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Viscoelastic confinement induces periodic flow reversals in active nematics
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We use linear stability analysis and hybrid lattice Boltzmann simulations to study the dynamical behavior
of an active nematic confined in a channel made of viscoelastic material. We find that the quiescent, ordered
active nematic is unstable above a critical activity. The transition is to a steady flow state for high elasticity of the
channel surroundings. However, below a threshold elastic modulus, the system produces spontaneous oscillations
with periodic flow reversals. We provide a phase diagram that highlights the region where time-periodic
oscillations are observed and explain how they are produced by the interplay of activity and viscoelasticity.
Our results suggest experiments to study the role of viscoelastic confinement in the spatiotemporal organization
and control of active matter.
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I. INTRODUCTION

Living systems across scales exhibit collective motion and
thus spatiotemporal patterns, vividly manifested as, for in-
stance, motility-induced phase separation [1], spontaneous
flow transitions [2–5], and turbulence at low Reynolds number
[6–8]. Not only biochemical and genetic cues but mechanical
interactions of the system with its surroundings are impor-
tant in dictating such emergent dynamics. Adding to this
complexity, biological environments are often endowed with
viscoelastic properties, for example, biofilms where bacte-
rial cells colonize in a polymeric matrix [9], migration of
cells through extracellular matrix [10–13], notably the phe-
nomenon of durotaxis [14], and change in the swimming
behavior of microorganisms due to the presence of polymers
in biofluids [15,16]. In a different context, traction force mi-
croscopy has become an indispensable tool to probe force
fields in cellular structures. The technique assumes a one-
way mechanical interaction of cells with an elastic substrate
[17,18]. Therefore, clarifying the interplay of the viscoelastic-
ity of a confining medium and activity of the living system is
crucial from understanding measurements in mechanobiology
to biological events such as wound healing [19], morpho-
genesis [20], and cancer invasion [21]. Besides, identifying
universal pathways of pattern formation is a central goal of
active matter research.

It is well known that active nematics, a versatile model
fluid for active matter, confined in a rigid channel displays a
transition—mathematically analogous to the Fredericks tran-
sition in passive liquid crystals [22]—from quiescence to a
flow state when the activity is increased beyond a threshold
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value [2,23–26]. Further increase in activity induces a cas-
cade of dynamical transitions resulting in oscillatory flows
[4,27], dancing topological defects [27,28], and active turbu-
lence [29–33]. In addition, recent experiments have employed
microfluidic technologies to control and generate complex
fluxes in active nematics [34,35]. Thus channel-confined ac-
tive nematics have become a paradigm for understanding
the dynamical behavior of active systems [36]. Therefore,
we investigate the interaction between activity and viscoelas-
ticity by analyzing an active nematic flowing in a soft
channel.

Previous studies that address the role of viscoelasticity
in living systems considered either active particles within a
viscoelastic fluid [37–42] or active matter in contact with a
viscoelastic environment [43–45]. In the former case, oscil-
lating vortices and drag reduction effects are seen to arise
due to the presence of polymers [40,41]. In the latter, less
studied case, numerical simulations demonstrate that temporal
pulses in activity drive reversal of spontaneous flows [44].
Moreover, spontaneous flow reversals have been experimen-
tally observed in swimming bacteria confined in a disk [46]. In
this paper, we demonstrate analytically and numerically that,
above a critical activity, viscoelastic confinement produces
spontaneous, oscillatory flow states of an active nematic that
switches flow directions periodically. The direction-reversing
oscillatory flows exist only in “soft” channels and they disap-
pear when the elastic modulus of the confinement increases
above a critical value. Building on our findings, we explain
the origin of oscillations as the interplay of activity and vis-
coelasticity, demonstrate the generality of the phenomenon,
and discuss the consequences.

II. MODEL

We consider a two-dimensional channel of width 2L and
infinite length which contains the active nematic. The borders
of the channel which span a width of (β − 1)L on either
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FIG. 1. Schematic representation of the system: an active ne-
matic layer of width 2L is confined between two viscoelastic layers,
each of width (β − 1)L. Thus the bounding rigid plates are separated
by a distance 2βL. The active nematic is a dense suspension of ele-
ments that generate active stress. The viscoelastic layers are shown
as made up of Maxwell elements.

side are made up of viscoelastic material (see Fig. 1). Let x
and y denote the directions parallel and perpendicular to the
channel length, with y = 0 the center line of the channel. The
relevant hydrodynamic variables are Q and v representing the
orientational order and velocity field in the active nematic
respectively and u the displacement field in the viscoelastic
layers.

Active nematics may develop orientational order either
due to the elongated shape of the constituents [47,48] or
as an emergent feature of deformability of particles, such
as cells [49] or due to activity itself [50]. The nematic
order is measured using an orientational order parameter
Q = 2q(nn − I/2), where n = [cos(θ ), sin(θ )] is the director
field, θ ∈ (−π/2, π/2) is the angle that the nematogens form
with the positive-x direction, q is the magnitude of the nematic
order, and I is the identity tensor. The nematic order parameter
tensor evolves according to [51]

(∂t + v · ∇)Q = S + γ −1H, (1)

where S = 2λqE + � · Q − Q · � describes the generalized
corotational derivative, E = [(∇v)ᵀ + (∇v)]/2 is the strain
rate tensor, and � = [(∇v)ᵀ − (∇v)]/2 is the vorticity tensor.
The flow aligning parameter λ is determined by the shape
of the nematogens. In Eq. (1), γ is the rotational viscosity
and H = −δF/δQ is the molecular field which drives the
system to the minimum of the free energy with energy den-
sity F = 1

2 AQ2 + 1
4CQ4 + 1

2 K (∇Q)2. Here, K is the elastic
constant and A and C are material parameters, chosen so that
the system is in the nematic phase at equilibrium.

The velocity field v obeys the incompressible Navier-
Stokes equations [6,52]:

∇ · v = 0, ρ1(∂tv + v · ∇v) = ∇ · σ, (2)

where the total stress tensor σ is given by the sum of (i)
the viscous stress σviscous = 2η1E , where η1 is the viscosity
of the active nematic, (ii) the elastic stress σelastic = −P1I −
2λqH + Q · H − H · Q, where P1 is the bulk pressure, and
(iii) the active stress σactive = −ζQ. Here ζ is the activity

coefficient, with ζ > 0 (ζ < 0) corresponding to extensile
(contractile) activity.

The dynamics of the incompressible viscoelastic layers is
described by the displacement field u from the equilibrium
position that evolves according to [53,54]

∇ · u = 0, ρ2
∂2u
∂t2

= −∇P2 + ∇ · τ, (3)

where ρ2 is the gel density and P2 is the bulk pressure in the
viscoelastic layers. The stress tensor τ is model dependent and
we consider two simple yet powerful constitutive relations,
namely

(i) Maxwell model:
1

E

Dτ

Dt
+ 1

η2
τ = ∇∂t u + (∇∂t u)ᵀ,

(ii) Kelvin-Voigt model: τ = (E + η2∂t )[∇u + (∇u)ᵀ],

to capture the rheological response of the viscoelastic lay-
ers that confine the active nematic. In the above, D/Dt
is the upper convected derivative [54] and E and η2 are
the elastic modulus and viscosity, respectively. A Maxwell
(Kelvin-Voigt) material is composed of a spring and a dashpot
connected in series (parallel). It behaves as an elastic solid at
short (long) times and as a viscous liquid at long (short) times,
with a single crossover timescale η2/E .

Equations (1)–(3) govern the dynamics of the system and
we solve them (i) analytically as a linear stability problem
and (ii) numerically using a hybrid lattice Boltzmann method.
We assume translational invariance in the x direction, so that
vy = 0, vx = vx(y) and uy = 0, ux = ux(y). The viscoelastic
material is in contact with a no-slip wall at y = ±βL. At
the interface between the active nematics and the viscoelastic
layer, we impose no-slip conditions, vx(±L) = ∂t ux(±L), and
continuity of the stress tensor σxy(±L) = τxy(±L). For sim-
plicity, we consider strong planar anchoring of the director
field at the interface, i.e., θ (±L) = 0.

III. SPONTANEOUS OSCILLATIONS

To investigate the interplay of activity and viscoelastic-
ity, we perform linear analysis to calculate the stability of
a small perturbation around the static nematic state with
(vx, ux, θ, q) = (0, 0, 0, q0) where q0 = √−A/(2C). For each
field, we consider small perturbations around the steady state
f0 of the type f (y, t ) = f0 + f̃ (y)eωt . In the limit of zero
inertia (ρ1 = ρ2 = 0), the growth rate ω satisfies the transcen-
dental equation (see Appendix A)

ω + (γ −1K�1 − ω/�1) tanh(�1L)

[η1ω + q0(1 − λ)ζ ]L
= (1 − β )

ET , (4)

where �1 =
√

η1ω+q0(1−λ)ζ
η1γ −1K+2q2

0K (λ−1)2 . For Maxwell and

Kelvin-Voigt models, respectively, T = (ω + E/η2)−1 and
T = ω−1 + η2/E . The nature of instability associated with
the system depends on ω—the solution of Eq. (4).

For simplicity, we first consider a purely elastic mate-
rial bounding the nematic fluid, corresponding to the limit
η2 → ∞ (η2 → 0) for the Maxwell (Kelvin-Voigt) model. In
the limit of large elastic modulus E → ∞, the boundaries
at y = ±L are rigid and we recover the classical result of
Voituriez et al. [2]: increasing the activity beyond a critical
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FIG. 2. (a) Phase diagram in the (ζ , E ) plane, illustrating the
states of an active nematic when confined in a purely elastic channel,
corresponding to η2 = ∞ (η2 = 0) for the Maxwell (Kelvin-Voigt)
model. The continuous red line is the critical activity ζ c, obtained
from linear stability analysis, at which the nematic state becomes
unstable, driving flows. The symbols are obtained from hybrid lat-
tice Boltzmann simulations with η1 = 10/3, γ = 10, ρ1 = 20, ρ2 =
0, K = 0.1, q0 = 0.25, L = 10, λ = 0, and β = 2. For E < Ec ≈
0.0033, the instability leads to periodic oscillations. For E > Ec, a
steady flow of active nematic is obtained. (b) The growth rate ω in the
complex plane, for E = 0.002 < Ec (blue lines) and E = 0.0042 >

Ec (orange line). The arrows indicate the direction of increasing |ζ |.
(c) Time period of oscillations T as a function of E/Ec. T diverges
when E → 0 and E → Ec.

value ζ c
wall, the nematically ordered state is unstable and spon-

taneous flows develop driven by the distortions in the director
field. The critical activity is calculated from Eq. (4),

ζ c
wall = −π2K

[
η1/γ + 2q2

0(1 − λ)2
]

q0(1 − λ)L2
. (5)

In the opposite limit E = 0, corresponding to a free-standing
film of active nematic, an analogous transition to a steady flow
is observed at activity ζ c

free = ζ c
wall/4.

The critical activity of the system at intermediate values of
E , obtained from Eq. (4), is summarized in Fig. 2 (red line).
The critical activity ζ c = ζ c

free at E = 0 and nonlinearly (see
Appendix B) increases with increase in the elastic modulus
E , until a threshold elastic modulus E = Ec. Beyond Ec the
critical activity “freezes” to ζ c = ζ c

wall—that corresponding to
a rigid wall.

Interestingly the transition mechanism at ζ c, at which
the ordered nematic state becomes unstable, is different for
E < Ec and E > Ec. We find that, for E < Ec, the route
to instability is via a Hopf bifurcation where the complex
conjugate eigenvalues ω cross the imaginary axis with a fi-
nite imaginary part at ζ = ζ c [Fig. 2(b)]. Consequently, the
ensuing instability is oscillatory and the active nematic transi-
tions from a quiescent to an oscillating state where the flow
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FIG. 3. Temporal evolution of the system with the same param-
eter values as in Fig. 2 at ζ = ζ c(E ). The panels (a), (b), (c), and
(d) show the hydrodynamic fields in the oscillatory phase for t =
0, T/4, T/2, 3T/4. Panel (e) shows the phase space trajectory in the
[ux (L, t ), vx (L/4, t )] plane for different values of E . The dashed lines
display the time-reversed trajectories, showing time irreversibility.

direction is reversed periodically. On the other hand, for
E > Ec, the instability becomes stationary [Im(ω) = 0] and
no oscillations are observed. The numerical simulations show
that the oscillations are replaced by steady flow at sufficiently
high activity (see Fig. 2).

The oscillatory state can be understood by following the
temporal evolution of a system which is at its critical ac-
tivity ζ = ζ c and with 0 < E < Ec and |ζ c

free| < |ζ | < |ζ c
wall|

[such as a point marked “�” in Fig. 2(a)]. At time t = 0
[see Fig. 3(a)], the elastic layer is not deformed (ux = 0)
and the stress at the active nematic-elastic interface (y = ±L)
vanishes. This condition corresponds to a freestanding active
nematic film (no resistance from the elastic layer), which
will have a critical activity ζ c

free. Since the activity of the
system exceeds this critical value, |ζ | > |ζ c

free|, spontaneous
flow develops in the active film. The velocity profile ṽx(y)
is an odd function of y similar to that of a shear flow (see
Appendix A). These flows, in turn, drive the deformation of
the elastic confinement. Eventually, the elastic response of the
channel wall slows down the flow and the deformation rate
at the active-elastic interface vanishes. In this configuration,
the effect of elastic confinement is the same as that of a
rigid wall and the critical activity for the active nematic is
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ζ c
wall. However, since |ζ | < |ζ c

wall|, the active forcing is not
sufficient to sustain the flows and they die out [Fig. 3(b)]. The
elastic energy stored in the elastic medium pushes the flow in
the opposite direction, leading to a flow reversal [Fig. 3(c)].
Hence the oscillations arise because the activity is too high to
remain in the quiescent state (ζ > ζ c

free) but too low to sustain
the flow (ζ < ζ c

wall). Note that, while the frequency of the
oscillations depends on the material density, the critical value
ζ c(E ) is independent of ρ1 and ρ2 (see Appendix A).

The critical elasticity Ec can be computed analytically.
Neglecting the elastic component of the stress in (2), we find
(see Appendix B)

Ec ≈ 2π2

3

(β − 1)η1K

γ L2
. (6)

Interestingly, the range of values of E for which oscillations
are observed can be extended by increasing the relative width
β of the elastic layer or decreasing the width L of the sam-
ple. Using the values recently measured for tubulin-kinesin
active nematic gel, we find EcL2/(β − 1) ≈ 3.9 × 10−15 N m
[55,56]. For L ≈ 50 microns and height (in the direction per-
pendicular to the x−y plane) �z ≈ 0.5 microns, we predict
that for β ≈ 6 the elastic inclusions developed in [56] would
lead to oscillations (see Appendix B for details).

The period T of the oscillations is set by the elasticity,
viscosity, and L/(γ −1K )—the relaxation timescale of the di-
rector field. The period T close to the critical point ζ = ζ c

can be obtained analytically from Eq. (4) (see Appendix A)
and is shown in Fig. 2(c) as a function of E . For E → 0,
the activity ζ is only slightly larger than ζ c

free required to
initially start a flow, leading to a slowdown of the dynamics.
Similarly, when E → Ec, the activity ζ is only marginally be-
low ζ c

wall and the flow-reversal mechanism again slows down
significantly. Indeed the time period diverges in the limiting

cases: T ∼
√

L2η1

γ −1KE for E → 0 and
√

L2η1

γ −1K (Ec−E ) for E → Ec.
Hence the crossover from oscillatory to steady flow at the
two limiting cases, E > 0 to E = 0 and E < Ec to E = Ec,
occurs smoothly via an infinite-period bifurcation. The period
T has a minimum at E = E∗, reminiscent of the phenomenon
of resonance and the elastic modulus can be optimally tuned
to increase the frequency of oscillatory motion.

To gain further insight into the oscillatory modes of the
instability, we next plot the trajectory of the system in a

phase space spanned by the displacement of the elastic layer
[ux(y = L, t )] and the velocity of the active nematic [vx(y =
L/4, t )] as shown in Fig. 3(e). The exact shape of the curve
depends on the choice of parameters, but note that the phase
space trajectory encloses a finite area indicating the phase
lag in the velocity field of active nematic and the displace-
ment field of elastic confinement. Interestingly, the phase
space trajectory does not coincide with the time-reversed
trajectory [ux(L,−t ),−vx (L/4,−t )], manifestly breaking the
time-reversal symmetry and showing the nonequilibrium na-
ture of the active-dissipative system under consideration.
While nonreciprocal oscillatory motion, the sine qua non for
self-propulsion (the scallop theorem), is abundant in life at
low Reynolds number [57,58], the current analysis demon-
strates that the mechanical coupling of activity and elasticity
automatically generates such nonreciprocal motion in active
systems.

Having established that the genesis of oscillations is the
elasticity of the confining channel we can analyze more
complex constitutive relations. For the Maxwell model, on
timescales smaller than η2/E the viscoelastic confinement be-
haves as an elastic solid and the coupling between activity and
elasticity still leads to oscillations as illustrated in Fig. 4(a).
The instability becomes stationary for E > Ec but with the
difference that Ec depends on the viscosity ratio ηr = η2/η1.
When E > Ec, the viscoelastic confining material essentially
behaves as a viscous fluid with critical activity ζ c

visc. Hence the
critical activity ζ c = ζ c

visc depends upon the viscosity ratio ηr

and |ζ c
free| < |ζ c

visc| < |ζ c
wall|. The behavior at small E can be

understood in a similar fashion. In this limit, the viscoelastic
timescale η2/E is large compared to the period of the oscil-
lations T ∼ 1/

√
E and the Maxwell material behaves as an

elastic solid exhibiting an ηr independent behavior of ζ c. In
particular, ζ c ≈ ζ c

free at small elasticity E .
Opposite behaviors are observed when the channel con-

finement is the Kelvin-Voigt material. For E > Ec the
instability is still stationary but the confining material behaves
as an elastic solid and ζ c = ζ c

wall; see Appendix C. This re-
sults in the threshold elastic modulus Ec being independent
of the viscosity η2; see Fig. 4(b). For E → 0, the viscoelastic
timescale η2/E is large compared to the period of the oscilla-
tions and the Kelvin-Voigt material behaves as a viscous fluid.
Hence the critical activity ζ c for small E strongly depends on
ηr . To summarize, the choice of different constitutive models
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FIG. 4. Critical activity |ζ c| as a function of the elastic modulus E for different values of ηr = η2/η1 for the Maxwell model (a) and the
Kelvin Voigt model (b). The values of the parameters are η1 = 10/3, γ = 10, ρ1 = ρ2 = 20, K = 0.1, q0 = 0.25, L = 10, λ = 0, and β = 2.
In the regions where |ζ c| increases with E the instability is oscillatory.
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of the channel confinement leads to quantitative differences
but does not change the physics of the oscillations.

IV. CONCLUSIONS

Our results highlight a pathway to spatiotemporal pattern
formation in active matter in a minimal setting. It is indeed re-
markable to note that the time periodic, oscillatory flows arise
even at constant activity. Our predictions can be tested exper-
imentally, by confining cell layers [5] or microtubule-based
active fluids [25,56] in channels with soft walls. Moreover,
traction force microscopy provides a potential platform to
study the role of an active-elastic boundary [17,18]. Recent
experiments have shown that active matter can be controlled in
space by tuning the geometry of the confinement [29,34,35].

However, a precise criterion for temporal control is still miss-
ing [41]. In this paper, we have shown that for soft channels
the temporal frequency ω of the system is coupled to the
elastic constant E of the material as ω ∼ √

E . Therefore,
tuning the mechanical properties of the surroundings, e.g.,
using light-activated inclusions [56], allows one to precisely
control the temporal behavior of the system, with a variety of
applications from microfluidics to soft robotics.
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APPENDIX A: LINEAR STABILITY ANALYSIS

In this section, we perform the linear stability analysis of Eqs. (1)–(3). Under the assumption of translational invariance in
the x direction, the governing equations for the nematic region (|y| < L) become

∂t q = γ −1
{−q

[
A + 2Cq2 − γ λ sin(2θ )∂yvx + 4K (∂yθ )2

] + K∂2
y θ

}
,

∂tθ = 2γ −1Kq−1∂yq∂yθ + 1
2γ −1

{
γ ∂yvv[λ cos(2θ ) − 1] + 2K∂2

y θ
}
,

ρ1∂tvx = ∂yσxy, (A1)

where
σxy = −2λq{sin(2θ )q[−A − 2B cos2(2θ )q2] + K[4∂yq∂yθ cos(2θ ) − 4q sin(2θ )(∂yθ )2]} + 4Kq

[
2∂yq∂yθ + q∂2

y θ
]

+ η1∂yvx − ζq sin(2θ ). (A2)

In the viscoelastic region (y > |L|), we find

ρ2∂
2
t ux = ∂yτxy,

(A3)
1

E

Dτxy

Dt
+ 1

η2
τxy = ∂y∂t ux,

where Dτxy/(Dt ) = ∂tτxy − τyy∂y∂t ux is the upper-convected
derivative of the stress tensor. The boundary conditions are

θ (y = ±L) = 0, vx(y = ±L) = ∂t ux(y = ±L),

τxy(±L) = σxy(±L), ux(±βL) = 0. (A4)

We probe the stability of a small perturbation around the
stationary state (vx, ux, θ, q) = [0, 0, 0, q0 = √−A/(2C)] of
the type f (y, t ) = f0 + f̃ (y)eωt . Expanding to linear order, we
find

ωθ̃ = γ −1K∂2
y θ̃ + λ − 1

2
∂yṽx,

(A5)
ρ1ωṽx = ∂yσxy,

where

σxy = η1∂yṽx − 2ζq0θ̃ − 4q2
0K (λ − 1)∂2

y θ̃ (A6)

and

∂2
y ũx = δ2ũx, (A7)

where

δ =
√

ρ2ω

(
ω

E
+ 1

η2

)
. (A8)

The boundary conditions are

η1∂yṽx(±L) − 2ζq0θ̃ (±L) − 4q2
0K (λ − 1)∂2

y θ̃ (±L)

= ω

ω/E + 1/η2
∂yũx(±L), (A9)

θ̃ (±L) = 0, ṽx(±L) = ωũx(±L), ũx(±βL) = 0.

(A10)

FIG. 5. Critical activity ζ c as a function of E for η1 = 10/3, η2 =
∞, γ = 10, K = 0.1, q0 = 0.25, L = 10, λ = 0, β = 2, and different
values of the densities ρ1 and ρ2.
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Solving the gel equation (A7) and imposing the no-slip bound-
ary condition ũx(±βL) = 0 we find

ux(y) = c±
4 [sinh(δy) ∓ tanh(δβL) cosh(δy)], (A11)

for y > L (y < −L). From Eq. (A6), we obtain

∂4
y θ̃ (y) − a∂2

y θ̃ (y) + bθ̃ (y) = 0, (A12)

where we have defined

a = η1ω + γ −1Kρ1ω − q0ζ (λ − 1)

η1γ −1K + 2q2
0K (λ − 1)2

(A13)

and

b = ρ1ω
2

η1γ −1K + 2q2
0K (λ − 1)2

. (A14)

We first consider the even solution

θ (y) = c1

[
cosh (�1y) − cosh(�1L)

cosh(�2L)
cosh (�2y)

]
, (A15)

where we have imposed the boundary condition θ (±L) = 0
and defined

�1,2 =
√

a ± √
a2 − 4b

2
. (A16)

Using Eq. (A5), we find

ṽx(y) = 2

1 − λ
c1

[(
γ −1K�1 − ω

�1

)
sinh(�1y)

−
(

γ −1K�2 − ω

�2

)
cosh(�1L)

cosh(�2L)
sinh(�2y)

]
.

(A17)

Imposing the boundary conditions at y = ±L, we find the
following condition for ω:

(γ −1K�1 − ω/�1) tanh(�1L) − (γ −1K�2 − ω/�2) tanh(�2L)

(�2
1 − �2

2)
[
γ −1η1K + 2q2

0K (1 − λ)2
] +

(
ω

E
+ 1

η2

)
tanh [δ(β − 1)L]

δ
= 0. (A18)

Considering the odd solution, we find

θ (y) = c1

[
sinh (�1y) − sinh(�1L)

sinh(�2L)
sinh (�2y)

]
, (A19)

ṽx(y) = 2

1 − λ
c1

[(
γ −1K�1 − ω

�1

)
cosh(�1y) −

(
γ −1K�2 − ω

�2

)
sinh(�1L)

sinh(�2L)
cosh(�2y)

]
, (A20)

and the condition

(γ −1K�1 − ω/�1) coth (�1L) − (γ −1K�2 − ω/�2) coth (�2L)(
�2

1 − �2
2

)[
γ −1η1K + 2q2

0K (1 − λ)2
] +

(
ω

E
+ 1

η2

)
tanh [δ(β − 1)L]

δ
= 0. (A21)

For the range of parameters considered in the paper, we find that the even solution (corresponding to no net flow in the channel)
is dominant, i.e., it becomes unstable at lower values of the activity. Hence, in the main text, we only focus on the even mode.
The odd solutions may be favored by introducing weak anchoring. In Fig. 5 we show that the critical value ζ c of the activity is
independent of the densities ρ1 and ρ2.

APPENDIX B: ASYMPTOTIC BEHAVIORS

In this section, we extract the asymptotic behavior of the solution of Eq. (A18). For simplicity, we consider the case ρ1 =
ρ2 = 0. In this limit, the condition in Eq. (A18) becomes

ωL + (γ −1K�1 − ω/�1) tanh(�1L)

η1ω + (1 − λ)q0ζ
+

(
ω

E
+ 1

η2

)
(β − 1)L = 0, (B1)

where

�1 =
√

η1ω + q0(1 − λ)ζ

η1γ −1K + 2Kq2
0(λ − 1)2

. (B2)

We first consider the limit of small E . For E = 0 (corresponding to a free surface), the critical value of the activity can be
computed analytically and reads

ζ c
free = −π2 η1γ

−1K + 2Kq2
0(1 − λ)2

4q0L2(1 − λ)
. (B3)

We set E = ε, ζ = ζ c
free + a1ε, and ω = a2

√
ε. We then expand Eq. (B1) in powers of ε, yielding

a2L(−1 + β ) + 2K
a2γ Lη1√

ε
+

[
L(−1 + β )

η2
+ 2L

[
5η1 + 8γ q2

0(1 − λ)2
]

π2η1
[
η1 + 2q2

0γ (1 − λ)2
] + 2a1Kq0(−1 + λ)

a2
2Lγ η2

1

]
+ O(

√
ε) = 0. (B4)
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Setting the coefficients to zero, we get

a2 = ±i

√
2γ −1K

L
√

η1(β − 1)
(B5)

and

a1 = − 1

q0(1 − λ)

[
η1

η2
+ 2[5η1 + 8q2

0γ (1 − λ)2]

π2(β − 1)
[
η1 + 2q2

0γ (1 − λ)2
]
]
. (B6)

As expected, the growth rate ω is purely imaginary. Using the parameters of Fig. 2, we find a1 ≈ −3.83.
To investigate the asymptotic behavior of the system close to the transition, we set E = Ec − ε, ζ = ζ c

visc − a1ε, and ω =
a2

√
ε, yielding⎡

⎢⎢⎢⎢⎢⎣
L(β − 1)

η2
−

K
√

− q0γ ζ c
visc (−1+λ)

K
[
η1+2q2

0γ (−1+λ)2
] tanh

(
L
√

− q0γ ζ c
visc (−1+λ)

K
[
η1+2q2

0γ (−1+λ)2
]
)

−γ ζ c
visc + γ ζ c

viscλ

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

[a2L(−1 + β )]

Ec
− a2

[
3η1 + 4q2

0γ (−1 + λ)2
]

2ζ c
visc

[
η1 + 2q2

0γ (−1 + λ)2
]
(−1 + λ)

+
a2η1L tanh

(
L
√

− q0γ ζ c
visc (−1+λ)

K
[
η1+2q2

0γ (−1+λ)2
]
)2

2q0ζ
c
visc[η1 + 2q2

0γ (−1 + λ)2](−1 + λ)

−
a2K[3η1 + 4q2

0γ (−1 + λ)2]
√

− q0γ ζ c
visc (−1+λ)

K
[
η1+2γ q2

0 (−1+λ)2
] tanh

(
L
√

− q0γ ζ c
visc (−1+λ)

K
[
η1+2q2

0γ (−1+λ)2
]
)

2q2
0γ

(
ζ c

visc

)2
(−1 + λ)2

⎤
⎥⎥⎥⎥⎥⎦

√
ε + O(ε) = 0. (B7)

Setting the coefficients to zero we find

L(β − 1)

η2
−

K
√

− q0γ ζ c
visc (−1+λ)

K
[
η1+2q2

0γ (−1+λ)2
] tanh

(
L
√

− q0γ ζ c
visc (−1+λ)

K
[
η1+2q2

0γ (−1+λ)2
]
)

−γ ζ c
visc + γ ζ c

viscλ
= 0 (B8)

and Ec can be simply obtained by setting to zero the coefficient of
√

ε. Equation (B8) is transcendental and must be solved
numerically to determine ζ c

visc. Considering higher order expansions, one can find expressions for a1 and a2. In particular, using
the parameter values from Fig. 2 we find that the slope of ζ at E = Ec is a1 ≈ 4.79. Thus the slopes of ζ as a function of E at
E = 0 and E = Ec differ, implying that ζ is not a linear function of E , as shown in Fig. 6.

In the limit of a purely elastic medium (η2 → ∞) we find

Ec = 2Kπ2(−1 + β )
[
η1 + 2q2

0γ (−1 + λ)2
]2

L2γ
[
3η1 + 4q2

0γ (−1 + λ)2
] . (B9)

Finally, neglecting the elastic component of the nematic
stress, we obtain

Ec ≈ 2π2

3

(β − 1)η1K

γ L2
. (B10)

We next focus on tubulin-kinesin active nematic gels [47],
for which neglecting the elastic component of the stress is
justified by experimental measurements [56]. In Ref. [56],
experiments with microfabricated elastic inclusions lead to the
estimates K ≈ 6 × 10−16 N m and η1 ≈ 10−5 Pa s m. Taking

γ ≈ η1 [55], we get

EcL2

β − 1
≈ 3.9 × 10−15 N m. (B11)

We consider a substrate of width L ≈ 50 microns and height
(in the direction perpendicular to the x − y plane) �z = 0.5
microns. In [56], the 3D elastic constant of the elastic inclu-
sions was measured to be E3D = E/�z ≈ 18 Pa. Therefore,
our model predicts that for β ≈ 6 oscillations would be ob-
served.

APPENDIX C: KELVIN-VOIGT MODEL

In this section, we perform the linear stability analysis in
the case of the Kelvin-Voigt model. The constitutive relation
reads

τxy = (E + η2∂t )∂yux. (C1)

064611-7



MORI, BHATTACHARYYA, YEOMANS, AND THAMPI PHYSICAL REVIEW E 108, 064611 (2023)

FIG. 6. Critical activity ζ c as a function of E for the same param-
eter values as in Fig. 2. The dashed lines show the exact asymptotic
behaviors derived for E → 0 and E → Ec. The critical activity ζc is
constant for E > Ec.

Hence the gel displacement ux(y, t ) evolves according to

ρ2∂
2
t ux = (E + η2∂t )∂

2
y ux. (C2)

Assuming ux(y, t ) = eωt ũx(y), we find

∂2
y ũx = δ2

KV ũx, (C3)

where we have defined

δKV =
√

ρ2ω2

E + η2ω
. (C4)

Following the same derivation as for the Maxwell model,
we find two instabilities, corresponding to the even and odd
solutions for θ . The condition for the growth rate of the even
solution reads

(γ −1K�1 − ω/�1) tanh (�1) − (γ −1K�2 − ω/�2) tanh (�2)(
�2

1 − �2
2

)
[γ −1η1K + 2q0K (1 − λ)2]

+ ω

E + ωη2

tanh [δKV (β − 1)]

δKV
= 0. (C5)

For the odd solution, we find

(γ −1K�1 − ω/�1) coth (�1) − (γ −1K�2 − ω/�2) coth (�2)(
�2

1 − �2
2

)
[γ −1η1K + 2q0K (1 − λ)2]

+ ω

E + ωη2

tanh [δKV (β − 1)]

δKV
= 0. (C6)

As for the Maxwell model, for the range of parameters consid-
ered in the paper, we find that the even solution is dominant.
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