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No relationships between self-reported Instagram use or type of use and mental well-54 

being: A study using a nationally representative online sample of UK adults. 55 

 56 

Abstract 57 

Use of Instagram has grown rapidly in the last decade, but the effects of Instagram use on well-58 

being are still unclear, with many studies based on younger samples with a female bias. The 59 

aim of this study was to examine the associations between Instagram use and levels of anxiety, 60 

depression, and loneliness in a nationally representative sample of UK adults by age and gender. 61 

An online sample of 498 UK adults were recruited using Prolific (Age: M = 49, SD = 15, range 62 

19-82 years old; 52% female, 47% male). Participants stated whether or not they used 63 

Instagram, reported their frequency of Broadcast, Interaction and Browsing Instagram use and 64 

completed the Revised UCLA Loneliness Scale, and the Hospital Anxiety and Depression 65 

Scale. A genetic matching algorithm was used to match Instagram users (n= 372) and non-66 

Instagram users (n = 100) on age, gender, education and nationality. There were no significant 67 

differences between users versus non-users of Instagram in levels of anxiety, depression or 68 

loneliness. There were also no significant associations between type of Instagram use 69 

(Broadcast, Interaction or Browsing) and levels of anxiety, depression or loneliness. The Bayes 70 

Factors for these models moderately to strongly supported the null model of no effect for 71 

Depression and Loneliness. This research adds to recent findings that suggests that the overall 72 

effect of SNSs on well-being may be small to non-existent.  Future research should examine 73 

how exposure to different types of content on social media are related to well-being. 74 

 75 

Keywords: loneliness; depression; anxiety; social media; Instagram; passive social 76 

media use; active social media use 77 
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 86 

  Introduction 87 

The rise in popularity of social network sites (SNSs) over the last two decades has led 88 

to active debates about whether using SNSs has a positive or negative effect on well-being in 89 

both academic research (e.g. Appel et al., 2020; Faelens et al., 2021; Orben, 2020b; Twenge 90 

et al., 2022) and wider society (e.g., Haidt, 2021; Lanier, 2018; Orben, 2020a; Twenge, 91 

2017a; Twenge, 2017b). SNSs such as Facebook, Instagram, Twitter and TikTok are defined 92 

as web-based services that allow people to construct a profile, build a list of users with whom 93 

they have a connection and view their list of connections and those made by others (Boyd & 94 

Ellison, 2007), as well as post and consume user-generated content and exchange messages 95 

with others. Some research has found SNSs to have a positive impact on well-being. For 96 

example Facebook can facilitate social connections and communication with others, leading 97 

to lower feelings of loneliness (Burke & Kraut, 2016; Burke et al., 2010; Lin et al., 2020; Liu 98 

et al., 2016). Further, posting and commenting on Instagram during the COVID-19 pandemic 99 

was positively associated with satisfaction with life (Masciantonio et al., 2021). However, 100 

other  researchers argue that overall using SNSs has a negative impact on the well-being of 101 

users (e.g. Twenge et al., 2022), in relation to aspects such as depression (Huang, 2017), 102 

anxiety (O’Day & Heimberg, 2021), loneliness (Huang, 2017; Liu & Baumeister, 2016; 103 

O’Day & Heimberg, 2021) or body image (Fardouly & Vartanian, 2016; Saiphoo & Vahedi, 104 

2019). These negative effects may arise due to a number of different processes, including 105 

replacement of face-to-face communication with SNSs use which may lead to feelings of 106 

loneliness (Liu et al., 2019; Twenge et al., 2019). Further upwards social comparison with 107 

other users’ idealised posts may lead to feelings of anxiety or depression (Reer et al., 2019), 108 

or decreased body dissatisfaction due to viewing idealised body images (Brown & 109 

Tiggemann, 2016; Vandenbosch et al., 2022). Finally, other researchers argue that the overall 110 

effect of SNSs on well-being is negative but relatively small (Appel et al., 2020; Orben, 111 
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2020b), or non-existent (Coyne et al., 2020). As different SNSs have different user bases and 112 

characteristics, the effect of SNSs on well-being is likely to vary across both social media 113 

platforms (Masciantonio et al., 2021) and type of use (Burke & Kraut, 2016). Given the mixed 114 

research picture, there is therefore a need for research focused on how specific SNSs 115 

platforms and different types of use influence different aspects of well-being. 116 

Instagram Use and Mental Well-Being 117 

Instagram is a SNS that has grown rapidly over the last decade, launching in 2010 and 118 

reaching 2 billion active monthly users in 2021 (Dixon, 2022c). Instagram enables users to 119 

share image-based content (e.g., photos and videos) accompanied by text, and is especially 120 

popular among adolescents and young adults, with 70.8% of users under 35 (Dixon, 2022b). 121 

Thus, whilst much of the earlier research on well-being and SNSs focused on Facebook (Song 122 

et al., 2014; Yoon et al., 2019), more recently there has been an increased focus on the links 123 

between Instagram use and well-being (Faelens et al., 2021). Both correlational (e.g., 124 

Hendrickse et al., 2017) and experimental (e.g., Brown & Tiggemann, 2016) research 125 

suggests Instagram can have a negative impact on users’ body image, through the mechanism 126 

of upwards social comparison to other users (Faelens et al., 2021). However, the research 127 

evidence for other aspects of well-being such as loneliness, depression and anxiety is 128 

inconclusive, with negative (e.g. Sherlock & Wagstaff, 2019), positive (e.g. Mackson et al., 129 

2019b) and no effects (e.g. Fardouly et al., 2020) of using Instagram reported in different 130 

studies (see Faelens et al., 2021 for a review). This may partly be due to the different research 131 

designs used, with some research comparing users versus non-users of Instagram, with other 132 

studies focusing on different types of Instagram use. 133 

To examine whether overall use of Instagram is associated with well-being, some research has 134 

compared levels of anxiety, depression and/or loneliness in people who use Instagram to 135 

people who do not use Instagram, with inconsistent results (Table 1).  Some studies have 136 

found no significant effect on Instagram use on well-being (Brailovskaia & Margraf, 2018; 137 
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Fardouly et al., 2020), whilst others have found a positive effect of Instagram use on well-138 

being (Mackson et al., 2019a; Pittman & Reich, 2016; Umegaki & Higuchi, 2022). However, 139 

none of these studies used a representative sample of the population and some did not account 140 

for demographic differences between Instagram uses compared to non-users. Therefore, the 141 

effects of using versus not using Instagram on loneliness, anxiety and depression are still 142 

unclear.143 
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Table 1 144 

Summary table of selected studies comparing levels of anxiety, depression and loneliness in 145 

Instagram users vs. non-Instagram users. The results for the current study are also summarised 146 

in this Table.  147 

Study n users n 

non-

users 

Mean 

age  

Matc-

hed 

sample 

Represent

-ative 

sample by 

country 

Country  Measures 

of well-

being 

Statistically 

significant 

difference (p < 

0.05) between 

users and non-

users of 

Instagram 

(Fardouly 

et al., 

2020) 

190 332 11 No No Australia Social 

Anxiety 

(SCAS) 

Depression 

(SMFQ) 

No 

 

 

No 

(Mackson 

et al., 

2019a) 

157 47 25 No No Not 

reported 

Anxiety 

(STAI) 

Depression 

(CES-D) 

Loneliness 

(UCLA-

V3) 

Yes – positive  

Yes  - positive  

 

Yes – positive 

(Brailovs

kaia & 

Margraf, 

2018) 

251 382 22 No No Germany Depression 

(DASS) 

 

No 
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Anxiety 

(DASS) 

No 

(Pittman 

& Reich, 

2016)a 

101 152 23 No No United 

States 

Loneliness 

(UCLA-3) 

Yes – positive 

(Umegaki 

& 

Higuchi, 

2022) 

715 315 21 No No Japan Anxiety 

(GAD-7) 

 

 

Depression 

(PHQ-9) 

Yes – positive  

 

 

 

No 

(Sarman 

& 

Tuncay, 

2023) 

865 311 13 - 18 No No Turkey Loneliness 

(R-UCLA, 

Turkish 

translation) 

No 

Current 

study 

372 100 49 Yes Yes United 

Kingdom 

Anxiety 

(HADS) 

 

Depression 

(HADS) 

 

Loneliness 

(R-UCLA) 

No 

 

 

No 

 

 

No 

 148 

Notes. Positive refers to Instagram use having a positive effect on levels of anxiety, 149 

depression or loneliness, in that Instagram uses have significantly lower levels of these traits 150 

as compared to non-Instagram users. Mean age is provided in years. 151 
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SMFQ: Short Mood and Feelings Questionnaire. SCAS: Spence Children’s Anxiety Scale. 152 

STAI: State Trait Anxiety Inventory. CES-D: Centre for Epidemiologic Studies Depression 153 

Scale. DASS: Depression, Anxiety and Stress Scale. HADS: Hospital Anxiety and Depression 154 

Scale. R-UCLA: Revised UCLA Loneliness Scale. UCLA-3: Three Item Loneliness Scale. 155 

GAD-7: General Anxiety Disorder-7. PHQ-9: Patient Health Questionnaire 9.  156 

a This paper combined users of Snapchat and Instagram and compared them to non-users of 157 

these two platforms 158 

 159 

In addition to research focusing on users versus non-users of Instagram, another body 160 

of research has examined how different types of Instagram use affects well-being, including 161 

duration of time spent on Instagram, number and type of followers, and exposure to different 162 

types of Instagram images (Faelens et al., 2021). A key distinction in this research has been 163 

between ‘active’ and ‘passive’ Instagram use. Active Instagram use involves users posting 164 

content, and interacting publicly or privately with other users, whilst passive use involves 165 

simply browsing through the newsfeed (Yang, 2016). Early research on Facebook suggests 166 

that whilst active use helps build social connections and is therefore associated with higher 167 

levels of well-being (e.g., lower levels of loneliness), passive use is associated with lower 168 

levels of well-being as it induces social comparison (Burke & Kraut, 2016), although later 169 

research has found more inconsistent results (Valkenburg, van Driel, et al., 2022). Similarly, 170 

research focusing on active versus passive use of Instagram has found inconsistent results, 171 

with a longitudinal study suggesting that browsing at Time 1 was related to increases in 172 

depression at Time 2, with depression at Time 1 related to increases in posting at Time 2 173 

(Frison & Eggermont, 2017). There is no strong evidence for a consistent association between 174 

Instagram use and anxiety, with little research specifically focused on whether type of use is 175 

associated with anxiety (Faelens et al., 2021). Finally, Yang (2016) found that Instagram 176 

Interaction and Browsing were related to lower levels of loneliness, with Broadcasting 177 
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associated with higher levels of loneliness. Therefore there is little consensus on how different 178 

types of use of Instagram use are associated with anxiety, depression and loneliness 179 

(Valkenburg, van Driel, et al., 2022), with a recent systematic review calling for more 180 

research in this area (Faelens et al., 2021). 181 

Rationale for Current Study 182 

Given these inconsistent findings in previous research, the aims of this study were: i) 183 

To compare a matched sample of users versus non-users of Instagram on levels of anxiety, 184 

depression and loneliness; ii) To examine how Instagram Interaction, Browsing and Broadcast 185 

are associated with levels of anxiety, depression and loneliness among Instagram users. This 186 

extends previous research in this area in three key ways. First, many previous studies 187 

examining Instagram use have used student or convenience samples, focusing on young adults 188 

aged 18-30 with a female bias (Faelens et al., 2021). However, Instagram is used by all ages 189 

and genders, and has approximately 580 million users over the age of 35 (Dixon, 2022b). It is 190 

therefore important to examine the effects of Instagram on well-being in a broader sample. In 191 

this study, we use a large online sample of UK adults that is nationally representative by age 192 

and gender to enable broader generalisations to be made about the effect of Instagram on 193 

well-being. Based on Instagram advertising data, in January 2023 the UK had 29 million 194 

Instagram users (Statista, 2023).  Therefore examining how Instagram use is associated with 195 

well-being in UK adults is an important issue. Second, previous research comparing users 196 

versus non-users of Instagram (Table 1) has tended to rely on small samples of non-users and 197 

has not used matched samples, meaning differences in well-being may be due to differences 198 

in the demographics of the two samples (e.g. age differences), rather than Instagram use itself. 199 

In this study, we compare a sample of participants who stated that they used Instagram to a 200 

sample of non-users matched by age, gender and educational status. Finally, given the small 201 

or non-existent effects of Instagram use on well-being found in some previous studies (Appel 202 

et al., 2020; Coyne et al., 2020; Orben, 2020b), it is important to examine the strength of 203 
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evidence for the null hypothesis, in addition to examining if there are statistically significant 204 

associations between Instagram use and well-being. In this study, we use Bayes Factors to 205 

compare the evidence for the null hypothesis (no effect of Instagram use on well-being) as 206 

compared to the alternative hypotheses (an effect of Instagram use on well-being) (Dienes, 207 

2016). This enables a more robust test of the effect of Instagram on well-being, compared to 208 

previous studies which have focused on statistical significance (p values) and thus cannot 209 

provide evidence for  the null hypothesis (Dienes, 2016). Given the inconsistent research in 210 

this area, with positive, negative, and non-significant associations between SNSs use and 211 

indicators of well-being, we did not make directional hypotheses. Instead, in a design pre-212 

registered on the Open Science Framework, OSF (https://osf.io/m7w5d), we examined the 213 

associations between use vs. non-use of Instagram, and type of use of Instagram, on 214 

loneliness, anxiety and depression. Specifically, we examined the following research 215 

questions: 216 

RQ1: Are there significant differences on levels of anxiety, depression and loneliness 217 

Instagram users, as compared to a matched sample of non-Instagram users? 218 

RQ2:  Are levels of anxiety associated with frequency of Instagram Interaction, 219 

Browsing or Broadcast behaviour? 220 

RQ3: Are levels of depression associated with frequency of Instagram Interaction, 221 

Browsing or Broadcast behaviour? 222 

RQ4: Are levels of loneliness associated with frequency of Instagram Interaction, 223 

Browsing or Broadcast behaviour? 224 

 225 

Method 226 

Participants 227 

We used a crowd-sourcing website, www.prolific.co to request a sample of 500 UK-228 

based adults whose age and gender were nationally representative of the UK. Prolific is a 229 
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platform that enables participants to complete surveys for monetary reward, and researchers to 230 

recruit participants for a fee based on the number of participants and type of sample. There 231 

were 498 complete responses (self-reported gender: 257 women, 236 men, 2 neither male nor 232 

female, 3 non-disclosures). Of the 498 participants. 438 reported that they had British 233 

nationality. Three participants chose not to provide their age. These are excluded for analyses 234 

with age. For the remaining participants, the ages ranged from 19 to 82 years (M = 49.15, SD 235 

= 15.53). 289 out of 498 participants indicated that they had completed at least a Bachelor 236 

level degree and 375 out of 498 participants indicated that they used Instagram. Participants 237 

were paid £3.35 for completing the survey. 238 

Measures 239 

Loneliness 240 

To measure loneliness, we used the Revised UCLA Loneliness scale (UCLA-R; 241 

Russell et al., 1980), which is one of the most widely used loneliness scales in this research 242 

area (Huang, 2017; O’Day & Heimberg, 2021). The R-UCLA is a 20-item scale with 243 

positively (e.g., “There are people I feel close to”) and negatively (e.g., “I feel left out”) 244 

worded items. Participants indicated how often they felt the way described in each of the 245 

items on a 4-point Likert scale (Never, Rarely, Sometimes, Often). Positively worded items 246 

were reverse scored, and items were averaged to produce a total score of 1-4, with higher 247 

scores indicating higher levels of loneliness. The R-UCLA showed excellent reliability 248 

(Cronbach’s α = .94). As some research has suggested that the R-UCLA scale has a 249 

multidimensional structure (e.g. Hawkley et al., 2005), we also examined the reliability of the 250 

three subscales identified in this research. These showed adequate to good reliability: 251 

Collective Connectedness (α = .77), Isolation (α = .92), Relational Connectedness: (α = .89). 252 

Anxiety and Depression 253 

We used the Hospital Anxiety and Depression (HADS) scale to measure levels of 254 

anxiety and depression (Zigmond & Snaith, 1983). As with the R-UCLA, the HADS is one of 255 
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the most widely used scales in this research area (Appel et al., 2020; Faelens et al., 2021), 256 

enabling our results to be compared to previous research. The HADS is a 14-item scale, with 257 

7 items relating to anxiety (e.g., “Worrying thoughts go through my mind”) and 7 items 258 

related to depression (e.g., “I still enjoy the things I used to enjoy”). Participants indicated 259 

how often they have been feeling the way described in the items in the last week on a 4 -point 260 

Likert scale that varies between the items (e.g., Most of the time, A lot of the time, From time 261 

to time, Not at all). Positively worded items were reverse scored, and items were averaged 262 

separately for anxiety and depression, with scores ranging from 0-3 and higher scores 263 

indicating higher feelings of depression or anxiety. Anxiety (α = .87) and depression (α = .83) 264 

both showed good levels of reliability. 265 

Instagram Use Scale 266 

We defined being an Instagram user based on a Yes/No question (“Do you use 267 

Instagram?”). For Instagram users, we used the Yang (2016) scale to measure three key types 268 

of Instagram use  – Interaction, Broadcast and Browsing. Interaction and Broadcast are 269 

‘active’ use of Instagram as they involve either communication with others, or posting 270 

content. Browsing is ‘passive’ use as it relates to just browsing through the newsfeed without 271 

interacting with anyone or leaving any comments. The scale consists of two items measuring 272 

Interaction (Comment on or reply to other’s posts; Tag others in your posts or comments), 273 

two items measuring Broadcast (Post/upload on your profile without tagging anyone; Post 274 

something that is not directed to specific people), and two items measuring Browsing (Browse 275 

the homepage/newsfeed without leaving comments; Check out others profiles without leaving 276 

comments). The original version of the scale  (Yang, 2016) measured frequency of different 277 

types of Instagram activity using a 5-point Likert scale (1 = Never, 5  = A lot), but this relies 278 

on the participants subjective judgment about, for example, what is ‘a lot’ of a specific 279 

Instagram activity. We therefore asked participants how frequently they engaged in each 280 

activity on a 1-10 scale based on specific frequencies (1 = Never; 2 = Once a month; 3 = 281 
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Several times a month; 4 = Once a week; 5 Several times a week; 6 = Once a day, 7 = Several 282 

times a day; 8 = Once an hour; 9 = Several times an hour; 10 = All the time). Items were 283 

averaged for Interaction, Broadcast and Browsing separately, producing a total of 1-10 for 284 

each subscale, with higher scores indicating more frequent Instagram activity. The reliability 285 

was acceptable for Interaction (Cronbach’s α = 0.75), and good for Browsing (α = .81) and 286 

Broadcasting (α = .83), with lower alphas expected given there were only two items in each 287 

subscale (Cortina, 1993). 288 

As we modified the anchors and given that the Yang (2016) scale has not been widely 289 

validated, we also examined the factor structure via exploratory factor analysis, with 290 

‘varimax’ rotation and the minimum residuals method (Revelle, 2015). Parallel analysis 291 

suggested three factors (Horn, 1965) as did  the Very Simple Structure procedure (Revelle & 292 

Rocklin, 1979). These three factors explain 72% of total variance.  These three factors 293 

correspond to the items relating to Interaction, Browsing and Broadcast, supporting the use of 294 

these separate type of Instagram activities in our analysis.  It should be noted though that the 295 

Velicer MAP tests suggested 2 factors (Velicer, 1976). 296 

Procedure 297 

We recruited participants using Prolific, a survey platform which advertises studies to 298 

potential eligible participants. This study was part of a larger online egocentric social network 299 

study. The full study protocol was preregistered on the OSF (https://osf.io/twjup). Participants 300 

followed an online link to the survey which was completed in Graphical Ego-centered 301 

Network Survey Interface (GENSI) software (Stark & Krosnick, 2017; Stulp, 2021) to allow 302 

the collection of social network data. Participants were presented with an information sheet, 303 

provided demographic information (age, gender, level of educational attainment), and then 304 

provided information about their social network using the graphical interface. We did not 305 

include any analysis of this social network information in the current paper. Participants then 306 

completed the UCLA-R (Russell et al., 1980), the HADS (Zigmond & Snaith, 1983), and the 307 
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Instagram scale (Yang, 2016). At the end of the study, participants were provided with a 308 

debrief sheet.  309 

Ethics 310 

We received ethical approval for the study from the local ethics committee (Blinded 311 

for the review). We ensured anonymity of participants by not collecting any information that 312 

could identify individual participants such as email or IP addresses. Participants indicated 313 

their informed consent to take part in the study by a tick box on the questionnaire. We 314 

provided participants with a debrief sheet with support information after they had completed 315 

the survey. The data was collected between 13th and 15th March 2020. The first restrictions on 316 

work, travel and socialising due to the COVID-19 pandemic were introduced in the UK on 317 

23rd March 2020 (Walker, 2020). Participants therefore completed the study before any 318 

COVID restrictions were in place in the UK. 319 

Statistical analysis 320 

The analyses were conducted in R 4.0.2  (R Development Core Team, 2008). One 321 

participant had a response missing for a single item on the UCLA-R loneliness scale (Russell 322 

et al., 1980). For this one participant, we produced the total score for the scale by averaging 323 

across 19 rather than 20 items. We used a genetic matching algorithm to match Instagram 324 

users and non-Instagram users on age, gender, education and nationality via a Nearest 325 

Neighbour Method (Tables 1 and 2) (Ho et al., 2011; Ho et al., 2007). Genetic matching uses 326 

multivariable matching to determine the weight each covariate is given in creating matched 327 

samples (Diamond & Sekhon, 2013). We used this approach to matching to reduce the effects 328 

of confounding in our observational data (Austin, 2011). This creates a powerful test for the 329 

research questions: if any potential confound was strongly related to any of the covariates, 330 

then its impact would be greatly reduced. It also implies that we no longer need to examine 331 

these covariates. This procedure allowed us to match 372 Instagram users to 100 non-users on 332 

age, education, gender and nationality, and provided weights to be used for an Ordinary Least 333 
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Squares (OLS) model (see Supplementary Information in the Open Science Framework, OSF, 334 

https://osf.io/9xvfw/?view_only=f21b371179b447ae9a42a07c36cfd3d5) . We used raincloud 335 

plots (Allen et al., 2019) implemented in R 4.0.2  (R Development Core Team, 2008) for 336 

Figures 1, 2 and 3 337 

For Instagram users, we build further hierarchical OLS regressions. For this analysis, 338 

we used all participants who reported that they used Instagram, giving a sample size of 375 339 

participants, rather than the 372 Instagram users who formed the matched sample. In the first 340 

step, we examine the bivariate relationships between types of Instagram use and anxiety, 341 

depression and loneliness. Next, we considered gender, age, nationality and education, as 342 

control variables, as these variables could relate to anxiety, depression and loneliness (Barreto 343 

et al., 2020; Bucher et al., 2018; Rajapaksa & Dundes, 2002; Sawir et al., 2008; Wu et al., 344 

2015). To maximise the sample size and ensure we did not exclude participants based on their 345 

demographic characteristics, we included all participants even when the number of 346 

participants in specific groups (e.g. non-binary or ‘prefer not to answer’ for gender) was 347 

small. For education and gender, we used dummy coding to allow these categorical variables 348 

to be entered into the regression. 349 

We also calculate Bayes Factors (BF) which allow weighing evidence for the null 350 

model vs. hypothesised model (Dienes, 2016; Morey et al., 2015). Many rules of thumb for 351 

the interpretation of BFs exist (Jarosz & Wiley, 2014). Here, we rely on qualifications for 352 

evidence by Jeffreys (1961): BF = 1 - No evidence, 1 < BF <= 3 - Anecdotal, 3 < BF <= 10 - 353 

Moderate, 10 < BF <= 30 - Strong, 30 < BF <= 100 - Very strong, BF > 100 - Extreme. 354 

In the main analysis presented in the paper, we treated the UCLA-R loneliness scale 355 

(Russell et al., 1980) as  having a unidimensional structure. Given some research suggests a 356 

multidimensional structure for this scale (Hawkley et al., 2005; Pollet et al., 2022), we also 357 

repeated all the analysis using three loneliness subscales identified in previous research: 358 

Collective Connectedness, Isolation and Relational Connectedness (Hawkley et al., 2005). 359 
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The analysis using these three subscales showed the same pattern of statistical significance as 360 

when the UCLA-R was analysed as a unidimensional scale. We therefore report the analysis 361 

based on three subscales, along with additional analysis (e.g., assumptions checks) and the 362 

data in the Supplementary Information in the OSF 363 

(https://osf.io/9xvfw/?view_only=f21b371179b447ae9a42a07c36cfd3d5). 364 

 365 

 366 

 367 

Results 368 

Instagram users versus non-users do not vary in levels of anxiety, depression or 369 

loneliness 370 

 There were no statistically significant bivariate correlations between being a user 371 

versus non-user of Instagram and levels of anxiety, depression or loneliness (Table 2, Figures 372 

1, 2 and 3). Instagram users were significantly younger than non-users. Younger participants 373 

had significantly higher levels of anxiety and loneliness. 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 
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Table 2. Descriptive statistics and bivariate Pearson’s correlations for Instagram use, anxiety, 386 

depression, loneliness and participant age. 387 

  388 
Variable M SD 1 2 3 4 

       

1. Instagram user           

              

2. Anxiety 1.09 0.66 .04       

      [-.05, .12]       

              

3. Depression 0.79 0.58 -.04 .66**     

      [-.12, .05] [.60, .70]     

              

4. Loneliness 2.26 0.56 -.00 .52** .66**   

      [-.09, .08] [.45, .58] [.60, .70]   

              

5. Age 44.92 15.53 -.24** -.21** -.08 -.14** 

      [-.32, -.15] [-.29, -.13] [-.16, .01] [-.22, -.05] 

              

 389 
Note. Instagram use was coded as 0 = Nonuser, 1 = User. M and SD refer to mean and standard 390 

deviation, respectively. Values in square brackets indicate the 95% confidence interval for each 391 

correlation. The confidence interval is a plausible range of population correlations that could have 392 

caused the sample correlation (Cumming, 2014). 393 

 * indicates p < .05. ** indicates p < .01. 394 

 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 

 415 

 416 
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Figure 1. Raincloud plots showing boxplot and distribution of scores for levels of anxiety in 417 

Instagram users (n = 372) and Instagram non-users (n = 100). 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 
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Figure 2. Raincloud plots showing boxplots and distribution of scores for levels of depression 430 

in Instagram users (n = 372) and Instagram non-users (n = 100). 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 
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Figure 3. Raincloud plots showing boxplots and distribution of scores for levels of loneliness 443 

in Instagram users (n = 372) and Instagram non-users (n = 100). 444 

 445 

 446 

 447 

Table 3 shows the results for weighted OLS regressions. Instagram usage did not 448 

significantly predict anxiety (Model 1), depression (Model 2) or loneliness (Model 3). The 449 

signs of the coefficient suggest that, if anything, Instagram users are less anxious, depressed 450 

and lonely than non-users. Bayes Factors suggested support for the null model versus a model 451 

containing Instagram use with factors of 9.41 for anxiety, 4.01 for depression and 3.08 for 452 

loneliness. This suggests moderate support against the hypothesis that being an Instagram user 453 

compared to a non-user is related to mental well-being.  454 

 455 

 456 
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Table 3. Weighted OLS regression models for matched Instagram users and non-users. 457 

 Anxiety Depression Loneliness 
 Model 1 Model 2 Model 3 

Instagram User -0.020 -0.087 -0.095 
 (0.074) (0.064) (0.062) 

Constant 1.129*** 0.862*** 2.357*** 
 (0.066) (0.057) (0.055) 

N 472 472 472 

R2 0.0002 0.004 0.005 

Adjusted R2 -0.002 0.002 0.003 

Residual Std. Error (df = 470) 0.655 0.567 0.548 

F Statistic (df = 1; 470) 0.073 1.848 2.393 

*p < .05; **p < .01; ***p < .001 

 458 

Type of Instagram use is not associated with levels of anxiety, depression or loneliness 459 

 In the next set of analyses, we focused on Instagram users (n = 375) and examined the 460 

associations between type of Instagram use and levels of anxiety, depression and loneliness. 461 

We first used bivariate Pearson’s correlations to examine the associations between variables. 462 

There was a significant, positive correlation between levels of anxiety and the frequency of 463 

both Instagram Browsing and Instagram Broadcast behaviour (Table 4). The frequency of 464 

Instagram Interaction, Browsing and Broadcast were not significantly correlated with levels 465 

of depression or loneliness. 466 
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 467 

Table 4. Bivariate Pearson’s correlations and descriptive statistics for Instagram interaction, Instagram browsing, Instagram broadcast, anxiety, 468 

depression, loneliness and participant age.   469 

 470 
Variable M SD 1 2 3 4 5 6 

         

1. Interaction 3.32 2.07             

                  

2. Browsing 5.65 2.59 .28**           

      [.18, .37]           

                  

3. Broadcast 3.03 2.23 .38** .30**         

      [.29, .46] [.20, .39]         

                  

4.Anxiety 1.11 0.65 .09 .17** .14**       

      [-.01, .19] [.07, .26] [.03, .23]       

                  

5.Depression 0.78 0.56 .02 .05 .05 .64**     

      [-.08, .12] [-.06, .15] [-.06, .15] [.57, .70]     

                  

6. Loneliness 2.26 0.55 -.01 .05 .06 .52** .66**   

      [-.11, .10] [-.05, .15] [-.05, .16] [.44, .59] [.60, .71]   

                  

7. Age 42.77 15.35 -.12* -.42** -.14** -.21** -.08 -.12* 

      [-.22, -.01] [-.50, -.33] [-.23, -.03] [-.31, -.12] [-.18, .02] [-.22, -.02] 

                  

 471 

Note. M and SD refer to mean and standard deviation, respectively. Values in square brackets indicate the 95% confidence interval for each 472 

correlation. The confidence interval is a plausible range of population correlations that could have caused the sample correlation (Cumming, 2014). 473 

* indicates p < .05. ** indicates p < .01.474 
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         In the OLS regressions, only Browsing was significantly related to Anxiety (Table 5, 475 

Model 1). This effect was still present after adjusting for gender (Model 2). However, after 476 

adjusting for age (Model 3), there was no longer any support for a significant association 477 

between Browsing and Anxiety (p = .364). Therefore, overall, the results do not demonstrate a 478 

significant association between Browsing and Anxiety after controlling for demographic 479 

variables. In the final Model 5, younger participants, and women (compared to men) had 480 

significantly higher levels of anxiety.  481 

 482 

Table 5 OLS Regressions for Anxiety. Coefficients and standard errors. Reference categories 483 

are female (Gender), Other (Nationality) and A-Level (Education). 484 

 Anxiety 
           Model 1 Model 2 Model 3 Model 4 Model 5 

Interaction 0.008 0.005 0.004 0.004 0.003 
 (0.018) (0.017) (0.017) (0.017) (0.017) 

Browsing 0.033* 0.032* 0.013 0.013 0.013 
 (0.014) (0.013) (0.015) (0.015) (0.015) 

Broadcasting 0.025 0.026 0.026 0.025 0.026 
 (0.016) (0.016) (0.016) (0.016) (0.016) 

Gender: Male  -0.180** -0.186** -0.191** -0.194** 
  (0.066) (0.066) (0.066) (0.066) 

Gender: Other  0.252 0.242 0.288 0.262 
  (0.451) (0.444) (0.446) (0.449) 

Gender: Prefer 

not to say 
 -0.535 -0.559 -0.516 -0.502 

  (0.449) (0.443) (0.444) (0.445)  

Age   -0.008*** -0.009*** -0.008*** 
   (0.002) (0.002) (0.002) 

Nationality: 

British 
   0.127 0.105 

    (0.101) (0.103) 

Education: 

Bachelor 
    -0.011 

     (0.085) 

Education: High 

School 
    -0.064 

     (0.108) 

Education: 

Postgraduate 
    -0.104 
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     (0.096) 

Education: 

Primary/none 
    0.336 

     (0.263) 

Constant 
0.815*

** 
0.909*** 1.365*** 1.162*** 1.229*** 

             (0.087) (0.093) (0.163) (0.230) (0.241) 

N 374 374 371 371 371 

R2 0.036 0.059 0.086 0.090 0.099 

Adjusted R2 0.029 0.044 0.068 0.070 0.069 

Residual Std. 

Error 

0.636  

(df = 370) 

0.631 

(df = 367) 

0.623 

(df = 363) 

0.622 

(df = 362) 

0.622  

(df = 358) 

F Statistic 
           4.648**  

  (df = 3; 370) 

3.861***    

(df = 6; 367) 

4.872***  

(df = 7; 363) 

4.466*** 

(df = 8; 362) 

3.276***  

           (df =12;358) 

*p < .05; **p < .01; ***p < .001 

 485 

There were no significant associations between types of Instagram use and Depression 486 

(Table 6). Models 2 to 5 suggested that none of the sociodemographic variables were 487 

significantly associated with Depression. 488 

 489 

Table 6 OLS Regressions for Depression. Coefficients and standard errors. Reference 490 

categories are female (Gender), Other (Nationality) and A-Level (Education). 491 

 Depression 
 Model 1 Model 2 Model 3 Model 4 Model 5 

Interaction -0.001 -0.002 -0.002 -0.002 -0.003 
 (0.016) (0.016) (0.016) (0.016) (0.016) 

Browsing 0.008 0.008 -0.002 -0.002 -0.002 
 (0.012) (0.012) (0.013) (0.013) (0.013) 

Broadcasting 0.009 0.010 0.011 0.011 0.012 
 (0.015) (0.015) (0.015) (0.015) (0.015) 

Gender: Male  -0.003 -0.008 -0.009 -0.008 
  (0.059) (0.060) (0.060) (0.060) 

Gender: Self-

defined 
 0.218 0.213 0.219 0.229 

  (0.405) (0.404) (0.406) (0.410) 

Gender: 

Other 
 0.446 0.439 0.445 0.446 

  (0.403) (0.402) (0.404) (0.407) 

Age   -0.003 -0.003 -0.003 
   (0.002) (0.002) (0.002) 
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Nationality: 

British 
   0.017 0.008 

    (0.092) (0.094) 

Education: 

Bachelor 
    -0.040 

     (0.078) 

Education: 

High School 
    0.002 

     (0.099) 

Education: 

Postgraduate 
    -0.061 

     (0.088) 

Education: 

Primary/none 
    0.004 

     (0.240) 

Constant 0.706*** 0.706*** 0.876*** 0.849*** 0.902*** 
 (0.078) (0.083) (0.149) (0.209) (0.221) 

N 374 374 371 371 371 

R2 0.003 0.007 0.012 0.012 0.014 

Adjusted R2 -0.005 -0.009 -0.007 -0.010 -0.019 

Residual Std. 

Error 

0.566 

(df = 370) 

0.567 

(df = 367) 

0.566 

(df = 363) 

0.566 

(df = 362) 

0.569 

(df = 358) 

F Statistic 
0.406 

(df = 3; 370) 

0.457 

(df = 6; 367) 

0.620 

(df = 7; 363) 

0.545 

(df = 8; 362) 

0.418 

(df = 12; 358) 

*p < .05; **p < .01; ***p < .001 

 492 

Finally, there were no significant associations between types of Instagram usage and 493 

Loneliness (Table 7). Models 3 and 4 are suggestive of a negative association between age 494 

and loneliness, but this association is no longer statistically significant when adjusting for 495 

educational attainment (p = .055; Model 5). 496 

 497 

 498 

 499 

 500 

 501 

Table 7: OLS Regressions for Loneliness. Coefficients and standard errors. Reference 502 

categories are female (Gender), Other (Nationality) and A-Level (Education). 503 



INSTAGRAM AND MENTAL HEALTH   28 
 

28 
 

 Loneliness 
 Model 1 Model 2 Model 3 Model 4 Model 5 

Interaction -0.011 -0.011 -0.012 -0.012 -0.014 
 (0.015) (0.015) (0.015) (0.015) (0.015) 

Browsing 0.010 0.011 -0.001 -0.001 -0.0004 
 (0.012) (0.012) (0.013) (0.013) (0.013) 

Broadcasting 0.014 0.014 0.014 0.014 0.016 
 (0.014) (0.014) (0.014) (0.014) (0.014) 

Gender: Male  0.052 0.047 0.047 0.043 
  (0.058) (0.058) (0.058) (0.058) 

Gender: Self-

defined 
 0.250 0.244 0.249 0.241 

  (0.395) (0.393) (0.395) (0.397) 

Gender: 

Prefer not to 

say 

 0.018 0.006 0.011 0.003 

  (0.393) (0.392) (0.393) (0.394) 

Age   -0.004* -0.004* -0.004 
   (0.002) (0.002) (0.002) 

Nationality: 

British 
   0.014 0.006 

    (0.090) (0.091) 

Education: 

Bachelor 
    -0.038 

     (0.075) 

Education: 

High School 
    -0.136 

     (0.096) 

Education: 

Postgraduate 
    -0.082 

     (0.085) 

Education: 

Primary/none 
    0.330 

     (0.233) 

Constant 2.195*** 2.170*** 2.429*** 2.406*** 2.455*** 
 (0.076) (0.081) (0.145) (0.204) (0.214) 

N 374 374 371 371 371 

R2 0.006 0.009 0.021 0.021 0.035 

Adjusted R2 -0.002 -0.007 0.003 -0.0002 0.003 

Residual Std. 

Error 

0.552 

(df = 370) 

0.553 

(df = 367) 

0.551 

(df = 363) 

0.552 

(df = 362) 

0.551 

(df = 358) 

F Statistic 
0.743 

(df = 3; 370) 

0.558 

(df = 6; 367) 

1.134 

(df = 7; 363) 

0.993 

(df = 8; 362) 

1.095 

(df = 12; 358) 

*p < .05; **p < .01; ***p < .001 

 504 
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We examined the Bayes factors for Models 1 from the OLS regressions for Anxiety 505 

(Table 5), Depression (Table 6) and Loneliness (Table 7). For Anxiety, the Bayes Factor 506 

suggested anecdotal evidence for an effect (2.78) but note that the effect was no longer 507 

supported once age was adjusted for. For Depression and Loneliness, the Bayes Factors 508 

overwhelmingly supported the null model over the presence of an effect of Instagram usage 509 

(Depression: 127.52; Anxiety: 79.68). Table 8 provides a summary of all the analyses. After 510 

the inclusion of the control variables in the regression models, there were no statistically 511 

significant associations between Instagram use and anxiety, depression or loneliness. 512 

 513 

Table 8 514 

Summary of Results. Positive refers to a statistically significant (p < .05) association between 515 

the variables in the OLS regression analyses and gives the direction of the effect. No refers to 516 

a non-statistically significant (p > .05) association between the variables in the OLS 517 

regression analyses. See Tables 4, 6, 7 and 8 for full regression results. NA is Not Applicable 518 

 519 

 520 

 521 

 522 

 523 

Analysis Instagram 

activity 

Outcome 

variable 

Association at 

baseline 

Association 

after inclusion 

of control 

variables 

     

Users vs. non-

users 

 Anxiety No NA 
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  Depression No NA 

  Loneliness No NA 

     

Instagram users Interaction Anxiety No No 

 Browsing Anxiety Positive No 

 Broadcasting Anxiety No No 

     

 Interaction Depression No No 

 Browsing Depression No No 

 Broadcasting Depression No No 

     

 Interaction Loneliness No No 

 Browsing Loneliness No No 

 Broadcasting Loneliness No No 

 524 

Notes. Users vs. non-users compared participants who had an Instagram account to those who 525 

did not have an Instagram account. As users and non-users were matched on age, gender, 526 

ethnicity, and nationality and these were accounted for via weights in the regression analysis, 527 

there was no need to control for these variables in the regression analysis. 528 

Discussion 529 

Summary of Findings 530 

In this study, we examined associations between Instagram use and anxiety, 531 

depression and loneliness in a UK adult sample that was nationally representative by age and 532 

gender. We compared participants who used Instagram to a sample of non-users, matched by 533 

age, gender, educational status and nationality. There were no significant differences between 534 

users versus non-users of Instagram in levels of anxiety, depression or loneliness. Further, 535 
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there were no significant associations between active use of Instagram (Broadcast, 536 

Interaction) and passive use (Browsing) and levels of anxiety, depression or loneliness once 537 

sociodemographic variables were included in the models. The Bayes factors for these analyses 538 

moderately to strongly supported the null model of no effect -with the exception of anxiety. 539 

The Bayes Factor showed anecdotal evidence for an effect and the regression model contained 540 

a statistically significant effect of Browsing. However, when participant age was included in 541 

the regression model there no longer was any support for a statistically significant effect.   542 

Comparison to Previous Work and Theoretical Implications 543 

This study adds to recent research suggesting that the overall effect of Instagram, and SNSs 544 

more broadly, on well-being may be small to non-existent (Appel et al., 2020; Coyne et al., 545 

2020; Orben, 2020b; Orben et al., 2019). The three key novel contributions this study makes 546 

to the previous research are its use of a country representative sample by age and gender, the  547 

use of matched control groups for Instagram users versus non-users and the use of Bayes 548 

factors to examine the strength of evidence for the null hypothesis . The effects of Instagram 549 

use on well-being may vary with gender, with some studies finding a larger negative effect of 550 

social media use on well-being for females rather than males (Jarman et al., 2023; Twenge & 551 

Martin, 2020). Therefore the existing studies with a female bias (Faelens et al., 2021) may not 552 

reflect the overall effect of social media use on well-being. Further, the effect of SNS on 553 

wellbeing may be affected by age, with different effects found for different developmental 554 

stages through adolescence (Orben et al., 2022) and therefore studies based mainly on 18-30 555 

year olds  (Faelens et al., 2021) may not be reflective of the effect of Instagram on an older 556 

sample.  In this study we used a representative UK sample and accounted for key 557 

demographic factors such as age and gender that vary between uses and non-users of 558 

Instagram (Dixon, 2022a) and which may influence well-being (Faravelli et al., 2013). This 559 

study therefore provides a robust examination of the effect of being a user of Instagram on 560 
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well-being in an older (mean age: 49 years old) UK sample, with the null model of no effect 561 

supported by Bayes factors. 562 

There are many factors that influence an individual’s level of loneliness, anxiety and 563 

depression, including the extent to which they have meaningful social connections to others 564 

(Hawkley & Cacioppo, 2010), unemployment (Paul & Moser, 2009), socio-economic status 565 

(Lorant et al., 2003), attachment style (Riggs & Han, 2009) and gender (Faravelli et al., 566 

2013). One potential explanation for the lack of an significant differences between users 567 

versus non-users of Instagram and levels of anxiety, depression and loneliness is that, as 568 

compared to other factors that influence well-being, being a user or not of Instagram has a 569 

much smaller effect on well-being (Appel et al., 2020; Orben et al., 2019; Orben & 570 

Przybylski, 2019). Overall our results on Instagram membership is consistent with a recent 571 

review of the evidence in this area which concluded that simply being a user of Instagram is 572 

not robustly associated with well-being in terms of depression, anxiety or loneliness (Faelens 573 

et al., 2021). 574 

Whilst using versus not using SNSs may not have a large effect on well-being, early 575 

research on Facebook suggested that the way in which people use SNSs may have more of an 576 

effect, with passive use associated with more negative outcomes than active use (Burke & 577 

Kraut, 2016). However, this study did not find any robust support for associations between 578 

well-being and active use of Instagram (Interaction and Broadcast) as compared to more 579 

passive use (Browsing). Many previous studies in this area have focused on adolescents 580 

(Frison & Eggermont, 2017; Orben, 2020b) or young adults (Coyne et al., 2020). In contrast, 581 

we used an older adult sample. Given that adolescents and young adults spend more time on 582 

Instagram than older adults  (Auxier & Anderson, 2021), this could account for the 583 

differences in findings, although the overall associations between type of SNSs use and well-584 

being are inconsistent for all ages (Valkenburg, van Driel, et al., 2022). Therefore, whilst 585 

these results may generalise to the UK adult population as a whole given the representative 586 
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sample, they may not generalise to specific groups or populations who may be differentially 587 

affected by social media use according to gender (Jarman et al., 2023; Twenge & Martin, 588 

2020), developmental stage (Orben et al., 2022), or country (Ghai et al., 2023). 589 

More broadly, the results of this study and recent reviews (e.g. Orben, 2020b; 590 

Valkenburg, 2022; Valkenburg, van Driel, et al., 2022) suggest that to understand the more 591 

nuanced effects of SNS use on well-being may require a move away from overall measures of 592 

SNS use (user vs. non-users, amount of use), or categorising use into active and passive, in 593 

two key directions.  First, unlike exposure to magazines, TV shows or movies, each SNSs 594 

user has a different experience when they use SNSs depending on who they follow, the type 595 

of feedback they receive when they post and the content of private and public comments 596 

(Harriger et al., 2023). Thus, the effects of SNS on well-being are likely to be affected by this 597 

variation in the experience of each users, based on factors such as the type of content they 598 

follow (e.g. idealised body images, Brown & Tiggemann, 2016), their emotional reactions to 599 

the feedback they receive on SNS  (e.g. Jackson & Luchner, 2018) and their motivations for 600 

using SNS (e.g. Phua et al., 2017). Capturing this variation in content is challenging using 601 

either survey or phone log methods, and therefore may require a greater use of experimental 602 

(e.g. Meier et al., 2020) or data donation approaches (van Driel et al., 2022). A second, related 603 

point is that if the overall effects of SNS on well-being are likely to vary according to the 604 

user, this may require a different statistical approach where person-specific effects of SNS on 605 

well-being are explicitly modelled (Valkenburg, 2022). Some studies using this approach 606 

have found that whilst some users of SNS experience negative effects, others experience 607 

positive effects and a third group no effect (Beyens et al., 2021) 608 

Limitations and Future Research 609 

Whilst we used a large, nationally representative sample to examine associations 610 

between Instagram use and well-being, this study did have two key limitations. First, we 611 

relied on self-report to measure the frequency of different types of Instagram use. Assuming 612 
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participants answered honestly about whether they used Instagram, this limitation does not 613 

apply to the comparison of users versus non-users of Instagram. However, the duration of 614 

self-reported social media use is only moderately correlated with objective logs of use (Parry, 615 

Davidson, et al., 2021), meaning that the participants’ estimates of their frequency of 616 

Browsing, Broadcast and Interaction on Instagram may be inaccurate. Future research should 617 

therefore use objective logs of social media use  (Parry, Davidson, et al., 2021). However, 618 

most currently available systems for passively logging smartphone usage can measure time 619 

spent on specific SNSs apps, but not the specific type of use (e.g. active or passive) when 620 

using the SNSs (Christner et al., 2022; Deng et al., 2019; Ferreira et al., 2015; Parry, Fisher, et 621 

al., 2021). Second, this was a cross-sectional study and therefore cannot establish causal 622 

relationships, or the lack of such relationships, between Instagram use and anxiety, loneliness 623 

and depression. In longitudinal studies, there are often important differences in between-624 

person and within-person analyses, with within-person effects typically smaller than between-625 

person effects (Coyne et al., 2020; Orben et al., 2019). This suggests that variations in well-626 

being may predict social media use, rather than vice versa (Coyne et al., 2020). 627 

Conclusion 628 

In conclusion, in a representative sample of UK adults, users versus non-users of 629 

Instagram did not significantly differ in their levels of anxiety, depression or loneliness. 630 

Further, there were no robust associations between the type of Instagram use (Browsing, 631 

Broadcast, Interaction) and anxiety, depression or loneliness. The Bayes factors for these 632 

analyses moderately to strongly supported the null model of no effect – with the exception of 633 

anxiety. For anxiety, there was no support for a statistically significant effect of type of 634 

Instagram use after including socio-demographic variables in the model. Overall, therefore 635 

this study adds to recent evidence that the overall effect of SNSs use on well-being may be 636 

small or non-existent (Appel et al., 2020; Coyne et al., 2020; Orben et al., 2019). Future work 637 

should use objective and longitudinal data to examine how individual differences and the 638 
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specific nature of  different types of social media content may influence the effect of using 639 

social media on well-being (Beyens et al., 2020; Orben, 2020b; Parry, Fisher, et al., 2021; 640 

Valkenburg, Beyens, et al., 2022; Valkenburg, van Driel, et al., 2022). 641 

 642 

Supplementary Information 643 

The data, analysis code and additional analysis relating to this study can be accessed at 644 

the OSF page (https://osf.io/9xvfw/?view_only=f21b371179b447ae9a42a07c36cfd3d5). 645 

 646 

 647 

 648 
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