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 1 

A Hybrid Data Driven Framework Considering Feature Extraction for 1 

Battery State of Health Estimation and Remaining Useful Life Prediction   2 

ABSTRACT: Battery life prediction is of great significance to the safe operation, and reduces the 3 

maintenance costs. This paper proposes a hybrid framework considering feature extraction to 4 

achieve more accurate and stable life prediction performance of the battery. By feature extraction, 5 

eight features are obtained to fed into the life prediction model. The hybrid framework combines 6 

variational mode decomposition, the multi-kernel support vector regression model and the improved 7 

sparrow search algorithm to solve the problem of data backward, uneven distribution of high-8 

dimensional feature space and the local escape ability, respectively. Better parameters of the 9 

estimation model are obtained by introducing the elite chaotic opposition-learning strategy and 10 

adaptive weights to optimize the sparrow search algorithm. The algorithm can improve the local 11 

escape ability and convergence performance and find the global optimum. The comparison is 12 

conducted by dataset from National Aeronautics and Space Administration which shows that the 13 

proposed framework has a more accurate and stable prediction performance. Compared with other 14 

algorithms, the SOH estimation accuracy of the proposed algorithm is improved by 0.16%-1.67%. 15 

With the advance of the start point, the RUL prediction accuracy of the proposed algorithm does 16 

not change much.  17 

Keywords: State of heath; Improved sparrow search algorithm; Remaining useful life; Variational 18 

mode decomposition; Multi-kernel support vector regression; Feature extraction 19 

Highlights:  20 

1. A hybrid framework considering feature extraction is proposed to achieve more accurate and 21 

stable prediction performance.  22 

2. This hybrid framework solves the problems of backward data, uneven distribution of high-23 

dimensional feature space, and local escape ability. 24 

3. Introducing elite chaotic opposition learning strategy and adaptive weights to improve the local 25 

escape ability and convergence performance of sparrow search algorithm, and finding the global 26 

optimal solution. 27 

4. By feature extraction, eight features are obtained to fed into the life prediction model.  28 

1. Introduction 29 

Lithium-ion batteries have the characteristics of high energy density and long cycle life, and 30 

are now widely used in electric vehicles, mobile phones, laptops and other electronic products[1]. As 31 

the number of charges and discharges increases, the battery performance continues to decline, 32 

manifested by a decrease in capacity and an increase in internal resistance. It is characterized by 33 

state of health (SOH) and remaining useful life (RUL)[2-4]. In this paper, the ratio of the current 34 

available capacity to the rated capacity of the battery is used to express the battery . The expression 35 

of SOH is as follows: 36 

n n NSOH Q Q=                         (1) 37 

Where, Qn represents the actual battery capacity during the nth charging and discharging cycle; QN 38 

represents the rated battery capacity. RUL prediction reflects the long-term battery life prediction, 39 

which can ensure its safety and stability during the whole life cycle and provide information for 40 

battery replacement. Battery capacity is easier to measure and more meaningful than impedance or 41 

internal resistance, which is adopted as the SOH definition in this study. 42 
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1.1. Literature review 43 
Battery SOH estimation and RUL prediction methods are divided into model-based and data-44 

driven methods [5]. Model-based methods can achieve life prediction though different models 45 
combined with the filtering algorithm such as unscented Kalman filter (UKF) algorithm, particle 46 
filter (PF) algorithm and some improved PF algorithms [6-9]. Dual exponential model is the most 47 
commonly used model. As the number of iterations increases, the diversity of particles will 48 
disappear and lead to the phenomenon of particle degradation. Improvement of importance density 49 
function and resampling method can solve this problem and improve the prediction accuracy [10-13]. 50 
In literature [14], a framework combined improved ant lion optimization algorithm and support 51 
vector regression is proposed to solve the degeneracy phenomenon of the standard PF method. It 52 
achieves prediction results with high accuracy and robustness. The PF and improved PF algorithms 53 
have good prediction accuracy and can describe the uncertainty of the battery with the probability 54 
distribution function (PDF). However, model-based methods depend on the battery capacity model, 55 
while there is no accurate and universal model, the results will be affected. Data-driven methods 56 
such as artificial neural networks (ANN) algorithm[15-17], long short-term memory neural network 57 
(LSTM)[18] and support vector machines (SVM) algorithm[19-22] have received widespread attention 58 
at present. A new framework combined partial incremental capacity and ANN is proposed in [23] 59 
for battery life prediction to get a good performance with better generalization ability and higher 60 
prediction accuracy. However, lots of data and time are needed to train the ANN models. SVM as a 61 
kind of machine learning algorithms, can be used for recognition and classification. The efficiency 62 
of regression convergence is higher than other machine learning algorithms and suitable for small 63 
sample prediction. Zhao et al. [24] develops a method combining the feature vector and SVR 64 
algorithms for battery SOH estimation. Although the prediction accuracy is higher than that of 65 
standard SVR algorithm, it still fails to solve the problem of super parameter optimization. Hybrid 66 
algorithms of SVR model and parameter optimization algorithms can make better use of their 67 
respective advantages and overcome the limitations of SVR model [25-27]. In reference [28], the 68 
particle swarm optimization (PSO) is applied to obtain optimized parameters of SVR model for a 69 
better battery RUL prediction. However, PSO algorithm cannot handle discrete optimization 70 
problems well and easily lead to local optimization. An artificial bee colony (ABC) algorithm is 71 
designed in reference [29] to identify the parameters of SVR model to solve the problem of local 72 
optimization and improves the prediction accuracy to a certain extent. In addition, in actual 73 
operation situation, the battery is affected by a lot of noise produced by its own physical 74 
characteristics and the environment, which is not considered in many articles. In order to reduce this 75 
random noise interference, research on signal processing methods are conducted. In reference [30], 76 
the empirical model decomposition (EMD) algorithm is proposed to decompose the non-stationary 77 
signals for noise reduction. However, the EMD method exists the problems of end effect and modal 78 
component. The variational mode decomposition (VMD) can overcome problems above to reduce 79 
the non-stationarity of time series. 80 

1.2 Contributions of this paper 81 

In this study, a hybrid framework considering feature extraction is proposed for a better SOH 82 

estimation and RUL prediction performance. The hybrid framework combining VMD, improved 83 

sparrow search algorithm (ISSA) and multi-kernel support vector regression (MKSVR) model. The 84 

contributions are summarized. First, eight features are obtained to fed into the life prediction model 85 

by feature extraction. Secondly, VMD method is applied to decompose the original data to make the 86 

capacity data more stable. Then, elite chaotic opposition-learning strategy and adaptive weights are 87 

adopted to optimize the traditional sparrow search algorithm (SSA) to obtain more accurate 88 

parameters of the prediction model. Finally, MKSVR is used to solve the low prediction accuracy 89 

problem caused by large sample data and uneven distribution of high-dimensional feature space. 90 

1.3. Organization of the paper 91 

The remainder of this article is listed as follows. Section II introduces the VMD decomposition, 92 

the MKSVR model, the ISSA algorithm for parameters optimization and the hybrid VMD-ISSA-93 

Jo
urn

al 
Pre-

pro
of



 3 

MKSVR framework. Section III discusses experimental results and analysis of the proposed method. 94 

Conclusions are summarized in Section IV. 95 

2. Basic theories 96 

2.1 Variational mode decomposition 97 

VMD is used for completely non-recursive modal variation to deal with signals [31,32]. The 98 

optimal solution of the variational problem is obtained finally by effective decomposition 99 

component of the given signal. By iteration, the VMD algorithm can decompose the signals into 100 

some intrinsic mode functions (IMFs) and a relevant residual value containing multiple different 101 

frequency scales. 102 

The constrained variational expression of VMD is as follows: 103 

( )
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where M is the number of modes to be decomposed,{Qm}={Q1,Q2,···,Qm} is the set of M modal 105 

components after decomposition, {ωm}={ω1,ω2,···,ωm} is the set of center frequencies 106 

corresponding to modal component, Qm is the m-th modal component, ωm is the center frequency of 107 

m-th modal component, N is the number of sequences, δ(t) represents the dirac function. 108 

The unconstrained variational expression is shown below by introducing the Lagrangian 109 

multiplication operator λ: 110 
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      (3) 111 

where α is a secondary penalty factor. 112 

By alternating direction multiplier iterative algorithm to obtain M modal components, the 113 

unconstrained variational problem can be solved. The update expressions of Qm、ωm and λ are shown 114 

as follows: 115 
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            (4) 116 

where γ is the update coefficient for Lagrangian multiplier which represents noise tolerance. ˆ ( )mQ  ,117 

ˆ ( )iQ  , ˆ( )f  and ˆ( )   are Fourier transforms of ˆ
mQ , ˆ

iQ , f̂ and ̂ . 118 

The process of VMD algorithm is summarized as follows： 119 

Step 1: Initialize three parameters 1ˆ
mQ 、

1

m 、 1̂  and set the iteration count to k=1. 120 

Step 2: Update ˆ
mQ 、ωm and ̂  by equation (4). 121 
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 4 

Step 3: For a specified acceptable tolerance ξ >0 ， the convergence criterion is 122 

( ) ( ) ( )
2 2

1

1 2 2

ˆ ˆ ˆ/
M k k k

m m mm
Q Q Q   +

=
−  . If the convergence is realized, finish the iteration and 123 

output the final value, else return to step 2.  124 

2.2 Multi-Kernel Support vector regression 125 

In 1995, SVM algorithm based on statistical learning theory was proposed by Vapnik. It is 126 

mainly used to obtain the global optimal solution for pattern recognition and classification. To 127 

reduce the parameter dimension, the optimization process is simplified by introducing the kernel 128 

function. When used as a regression tool, SVM implements a variant of the algorithm called SVR.  129 

A set of data T={(x1,y1),(x2,y2),···,(xn,yn)} is given, where xiRn, yiRn,{xi,i=1,2,···,n} is the 130 

input feature, {yi,i=1,2,···,n} is the output. The target of SVR method is to find a functional 131 

relationship similar to the hyperplane equation f(x), making it as close to the training data as possible. 132 

In the feature space, the regression model corresponding to the hyperplane can be described as the 133 

equation (5): 134 

( ) ( )T

s sf x w x b= +                         (5) 135 

where φ(x) is a nonlinear mapping function, ws is the normal vector, bs is the displacement term. 136 

The optimization problem of SVR model can be expressed as: 137 
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              (6) 138 

where e is the regression error, similar to relaxation factor, which introduces outliers into the support 139 

vector. C is the penalty constant. 140 

Four Lagrangian multipliers αi, αi
*, ui and ui

* are introduced to obtain Lagrangian function: 141 
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         (7) 142 

where αi ≥0, αi
* ≥0, ui ≥0 and ui

* ≥0. 143 

The SVR regression model can be finally transformed as the function below: 144 

*

1 1

( ) ( ) ( , )
n n

T

s s i i i j s

i j

f x w x b K x x b 
= =

=  + = − +                   (8) 145 

where K(xi,xj) is the Gaussian radial basis kernel function, the expression of which is 146 
2

2

|| ||
( , ) exp( )

2

i j

i j

x x
K x x



−
= − . The kernel function can improve the Feature dimension of the model to 147 

improve the nonlinear fitting ability of SVR. The larger the σ is, the smaller the nonlinear efficiency 148 

is, and the less sensitive to noise is. 149 

When the amount of sample data is large, the distribution of high-dimensional feature space is 150 

uneven and there is heterogeneous information, a single selection of local kernel function or global 151 

kernel function will lead to low prediction accuracy. This problem can be solved by constructing 152 

multi-kernel functions by linear weighting. 153 

By combining the linear kernel function with the Gaussian kernel function, the multi-kernel 154 
function can be expressed as: 155 

' '

1 2( , ) ( , ) (1 ) ( , )i j i iK x x k x x k x x = + −              (9) 156 
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 5 

where 
'

1( , )ik x x  is a linear kernel function, 
'

2( , )ik x x  is Gaussian kernel function. λ is the 157 

weight coefficient of linear kernel function, and the corresponding (1-λ) is the weight coefficient of 158 

Gaussian kernel function. 159 

2.3 Improved sparrow search algorithm 160 

The SSA is a new type of swarm intelligence optimization algorithm, and its basic structure 161 

is similar to ABC algorithm except the search operator [33]. In this paper, SSA algorithm is used to 162 

optimize penalty constant C and kernel function parameter σ to realize the accurate prediction of 163 

the MKSVM model.   164 

For SSA algorithm, each sparrow has only one position, which can be represented by a matrix 165 

X, and the expression is: 166 
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,1 ,2 ,

d

d

n n n d

x x x

x x x
X

x x x

   
 

 =
    
 

  

                          (10) 167 

where d is the dimension of the variable. xi,j indicates the position of the i-th sparrow in the j-th 168 

dimension.  169 

The fitness value is calculated by: 170 
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                       (11) 171 

Each sparrow has three possible behaviors: explorer, follower, and vigilant investigation. Each 172 

generation selects the best P sparrows in the population as the explorers, and the remaining n-P 173 

sparrows as the followers.  174 

The position update equation is: 175 

, 21

,

, 2

exp( ),

,

t

i jt

i j
t

i j s s

i
X R ST

MX

X Q L R ST

+

−
 

= 
 +  

                     (12) 176 

where t is the number of current iteration, M is the maximum iterations number. Xt
i,j indicates the 177 

position of the i-th sparrow in the j-th dimension of the current iteration. α is a random number 178 

between 0 and 1. R2 is the alarm value and ST is the safety threshold. Q is a random number. L is a 179 

1×d matrix with each element of 1. 180 

The location updated equation is: 181 

,
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1 1
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                 (13) 182 

where Xbp is the best position occupied by the current explorer, Xwp is the worst position. G represents 183 

a 1×d matrix with elements assigned 1 or -1 and G+=GT(GGT)-1. 184 

While the sparrows are foraging for food, part of them will be responsible for vigilance. When 185 

alerted to danger, they will conduct anti-predation behavior: give up food and move to a new 186 

location. The location update formula is: 187 
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                    (14) 188 

where Xbp is the current global optimal position, μs is the step-size control parameter, K is the random 189 

with values between -1 and 1, which represents the moving direction of the sparrows. fsi is the fitness 190 

value of the current sparrow. fsg represents current global best fitness value while fsw represents the 191 

worst one. ξ is a minimum constant. 192 

2.3.1 Improvement of population initialization 193 

Elite chaotic opposition-learning method is adopted to generate an initial population to enhance 194 

its quality and diversity. By selecting elite individuals on a larger scale, the algorithm can improve 195 

the local escape ability and convergence performance of traditional SSA algorithm, then lead to a 196 

more accurate solution. 197 

In this paper, the chaotic skew tent map is chosen to generate the initial population to enhance 198 

the stability of the initial individuals due to its characteristic of randomness and ergodicity. 199 

The chaotic skew tent map equation is described as follows: 200 

1

/ , 0

(1 ) / (1 ), 1

k k

k

k k

x x
x

x x

 

 
+

 
= 

− −  
                       (15) 201 

In (15), α is a random number between 0 and 1. β=-αlogα-(1-α)log(1-α), if β>0, then the system 202 

is in chaos state. 203 

The reverse-learning algorithm based on optical lens imaging principle can solve the problem 204 

of local optimum by increasing the probability of a better solution.  205 

Reverse population generation equation is described in (16): 206 

 
*

2 2

n n n n n
n

a b a b x
x

k k

+ +
= + −                        (16) 207 

where an represents the minimum value in the n dimension of the current population, while bn 
208 

represents the maximum one. k is the scaling coefficient of the lens. 209 

The initialize process of the sparrow population with the strategy above is shown as as follows: 210 

Initialize the sparrow population randomly, then substitute population X into equation (15) to 211 

generate chaotic population Y. Generate the lens imaging opposition-learning population Z by 212 

substituting population X into equation (16). Sort the population X、Y and Z according to the 213 

individual fitness value and select the better N individuals to form the initial sparrow population. 214 

2.3.2 Improvement of follower location update 215 

Since the update weight is large and not changed much during iteration, it may miss the global 216 

optimum. To solve the problem, adaptive weights are introduced to improve the performance of 217 

SSA algorithm. 218 

The changed update equation is described as follows: 219 
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2.4 A hybrid framework of VMD-ISSA-MKSVR 221 

A hybrid framework combining VMD, ISSA and MKSVR model is proposed to achieve a more 222 

accurate and stable battery life prediction performance. The detailed prediction process is outlined 223 

in Figure 1.  224 

The complete steps of the framework are summarized as follows. 225 

Step 1: Some relevant features are extracted from current, voltage, and temperature curves. 226 

Then, features with high correlation are used as the input of VMD-ISSA-MKSVR model. 227 

Step 2: Decompose the battery capacity by the VMD into 5 IMF components. Each component 228 

is processed to the VMD-ISSA-MKSVR model separately, and finally put it together. 229 

Step 3: After VMD decomposition, ISSA algorithm is used to identify the parameters of 230 

MKSVR model. 231 

Step 4: Train the VMD-ISSA-MKSVR model, and then substitute the test data into the training 232 

model for SOH estimation and RUL prediction results. 233 

 234 
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 235 

Fig. 1 Detailed flow chart of the hybrid framework 236 

3. Experimental results and analysis 237 

Four lithium-ion batteries (B0005, B0006, B0007 and B00018) from NASA are selected for 238 

SOH estimation and RUL prediction verification. The tests are carried out at room temperature, 239 

taking B0005 battery as an example: Charge the battery with a current of 1.5A in a constant current 240 

(CC) mode until it reaches the charging cut-off voltage of 4.2V. Then charge the battery by constant 241 

voltage (CV) mode with the voltage of 4.2V, stop charging when the current drops to 0.02A. During 242 

discharging, the battery is discharged in a CC mode, the discharging current is 2A, stop discharging 243 

when the discharge cut-off voltage of 2.7V is reached. 244 

3.1 Evaluation criteria 245 

For battery SOH estimation, this paper uses three popular criteria to verify the stability and 246 

accuracy of the model. Mean absolute error (MAE), root mean square error (RMSE), and mean 247 

absolute percentage error (MAPE) are adopted as evaluation criteria. 248 
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                      (18)     249 

Relative error (RE) is define as equation(19) for battery RUL prediction: 250 

p tRE RUL RUL= −                        (19) 251 

where RULp is the predicted value of RUL, RULt is the actual value of RUL.     252 

3.2 Feature extraction 253 

The battery capacity cannot be obtained directly in practical. Some key features can be 254 

extracted from the current, voltage and temperature in the process of charging-discharging. It is easy 255 

to extract stable feature information from vehicle sensors to establish the relationship with battery 256 

SOH, and then use machine learning technology to realize battery life prediction.  257 

In the process of battery operation, the voltage curve can provide a lot of information related 258 

to the available capacity. Time interval of equal charge voltage rise (TIE-CVR), charge capacity 259 

rise of equal charge voltage rise (CCR-CVR) and time interval of equal charge current drop (TIE-260 

CCD) can be used as features to estimate battery SOH. TIE-CVR indicates the time for the voltage 261 

to rise from 3.8V to 4.2V during CC mode charging, which is marked as F1. The corresponding 262 

capacity of CCR-CVR is marked as F2. The highest temperature and the corresponding time in each 263 

charging-discharging cycle are marked as F3 and F4, respectively. During the period when the 264 

voltage is higher than 3.8V and the current drops to 0.4A, the average temperature is recorded as 265 

F5. The area under the temperature curve is recorded as F6. TIE-CCD is the time when the current 266 

in the CV phase decreases from 1.5A to 0.4A, which is marked as F7. During the period when the 267 

discharge voltage decreases from 3.8V to 3.4V, the capacity of the discharged battery is recorded 268 

as F8. Figure 3 shows the eigenvalue of F1~F8. 269 

 270 

 271 

Fig. 2 Schematic diagram of extraction of eight eigenvalues at current, voltage and temperature (a) F1 272 

(b) F2 and F7 (c) F3, F4 and F6 (d) F8 273 
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 274 

 275 

Fig. 3 The variation curve of eight characteristics (a)-(h) are F1-F8, respectively 276 

The spearman rank correlation coefficients RS is used to analyze the correlation between 277 

eigenvalues and battery available capacity. 278 

The formula is shown in (20): 279 
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                  (20) 280 

where Xn is the available capacity for each discharge, Yn is the input eigenvalues in each charge-281 

discharge cycle, X and Y  are the mean values of sample, n is the current charge-discharge cycle, 282 

M is the total number of charge and discharge cycles. 283 

Table 1 depicts the correlation coefficient between each feature and available capacity.  284 

Among the four batteries, the absolute values of the correlation coefficients between F1, F2, F3, F7, 285 

and F8 and the available capacity are all between 0.9 and 1, indicating a high correlation between 286 

them.The correlation values of eigenvalues F4, F5 and F6 with available capacity are all low, 287 

indicating that their correlation is also relatively low. These three features are eliminated, and not 288 

used as input to the estimation model. 289 

Table 1. Correlation coefficient between each feature and available capacity. 290 

Battery 

number 

Feature number 

F1 F2 F3 F4 F5 F6 F7 F8 

B0005 0.9913 0.9913 0.9911 -0.5880 0.0717 -0.6251 -0.9819 0.9987 

B0006 0.9936 0.9936 0.9915 -0.1562 0.1647 0.1040 -0.9522 0.9992 

B0007 0.9888 0.9888 0.9897 -0.4535 0.0379 -0.0712 -0.9444 0.9972 

B0018 0.9782 0.9782 0.9823 -0.2631 0.7084 0.2127 -0.9128 0.9986 

 291 

3.3 SOH estimation 292 

Before SOH estimation, the VMD method is used to decompose the data. The VMD 293 

decomposition diagram of B0005 and B0007 is shown in figure 4. Each data is divided into five 294 

components, The frequencies of five components are different. The component frequencies of 295 

B0005 and B0007 are similar. 296 
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 297 

(a)                             (b) 298 

Fig. 4 Battery capacity estimation resultsVMD decomposition of capacity data (a) B0005 and B0007 (b) 299 

B0006 and B00018 300 

In this paper, the capacity-based SOH definition method is adopted, which is defined as the 301 

ratio of the current capacity to the rated capacity of the battery. For the same battery, its rated 302 

capacity is constant, and the current capacity and SOH have the same trend. The problem of SOH 303 

estimation of the battery can be transformed into the problem of capacity estimation. 304 

For SOH estimation, the characteristic factors are extracted as the input of VMD-ISSA-305 

MKSVR model. The prediction start point of B0005, B0006 and B0007 is Ty=81, while that of 306 

B00018 is Ty=61. The data before the starting point is set as the training set, and the data after the 307 

starting point is set as the test set.  308 

Four methods including the IPSO-SVR[34], ISSA-SVR, VMD-ISSA-SVR and BL-ELM[35] are 309 

in comparison with VMD-ISSA-MKSVR for battery SOH estimation. The relevant parameters are 310 

set in table 2.The kernel parameters are Obtained by three optimization methods listed as table 3. 311 

To verify the effectiveness of the proposed method for SOH estimation, a comparison of the 312 

battery capacity estimation is conducted as shown in Figure 5. The SOH estimation results clearly 313 

show that the conformance between estimation and measurement are adequate. The capacity 314 

estimation values all follow the actual value, and the errors are quite small. Compared with the 315 

capacity obtained by the IPSO-SVR and ISSA-SVR, that obtained by the VMD-ISSA-SVR and the 316 

VMD-ISSA-MKSVR are closer to the actual capacity. 317 

Table 2. The parameter setting 318 

Algorithm Parameters 

IPSO-SVR N=100，Itermax=100, 

ISSA-SVR N=100，Itermax=100, 

VMD-ISSA-SVR N=100，Itermax=100 

BL-ELM N=100，Itermax=100 

VMD-ISSA-MKSVR N=100，Itermax=100 

Table 3 The kernel parameters are Obtained by three optimization methods 319 

Algorithm B0005 B0006 B0007 B00018 

IPSO-SVR σ=0.01 σ=0.01 σ=0.01 σ=0.01 

ISSA-SVR σ=0.0122 σ=0.01 σ=0.01 σ=0.5414 

VMD-ISSA-SVR σ=404.72 σ=337.7 σ=1386 σ=512.9 

 320 
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 321 

(a)                             (b) 322 

 323 

(c)                           (d) 324 

Fig. 5 Battery capacity estimation results(a)B0005 (b)B0006 (c)B0007 (d)B00018 325 

Table 4. Battery capacity estimation error 326 

Battery Algorithm 
MAE

（%） 

RMSE

（%） 
MAPE 

B0005 

IPSO-SVR[34] 2.1603 2.331 1.3453% 

BL-ELM[35] 0.650599 1.28178 0.469636% 

ISSA-SVR 0.70846 1.3541 0.50759% 

VMD-ISSA-SVR 0.64732 0.85372 0.4553% 

VMD-ISSA-

MKSVR 
0.48948 0.66529 0.34572% 

B0006 

IPSO-SVR[34] 2.818 2.6655 1.5552% 

BL-ELM[35] 0.907669 1.89784 0.692424% 

ISSA-SVR 0.93202 2.0196 0.71344% 

VMD-ISSA-SVR 0.84719 1.2776 0.6403% 

VMD-ISSA-

MKSVR 
0.70188 1.0757 0.53136% 

B0007 

IPSO-SVR[34] 0.9444 1.6086 0.55921% 

BL-ELM[35] 0.552247 1.25203 0.374816% 

ISSA-SVR 0.67 1.38 0.455% 

VMD-ISSA-SVR 0.55814 0.81174 0.37043% 

VMD-ISSA-

MKSVR 
0.43931 0.65092 0.29301% 

B0001

8 

IPSO-SVR[34] 2.8662 3.0179 1.814% 

BL-ELM[35] 1.27736 2.00969 0.896704% 

ISSA-SVR 2.2697 2.5105 1.5769% 

VMD-ISSA-SVR 1.6407 1.3489 0.93712% 

VMD-ISSA- 1.2713 1.1008 0.88236% 
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MKSVR 

The capacity estimation error is shown in Table 4 and Figure 6. Take B0005 battery as an 327 

example, the MAE of the five methods are 2.1603%, 0.708%, 0.651%, 0.647% and 0.489%, 328 

respectively, while the RMSE of that are 2.331%, 1.354%, 1.282%, 0.854% and 0.665%, 329 

respectively; and the MAPE of that are 1.345%, 0.508%, 0.470%, 0.455% and 0.346%, respectively. 330 

The capacity estimation error of the IPSO-SVR is largest, that of the proposed VMD-ISSA-MKSVR 331 

method is smallest, the error reductions of MAE, RMSE, and MAPE are obvious. Compared with 332 

the results predicted by the IPSO-SVR algorithm, the proposed method improves the estimation 333 

SOH accuracy by nearly 0.51% ~ 2.11%. These results suggest that the proposed VMD-ISSA-334 

MKSVR method has a relatively high estimation accuracy. 335 

 336 

Fig. 6 Battery capacity estimation error 337 

3.4 RUL prediction 338 

The battery RUL prediction results are discussed in this section. Take the cycle number as input 339 

of the prediction methods, the EOL threshold for the B0005, B0006 and B00018 batteries are set to 340 

70% of the standard rated capacity, which is 1.4Ah. The EOL threshold for the B0007 battery is set 341 

to 75% of the standard rated capacity, which is 1.5Ah. The prediction start points of the four batteries 342 

are Ty=41.  343 

 344 

(a)                                 (b) 345 

 346 

(c)                               (d) 347 

Fig. 7 Battery RUL prediction results (a)B0005 (b)B0006 (c)B0007 (d)B00018 348 

Table 5. Battery RUL prediction error 349 

Battery Algorithm 
Start 

point 
RULp RULr RE 

B0005 

IPSO-SVR[34] 41 95 83 12 

BL-ELM[35] 41 78 83 5 

ISSA-SVR 41 77 83 6 

VMD-ISSA-

SVR 
41 80 83 3 
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VMD-ISSA-

MKSVR 
41 84 83 1 

B0006 

IPSO-SVR[34] 41 72 68 4 

BL-ELM[35] 41 65 68 3 

ISSA-SVR 41 65 68 3 

VMD-ISSA-

SVR 
41 67 68 1 

VMD-ISSA-

MKSVR 
41 68 68 0 

B0007 

IPSO-SVR[34] 41 92 85 7 

BL-ELM[35] 41 79 85 6 

ISSA-SVR 41 78 85 7 

VMD-ISSA-

SVR 
41 80 85 5 

VMD-ISSA-

MKSVR 
41 85 85 0 

B0001

8 

IPSO-SVR[34] 41 67 56 11 

BL-ELM[35] 41 67 56 11 

ISSA-SVR 41 66 56 10 

VMD-ISSA-

SVR 
41 64 56 8 

VMD-ISSA-

MKSVR 
41 59 56 3 

Figure 7 and Table 5 show the battery RUL prediction results. The RE of the proposed hybrid 350 

method is smaller than those of the other methods, indicating that the hybrid algorithm has a higher 351 

prediction accuracy. The RE value predicted by the IPSO-SVR for four batteries are 12, 4, 7 and 11, 352 

respectively; by the BL-ELM method those are 5, 3, 6 and 11, respectively; by the ISSA-SVR 353 

method those are 6, 3, 7 and 10, respectively; by the VMD-ISSA-SVR method those are 3, 1, 5 and 354 

8, respectively; by the VMD-ISSA-MKSVR method those are 1, 0, 0 and 3. Especially for B00018, 355 

the RUL prediction accuracy has been greatly improved.    356 

Table 6 RUL prediction results of four batteries with different start points 357 

Battery Algorithm RE51 RE41 RE31 

B0005 

IPSO-SVR[34] 10 12   

BL-ELM[35] 8 5 20 

ISSA-SVR 10 6   

VMD-ISSA-SVR 2 3 16 

VMD-ISSA-

MKSVR 
2 1 10 

B0006 

IPSO-SVR[34] 3 4 8 

BL-ELM[35] 6 3 23 

ISSA-SVR 4 3 9 

VMD-ISSA-SVR 2 1 10 

VMD-ISSA-

MKSVR 
1 0 2 

B0007 

IPSO-SVR[34] 8 16   

BL-ELM[35] 7 6 8 

ISSA-SVR 6 7   

VMD-ISSA-SVR 6 5 7 

VMD-ISSA-

MKSVR 
4 0 5 

B00018 

IPSO-SVR[34] 10 14 15 

BL-ELM[35] 13 11 9 

ISSA-SVR 12 10 10 

VMD-ISSA-SVR 9 8 6 

VMD-ISSA-

MKSVR 
2 3 1 

The RUL prediction results of four batteries with different start points are shown in table 6. 358 

in the table represents that the prediction curve and EOL do not intersect and the RUL cannot be 359 

predicted. It can be seen that the five methods can predict the RUL of the four batteries very well 360 

after Ty=41 and the RE values obtained by the VMD-ISSA-MKSVR method are the smallest for 361 

every battery. The RE values predicted by the five methods generally show an roughly upward trend 362 
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with the advancement of the start point. When Ty=31, the RUL predictions of B0005 and B0007 363 

batteries by IPSO-SVR and ISSA-SVR cannot be performed because of the small amount of data. 364 

The RUL errors predicted by BL-ELM, VMD-ISSA-SVR and VMD-ISSA-MKSVR are still 365 

suitable. With the advance of the start point, the prediction accuracy of the proposed hybrid method 366 

does not change much, indicating that the RUL predicted by VMD-ISSA-MKSVR method is stable. 367 

4. Conclusion 368 

As a key approach of prognostics and health management, accurate life prediction of the battery 369 
is significant to reduce the probability of system failure effectively. This work focus on a hybrid 370 
method considering feature extraction that combines VMD, ISSA and MKSVR.  371 

The main contributions are summarized as follows:(1) Eight Features are extracted to establish 372 
the relationship with battery SOH by measured data. (2) Decompose the original sequence by the 373 
VMD to solve the backward problem of the capacity data caused by auto-correlation to make the 374 
capacity data more stable. (3) Elite chaotic opposition learning strategy and adaptive weights are 375 
introduced to optimize the SSA algorithm to find the global optimum faster and more efficient. (4) 376 
Multi-Kernel support vector regression is used to solve the low prediction accuracy problem caused 377 
by large sample data, uneven distribution of high-dimensional feature space. Training data is used 378 
to train the hybrid model, and the test data is substituted into the training model for battery life 379 
prediction results. 380 

Dataset from National Aeronautics and Space Administration are applied for experimental 381 
verification. The RUL predictions with different start points are conducted to verify the stability of 382 
the VMD-ISSA-MKSVR framework. By comparison with IPSO-SVR, ISSA-SVR, BL-ELM and 383 
VMD-ISSA-SVR, it can be verified that the errors of SOH estimation and RUL prediction obtained 384 
by the VMD-ISSA-MKSVR framework are the smallest. It has relatively high prediction accuracy 385 
and stability. 386 

Acknowledgments 387 
I thank W.D., Y.H. for critically reading the manuscript and helpful discussions; 388 

conceptualization, Y.C.; methodology, Y.C.; software, Y.C.; validation, Y.C. and W.D.; formal 389 
analysis, Y.C. and W.D.; data curation, Y.C.; writing—original draft preparation, Y.C.; writing—390 
review and editing, Y.C.; supervision, Y.H.; funding acquisition, Y.H. 391 

This work was supported by the National Natural Science Foundation of China (Grant number 392 
51577046), the State Key Program of the National Natural Science Foundation of China (Grant 393 
number 51637004), and the National Key Research and Development Plan “Important Scientific 394 
Instruments and Equipment Development" (Grant number 2016YFF0102200). 395 

References 396 

[1] Wang, S., Fernandez, C., Yu, C., Fan, Y., Stroe, D. I. A novel charged state prediction method of the lithium 397 
ion battery packs based on the composite equivalent modeling and improved splice kalman filtering 398 
algorithm[J]. Journal of Power Sources, 471, 228450.  399 

[2] Panchal S., Mathew M., Fraser R., et al. Electrochemical thermal modeling and experimental measurements of 400 
18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied thermal engineering, 2018, 401 
135:123-132.  402 

[3] Li P., Zhang Z., Xiong Q., et al. State-of-health estimation and remaining useful life prediction for the lithium-403 
ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources,2020, 459. 404 

[4] Xiaoyu L., Zhang L., Wang Z. Remaining useful life prediction for lithium-ion batteries based on a hybrid 405 
model combining the long short-term memory and elman neural network[J]. The Journal of Energy Storage, 406 
2019,21: 510–518. 407 

[5] Yl A., Kang L. A., Xuan L. A., et al. Lithium-ion battery capacity estimation - A pruned convolutional neural 408 
network approach assisted with transfer learning[J]. Applied Energy, 2021, 285:116410. 409 

[6] Zheng Y., Qin C., Lai X., et al. A novel capacity estimation method for lithium-ion batteries using fusion 410 
estimation of charging curve sections and discrete Arrhenius aging model. Applied Energy, 2019, 251:113327. 411 

[7] Qin Q., Zhao S., Chen S., et al. Adaptive and robust prediction for the remaining useful life of electrolytic 412 

Jo
urn

al 
Pre-

pro
of



 15 

capacitors[J]. Microelectronics & Reliability, 2018, 87: 64-74. 413 
[8] Dong G., Chen Z., Wei J., et al. Battery health prognosis using Brownian Motion modeling and particle 414 

filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8646-8655. 415 
[9] Chang Y., Fang H. A hybrid prognostic method for system degradation based on particle filter and relevance 416 

vector machine[J]. Reliability Engineering & System Safety, 2019, 186: 51-63. 417 
[10] Zhu Z. Y. Improved particle filter algorithm based on importance density function selection, in Particle Filter 418 

Algorithm Its Application, 4nd ed. BeiJing, China: Science Press, 2010: 37-38. 419 
[11] Wei J.W., Dong G.Z., and Chen Z.H. Remaining useful life prediction and state of health diagnosis for lithium-420 

ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 421 
2018, 65(7): 5634-5643. 422 

[12] Mejdoubi A. E, Chaoui H., Gualous H. Lithium-ion batteries health prognosis considering aging conditions[J]. 423 
IEEE Transactions on Power Electronics, 2019, 34: 6834-6844. 424 

[13] Chen Y., He Y. G., Li Z., et al. Remaining useful life prediction and state of health diagnosis of lithium-ion 425 
battery based on second-order central difference particle filter. IEEE ACESS. 2020, 8: 37305-37313. 426 

[14] Li Q. L., Li D. Z., Zhao K.,et al. State of health estimation of lithium-ion battery based on improved ant lion 427 
optimization and support vector regression[J]. Journal of Energy Storage, 2022, 50: 104215.    428 

[15] Pang X., Huang R., Wen J., et al. A lithium ion battery RUL prediction method considering the capacity 429 
regeneration phenomenon[J]. Energies, 2019, 12(12). 430 

[16] Yang H., Wang P., An Y., et al. Remaining Useful Life Prediction Based on Denoising Technique and Deep 431 
Neural Network for Lithium-ion Capacitors[J]. eTransportation, 2020, 5:100078. 432 

[17] Li W., Jiao Z., Du L., et al. An indirect RUL prognosis for lithium-ion battery under vibration stress using 433 
Elman neural network[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12270-12276. 434 

[18] Wang S., Yongcun F., Siyu J., Paul T., Carlos F. Improved anti-noise adaptive long short-term memory neural 435 
network modeling for the robust remaining useful life prediction of lithium-ion batteries[J]. Reliability 436 
Engineering and System Safety, 2023, 230: 108920. 437 

[19] Li L., Liu Z., Tseng M., et al. Enhancing the Lithium-ion battery life predictability using a hybrid method[J]. 438 
Applied soft computing, 2019, 74:110-121. 439 

[20]  Mengyun Z, Wang S., Yanxin X, et al. Hybrid gray wolf optimization method in support vector regression 440 
framework for highly precise prediction of remaining useful life of lithium-ion batteries[J]. Ionics, 2023, 29(9). 441 

[21] Li X., Yuan C., Wang Z. State of health estimation for Li-ion battery via partial incremental capacity analysis 442 
based on support vector regression[J]. Energy (Oxford), 2020, 203:117852. 443 

[22] Feng X., Weng C., He X., et al. Online state-of-Health estimation for li-ion battery using partial charging 444 
segment based on support vector machine[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8583-445 
8592. 446 

[23] Zhang S., Zhai B., Guo X., et al. Synchronous estimation of state of health and remaining useful lifetime for 447 
lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 448 
2019, 26: 100951.1-100951.12. 449 

[24] Zhao, Qi, Qin, et al. A novel prediction method based on the support vector regression for the remaining useful 450 
life of lithium-ion batteries[J]. Microelectronics & Reliability, 2018, 85: 99-108. 451 

[25] Cadini F., Sbarufatti C., Cancelliere F., et al. State-of-life prognosis and diagnosis of Lithium-ion batteries by 452 
data-driven particle filters[J]. Applied Energy, 2019, 235: 661-672. 453 

[26] Zhao L., Wang Y., Cheng J. A hybrid method for remaining useful life estimation of Lithium-ion battery with 454 
regeneration phenomena[J]. Applied Sciences, 2019, 9(9): 1890-1905. 455 

[27] Li F., Xu J. A new prognostics method for state of health estimation of Lithium-ion batteries based on a mixture 456 
of Gaussian process models and particle filter[J]. Microelectronics Reliability, 2015, 55(7): 1035-1045. 457 

[28] Qin T., Zeng S., Guo J. Robust prognostics for state of health estimation of lithium-ion batteries based on an 458 
improved PSO-SVR model[J]. Microelectronics and reliability, 2015, 55(9-10): 1280-1284. 459 

[29] Wang Y., Ni Y., Lu S., et al. Remaining useful life prediction of Lithium-ion batteries using support vector 460 
regression optimized by artificial bee colony[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 461 
9543-9553. 462 

[30] Li X., Zhang L., Wang Z., et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid 463 
model combining the long short-term memory and Elman neural networks[J]. Journal of energy storage, 464 
2019,21:510-518. 465 

Jo
urn

al 
Pre-

pro
of



 16 

[31] Jiang Y., Chen L., Zeng W., et al. Adaptive weighted VMD-WPEE method of power-electronic-circuit 466 
multiple-parameter-fault diagnosis[J].  IEEE Journal of Emerging and Selected Topics in Power Electronics, 467 
2020, (99):3878-3890. 468 

[32] Shi W., Wen G., Huang X., et al. VMD-scale space based hoyergram and its application in rolling bearing fault 469 
diagnosis[J]. Measurement Science and Technology, 2020. 470 

[33] Xue J., Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems 471 
Science & Control Engineering An Open Access Journal, 2020, 8(1):22-34. 472 

[34] Qin T., Zeng S., and Guo J. Robust prognostics for state of health estimation of lithium-ion batteries based on 473 
an improved PSO-SVR model[J]. Microelectronics Reliability, 2015, 55: 1280 -1284. 474 

[35] Ma Y., Wu L., Guan Y., et al. The capacity estimation and cycle life prediction of lithium-ion batteries using a 475 
new broad extreme learning machine approach[J]. Journal of Power Sources, 2020, 476: 228581.476 

 

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



1. A hybrid framework considering feature extraction is proposed to achieve a more accurate and 

stable prediction performance.  

2. The hybrid framework combines variational mode decomposition, the multi-kernel support 

vector regression model and the improved sparrow search algorithm. 

3. Better parameters of the estimation model are obtained by introducing elite chaotic 

opposition-learning strategy and adaptive weights to optimize the sparrow search algorithm. 

4. By feature extraction, the measured data can be directly fed into the life prediction model.  
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