvap(t))f(Su/Su,max, αe)
Evaporation from unsaturated stor-
age.

Percolation(t) Qs,maxf(Su/Su,max, αs) Trickling of water through the
ground.

Runoff(t) EffectPrecip(t)f(Su/Su,max, αf ) Flow of water on the surface.
SlowStream(t) Ss/Ks Slow component of the river flow.
FastStream(t) Sf/Kf Fast component of the river flow.

Table 6.3: Description of the terms which appear in the rainfall-runoff model.

dSf

dt
= Runoff(t)− FastStream(t) (6.32)

dz

dt
= SlowStream(t) + FastStream(t), (6.33)

Each term in this equation is defined in Table 6.3, and the seven unknown parameters of

the model and their prior distributions are defined in Table 6.4. The data consist of daily

streamflow measurements (dz/dt), and the authors assume an IID Gaussian likelihood

with unknown standard deviation σ.
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Parameter Definition Prior
Imax Maximum interception Uniform(0, 10)

Su,max Unsaturated storage ca-
pacity

Uniform(10, 1000)

Qs,max Maximum percolation Uniform(0, 100)

αe Evaporation flux shape Uniform(0, 100)

αf Runoff flux shape Uniform(−10, 10)
Ks Slow reservoir time con-

stant
Uniform(0, 150)

KF Fast reservoir time con-
stant

Uniform(0, 10)

αs = 0 Percolation flux shape -
αi = 50 Interception flux shape -
σ Noise standard deviation Uniform(0, 10)

Table 6.4: Description of the seven unknown parameters of the model, and the two
parameters with fixed values.

Previous work has shown that using large time steps with such hydrological models

can bias inferences [Kavetski et al., 2003]. We show that using an adaptive step size

method (as suggested by [Schoups et al., 2010]) can also cause inaccurate inference

results, unless the error is tightly controlled.

Using a fast and accurate ODE solver (the CVODE multistep solver from the SUN-

DIALS library [Hindmarsh et al., 2005] with rtol = atol = 10−7), we obtained the

posterior distributions for the seven parameters of the model, using USGS data for

the streamflow at Asheville, North Carolina (USGS station 03451500) over a 200 day

period starting 1 January 1960. Sampling was performed using the Dream multi-chain

MCMC algorithm as implemented in PINTS [Vrugt et al., 2009, Clerx et al., 2019], using

6 chains with each initialized by a sample from the prior (Table S3, supplementary

information). 25000 MCMC iterations were performed, and convergence of the chains

was assessed by requiring that R̂ < 1.05 [Gelman et al., 2013]. In Figure 6.12, we plot

the likelihood surfaces of the parameters for slices through parameter space near the

estimated posterior medians. Likelihood surfaces are plotted for two adaptive step

size solvers: the RK3(2) solver from SciPy with rtol = atol = 10−3, and the CVODE

solver as described above. For all parameters, the 10−3 tolerance solver causes highly

jagged likelihoods, of sufficient magnitude to interfere with inference via MCMC or

maximum likelihood estimation. This is in accordance with our earlier results using the

oscillator model in §6.4, as rapid changes in the RHS cause spurious jaggedness in the

computed likelihood. The likelihoods calculated using the more accurate solver have
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Figure 6.12: Rainfall run-off model: inference using accurate and inaccurate adaptive
solvers. Here, we plot the likelihood surface for each parameter for the rainfall-runoff
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likelihood calculated using an RK3(2) adaptive solver with rtol = atol = 10−3, while
the dashed line indicates the likelihood calculated using the CVODE adaptive solver
with rtol = atol = 10−7.
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similar broadscale shapes but are smooth enough for accurate inference to be performed.

6.8 Discussion

Inaccurate solution of ODEs through either fixed time step or adaptive solvers can lead

to biased inferences which are generally exacerbated when there is low observation

noise. For adaptive solvers, these biases may manifest through the presence of phantom

jaggedness in the likelihood surface, which can wreak havoc for inference algorithms

attempting to navigate the surface. For the oscillator model studied in this chapter, the

three model parameters could be precisely learned when the ODE was solved accurately,

but when a solver with insufficient tolerance was used MCMC chains failed to mix

(Figure 6.8). Our results indicate that, when applying adaptive solver grids to inference,

sufficient accuracy of the numerics is a prerequisite for intelligible inference results.

Researchers facing intractable likelihood surfaces or objective functions arising due

to numerical inaccuracy in an adaptive grid solver may be motivated to modify the

model in arbitrary ways when, in fact, all that was required to render inference soluble

was a reduction in solver tolerances. Tolerances which seem good enough for forward

simulation are likely insufficient for solving inverse problems. For example, a relative

tolerance of 10−3 was insufficient for both the synthetic data and real data studied in

§6.4.2 and §6.7. When using an ODE solver library to perform inference, default settings

may well not suffice and, ideally, the solver tolerance should be set by inspection of the

likelihood surface.

In inference problems involving ODEs, numerical solution of the differential equa-

tions at each parameter value is likely to be the dominant computational expense. For

this reason, researchers may be motivated to implement coarser solvers to decrease

runtimes. When using fixed solver grids, the results in this chapter suggest that the

parameter values associated with models using larger time steps cannot be considered

equivalent to those associated with finer time steps. Using adaptive solver grids may

enable significant speedups over fixed grid methods. However, in this chapter we

observed highly intractable likelihood surfaces computed using adaptive solvers with

moderate tolerances, arising from the fact that these solvers use different solver grids

at nearby parameter values. For this reason, when using adaptive time step solvers

for inference researchers must ensure that their computational budget allows for a

sufficiently refined tolerance that their likelihood surfaces are tractable for inference.

Unless there is a bifurcation in system behaviour at points in parameter space,
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likelihood surfaces should not have abrupt discontinuities. So, the presence of such

changes may well be an artefact of using an adaptive ODE solver with insufficient

tolerances. MCMC and optimisation algorithms could be augmented by monitoring for

such jumps and warning the user should they occur.

ODEs involving discontinuous RHS functions are known to be particularly challeng-

ing to solve accurately. Our results indicate that RHS functions involving rapid changes

over time, such as those involving discontinuities, also curse computational inference

when adaptive ODE solvers are used. However, our results in §6.5 also indicate that

errors in the likelihood arising from discontinuous RHS functions can be ameliorated

through the use of simple smoothing approximations—a potentially more computa-

tionally efficient alternative to increasing tolerances. We argue that in many scientific

systems such smoothing approximations are additionally more realistic descriptions of

the phenomena being modelled. Although the appropriate degree of smoothing may

be difficult to determine in general, for certain systems, the level of smoothing can be

tuned based on knowledge of the process being modelled.

Much of the work on error control for ODE solvers has focused merely on the

accuracy of the forward problem. The accuracies of widely used ODE solvers are

typically tuned via their step sizes or local truncation error tolerances, but these are not

the most relevant quantities for inference—instead, it is the error in the log-likelihood

which must be controlled. ODE solvers which control the error on the log-likelihood

directly would avoid much of the problems highlighted in this chapter, and we suggest

this as a fruitful research direction.

6.9 Data and software

The code to perform the computer experiments presented in this chapter was written in

Python 3.7 and is available in an open source Python library at https://github.com/

rccreswell/ode_inference. To run the COVID-19 simulations, we adapted the

software library developed by [Dehning et al., 2020]. The version of the code including

our modifications is available at https://github.com/rccreswell/covid19_

inference_forecast.

https://github.com/rccreswell/ode_inference
https://github.com/rccreswell/ode_inference
https://github.com/rccreswell/covid19_inference_forecast
https://github.com/rccreswell/covid19_inference_forecast


Chapter 7

Enhancing gradient-based inference

using the adjoint

Overview

Our results in Chapter 6 indicate the importance of controlling the error on the likelihood

during parameter inference for models involving numerically approximated differential

equations; however, existing approaches for solving ordinary differential equations

tend to merely control the local truncation error on the model solution and not the

error which is relevant for accurate inference (namely, the error in the likelihood or

objective function). In this chapter, our goal is to develop a technique for controlling

error on the log-likelihood while performing inference for differential equation models.

Performing inference for large, multi-parameter differential equation models presents an

additional challenge: the most efficient inference algorithms require the gradient of the

log-posterior, but this gradient is expensive to approximate. We propose drawing upon

adjoint-based methods to simultaneously address both of these challenges. We show how

the adjoint equation to an ODE system can be used to simultaneously compute the error

in the log-likelihood arising due to numerical approximation of an underlying ODE

model as well as compute gradients of the log-likelihood with respect to the parameters

of the model. To motivate the proposed approach, we show how controlling error on

the log-likelihood via methods such as those discussed in the chapter bounds the Bayes

factor between the numerically approximated model and the true model.

131
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Publications

This chapter is derived from the unpublished working paper:

• R. Creswell, M. Robinson, B. Lambert, C. L. Lei, D. J. Gavaghan, and S. Tavener:

“Enhancing gradient-based Bayesian inference for initial value problems using the

adjoint, ” (Unpublished working paper). [Creswell et al., 2023b]

This manuscript is currently under preparation for eventual submission to Bayesian

Analysis.

Contributions: I designed and performed the numerical experiments, and visu-

alised and interpreted the results. I derived the bound on the expected absolute

Bayes factor as a function of error in the log-likelihood in collaboration with Simon

Tavener. The derivations of the adjoint-based approximations to the error in the

likelihood and the gradient were performed by Simon Tavener; because these

quantities are employed in the proposed inference strategy, this chapter includes a

rewriting of his derivations. Martin Robinson developed a Python library for solv-

ing the adjoint equation and using the error estimate and gradient for parameter

optimisation according to the methods discussed in this chapter; I relied on parts

of this library while developing my software implementation. All authors made

contributions and suggestions to the writing and revision of the working paper

cited above, and some of these contributions are reflected in the wording of parts

of this chapter.

7.1 Introduction

In Chapter 6, we analysed the interplay between ODE solvers and inference problems.

Existing adaptive time step solvers of the sort studied in that chapter tune the solver

grid in order to control an estimate of error in the local truncation error. However, in

inference problems, we showed that the relevant quantity whose error must be kept at

an acceptably small level is not the local truncation error but rather the log-posterior

density or log-likelihood. Thus, our results in Chapter 6 demonstrated the significant

biases that can appear in computations of the log-likelihood and Bayesian inference

algorithms when solver tolerances appear good enough for forward simulation, but are

not good enough for inference.

In this chapter, we study methods by which the numerical error in the log-likelihood

arising from numerical approximation of the underlying ODEs can be controlled. Our
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goal is thus to place a tolerance directly on the error in the log-likelihood (or other

relevant quantity of interest for inference) and ensure that the ODE is solved sufficiently

accurately that this tolerance is not exceeded. Applying these methods involves signifi-

cant extra computational expense—however, we show how they can simultaneously

yield the gradient of the log-likelihood with respect to the ODE model parameters,

enabling faster gradient-based sampling or optimisation algorithms.

In the remainder of this section (§7.1), we briefly review relevant work on inference

for ODEs. Subsequently, in §7.2, we introduce the adjoint equation to an ODE system and

show how it can be used to estimate the error in a quantity of interest (some functional

of the ODE solution, such as a likelihood or objective function) arising due to numerical

approximation of the underlying ODE. Next, in §7.3, we show how bounding the error

in the log-likelihood also bounds the Bayes factor between the true and numerically

approximate posterior, motivating the methods described in §7.2. Finally, in §7.4, we

present empirical results using the methods discussed in the chapter.

7.1.1 Inverse problems and numerical error

Inference via optimisation or MCMC requires many solutions of the forward problem at

different values of the parameters θ. Each forward problem must be solved numerically

with sufficient accuracy so that the algorithms used to explore the parameter space are

not biased by numerical error. The impact of numerical errors on parameter inference

has motivated the development of a variety of methods for performing inference for

ODEs, which we briefly review here.

Several of these methods fall under the field of probabilistic numerics

(PN) [Hennig et al., 2015], which concerns the development of numerical methods in

which uncertainty is treated in a probabilistic manner. For example, in the method

developed by [Chkrebtii et al., 2016], Gaussian distributed error is assumed for the de-

viation between the true model and its numerical approximation at each time step;

the solution to the differential equation is modelled as unknown with a Gaussian

process prior. Another PN method for handling numerical uncertainty in inverse

problems involving differential equations involves modifying deterministic differen-

tial equation solvers to include random terms (for example, adding an IID Gaus-

sian term to the solution at each solver time step [Conrad et al., 2017]); the differen-

tial equation solutions then obey stochastic differential equations (SDEs) which have

been shown to converge to the original differential equations under appropriate limits

[Conrad et al., 2017, Teymur et al., 2016, Teymur et al., 2018].
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An alternative approach employs importance sampling in an attempt to correct

inaccuracies in the posterior samples resulting from numerical approximation of the

forward model [Timonen et al., 2022]. In this approach, MCMC samples are first ob-

tained using a faster solver which may introduce some numerical bias. Once the set

of biased samples are obtained, each is reweighted using the ratio of the target den-

sities computed under two numerical solvers: one faster and less accurate (the one

used in the MCMC algorithm), and one slower and more accurate (used only in the

calculation of the importance weights), which offers a significant speed up relative

to having to use the accurate solver at all parameter values proposed by the MCMC

algorithm. [Timonen et al., 2022] additionally propose heuristic strategies using the

observed distribution of the importance weights by which sufficient accuracy of the

slower solver may be ensured.

A recent line of inquiry, which we employ in this chapter, focuses on the use of

Bayes factors to characterize the effects of numerical error in the ODE solution on the

posterior distribution. It considers the Bayes factor between the hypothetical “true”

model which assumes the ODE is solved exactly, and the “approximate” model as-

suming the ODE is solved numerically with finite accuracy. When this Bayes factor

is close to one, the numerical approximation can be considered sufficiently accurate

for inference [Capistrán et al., 2016]. This approach has been generalized to PDEs and

to include discretization error on the prior [Christen et al., 2017, Capistrán et al., 2022,

Daza-Torres et al., 2021]. In particular, [Capistrán et al., 2022] bounds the error in the

forward solver that can be tolerated while keeping the Bayes factor close to one, and

shows that the Bayes factor tends towards one at the same order as that of the numerical

solver. Later in this chapter (§7.3), we adopt a similar approach by considering the Bayes

factor between the true and numerical models, but by using the adjoint-based a posteriori

methods to estimate the numerical error in the log-likelihood function that we discuss

in §7.2, we are able to obtain a simpler bound on the error that is required to keep the

Bayes factor close to one.

7.1.2 Gradient-based inference methods

ODE inference problems of interest in scientific applications typically have multiple pa-

rameters, and present high-dimensional, non-convex likelihood surfaces. Such surfaces

are difficult for inference algorithms to explore without using information about the

gradient of the likelihood with respect to the parameters θ. Gradient information can

be integrated into MCMC samplers in order to guide the generation of more efficient
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proposals.

A standard gradient-based sampler is Hamiltonian Monte Carlo (HMC) [Neal, 2011].

HMC augments the parameters to be learned θ with an auxiliary “momentum” variable.

At each iteration, the momentum variable is updated according to a random walk,

and then the parameters θ and momentum are updated jointly according to approx-

imate Hamiltonian dynamics with the negative log posterior treated as a potential

energy term. Symplectic integration for HMC has typically employed the leapfrog

method [Gelman et al., 2013]. Although HMC is often used in problems where exact an-

alytical gradients can be calculated, the algorithm has also been used with approximate

gradients [Chen et al., 2014, Li et al., 2019].

In order to avoid having to tune or adapt the hyperparameters governing HMC (the

number of steps and the step size of the symplectic integration), a more sophisticated

sampler, the No-U-Turn sampler (NUTS), has been developed [Gelman et al., 2013].

At each MCMC iteration, NUTS sets the number of leapfrog steps in order to avoid

inefficient “U-Turns” (where the proposal starts to turn around towards the starting

point) and tunes the step size in order to achieve a certain MCMC acceptance ratio.

In ODE problems, analytical gradients are rarely available and numerical ap-

proximations to the gradient via finite differences may be prohibitively slow due

to the high dimensionality of Θ and the high computational cost of each solution

to the forward problem. However, the gradient of a functional of the solution

to an ODE with respect to its parameters may also be obtained by solving the

adjoint equation as we describe in §7.2.3. [Melicher et al., 2017] shows how to use

the adjoint method to obtain gradients, which may be used for Bayesian inference

or optimisation. Adjoint-based a posteriori error analysis is a well-established

technique ([Ainsworth and Oden, 2000, Bangerth and Rannacher, 2003, Barth, 2004,

Becker and Rannacher, 2001, Eriksson et al., 1995, Estep, 1995, Giles and Süli, 2002]);

gradient based optimisation and Bayesian inference using the adjoint-

derived approximate gradient has found application in epidemiol-

ogy [Kabanikhin and Krivorotko, 2020] and neural mass models [Sengupta et al., 2016],

amongst other fields.

7.2 Two applications of the adjoint equation

In this section, we aim to derive the adjoint equation to an ODE. Using the adjoint

equation, we show to simultaneously estimate the error in a functional of the ODE
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solution arising due to numerical approximation of the solution, and the gradient of the

same functional with respect to the ODE’s unknown parameters.

7.2.1 Error estimation for a functional of the numerical solution to an ODE

As in Chapter 6, we consider problems of the form:

dx

dt
= h(t, x, θ), t ∈ (0, T ],

x(0; θ) = x0,

(7.1)

where x ∈ Rn, θ ∈ Θ ⊂ Rm and h : (0, T ] × Rn × Rm → Rn. We assume that x(t; θ)

cannot be exactly determined, and is instead approximated at a set of discrete solver

grid points, denoted by α = (t̄(1), . . . , t̄(L)).

For solutions to the ODE (eq. (7.1)), we begin by defining a nonlinear functional

Q(x) or “quantity of interest” of the solution in terms of an integral over [0,T], i.e.,

Q(x) =

∫ T

0
q(x) dt , (7.2)

for some q : Rn → R.

Let x̂ be an approximate solution to the ODE eq. (7.1), and define the error

e(t) = x(t)− x̂(t) , (7.3)

Our goal is to approximate eQ, the error in Q corresponding to the use of the approximate

solution. We use the first order Taylor expansion of Q(x) about x̂ to obtain an expression

for eQ in terms of e and dq/dx, i.e.,

eQ = Q(x)−Q(x̂) ≈ dQ

dxi
(xi − x̂i) =

∫ T

0
ei

∂q

∂xi
dt =

∫ T

0

(
e,

∂q

∂x

)
dt (7.4)

where summation over repeated indices is implied, (·, ·) is the inner product and all

derivatives are evaluated at solution value x̂ and parameter values θ.

We define the adjoint ϕ ∈ Rn as the solution to the (backwards) differential equation

−ϕ̇− ∂h

∂x

⊤
ϕ =

∂q

∂x
, t ∈ (T, 0] ,

ϕ(T ) = 0,

(7.5)
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where all derivatives are evaluated at (x̂, θ) and
∂h

∂x
denotes the matrix with entries

∂hi
∂xj

, i, j = 1, . . . , n.

From (7.4) and (7.5), using integration by parts and defining the residual of the ODE

as

R(t) = h(t, x̂, θ)− ˙̂x, (7.6)

we now have

eQ =

∫ T

0

(
e,

∂q

∂x

)
dt

=

∫ T

0

(
e,−ϕ̇− ∂h

∂x

⊤
ϕ

)
dt

= −[(e, ϕ)]T0 +

∫ T

0
(ė, ϕ)−

(
e,

∂h

∂x

⊤
ϕ

)
dt

= e(0)ϕ(0) +

∫ T

0

(
ė− ∂h

∂x
e, ϕ

)
dt

= e(0)ϕ(0) +

∫ T

0
(R,ϕ) dt

(7.7)

where we have used the fact that

ė = ẋ− ˙̂x = h(x)− ˙̂x ≈ h(x̂) +
∂h

∂x
e− ˙̂x = R+

∂h

∂x
e.

7.2.2 Accuracy of the adjoint-based error estimate

The adjoint-based estimate of the error in a quantity of interest depending on the

solution, eq. (7.7), itself involves several approximations: firstly, the first order Taylor

expansion of h(x) about x̂ (i.e., we neglect second order and higher terms of (x− x̂)) and

similarly of Q(x) about x̂, and secondly, the adjoint state ϕ must also be obtained using

a numerical solver. Finally, computation of the integral in eq. (7.7) may also introduce

error if this must be done using approximate numerical integration. In this section we

comment on the relative importance of these sources of error on the practical application

of the adjoint-based error estimate to inference problems.

Letting eQ,True denote the true error in Q and eQ denote the approximation to the

error as derived in eq. (7.7), we consider the effectivity ratio, given by:

eQ
eQ,True

.

When the effectivity ratio equals one, the estimated error is completely accurate, while
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values of the effectivity ratio above or below one indicate that the error in the quantity

of interest is being underestimated or overestimated by the adjoint method.

For simplicity, we assume a uniform mesh with spacing ∆t. Suppose that eQ,True =

c1∆t, i.e., the actual error in the quantity of interest converges to zero at the same rate

as the step size of the solution grid. If the accuracy of the estimated error were to also

converge at the same rate (eQ − eQ,True = c2∆t), we would have for the effectivity ratio:

eQ
eQ,True

=
c1∆t+ c2∆t

c1∆t
= 1 +

c2
c1
,

i.e., the effectivity ratio fails to converge to 1 for any step size, and even for highly accu-

rate grids the adjoint-based error estimate will suffer from some inaccuracy. Conversely,

supposing that the estimated error converges at a higher rate, eQ − eQ,True = c3∆t2, we

have for the effectivity ratio:
eQ

eQ,True
= 1 +

c3∆t

c1
,

which converges to 1 as ∆t→ 0.

In practice, the rate of convergence of the error and its estimate may be more

complicated; however, this argument motivates solving the adjoint equation using a

higher order solver than the forwards model.

Furthermore, because second order and higher terms of (x− x̂) are neglected, the

adjoint-based error estimate may not be appropriate for use when the solver grid is so

poor that x and x̂ deviate from each other drastically.

7.2.3 Gradient calculation for a functional of the solution to an ODE

We can take a similar approach to that taken in §7.2.1 for obtaining efficient estimates of

the gradient of Q with respect to the parameters θ, by again making use of the adjoint

problem. Here we begin by considering a small perturbation to the parameters φ which

induces a change in the solution, z. The resulting solution x+ z satisfies the perturbed

ODE
d

dt
(x+ z) = h(t, x+ z, θ + φ), t ∈ (0, T ] ,

(x+ z)(0) = x0 + z0.

Expanding h as a Taylor series, we find that the perturbation z(t) satisfies

dz

dt
=

∂h

∂x
z +

∂h

∂θ
φ t ∈ (0, T ] ,

z(0) = z0,

(7.8)
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where
∂h

∂θ
is the matrix with entries given by

∂hi
∂θj

, i = 1, . . . , n, j = 1, . . . ,m.

The corresponding change in the quantity of interest is

Q(x+ z) ≈ Q(x) +
∂Q

∂xi
zi = Q(x) +

∫ T

0

(
z,

∂q

∂x

)
dt.

Hence, employing integration by parts and (7.8)

Q(x+ z)−Q(x) =

∫ T

0

(
z,

∂q

∂x

)
dt

=

∫ T

0

(
z, ϕ̇− ∂h

∂x

T

ϕ

)
dt

= [(z, ϕ)]T0 +

∫ T

0

(
ż − ∂h

∂x
z, ϕ

)
dt

= (z0, ϕ(0)) +

∫ T

0

(
∂h

∂θ
φ, ϕ

)
dt

or
∂Q

∂x0
= ϕ(0) and

∂Q

∂θj
=

∫ T

0

(
∂h

∂θj
, ϕ

)
dt. (7.9)

In the derivation of the gradient, we have used the same adjoint state ϕ whose

backwards ODE was derived in §7.2.1. Thus, although solving for ϕ does involve extra

computational expense, we observe that, once obtained, it can be used twice: once to

obtain the error estimate, and once to obtain the gradient. We aim to maximise the utility

of the adjoint solution and the associated cost of constructing and solving an adjoint

problem to compute both gradients and errors.

7.3 Bounding the Expected Absolute Bayes’ Factor

The adjoint methods described in the previous section provide an estimate of the error

in a functional of the ODE solution (such as the log-likelihood) arising from error in the

numerical solver. In this section, we show how such a bound on the error in the log-

likelihood also bounds the Bayes factor between the true and numerically approximate

posteriors.

Our results in this section are a variation of the approach of [Capistrán et al., 2022].

In our approach, rather than assuming a bound on the error in the forward solution, we

assume that the error in the log-likelihood can be controlled (e.g., via the adjoint-based

method presented above in §7.2.1). Furthermore, while [Capistrán et al., 2022] considers
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error in the computation of the prior distribution, in our approach we assume that the

prior is computed with perfect accuracy and focus exclusively on numerical error arising

from the likelihood.

7.3.1 Definition of the EABF

Let Θ be the parameter space and V the space of outputs of the forward model. We

define the forward map (FM)

F : Θ→ V , (7.10)

and the observation operator

H : V → Y . (7.11)

The likelihood is given by L(ỹ|θ), where ỹ ∈ V is the observed data and θ ∈ Θ is

the parameter value. In practice, the forward map F is solved using a numerical

approximation on a grid of solver points α = (t̄(1), . . . , t̄(L)). We indicate the likelihood

computed using the numerical approximation to the forward map on the mesh α with a

superscript α.

The Bayes factor, or the ratio of the marginal probability density computed accord-

ing to each of two candidate models, is a widely used quantity for Bayesian model

comparison [Gelman et al., 2013]. Our goal is to calculate the Bayes factor between the

true model and the model relying on the numerical approximation to the forward map.

Letting π indicate the prior measure on the parameters, which we assume is normalised,

the marginal probability densities are given by

Z(y) =

∫
Θ
L(y|θ) π(dθ) (7.12)

for the true model, and

Zα(y) =

∫
Θ
Lα(y|θ) π(dθ) (7.13)

for the model involving a numerical approximation, while the Bayes factor (BF) is given

by

BF =
Zα(y)

Z(y)
.

Keeping the Bayes factor close to 1 ensures that the models do not differ significantly. In

order to study the convergence of the Bayes factor, we introduce the Absolute Bayes

factor (ABF)

ABF(y) =
∣∣∣∣Zα(y)

Z(y)
− 1

∣∣∣∣ (7.14)
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which we wish to approach zero for the models to not differ significantly.

The ABF depends on the data ỹ, which we assume falls in the observation space, ỹ ∈
Y . To avoid dependence on a particular value of the data, we compute the expectation

of the ABF given the distribution of the data under the true model. This quantity is called

the Expected Absolute Bayes factor (EABF). Note that the density of the data ỹ under

the true model is simply Z(ỹ) with respect to some measure λ (e.g., for continuous data,

the Lebesgue measure); thus, we have for the EABF

EABF =

∫
Y

ABF(y)Z(y) λ(dy)

=

∫
Y

∣∣∣∣Zα(y)

Z(y)
− 1

∣∣∣∣Z(y) λ(dy)

=

∫
Y
|Zα(y)− Z(y)| λ(dy).

(7.15)

As used above, L(ỹ|θ) indicates the likelihood of data ỹ given a value of the parame-

ters θ. We also introduce the notation Lo(ỹ|η), indicating the likelihood of data ỹ given a

vector of observations based on the solution to the ODE, η. That is,

L(ỹ|θ) = Lo(ỹ|H(F(θ))) . (7.16)

We consider likelihoods which are normalised when viewed as a function of the data, i.e.,∫
Y
Lo(ỹ|η) λ(dỹ) = 1. (7.17)

7.3.2 Bounding the EABF based on error in the solution

Traditional approaches to the solution of differential equations, such as those employed

in Chapter 6, control error on the solution itself. [Capistrán et al., 2022] represent this

by assuming that the error in the forward model obeys

||H(F(θ))−H(Fα(θ))|| < C0⟨α⟩p , (7.18)

for some positive order p, where ⟨α⟩ indicates some functional of the mesh α. They

consider those likelihoods which can be written in the form

Lo(ỹ|η) =
K∏
k=1

1

σ
ρ

(
ỹ(k) − η(k)

σ

)
,
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where ρ is some continuous function, σ > 0 is the noise scale, and η(k) are the expected

values of each data point. This assumption encompasses many standard likelihoods used

in time series inference, including those based on IID Gaussian. For such likelihoods, in

order to achieve EABF < b, [Christen et al., 2017, Capistrán et al., 2022] show that the

following condition must be satisfied,

C = C0|α|p <
2σ

K

b

ρ(0)
.

7.3.3 Bounding the EABF based on error in the log-likelihood

In our approach, we assume an adjoint-based adaptive strategy that ensures:

| logL(ỹ|θ)− logLα(ỹ|θ)| < b for all θ ∈ Θ, ỹ ∈ Y,

⇒
∣∣∣∣log L(ỹ|θ)

Lα(ỹ|θ)

∣∣∣∣ < b for all θ ∈ Θ, ỹ ∈ Y,

⇒
∣∣∣∣ L(ỹ|θ)Lα(ỹ|θ) − 1

∣∣∣∣ < b for all θ ∈ Θ, ỹ ∈ Y,

(7.19)

for L(ỹ|θ) ≈ Lα(ỹ|θ) (the last line of eq. (7.19) depends on the approximation log(1+x) ≈
x for small x; see §7.2.2). From (7.12), (7.13) and (7.19), we have

|Zα(ỹ)− Z(ỹ)| =
∣∣∣∣∫

Θ
(L(ỹ|θ)− Lα(ỹ|θ)) π(dθ)

∣∣∣∣
≤
∫
Θ
|L(ỹ|θ)− Lα(ỹ|θ)| π(dθ)

=

∫
Θ

∣∣∣∣L(ỹ|θ)(Lα(ỹ|θ)
L(ỹ|θ) − 1

)∣∣∣∣ π(dθ)
< b

∫
Θ
|L(ỹ|θ)| π(dθ) for all ỹ ∈ Y.

The EABF (7.15) is then bounded as

EABF <

∫
Y

(
b

∫
Θ
L(ỹ|θ) π(dθ)

)
λ(dỹ) = b

∫
Y

∫
Θ
L(ỹ|θ) π(dθ) λ(dỹ) .

Reversing the order of integration,

EABF < b

∫
Θ

∫
Y
Lo(ỹ|H(F(θ))) λ(dỹ) π(dθ).
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Recalling from (7.17) that the likelihood viewed as a function of the data is normalised,

we have

EABF < b

∫
Θ

π(dθ) = b . (7.20)

7.4 Results

7.4.1 Controlling the numerical error in the log-likelihood

Our first result is an empirical investigation of the relationship between the solver mesh

step size, the error in the likelihood, and the order of the solver. These results are shown

in Figure 7.1.

Three different synthetic ODE systems were studied. The first is the logistic growth

model:
ẋ = Rx(1− x/K) , t ∈ (0, T ] ,

x(0) = x0 .
(7.21)

where the parameter R > 0 is the growth rate and the parameter K > 0 is the carrying

capacity and x0 is the initial population size. We set the true parameter values to

R = 1,K = 1 and x0 = 0.1.

We additionally studied the damped oscillator model, which is given by:

ẍ+ kẋ+ cx = F (t) , t ∈ (0, T ] ,

x(0) = x0 ,

ẋ(0) = ẋ0 ,

(7.22)

where x is the position, k > 0 is the damping constant, c > 0 is the spring constant, and

F (t) is the forcing function. Rewriting as a first order system

d

dt

(
x

ẋ

)
=

(
ẋ

−kẋ− cx+ F (t)

)
,

(
x(0)

ẋ(0)

)
=

(
x0

ẋ0

)
.

We set the true values of the parameters to be c = 1, k = 2 and x0 = 0.1, ẋ0 = 2.

For the unforced oscillator, F (t) = 0. For the forced oscillator, we choose

F (t) =


0 t < 4,

−20 2 ≤ t < 4,

0 4 ≤ t.

(7.23)
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Figure 7.1: Relative error in the log-likelihood as a function of step size (top) and toler-
ance for the local truncation error (bottom), for the logistic model (7.21), the unforced
oscillator model (7.22) and the forced oscillator (7.22). Log-likelihoods were evaluated at
the true parameter values. RKN indicates the Runge-Kutta method of order N ; RKMN
indicates the adaptive step size Runge-Kutta method of order N where local truncation
error is approximated assuming accuracy of the method of order M . In the bottom
panels, the dotted black line indicates Relative error=Tolerance.

For each model, synthetic data was generated using 101 data points uniformly

spaced between t = 0 and t = 10, with IID Gaussian noise of standard deviation 0.05.

We first employed a uniformly spaced solver mesh of various step sizes (Figure 7.1,

top). At each solver mesh size, the numerical solution at the true parameter values was

obtained using a Runge-Kutta method of order n, for n = 2, 3, 4, 5. In order to calculate

the error in the likelihood, we also require a “true” solution. The logistic model has an

analytical solution, which is used for this purpose. However, the general solution to the

oscillator model can only be expressed in terms of a challenging integral which itself

requires numerical approximation; thus, our “true” solution is that yielded by the SciPy

RK5(4) solver with tolerance set to 10−15. In these results, we observe that the error

in the likelihood converges at the same order as that of the solver used, except in the

driven oscillator, where the second order method outperforms all the others. This poor
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performance of Runge-Kutta methods of order 3 and above is presumably caused by the

lack of continuity of the third order and higher derivatives of the solution to the driven

oscillator. We also considered the approach in which the solver mesh is adapted based

on a relative tolerance on the local truncation error (Figure 7.1, bottom). In this approach,

we sometimes observe relative errors in the log likelihood which significantly exceed

the relative tolerance, as expected since the tolerance here applies only to the local

truncation error and not to the log-likelihood itself (this further supports our findings

presented in Chapter 6).

7.4.2 Estimating the error in the log-likelihood using adjoint methods

In this section, we use the adjoint-based techniques derived in §7.2.1 to estimate the

error in the log-likelihood arising from numerical approximation of the underlying

ODE.

First, we studied the logistic model, eq. (7.21). Synthetic data was generated using

21 data points evenly spaced between t = 0 and t = 20, using the parameter values

R = 1, K = 1, and x0 = 0.01. IID Gaussian noise of standard deviation 0.01 was

added. The true value of the log-likelihood at the true parameter values was computed

using the analytical solution to the logistic model. Then, for a range of solver step

sizes, the numerical solution at the true parameter values was obtained using the fourth

order Runge-Kutta method (RK4) on a uniform solver grid, and the approximate log-

likelihood was computed using this solution. Subsequently, the adjoint equation was

solved on the same solver grid using a fifth order Runge-Kutta method (RK5). The

adjoint solution was interpolated between mesh points using piecewise, continuous

cubic interpolation, allowing the error estimate (7.7) to be approximated using 2-point

Gaussian quadrature on each subinterval between solver grid points.

In Figure 7.2, we plot the adjoint-based estimates of the error in the log-likelihood

and compare them to the actual observed error in the log-likelihood for the range of

solver step sizes considered. For the coarsest solver grid considered (with a step size of

1), the adjoint-based error estimate is seen to substantially differ from the actual error in

the log-likelihood, as expected based on our discussion in §7.2.2. As the solver step size

is refined, the adjoint-based error estimate closely approximates the actual error in the

log-likelihood.

Next, we repeated the same experiment for the oscillator model, eq. (7.22). We set
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Figure 7.2: Adjoint-based error estimation for the logistic model. (Left) The solution
and synthetic data points. (Middle) The adjoint-based estimate of the error in the log-
likelihood, compared to the actual observed error in the log-likelihood, for a range of
solver grid step sizes. (Right) The relative error in the adjoint-based error estimate, for a
range of solver grid step sizes.

the stimulus function according to:

F (t) =



0 t < 4,

1 4 ≤ t < 8,

0 8 ≤ t < 12,

1 12 ≤ t < 16,

0 16 ≤ t.

Synthetic data was generated using 101 data points evenly spaced between t = 0 and

t = 20, using the parameter values k = 0.1, c = 1, and x0 = 0.01, ẋ0 = 1. IID Gaussian

noise of standard deviation 0.1 was added. The true solution at the true parameter

values was approximated using the SciPy RK5(4) solver with tolerance set to 10−15.

Then, the log-likelihood at the true parameter values, as well as its approximation based

on numerical solutions to the ODE and the adjoint-based estimates of the errors in those

approximations were computed for a range of solver grid step sizes exactly as described

above for the logistic model. We plot the results in Figure 7.3. The adjoint-based estimate

of the error in the log-likelihood is seen to be most accurate for solver step sizes around

10−2.
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Figure 7.3: Adjoint-based error estimation for the oscillator model. (Left) The solution
and synthetic data points. (Middle) The adjoint-based estimate of the error in the log-
likelihood, compared to the actual observed error in the log-likelihood, for a range of
solver grid step sizes. (Right) The relative error in the adjoint-based error estimate,
for a range of solver grid step sizes. We compute the relative error according to (eQ −
eQ,True)/eQ,True; negative values of the relative error indicate that eQ − eQ,True < 0.

7.5 Discussion

The adjoint can usefully play two roles when seeking to infer the parameters of an ODE

model. The first is to estimate the error in the log-likelihood (§7.2.1) and thereby ensure

the magnitude of error in the log-likelihood is low enough for accurate inference. The

second is to compute sensitivities of a quantity of interest to changes in the parameter

that are necessary for gradient based MCMC samplers (§7.2.3). We propose that the

error estimate and the gradient be used together to develop an efficient MCMC inference

algorithm. As we saw in Chapter 6, just controlling error in the local truncation error is

not necessarily sufficient to accurately infer the parameters of an ODE model; instead,

the error in the log-likelihood must be kept at a small level (the allowable tolerance

for errors on the log-likelihood could be informed by, for example, our discussion in

§6.4.2). Although solving the adjoint equation at each parameter value proposed by

the inference algorithm would involve extra computational expense, we anticipate that

much of this expense could be offset by the additional efficiency afforded by a gradient

based sampler. Most simply, existing solver step size adaptation algorithms (such as

RK5(4)) could be employed: the adjoint-based error estimate would be used as a check to

ensure that a given tolerance on the local truncation error did not cause an unacceptable

error for inference at each parameter value; if error on the log-likelihood appeared too

high, the tolerance on the local truncation error could be refined downwards. Such an

algorithm is proposed in Algorithm 3. However, the adjoint-based error estimate is

potentially informative enough to drive an approach to grid refinement based directly
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on the error in the likelihood. By solving the integral in eq. (7.7) cumulatively, the error

in the log-likelihood from each segment of the solver grid could be determined; this

information could be used to directly refine or coarsen the grid in the most appropriate

regions of time.

The adjoint-based methods discussed in this chapter yield approximations to the

gradient and error in the likelihood. In §7.2.2, we provided some initial investigations

of the error in the adjoint-based approximations, and in the test problems studied in

this chapter, we observed that our selected numerical methods for solving the adjoint

problem achieved sufficient accuracy. However, in order to increase the robustness of

the proposed inference approach as it may be applied to a variety of problems, further

work is necessary to ensure that the adjoint-based approximations to the gradient and

error in the likelihood are themselves sufficiently accurate not to interfere with inference.

Throughout this chapter, as well as Chapter 6, we made simplistic assumptions

about the noise processes specifying the stochastic deviations between the (accurately

solved) differential equation and the observed data. Typically, we assumed that they

were IID Gaussian (see eq. (2.9)). Many real datasets do not obey this assumption,

however, and in fact the level of variance or autocorrelation in the error terms may vary

over time. Thus, in the next chapter, we develop more flexible noise processes for fitting

ODE models to data.

7.6 Data and software

The code to perform the computer experiments presented in this chapter was written in

Python 3 and is available in an open source Python library at https://github.com/

rccreswell/adjinf.

https://github.com/rccreswell/adjinf
https://github.com/rccreswell/adjinf
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Algorithm 3 Evaluation of the log-likelihood at parameter values proposed by a gradient-
based MCMC sampler (e.g., NUTS).

1: θ ← Parameter values proposed by NUTS
2: rL ← User specified value (tolerance of log-likelihood)
3: r ← Value of r from the previous MCMC iteration (tolerance of local truncation

error)
4: e←∞ (Estimated error in log-likelihood at θ)
5: while e > rL do
6: Solve the ODE model at parameters θ using the RK5(4) adaptive solver with

local truncation error tolerance r, to obtain an approximate solution x̂ on a grid α.
7: Solve the adjoint equation (eq. (7.5)) using the RK6 solver with grid α, to obtain

the adjoint solution ϕ.
8: e← error estimate (eq. (7.7))
9: dQ/dθ ← gradient estimate (eq. (7.9))

10: if e < 0.25rL then
11: r ← 2r
12: Return (Use x̂ to compute the log-likelihood, and dQ/dθ as the gradient.)
13: end if
14: if e < rL then
15: Return (Use x̂ to compute the log-likelihood, and dQ/dθ as the gradient.)
16: end if
17: r ← r/10





Chapter 8

Using flexible noise models to avoid

noise model misspecification in

inference of differential equation

time series models

Overview

Our work throughout this thesis has focused on the development of accurate (and accu-

rately solved) models for the processes underlying time series data. When modelling

time series, however, it is inevitable that some of the observed variation cannot be mod-

elled by the “signal” process (the process of interest). Instead, this is handled through

stochastic “noise” terms, representing nuisance factors. Throughout this thesis, we

have often made the typical choice of independent Gaussian noise for the noise process,

which defines a statistical model that is simple to implement but may mischaracterise

the measurement process. There are a range of alternative noise processes available but,

in practice, none of these may be entirely appropriate, as actual noise may be better

characterised as a time-varying mixture of various types. Here, we present classes of

flexible noise processes that adapt to a system’s characteristics, using a multivariate

normal kernel where Gaussian processes allow for non-stationary persistence and vari-

ance. These noise processes faithfully reproduce parameter estimate uncertainty when

doing inference using the correct noise model. We apply our models to time series prob-

lems using real data from electrophysiology, and we detect regions of autocorrelation

and heteroscedasticity in the noise terms, with a significant difference in the estimated
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parameters obtained relative to an IID Gaussian assumption.

Publications

This chapter is based on a preprint available at:

• R. Creswell, B. Lambert, C. L. Lei, M. Robinson, D. J. Gavaghan: “Using flexible

noise models to avoid noise model misspecification in inference of differential

equation time series models,” arXiv:2011.04854 (2020) [Creswell et al., 2020].

Contributions: I was the primary author of this preprint and conducted the

development of the noise models, their application to the problems, the software

implementation, and the visualisation and interpretation of results. All authors

made contributions and suggestions to the writing and revision of the preprint,

and some of these contributions are reflected in the wording of parts of this chapter.

8.1 Introduction

We model a noise-free trajectory {ȳi}Ni=1 at time points {ti}Ni=1 according to,

ȳi = f(ti; θ). (8.1)

Here, we assume that f represents the solution to an ODE. Even if the model underlying

f is appropriately specified, and even if it is numerically computed with sufficient

accuracy (see Chapter 6), it is inevitable that observed data will not obey f exactly.

Instead, for eq. (8.1) to be a viable model of real data, it must be combined with a noise

process modelling the myriad of factors affecting the data which are not (and, often,

realistically cannot) be included in f itself.

Assumptions made about the form of the noise can substantially change estimated

posterior uncertainty of θ [Lambert et al., 2023]. Notably, when the noise model is mis-

specified, posterior variance in model parameters may be drastically underestimated

or overestimated. Misspecification may also lead to biased estimates. The standard

assumption of independent and identically distributed (IID) Gaussian noise is applica-

ble in some cases, but there are many other possible forms. For example, consecutive

observations may be correlated due to imperfections in measurement rather than the

shape of the signal itself; the magnitude of measurement noise may scale with function
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values; there may be time periods with higher observation volatility due to environmen-

tal variation; or even a mixture of these various types of noise within a single time series.

Non-Gaussian and non-IID noise is also likely to appear in cases of time series model

misspecification: when the best available model does not coincide with the hypothetical

true process which generated the data, regions of poor fit may be accompanied by

residual autocorrelation and spikes in the magnitude of the noise terms.

In applied circumstances, the exact noise process is never known. Some form for the

noise must therefore be assumed, with consequences for inference. Whatever choice is

made should have some rational basis but be flexible enough to account for the particular

sample of data to hand. In this vein, parametric models likely fall short and, instead,

more adaptable non-parametric methods prosper. Here, we describe nonparametric

models for capturing noise processes that defy characterisation into existing boxes.

Through a host of toy examples with predetermined noise processes, we show that

parameter inference using our noise models faithfully reproduces the true posterior

distributions; that is, those distributions that result when using the correct noise process.

Figure 8.1 gives an overview of the proposed approach to noise modelling in a synthetic

example where the magnitude of the noise terms increases over time, and some level of

autocorrelation is present..

Time

y

Smoothly varying kernel
parameters using Gaussian processes

Model
Data
Noise scale

Covariance matrix

Σ =

Time

y

Nonparametric “blocked”
kernel parameters

Model
Data
Noise scale

Covariance matrix

Σ =

A. B.

Figure 8.1: Two noise processes for time series modelling. Panel (A) shows how
non-stationary covariance kernels with continuously time-varying parameters can be
used to learn the covariance matrix; and panel (B) shows how a covariance matrix can
be built from non-overlapping constituent blocks.

The remainder of this chapter is organised as follows. In §8.2, the multivariate
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normal distribution is introduced as a general model for noisy time series data, and we

show how an appropriate covariance matrix can be learned from data using positive

definite kernels. In §8.3, we describe a method where the parameters of a kernel vary

smoothly over time governed by Gaussian processes. In §8.4, we discuss performance

considerations for long time series, and §8.5 shows the application of our methods to

real data from experiments conducted on the hERG potassium ion channel.

8.2 The multivariate Gaussian likelihood for time series noise

Flexible noise processes depend on a suitably general distributional assumption govern-

ing the difference between observed data and the data predicted by the deterministic

model, and we use the multivariate normal for this purpose. To learn the covariance

matrices of the multivariate normal, we use positive definite kernel functions (see, e.g.,

[Delisle et al., 2020]); in this section, we show how they can be used to correctly infer

parameter posteriors for a time series model with stationary but non-IID noise.

8.2.1 Description of multivariate likelihood

The dataset consists of time points {ti}Ni=1 and corresponding noisy data {yi}Ni=1. A

typical modelling assumption, widely used, for example, in Chapter 6 of this thesis, is to

treat the noise on each data point as IID Gaussian with a variance parameter σ2, so that,

yi = f(ti; θ) + εi, i = 1, . . . , N, (8.2)

εi
IID∼ N (0, σ). (8.3)

Our first step is to generalize eq. (8.3) so that the variance of noise terms can vary (i.e.,

allow the noise to be non-identically distributed), and each noise realisation can be corre-

lated with its neighbours (i.e., be non-independent). A multivariate Gaussian can handle

both of these generalisations, where we model a random vector, y = (y1, . . . , yN )⊤, as

having a mean, f(θ) = (f(t1; θ), . . . , f(tN ; θ))⊤,

y ∼ N (f(θ),Σ). (8.4)

For appropriate values of the covariance matrix Σ, this distributional assumption encom-

passes a wide variety of noise forms which may include correlated and heteroscedastic

noise terms. For example, eq. (8.4) could describe heteroscedastic noise which scales
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with the magnitude of the trajectory with Σ = diag(f(θ)σ2). However, for autocorrelated

noise terms, Σ would contain off-diagonal elements.

8.2.2 Learning the covariance matrix, Σ

Multiple methods have been proposed for inference of covariance matri-

ces [Hoffbeck and Landgrebe, 1996, Lam and Fan, 2009, Diggle and Verbyla, 1998,

Bickel and Levina, 2008, Cai and Liu, 2011, Schäfer and Strimmer, 2005]. A stan-

dard Bayesian approach places a prior on Σ and infers it along with ODE model

parameters, θ. Typical choices for priors include the conjugate inverse-Wishart

[Gelman et al., 2013, Huang and Wand, 2013], or a prior based around the LKJ cor-

relation matrix [Lewandowski et al., 2009, Stan Development Team, 2016]. However,

these methods are not designed to handle the covariance of a single time series. For a

single time series obeying eq. (8.4), there is just one multivariate data point (that is, the

vector y) available to inform the matrix Σ. With such limited data, these methods for

estimating covariance matrices have too much freedom, resulting in dense matrices that

overfit the data.

A more productive strategy is to impose a positive definite covariance function

C : R× R→ R, which generates a covariance matrix according to the rule,

Σij = C(ti, tj). (8.5)

For example, heteroscedastic errors, where Σ = diag(f(θ)σ2), could be represented by

the following covariance function:

C(ti, tj) = f(ti; θ)σ
2δij . (8.6)

where δij = 1, if i = j; 0, otherwise. In this chapter, we consider positive definite ker-

nels which are flexible enough to capture a wide variety of noise forms, with parameters

that can, nonetheless, be learned from a single time series.

8.2.3 Kernels for time series noise

In this section, we introduce the kernels used throughout this chapter. Notwithstanding

the important differences discussed in §8.2.4, much of the work on kernel functions for

Gaussian processes is applicable to ODE noise models as well, and the three kernels

we discuss have seen extensive use in Gaussian process regression. One of the most
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widely used positive definite kernels is the Gaussian kernel (also called the Radial Basis

Function, or RBF) [Fasshauer, 2011],

C(ti, tj) = σ2e−(ti−tj)
2/2L2

. (8.7)

We also consider the Laplacian kernel [Feragen et al., 2015] for specifying time series

autocovariances, since it more faithfully reproduces the types of persistence emergent

from basic univariate time series models,

C(ti, tj) = σ2e−|ti−tj |/L. (8.8)

The kernels in eqs. (8.7) & (8.8) are each characterised by two parameters which con-

trol the size and autocovariance in the errors. A more general class of kernels is the

Matérn [Williams and Rasmussen, 2006],

C(ti, tj) = σ2 2
1−ν

Γ(ν)

(√
2ν

L
|ti − tj |

)ν

Kν

(√
2ν

L
|ti − tj |

)
, (8.9)

where Kν is the modified Bessel function of the second kind. For ν = 1/2, the Matérn

kernel simplifies to the Laplacian kernel.

8.2.4 Comparison to Gaussian processes (GPs)

Consider a function g : X → R obeying a Gaussian process (GP) with mean function m

and kernel C, i.e. g ∼ GP(m,C) (see, for example, [Rasmussen, 2003]). For every finite

set of inputs {ti}Ni=1, ti ∈ X , the vector of function values g = (g(t1), . . . , g(tN ))⊤ has a

multivariate Gaussian distribution,

g ∼ N (m,Σ), (8.10)

where m = (m(t1), . . . ,m(tN ))⊤ and Σ is generated as in eq. (8.5). This distribution,

identical with eq. (8.4) for m(·) = f( · ; θ), illustrates an apparent resemblance between

the multivariate normal likelihood for time series noise and the GP. Our proposed noise

model, however, differs from a GP regression in several key aspects:

1. In GP regression, eq. (8.10) determines a prior over functions, and the posterior

over functions is inferred. Our proposed noise model uses the multivariate normal

specification as a likelihood for finite observed data, and posterior inference applies

only to the parameters of f , not the functional form of the noise-free relationship
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between y and t which is assumed fixed and fully determined by θ.

2. To handle noisy data, Gaussian process regression typically adds an extra noise

term—often IID Gaussian. No such terms are used in our multivariate normal

noise process.

That is, in full, the likelihood for our multivariate normal model is given by eq. (8.4),

with covariance matrix given by eq. (8.5). An example of the utility of the multivariate

normal noise process is shown in the next section. In this example, we show that the

Laplacian kernel can faithfully capture autoregressive order 1 (AR(1)) noise in an ODE

time series model, enabling accurate posterior inference for the ODE model parameters.

8.2.5 Stationary AR(1) noise with Laplacian kernel

Before studying non-stationary covariance functions in the subsequent sections, we first

study the applicability of the covariance function approach when the noise terms are

stationary. We show that accurate inference for stationary non-IID noise can be achieved

using the standard Laplacian kernel,

C(ti, tj) = σ2e−|ti−tj |/L. (8.11)

Here, we show the results of the model applied to a synthetic logistic growth time series

with autoregressive order 1 (AR(1)) error terms. These results are shown in Figure 8.2.

Panel (a) shows a synthetic noisy time series. The underlying model trajectory, labelled

“Noise-free trajectory”, is calculated from a logistic growth model,

dy

dt
= ry(1− y/K). (8.12)

The AR(1) time series shows persistence in the error terms: the error term at any given

time points depends both on a random fluctuation as well as the previous observation.

Specifically, we model each error term εi = yi − f(ti; θ) according to:

ϵi = ρεi−1 + vi, (8.13)

where vi is Gaussian white noise, vi ∼ N(0, σ
√

1− ρ2). In these simulations, we used

ρ = 0.8 and σ = 3. Ten replicates of the time series with AR(1) noise were generated.

For each time series, Bayesian inference for the parameters r and K was performed

for each of three noise processes we consider: IID Gaussian with unknown variance
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Figure 8.2: Capturing AR(1) noise using a stationary Laplacian kernel. Panel (a) shows
a logistic growth time series with AR(1) noise. Ten replicates of the AR(1) time series
were generated. Panel (b) shows the posterior distributions for logistic growth model
parameters under three different assumptions for the noise process for each replicate.
The boxes cover the central 50% posterior estimates, while the whiskers cover the central
95% posterior estimates. The dashed lines indicate true parameter values.
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(incorrectly specified), AR(1) with two unknown parameters (correctly specified), and

the multivariate Gaussian likelihood with Laplacian kernel covariance. MCMC sampling

was performed using three chains of the Haario Bardenet adaptive covariance algorithm,

with a total of 20000 iterations in each chain [Haario et al., 2001, Johnstone et al., 2016].

The first half of each chain was discarded as warm-up, and convergence was assessed

using the Gelman R̂ statistic [Gelman et al., 2013]. In Panel (b), the results of posterior

inference for r and K are shown under the three noise processes, across 10 replicates. In

each replicate, the bars indicate the central 95% of the posterior, while the dashed lines

indicate the true values of the posterior. In each replicate, the first posterior with the

correctly specified AR(1) noise process shows relatively high posterior uncertainty. The

general multivariate normal noise process with Laplacian kernel reproduces the high

level of posterior uncertainty in model parameters. By contrast, the incorrectly specified

IID assumption underestimates posterior uncertainty.

8.3 Flexible noise for ODEs using Gaussian processes

In this section, we describe a flexible noise process which can learn effective covariance

matrices from a time series. Standard positive definite kernels such as eq. (8.7) and

eq. (8.8) are appropriate for simple covariance matrices. They are, however, stationary:

depending only on the difference between two time points and not on absolute time. In

this section, we consider models that allow kernel parameters (for example, σ and L

in eq. (8.8)) to vary smoothly over time, allowing distinct sections of a time series to have

different noise magnitudes and persistences. First, a brief overview of existing work on

non-stationary covariance functions is provided in §8.3.1. In §8.3.2, the non-stationary

version of the Laplacian kernel is presented. In §8.3.3, inference for non-stationary kernel

parameters is introduced, and in §8.3.4, GP hyperparameter selection is discussed. In

§8.3.5, results are presented on synthetic data using the non-stationary Laplacian kernel.

8.3.1 Background on non-stationary covariance functions

Non-stationary covariance functions have been used for spatial modelling and Gaus-

sian process regression. Unlike stationary kernels which depend only on the distance

between the two inputs, in the non-stationary case, the kernel shape itself must depend

on the input location. This is expressed using the notation ks(u) for a kernel centred at

location s and evaluated at location u. For example, for the Laplacian kernel with one
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dimensional input t, we would take

kt(u) = σ(t)2e−|t−u|/L(t), (8.14)

with the kernel parameters σ and L being functions of the kernel centre location t.

If eq. (8.14) is used to construct a covariance matrix, there are no guarantees that it

will be positive definite. Instead, non-stationary modelling has relied on the following

general formula for a non-stationary positive definite covariance function:

C(xi, xj) =

∫
RN

kxi(u)kxj (u)du, (8.15)

for inputs xi, xj , u ∈ RN [Higdon et al., 1999, Paciorek, 2003]. The non-stationary

version of the Gaussian RBF covariance function can be derived from this formula,

which has been used in non-stationary Gaussian process regression [Gibbs, 1998,

Paciorek and Schervish, 2004]. To learn time-varying kernel parameters, a Gaussian pro-

cess prior can be placed on each [Paciorek and Schervish, 2004, Heinonen et al., 2016].

8.3.2 Non-stationary Laplacian covariance function

In this section, we present a non-stationary version of the Laplacian kernel. The tech-

niques presented here are equally applicable to any appropriate positive definite kernel,

however.

The one-dimensional non-stationary Laplacian covariance function is:

C(ti, tj) = σ(ti)σ(tj)

√
2L(ti)L(tj)

L(ti)2 + L(tj)2
exp

(
− |ti − tj |√

L(ti)2 + L(tj)2

)
. (8.16)

Eq. (8.16) may be derived as a special case of the non-stationary Matérn ker-

nel [Paciorek and Schervish, 2004]; it also follows directly from the one-dimensional

case of eq. (8.15) using reparameterised versions of the respective stationary kernels,

with the reparameterisations chosen to ensure that the final non-stationary covariance

functions have a sensible form (cf. eq. (3.69) in [Gibbs, 1998]). The logarithms of L and

σ each vary over time governed by Gaussian process priors:

logL ∼ GP(µL,KL), log σ ∼ GP(µσ,Kσ), (8.17)

where µL, KL, µσ, and Kσ are the GP hyperparameters.
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8.3.3 Inference for non-stationary kernel parameters

Having specified a non-stationary covariance function such as

C(ti, tj) = σ(ti)σ(tj)

√
2L(ti)L(tj)

L(ti)2 + L(tj)2
exp

(
− |ti − tj |√

L(ti)2 + L(tj)2

)
, (8.18)

the next task is to infer the posterior distribution of model and covariance parameters.

However, analytic expressions for the posterior mean and variance of the Gaussian

processes L(t) and σ(t) are not available. Instead, MCMC sampling or maximum a

posteriori (MAP) estimation can be used to infer the values of L(t) and σ(t) at each

time point [Heinonen et al., 2016]. For both MCMC and MAP estimation, we recom-

mend the use of gradient-based methods (e.g., Hamiltonian MCMC and gradient-

based optimisers) for improved convergence rates in the high dimensional parameter

space [Neal, 2011]. When analytic gradients are not available, automatic differentia-

tion can be used. Indeed, all our GP examples presented in this chapter involve an

interpolation scheme discussed in §8.4, and we resort to using automatic differentiation.

We use the following procedure for long ODE time series problems with non-

stationary covariance functions, which is specified in Algorithm 4. First, the joint

MAP estimate of model parameters and covariance parameters is obtained using a

gradient-based optimiser. Then, MCMC sampling is used to obtain the posterior distri-

bution of model parameters conditional on the previously obtained MAP estimate of

covariance parameters. For both optimisation and MCMC sampling, random or uni-

form initialisation of the covariance parameters will work for easier problems but will

delay convergence on longer time series. In long time series problems with intelligible

noise patterns, we recommend a data-driven initialisation of the covariance parameters

in order to accelerate convergence of MCMC or optimisation. To initialise L and σ

in the non-stationary Laplacian covariance function, we use the procedure given by

Algorithm 5. In practice, gradient-based optimisers such as L-BFGS-B [Zhu et al., 1997]

may settle at local maxima. Thus, we perform optimisation with multiple restarts, with

each restart taking a different initial value. A set of variable yet plausible initial values

for the restarts can be generated by rerunning Algorithm 4 multiple times with different

sliding window widths.
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Algorithm 4 MCMC estimates of ODE parameters using MAP estimates for kernel
parameters.

1: Initialise ϕ, for example using to Algorithm 5 for the Laplacian kernel
2: Use gradient-based optimisation to find (θMAP, ϕMAP) = arg max p(θ, ϕ|y)
3: Calculate the fixed covariance matrix ΣMAP such that Σi,j = CϕMAP(ti, tj)
4: Use the covariance matrix defined above to form the likelihood N (y|f(t; θ),ΣMAP)
5: Use MCMC to sample from the conditional posterior p(θ|y, ϕMAP) =0

Algorithm 5 Initialisation for non-stationary Laplacian kernel parameters.

1: Use optimisation to find the MAP estimate of model parameters assuming an IID
noise model, θMAP,IID

2: Subtract f(t; θMAP,IID) from the observed data to obtain an estimate of the noise
terms ϵi

3: At each time point ti, calculate the empirical variance vi and 1st order autocorrelation
ρi of the noise terms within a sliding window centred on that time point

4: Smooth both estimates using a Wiener filter [Wiener, 1950]
5: At each time point, ti, set σi =

√
vi and Li = −∆t/ log(|ρi|)

8.3.4 Gaussian process hyperparameters

For the GPs defined by eqs. (8.17), we used squared exponential kernels with constant

mean functions [Heinonen et al., 2016]. With this assumption, there are six Gaussian

process hyperparameters for the model (for each of L and σ, a mean µ, noise level α, and

length scale β). Prior knowledge or a grid search can be used to set these values, although

existing work suggests that β is the most important parameter [Heinonen et al., 2016].

We set α = 1 for both processes, and µσ = 1.

For new problems, we propose the following procedure for tuning the β hyperpa-

rameter. β controls how the Gaussian process can change over time. This behaviour

is crucial to the adaptivity of the method. If β is too short, the GP will overfit local

fluctuations; too large and it will fail to account for real changes in the process over time.

To set the length scale, we used a heuristic based on the expected rate of change of the

noise process. Given evenly spaced time points with spacing ∆t and a user-specified

number of time points Nc, we set β as the solution of

ζ = e−(Nc∆t)2/(2β2), (8.19)

for some small value ζ = 0.01. This equation imposes that the prior covariance be-

tween two values of the Gaussian process Nc time points apart is close to zero, thus

summarising the prior belief that the noise structure can change over that time scale.
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Good choices for Nc will generally be problem specific. For non-uniform spacing, Nc∆t

could replaced by an appropriate time interval.

For the mean of L, a choice such as µL = 0 may result in the prior mean correspond-

ing to a significant amount of autocorrelation present in the noise process. This is not

necessarily an undesirable property for the prior: as higher values of autocorrelation in

the noise process tend to lead to higher uncertainty in the model parameters, a prior

preference for significant autocorrelation is conservative in the sense that it is unlikely

to cause parameter uncertainty to be underestimated.

However, when the simplest plausible noise process is desired, a more natural choice

is for the prior mean to correspond to a negligible autocorrelation (i.e., independence of

the noise terms), such that the more complex autocorrelated noise process will only be

preferred a posteriori if it is supported by the data. These considerations are particularly

important for shorter time series, where there is not enough data to overwhelm the

prior, and a choice of µL = 0 may cause autocorrelation to be inferred even when no

evidence of this exists in the data.

Thus, we propose that µL be set according to

µL = − ∆t

log a0
(8.20)

for some “default” autocorrelation a0 which is close to 0 (or some other value, if justi-

fied). In our results, we set a0 = 0.001. In time series with non-uniform spacing, this

formula can be used by replacing ∆t with the smallest spacing at which independence

of consecutive noise terms is considered plausible for that time series.

8.3.5 Example with synthetic data

In this example, we use the two-parameter logistic growth model:

dy

dt
= ry(1− y/K). (8.21)

We demonstrate the results of fitting the non-stationary kernel to synthetic data,

generated from a logistic growth model with r = 0.08, K = 50, and f(t = 0) = 2 with

multiplicative Gaussian noise:

yi = f(ti; θ) + f(ti; θ)
ηvi, (8.22)

where yi is an observed data point, f(t; θ) is the ODE model solution, and vi
IID∼ N (0, σ2).
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Figure 8.3: Non-stationary Laplacian kernel fits to logistic data. The top plot of panel
(a) shows an example logistic growth time series with multiplicative noise, with 250
time points. In the other two plots of (a) and in panel (b), results for model fits to
eight replicate datasets are shown. In the middle plot of panel (a), the true standard
deviation

√
C(ti, ti) is shown, along with model estimates of it at the MAP estimates

for L and σ (one line per each replicate). In this plot, we also indicate the standard
deviations estimated by the IID assumption as horizontal dashed lines. In the bottom
plot of panel (a), the same is shown as in the middle plot, except with results for the
lag 1 autocorrelation, C(ti, ti+1)/(σ(ti)σ(ti+1)). Panel (b) shows MCMC estimates of the
posterior distributions for the logistic growth model parameters under three different
assumptions for the noise process; the boxes cover the central 50% posterior estimates,
while the whiskers cover the central 95% posterior estimates, and the dashed lines
indicate the true values of the parameters.
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We set η = 2 and σ = 0.0075. Eqs. (8.21)&(8.22) were used to generate eight replicate

time series, each with 250 time points. We considered parameter inference for each set of

series under three different noise processes: multiplicative (i.e. the true noise process),

the non-stationary Laplacian kernel, and IID Gaussian. In each case, Algorithm 4

was used to generate posterior samples from r and K. MCMC sampling for model

parameters was performed using Pints inference software [Clerx et al., 2019] with three

Markov chains and a total of 20,000 iterations on each, using the Haario Bardenet

method [Haario et al., 2001, Johnstone et al., 2016]. On a desktop processor, each chain

took approximately 20 minutes to run. The first half of each chain was discarded

as warm-up, and convergence was assessed using the Gelman R̂ statistic, requiring

R̂ < 1.05 for all parameters [Gelman et al., 2013]. To set the GP hyperparameter β, we

used eq. (8.19) with Nc = 200. The results are shown in Figure 8.3. In panel (a), the

data (from the first replicate) is shown in the top panel, along with the fitted model

trajectory. Below, the standard deviation and lag 1 autocorrelation are shown based on

the MAP estimates for each replicate and indicate good correspondence with the ground

truth. In panel (b), the posterior distributions for the model parameters are shown. The

growth parameter, r, was most affected by incorrectly assuming IID Gaussian noise,

where the IID noise model resulted in estimates with overly inflated uncertainty. This

is because model output is most sensitive to r in the first half of the series, where the

IID noise model overestimates the noise level. In all cases, the GP method provided

a higher fidelity estimate of uncertainty than IID noise; in most cases the location of

the posterior is also improved. Another example of the GPs fitted to synthetic data is

given in Figure 8.4. In this example, the true data generating process consists of discrete

blocks of different noise models, and the results show the ability of the non-stationary

kernel method to find an appropriate smooth approximation.

8.3.6 Non-stationary Laplacian kernel on blocked synthetic data

This section shows an example of the GP non-stationary kernel method being applied to

a synthetic time series with very sharp changes in the true noise parameters. The noise

process had 5 regimes, and was used with a logistic growth ODE model. The first, third

and fifth regimes had IID Gaussian noise with σ = 3, the second regime had AR(1) noise

with ρ = 0.85 and σ = 3, and the fourth regime had IID Gaussian noise with σ = 30.

We found the MAP estimates of the non-stationary Laplacian kernel parameters, using

Algorithm 2 for initialisation. In Figure 8.4, the results are shown. The top panel shows

one replicate of the data and the MAP estimate of the model trajectory. In the bottom
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Figure 8.4: Non-stationary kernel method fit to blocked noise data. This figure shows
how the Gaussian processes in the non-stationary Laplacian kernel handle a noise
process with blocks of different types of noise. The top plot shows a logistic growth time
series with 5 blocks of different noise forms. In the middle and bottom plots, the true
values of standard deviation and lag-1 autocorrelation are shown as dotted lines, while
the inferred MAP estimates for standard deviation and lag 1 autocorrelation are shown
in solid lines.

two panels, the inferred standard deviation and lag 1 autocorrelation are shown for

three replicates. The GPs are unable to learn the sharp corners in the ground truth for

standard deviation and autocorrelation, but they do reach a smooth approximation of

the ground truth.

8.4 Efficient computation for long time series

Simple noise processes, such as IID Gaussian, are advantageous for their high scalability

to time series involving larger numbers of data points. Because the methods described

in this chapter, however, require learning time-variation in kernel parameters, scalability

is more challenging. In real-life time series problems, we often encounter numbers of
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data points in the hundreds or thousands. In these cases, the computational cost of

the methods mentioned above becomes a serious hindrance. In this section, we thus

provide two computational strategies which can significantly decrease the runtime, and

enable scaling to long time series.

The computational cost of the multivariate normal likelihood given in eq. (8.4) is

sensitive to the number of time series points, n: the covariance matrix, Σ, is n× n, and

the multivariate normal requires its inverse and determinant to be calculated. For highly

sampled time series data, n is large enough that these computations are impossible.

To scale to long time series, we take advantage of the relative sparsity of the covari-

ance matrix. Any reasonable kernel, including the kernels we study in this chapter,

will generate matrices whose values are close to zero sufficiently far away from the

diagonal. We truncate the entries in our covariance matrix, setting all those below

a small threshold (10−9) to zero. This results in a sparse matrix whose inverse and

determinant can be computed using sparse Cholesky decomposition.

The non-stationary kernel for the GP method presents another scaling challenge as it

requires inferring the value of the various GPs at each time point. For the non-stationary

Laplacian kernel, this means that L(t) and σ(t) in eq. (8.17) are estimated for all t.

For long time series, the number of parameters to infer then becomes prohibitive. To

reduce this cost, we infer only the GP posterior on a sparser grid of time points. The

GP functions are then interpolated to populate the covariance matrix at the original

time points; here, we use linear interpolation but recognise that, if the GP value changes

rapidly, more nuanced schemes may be appropriate.

The specific speedup enabled by these two computational approximations will

vary greatly according to details of the problem at hand but, in our experience, can

be quite dramatic. With a time series of length 150, we found that learning the non-

stationary Laplacian kernel parameters at every fifth point and then interpolating

resulted in a speedup of approximately 500% at each MCMC iteration, and using sparse

covariance matrices resulted in a speedup of approximately 4100% for evaluation of the

multivariate normal likelihood. On a typical desktop computer, these approximations

enable reasonable runtimes for time series with lengths on the order of 10,000 points, as

we demonstrate in the following section.
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8.5 Application to hERG channel kinetics

In this section, we fit flexible noise processes to real data generated from experiments

on the hERG potassium ion channel. This problem is challenging because the noise

is clearly not IID, and, also because there may be misspecification of the underlying

ODE model. In §8.5.1, we provide a brief description of the hERG channel and a model

used to investigate its behaviour and also describe experimental data generated for this

system. In §8.5.3, we show how a flexible noise process can capture non-IID noise trends

leading to different estimates of model parameters compared to those from an IID noise

model.

The hERG channel time series are long (7700 time points, after 10× thinning), and

we expect that the variation in the magnitude and autocorrelation of their noise terms

can be captured using a continuously varying method. Thus, in this section we use

the non-stationary covariance kernel method from §8.3 along with those modifications

given in §8.4 to allow efficient computation.

8.5.1 Description of hERG problem

The human Ether-à-go-go-Related Gene (hERG) encodes the alpha subunit of the potassium

channel Kv11.1 that conducts the rapid delayed rectifier potassium current IKr. This

current is of great importance in cardiac electrophysiology and safety pharmacology; re-

duction of IKr by pharmaceutical compounds or mutations can induce fatal disturbances

in cardiac rhythm. Interest in this model generally centres on understanding the current

response of the hERG channel when a voltage stimuli V is applied. The current can be

described with a Hodgkin & Huxley-style structure model [Hodgkin and Huxley, 1952]

given by:

IKr = gKr · a · r · (V − EK), (8.23)

where gKr is the maximal conductance, and EK is the reversal potential (Nernst potential)

for potassium ions which can be calculated directly from potassium concentrations using

the Nernst equation.

The kinetic terms of the model, a and r, are governed by:
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da
dt

=
a∞ − a

τa
,

dr
dt

=
r∞ − r

τr
, (8.24)

a∞ =
k1

k1 + k2
, r∞ =

k4
k3 + k4

, (8.25)

τa =
1

k1 + k2
, τr =

1

k3 + k4
, (8.26)

where,

k1 = p1 exp(p2V ), k3 = p5 exp(p6V ), (8.27)

k2 = p3 exp(−p4V ), k4 = p7 exp(−p8V ). (8.28)

The model has 9 parameters θ = (gKr, p1, p2, . . . , p8) to be inferred, all of which are

positive. These parameters are the maximal conductance gKr [pS] and kinetic parameters

p1, p2, p3, · · · , p8 [s−1, V−1, s−1, · · · , V−1].

Experimental data of the current are taken from a freely available dataset [Lei et al., 2019b,

Lei et al., 2019a], where the voltage stimuli V were designed for parametrising the

model.

The logarithm-transformation was applied to all model parameters θ, such that the

transformed parameters ϕ = log(θ) are unconstrained. To account for the impact of

this non-linear transformation on the posterior, a Jacobian transformation was applied.

Priors for ϕ were selected using existing literature results (Lei et al., 2019a; 2019b), and,

for each element of ϕ, a weakly informative prior Gaussian distribution was used (see

Table 8.1 for the prior hyperparameters).

8.5.2 hERG Hodgkin-Huxley model parameter priors

In this section, we list the priors used for the 9 log-transformed model parameters in the

hERG model introduced in §8.5.1. These values are given in Table 8.1.

8.5.3 Results

For six different cells, the model parameter posteriors were obtained via MCMC us-

ing the IID noise model and the non-stationary Laplacian kernel flexible noise model.

To obtain posterior samples, the simulated tempering population MCMC algorithm

was used [Jasra et al., 2007], with convergence assessed using the Gelman R̂ statis-

tic [Gelman et al., 2013], and the first half of each chain discarded as warm up. For the
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Parameter Prior
gKr N (10.5, 1.0)

p1 N (−2.5, 3.0)
p2 N (4.5, 1.0)

p3 N (−3.5, 1.5)
p4 N (4.0, 0.5)

p5 N (4.5, 0.5)

p6 N (3.0, 1.5)

p7 N (2.0, 0.5)

p8 N (3.5, 0.5)

Table 8.1: hERG model prior parameters. This table contains the prior distributions
used for each parameter in the hERG model. For each parameter, the prior is a normal
distribution with the mean and standard deviation given in the table.

non-stationary Laplacian kernel, we used Algorithm 4 for inference and Algorithm 5 for

initialisation.

Figure 8.5 shows the central 95% posterior distribution ranges for all nine model

parameters, assuming either IID Gaussian noise (horizontal axis) or the non-stationary

noise process (vertical axis). There were significant differences in the parameter esti-

mates for almost all parameters, with much of probability mass not overlapping the

IID=Laplacian line. Additionally, the more sophisticated noise model resulted in sub-

stantially higher posterior variance for several model parameters, notably including gKr,

p2 and p4. Cell A04 is an outlier: this is likely because this cell has a region of drastic

misspecification in much of the time series, from t = 6 to t = 10. While the model fits for

all six cells indicate short regions of misspecification, which is particularly apparent after

the drops in current around t = 2 and t = 14, cell A04 (and to a lesser extent, A07) suffer

from more extensive misspecification. The data and inferred fits for cell A04 are shown

in Figure 8.6. The non-stationary noise model detects the central misspecified region by

assigning high variance and autocorrelation in the middle of the time series. In the time

series for cell A04, the poor fit between model and data may be largely explained by the

fact that our model in this study (§8.5.1) fails to account for experimental artefacts in the

voltage clamp experiment, such as leakage current—these artefacts may explain much

of the cell-to-cell variability observed in these experiments [Lei et al., 2020a]. Thus, the

high levels of standard deviation and autocorrelation detected in these time series sug-

gest that a more detailed model of the experiment is necessary in order to understand

these cells and correct the regions of obvious poor fit.
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Figure 8.5: Posterior distributions for hERG model parameters. This figure compares
the posterior distributions resultant from the IID Gaussian noise assumption (“IID”)
and non-stationary Laplacian kernel (“Laplacian”) for the nine hERG model parameters
for six cells. For each parameter, the central 95% range of the posterior is shown for
each noise model as a bar, with the IID posterior shown on the horizontal axis and the
non-stationary posterior shown on the vertical axis. Within each plot, a diagonal dashed
line is drawn along y = x.

8.6 Discussion

When performing Bayesian inference for the parameters of time series models, the

assumption made for the noise process may drastically alter the posterior estimates

of parameter uncertainty. The flexible noise models described in this chapter have the

ability to learn noise processes from the data, including complex, non-stationary noise

processes. The utility of these methods has been demonstrated in constructed synthetic
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Figure 8.6: Non-stationary Laplacian kernel noise model fit to hERG cell A04. This
figure shows the data and model fit (top panel), and the MAP estimate standard de-
viation and lag 1 autocorrelation over time (second and third panels) inferred by the
non-stationary Laplacian kernel noise model for cell A04.

data examples.

In applied circumstances, noise terms which exhibit autocorrelation and time-

varying magnitude often indicate model misspecification. This is what we observe

in the hERG time series problem, in which the best fit model trajectory cannot fully

express the signal that is clear in the data. In these cases, our non-stationary covariance

noise process is able to pick out the regions of poor fit and model the spikes in magnitude

and autocorrelation present at those time periods, with corresponding changes apparent

in the model parameter posteriors. Our method is agnostic as to whether the non-

stationary noise appears due to model misspecification or measurement imperfections,

and future work applying our method to misspecified models may be worthwhile.

8.7 Data and software

The software and data used in this chapter are available in an open source Python

package at https://github.com/rccreswell/flexnoise.

https://github.com/rccreswell/flexnoise


Chapter 9

Discussion

9.1 Summary of contributions

Applying Bayesian inference to parameterize the models of biological time series is

liable to be challenging for several reasons:

1. Existing models may be inaccurate or insufficient, failing to account for all features

of the modelled phenomena or population.

2. Models are liable to be parameterised in terms of quantities whose values may

vary over time in an arbitrary way, but learning precise estimates of time-varying

parameters is difficult.

3. Many biological models involve differential equations, and insufficiently accurate

simulation of these models can cause highly erroneuous inference results.

4. The errors between observed data and the best-fit model may disobey standard

assumptions such as IID Gaussian.

The investigations presented in this thesis address these challenges and provide gener-

ally useful models and approaches for applying Bayesian inference to biological time

series.

In the first portion of the thesis, epidemiology was the chief area of application of

the methodological investigations. Learning time-varying reproduction numbers (Rt)

via stochastic renewal models was the main focus in Chapters 3 and 4. In Chapter 3, we

developed a stochastic renewal model of infectious disease outbreaks to incorporate

heterogeneity between local and imported cases; using our model, we showed that

accounting for this heterogeneity is essential for accurate inference of Rt when there are

173
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differences in the transmissibility of local and imported cases. Thus, we addressed point

1 above (for one particular model).

Making models more complex can be dangerous, however, if it makes the parameters

of those models more difficult to infer (potentially leading to non-identifiability or slow

inference performance). In Chapter 3, we were able to retain conjugacy between the

model likelihood and the prior on Rt, ensuring that inference remained fast and tractable.

However, we identified that the sliding window heuristic method, used to learn the

pattern of time variation in Rt, depended on fixed hyperparameters which were difficult

to tune. When we tuned the sliding window width to be large enough to obtain precise

estimates of Rt, it was not possible to estimate rapid changes in Rt.

Thus, in Chapter 4, we introduced an alternative framework for learning time

variation in Rt (the ideas presented in Chapter 4 are much more generally applicable to

learning time-varying parameters for a variety of models in various fields, however).

This approach used a Bayesian nonparametric prior to learn an arrangement of the time

points into clusters having shared values of Rt. Using this approach, we were able to

pool information of all data points within a given cluster, so that we could estimate

precise Rt values within each cluster.

In the second portion of the thesis, we focused on differential equation models

and addressed points 3 and 4 above. In Chapter 5, we considered the challenges that

can arise when developing ODE-based compartmental models of infectious disease

transmission.

In Chapter 6, we provided a thorough investigation of the interplay between nu-

merical approximation of differential equations and inference for their parameters. We

showed that insufficient accuracy in the numerical solution could lead to biased pa-

rameter estimates, and that even apparently small errors in the forward solution could

be magnified and cause significant biases in the recovered parameters. In Chapter 6,

we considered three models: a compartmental model of COVID-19; a toy model from

elementary mechanics; and a streamflow model used to describe streamflows in rivers.

Chapter 6 showed that numerical solvers can introduce significant errors in the

parameter likelihoods, and controlling this error is essential for accurate parameter

inference. However, although we derived a bound on the error in the log-likelihood

as a function of the local truncation error introduced by the solver, in Chapter 6 we

did not provide a practical, general framework for controlling numerical error on the

likelihood, aside from more ad-hoc strategies such as visualising slices of the likelihood

surface and refining tolerances on the local truncation error. Thus, in Chapter 7, we
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used adjoint-based techniques to develop a gradient-based MCMC Bayesian inference

strategy which controls error on the log-likelihood while using the gradient to speed up

inference. Although computing the actual error in the log-likelihood due to numerical

error in the forward solution is computationally expensive, we showed that many of

these computations could be reused to approximate the gradient of the log-likelihood

with respect to the parameters.

Finally, in Chapter 8, we turned to the stochastic noise terms which are used to model

deviations between deterministic differential equation models and noisy observed

data. Moving away from the independent and identically distributed (IID) Gaussian

assumption, we used a flexible model to learn noise terms whose standard deviation

and correlation could vary over time. We showed that when heteroscedasticty and

autocorrelation were present in the time series, failing to account for them via the

standard IID Gaussian assumption could lead to highly biased parameter inference;

however, when the flexible models described in the chapter were used, parameter

posteriors could be recovered more accurately.

9.2 Directions for future work

Throughout Chapters 3 and 4, we relied on incidence data to inform values of Rt.

Although our methods developed in these chapters were successfully applied to real

incidence data from several regions worldwide, more widespread application of these

methods would require more careful consideration of the significant levels of noise and

bias that are liable to occur in epidemiological time series data such as incidence.

Noise and bias in epidemiological time series can arise from factors such as re-

porting delays [Gostic et al., 2020], cyclical factors in reporting of cases and deaths

[Gallagher et al., 2022], geographic or demographic variability in test-taking behaviours

[Nicholson et al., 2022], or population heterogeneity in disease transmission risk

[Lloyd-Smith et al., 2005]. Naïve application of the standard Poisson renewal model

which we built upon in Chapters 3 and 4 to time series data significantly affected by

these factors is likely to cause poor inference results. This is particularly important for

nonparameteric methods such as EpiCluster, which we introduced in Chapter 4. In such

models, the ability to accurately infer the correct number of changes in parameter value

is closely tied to accurate modelling of the stochasticity in the data: if the stochasticity

is misspecified, the model may explain genuine changes in the parameter values just

as stochastic artefacts, or, equally dangerously, it may overfit and falsely assume that
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spurious fluctuations in the data reflect genuine changes in the parameter values.

Distributions such as the negative binomial allow overdispersion

[Lloyd-Smith et al., 2005], potentially leading to more robust inference results

when used as the renewal distribution in a stochastic model of a disease outbreak.

However, such distributions lack the convenient Poisson-Gamma conjugate prior

relationship, making inference for Rt more challenging. Developing efficient inference

algorithms for Rt not reliant on the conjugacy between the prior and likelihood is

therefore likely to be useful future work.

In Chapter 3, we generalized the Poisson renewal model to allow local and imported

cases to have differing risks of onwards transmission. Our results in that chapter

indicated that modelling this heterogeneity can be important for accurate inference of

epidemiological parameters such as Rt. Thus, it would be valuable to apply the same

idea—that local and imported cases have potentially different behaviours—to other

epidemiological models beyond the Poisson renewal model—for example, the Hawkes

process, another stochastic model which has recently seen use in infectious disease

modelling [Garetto et al., 2021, Unwin et al., 2021].

The estimation of Rt is not the only epidemiological inference problem that stands to

benefit from wider application of Bayesian nonparametric methods such as EpiCluster

(Chapter 4). The ideas developed in Chapter 4 could be straightforwardly adapted

to a variety of other problems involving parameters which vary over time, and when

parameter values change rapidly, our work in this thesis suggests that nonparametric

change point models may outperform existing methods. As an example, serocatalytic

models (e.g., [Pons-Salort et al., 2023]) of the age-structured seroprevalence of a disease

are often parameterised in terms of a time-varying historical force of infection (FOI).

Learning time variation in FOI presents many of the same challenges as learning Rt: to

obtain precise estimates, information across multiple time points must be leveraged, but

a priori it is rarely obvious how to divide the time interval to achieve this.

As mentioned above, however, such models may not yield convenient conjugate

relationships, necessitating further work on the development of efficient inference

algorithms.
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