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Deuterium spectroscopy for enhanced bounds on physics beyond the standard model
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We consider the impact of combining precision spectroscopic measurements made in atomic hydrogen
with similar measurements made in atomic deuterium on the search for physics beyond the standard model.
Specifically, we consider the wide class of models that can be described by an effective Yukawa-type interaction
between the nucleus and the electron. We find that it is possible to set bounds on new light-mass bosons that are
orders of magnitude more sensitive than those set using a single isotope only, provided the interaction couples
differently to the deuteron and proton. Further enhancements of these bounds by an order of magnitude or more
would be made possible by extending the current measurements of the isotope shift of the 1s1/2-2s1/2 transition
frequency to that of a transition between the 2s1/2 state and a Rydberg s state.
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I. INTRODUCTION

The exquisite precision now achievable in optical fre-
quency measurements and the ongoing development of
methods for cooling and trapping atoms, molecules, and
highly charged ions suscitate a growing interest in searching
for new physics beyond the standard model using precision
spectroscopy [1–8]. Spectroscopy experiments already com-
plement existing measurement strategies from high-energy
physics experiments and astrophysical observations [9].

However, one of the biggest challenges to fully exploiting
the measurement precision currently achievable is the diffi-
culty of direct comparison with the predictions of the standard
model for many-electron atoms. The achievable precision
in calculations of transition frequencies for these systems
is limited by the difficulty of exactly solving the many-
electron Schrödinger equation to the required level of
accuracy and, more fundamentally, by a lack of knowledge
about the necessary many-electron quantum electrodynamics
(QED) corrections.

Two approaches around this problem have been proposed.
The first is based on many-electron atoms but reduces the need
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for precise electronic structure calculations by considering
different isotopes of the same species [10–12]. Since it was
first proposed, this method has been applied to experiments in
trapped ions [13–16]. However, the identification of physics
beyond the standard model in this approach is complicated
by computational difficulties [17] and by the need to use
sufficiently accurate models of the nuclei considered [18–20].

The other approach is to use hydrogenic atoms, for which
the necessary QED calculations can often be done to a
precision matching the experimental error on the measured
transitions. Early work in this direction extended the isotope
shift method to isotopes of hydrogen and helium [6]. Sub-
sequently, our group showed that direct-experiment theory
comparison across an entire set of spectroscopic data (in this
case for 1H) could be used to set global bounds on beyond
standard model forces [7]. This approach was recently signifi-
cantly extended by Delaunay et al., who performed a global fit
to the entire set of relevant Committee on Data for Science and
Technology (CODATA) measurements (not just hydrogenlike
atoms) [8].

In this paper we use both the isotope shift and global
constraint approaches to set new bounds using spectroscopic
measurements in the electronic and muonic isotopes of hydro-
gen only. Measurements in ordinary hydrogen set a bound on
the product of the constants ge and gp parametrizing how the
electron and the proton, respectively, couple to a hypothetical
new physics (NP) boson. The presence of a neutron in the
deuterium nucleus introduces a different product of coupling
constants for this species, i.e., gegd rather than gegp. It is
reasonable to assume that gd differs significantly from gp. For
example, it has been noted that the beryllium anomaly [21,22]
can be explained by a light NP boson with a mass of approx-
imately 17 MeV that couples potentially very differently to
protons and neutrons [23,24]. We find that the overall bound
on possible fifth forces is extremely sensitive to the ratio gd/gp
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with the global bound for both isotopes rapidly exceeding that
set by 1H alone if gd/gp �= 1. For example, for both gd/gp = 2
and gd/gp = 0, we find that the upper bound on the possible
value of |gegp| for NP bosons in the mass range 1–10 eV is
strengthened by two orders of magnitude compared to that set
using 1H data alone and by a further factor of 5 when the
Lamb shift measurements in muonic hydrogen and muonic
deuterium are also taken into account.

The theoretical model of NP interaction considered in this
work is outlined in Sec. II. Compared to previous work, we
relax a number of assumptions: We do not make any as-
sumptions about the new physics model being tested beyond
those required to get to the Yukawa potential and we do not
constrain the ratio of the coupling to the deuteron and the
proton, or the sign of the NP shift. Bounds based on the whole
of the current high-precision spectroscopic data are presented
in Sec. III. Bounds based only on the isotope shift of the
1s1/2 − 2s1/2 interval [6] are also presented in this section.
Prospects for further tightening the latter are discussed in
Sec. IV. A recap of our main results is given in Sec. V. The
main body of the paper is complemented by five Appendixes
devoted to more technical details, including a discussion of
the impact of a new physics interaction on the determination
of the proton and deuteron charge radii from Lamb shift mea-
surements in the muonic species.

II. NEW PHYSICS SCENARIOS

Most extensions of the standard model, which aim to ex-
plain the observation of excesses in the kinematic distributions
of collision events or decays, require the introduction of prop-
agating degrees of freedom that manifest as particles. To test
the existence of such degrees of freedom and their interac-
tions with standard model particles, it has become popular to
parametrize a deformation of the standard model Lagrangian
in terms of so-called simplified models [25].

Assuming a new force to be mediated through a spin-0
particle X0 that couples to leptons and quarks with couplings
gli and gqi , respectively, we can expand the standard model
Lagrangian LSM by

L = LSM +
∑

i

(gli l̄ili + gqi q̄iqi )X0. (1)

Here i denotes the three flavor generations, and li and qi refer
to the mass basis of the SM fermions.1

With the Lagrangian of Eq. (1), the interaction mediated by
the NP boson X0 between an atomic nucleus and an electron
or a muon contributes an additional Yukawa potential VNP(r)
to the Hamiltonian. In natural units,

VNP(r) = −gl gN

4π

1

r
e−mX0 r, (2)

where r is the distance between the electron or muon and the
nucleus and mX0 is the particle’s mass. Higher integer-spin

1An excellent review of such simplified models is provided in
Ref. [9]. We also note that the interactions of Eq. (1) could be
straightforwardly extended to (axial) vector or pseudoscalar particles
and to flavor off-diagonal interactions, e.g., gqi j q̄iq jX0 with i �= j.

mediators, e.g., vector particles, would also give rise to a
Yukawa potential of this form. In general, for a massive force
mediator of integer spin s,

VNP(r) = (−1)s+1 glgN

4π

1

r
e−mX0 r . (3)

However, assuming Lorentz invariance and the unitarity of
the transition matrix element leads to an attractive (repulsive)
force if glgN > 0 (glgN < 0) in the case of an even-spin
mediator and to an attractive (repulsive) force if gl gN < 0
(glgN > 0) in the case of an odd-spin mediator. To remain
general, we allow positive and negative values for the product
gl gN . We denote the coupling constant gl by ge for the case
of an electron and gμ for the case of a muon and the coupling
constant gN by gp for the case of a proton and gd for the case
of a deuteron.

Such a new physics interaction would shift the energy of
an (n, l ) state of hydrogen or deuterium by a quantity δENP

nl .
The interaction is expected to be very weak. This energy shift
does not need to be calculated beyond the first order in VNP(r).
The case of electronic hydrogen and electronic deuterium is
straightforward: As noted, e.g., in our previous publication on
this topic [7],

δENP
nl =

∫ ∞

0
|Rnl (r)|2 B exp(−Cr)

r
r2dr, (4)

where Rnl (r) is the nonrelativistic radial wave function of
the unperturbed state. The interaction potential is written in
terms of the constants B and C rather than glgN and mX0 to
facilitate conversion from natural units to atomic units. To five
significant figures,

B(Eha0) = 10.905(−1)s+1glgN (5)

and

C
(
a−1

0

) = 2.6817 × 10−4mX0 (eV). (6)

As defined by the above equations, the coupling constant glgN

is a pure number.
Relativistic wave functions must be used for muonic hy-

drogen and muonic deuterium. This case is addressed in
Appendix A.

III. CURRENT BOUNDS ON THE STRENGTH
OF AN NP INTERACTION

A. Methods

We only consider spectroscopic data in the present work,
in view of the difficulty of deriving unambiguous results from
the existing high-precision scattering data [26].

For electronic hydrogen (eH) and electronic deuterium
(eD), the relevant spectroscopic data consist of a set of transi-
tion frequencies measured to a high degree of precision, i.e.,
ν

expt
b1a1

, ν
expt
b2a2

, ν
expt
b3a3

, etc. As in [7], we obtain bounds on the
possible strength of a hypothetical NP interaction by com-
paring these measured frequencies to the prediction of the
theoretical model outlined in Sec. II. Specifically, we compare
each measured transition frequency ν

expt
biai

to its theoretical
counterpart ν th

biai
, the latter being given by its standard model
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value corrected for the NP shift defined by Eq. (4):

ν th
biai

= νSM
biai

+ νNP
biai

, i = 1, 2, 3, . . . . (7)

For a transition between a state a of principal quantum number
na and orbital angular momentum quantum number la and a
state b of principal quantum number nb and orbital angular
momentum quantum number lb,

νNP
ba = (

δENP
nblb − δENP

nala

)
/h, (8)

where h is Planck’s constant. Each SM transition frequency
νSM

biai
is the sum of a gross structure contribution ν

g
biai

and
various relativistic, QED, and hyperfine corrections [27–29].
These various contributions depend on the Rydberg frequency
R and some also depend on the charge radius of the proton rp

and the charge radius of the deuteron rd . As in [7], we group
them into a gross structure term depending sensitively on R,
terms depending sensitively on rp or rd , and a term accounting
for all the other contributions to the SM transition frequency.
Specifically, we write

νSM
biai

= R ν̃
g
biai

+ r2
p ν̃

ps
biai

+ r2
d ν̃ds

biai
+ νoc

biai
, (9)

where the factors ν̃
g
biai

, ν̃
ps
biai

, and ν̃ds
biai

and the term νoc
biai

do not
strongly depend on the precise values of R, rp, and rd , if they
depend on them at all. In particular,

ν̃
g
biai

= ν
g
biai

/R =
(

1

n2
ai

− 1

n2
bi

)
mr

me
, (10)

where mr is the reduced mass of the atom and me is the mass
of the electron. The proton size and deuteron size terms r2

p ν̃
ps
biai

and r2
d ν̃ds

biai
, respectively, group the QED contributions which

are roughly proportional to r2
p and r2

d , respectively, and the
term νoc

biai
encapsulates all the other corrections to the gross

structure contribution.
The data for muonic hydrogen (μH) and muonic deuterium

(μD) are currently limited to high-precision measurements of
the Lamb shift of the n = 2 states. In principle, these data
could be integrated in the calculation of NP bounds exactly
as described in the preceding paragraph. However, it is more
convenient to use a slightly different (albeit equivalent) for-
mulation, which is more closely related to the QED theory of
these species. Specifically, we write the theoretical Lamb shift
of muonic hydrogen �E th

μH as a sum of a term proportional to
the square of the proton charge radius, a term which does not
depend sensitively on this radius, and a new physics contri-
bution, and similarly for the theoretical Lamb shift of muonic
deuterium (�E th

μD):

�E th
μH = �Emain

μH + r2
p�̃Ens

μH + �ENP
μH, (11)

�E th
μD = �Emain

μD + r2
d�̃Ens

μD + �ENP
μD. (12)

The QED theory of these species [30,31] yields �Emain
μH =

206.0668(25) meV, �̃Ens
μH = −5.2275(10) meV/fm2,

�Emain
μD = 230.5283(200) meV, and �̃Ens

μD =
−6.108 01(28) meV/fm2. We calculate the new physics
correction terms �ENP

μH and �ENP
μD as described in Appendix A

(the calculation is based on the Dirac equation and takes
into account the nuclear charge distribution and vacuum

polarization). Equating �E th
μH and �E th

μD to the experimental
Lamb shifts [30,32] yields NP-corrected values for rp and rd .

We codetermine R, rp, and rd and confidence levels of the
NP coupling constants by a global correlated χ2 fit of our the-
oretical model to experiment [33]. Specifically, given values
of gp, gd , ge, gμ, and mX0 characterizing an NP interaction, we
adjust R, rp, and rd so as to minimize the difference between
the theoretical transition frequency ν th

biai
and the correspond-

ing experimental transition frequency ν
expt
biai

for each of the
transitions considered. In calculations including the muonic
species, we also minimize the difference between the charge
radii derived from measurements in the electronic species
from those derived from measurements in the muonic species.
The resulting value of χ2 characterizes how close the theory
fits the data for given values of gp, gd , ge, gμ, and mx0 . Having
this value, we calculate the upper tail cumulative distribution
function Q(χ2|ν) = 1 − P(χ2|ν) for the relevant number of
degrees of freedom ν. Here Q(χ2|ν) is the probability that the
difference between theory and experiment arises only from
random experimental and theoretical errors. A small value
of this probability indicates a low likelihood that the data
are compatible with a new physics interaction of the type
considered in this work. The calculation is essentially the
same as that underpinning the determination of R, rp, and rd

by CODATA [27,29], albeit here limited to the spectroscopic
data and generalized to the encompass the possibility of an
NP interaction. Further details can be found in [7] and in
Appendix B.

B. Bounds based on spectroscopic measurements in eH and eD

Fitting solely against the hydrogen data yields the results
shown in Fig. 1(a) for an attractive NP interaction and in
Fig. 1(b) for a repulsive NP interaction. The shades of green
indicate the extent to which the data are compatible with the
presence of the interaction, as per the color axis. The white re-
gions correspond to areas where an NP interaction is excluded
at the 95% confidence level (i.e., areas where the probability
that the data are compatible with an NP interaction is less than
0.05). We take the boundaries delineating the white and green
regions as defining upper bounds on the values of gegp con-
sistent with the current experimental evidence, as determined
in this particular analysis. These bounds are highlighted by
black curves for better visibility. For comparison, the gray
curves represent the corresponding bounds found in [7] for the
largest data set considered in this previous work, “data set A.”
This data set did not include recent measurements, which are
taken into account in the present work (namely, measurements
of the 2p1/2 − 2s1/2, 1s1/2 − 3s1/2, and 2s1/2 − 8d5/2 intervals
[34–36]). Compared to [7], the bounds found for the more
extensive data set considered here are tighter for an attractive
interaction and slightly less tight for a repulsive interaction,
except in the low-mass region, where they are similar. How-
ever, it should be noted that the confidence levels remain low
at all values of gegp, reflecting the well-known inconsistencies
between some of the data.

Fitting solely against the deuterium data yields the results
shown in Figs. 1(c) and 1(d). These data exhibit a higher
consistency level than hydrogen, which translates into higher
confidence levels at low values of |gegd |. For mediator masses
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FIG. 1. Confidence level that an NP interaction is compatible
with the world spectroscopic data for electronic 1H and/or electronic
deuterium. (a) and (b) Results solely based on the 1H data. (c) and
(d) Results solely based on the deuterium data. (e)–(j) Results ob-
tained by combining the 1H and deuterium data, assuming that the
ratio r = gd/gp is either (e) and (f) 1, (g) and (h) 2, or (i) and (j)
0. The left column refers to an attractive NP interaction and the
right column to a repulsive NP interaction. The possibility of an NP
interaction with parameters falling in a white region is excluded at
the 95% confidence level. The black curves show the corresponding
upper bounds on the value of gegp or gegd . The gray curves show the
upper bounds on the value of gegp found in Ref. [7].

FIG. 2. Value of |gegp| above which an NP interaction is ex-
cluded at the 95% confidence level, assuming that mX0 = 1 eV, vs
the ratio gd/gp. (a) Attractive NP interaction. (b) Repulsive NP
interaction. The black solid curves show results based on the world
spectroscopic data, as in Figs. 1(e)–1(j). The blue dotted curves show
the same results but now excluding those for the high Rydberg states.
The brown dashed curves show isotope shift results as in Fig. 5.

below 100 eV, the bounds on |gegd | set by the deuterium data
are considerably less stringent than those on |gegp| set by the
hydrogen data. The latter is strengthened in this region by
measurements on high Rydberg states, which are not available
for deuterium [2,7].

Combining the hydrogen data with the deuterium data
yields the results shown in Figs. 1(e)–1(j), for three different
ratios of the respective coupling constants. We denote this
ratio by r:

r = gd/gp. (13)

The confidence levels for gd = gp (r = 1) hardly differ from
those solely based on the hydrogen data, which should be
expected since the hydrogen data place a stronger constraint
on the product gegp than the deuterium data do on the product
gegd .

However, taking gd �= gp creates a mismatch in the NP
shift of the transition frequencies between the two isotopes,
which generally diminishes the data’s compatibility with the
presence of an NP interaction. As shown by these figures,
the mismatch created by assuming that gd = 2gp (r = 2) or
that gd = 0 (r = 0) rather than gd = gp does not significantly
impact the bound on gegp for masses above 1 keV. For lower
masses, however, it shifts this bound towards substantially
smaller values of |gegp|. As illustrated by Fig. 2, this bound
on gegp tightens very rapidly in the low-mass region as soon
as r starts departing from 1. Figure 2 also shows that it is only
for r = 1 that the high Rydberg state datum is important for
constraining gegp (compare the blue dotted curves to the black
solid curves): For any other values of r, the bounds on gegp

depend little on whether the measurements on Rydberg states
are taken into account.

One may also note that the results of Figs. 1(a)–1(j) tend
to favor nonzero values of gegp in certain ranges of media-
tor masses; however, the difference in confidence level with

052825-4



DEUTERIUM SPECTROSCOPY FOR ENHANCED BOUNDS ON … PHYSICAL REVIEW A 108, 052825 (2023)

TABLE I. Value of |gegp| above which an NP interaction is
excluded at the 95% confidence level, for different values of mX0 (the
mass of the NP carrier) and different values of the ratio gμ/ge, as
calculated in the isotope shift approach for gd/gp = 2. The numbers
within square brackets indicate multiplication by powers of 10.

mX0 gμ = 0 gμ = ge gμ = 10ge gμ = 100ge

Attractive NP interaction
�100 eV 1.5[−13] 1.5[−13] 1.5[−13] 1.5[−13]
1 keV 1.7[−13] 1.7[−13] 1.7[−13] 1.7[−13]
10 keV 6.8[−13] 6.8[−13] 6.8[−13] 6.8[−13]
100 keV 2.6[−11] 2.6[−11] 2.6[−11] 2.7[−11]
1 MeV 2.3[−9] 2.6[−9] 1.2[−7] 3.3[−10]
10 MeV 2.3[−7] 8.8[−7] 4.6[−8] 4.1[−9]

Repulsive NP interaction
�100 eV 1.9[−13] 1.9[−13] 1.9[−13] 1.9[−13]
1 keV 2.2[−13] 2.2[−13] 2.2[−13] 2.2[−13]
10 keV 8.9[−13] 8.9[−13] 8.9[−13] 8.9[−13]
100 keV 3.4[−11] 3.4[−11] 3.4[−11] 3.5[−11]
1 MeV 3.0[−9] 3.4[−9] 8.8[−8] 2.5[−10]
10 MeV 3.0[−7] 1.2[−6] 3.5[−8] 3.1[−9]

gegp = gegd = 0 is too small to point towards the possible
existence of an NP interaction.

C. Bounds based on spectroscopic measurements
in eH, eD, μH, and μD

Adding the muonic hydrogen and muonic deuterium mea-
surements to the data used in the preceding section makes it
necessary to ascertain the role of an NP interaction on the
intervals measured in these species. The issue is discussed in
Appendix A. We find that an NP interaction with a carrier
mass below 10 keV is unlikely to shift these intervals signif-
icantly, unless this interaction would couple to a muon much
more strongly than to an electron (|gμ| � |ge|). However,
the situation is less clear for higher carrier masses, even for
gμ ≈ ge.

Accordingly, we allow for the possibility that an NP in-
teraction plays a role in the measurements of the muonic
species. As described in Sec. III A, we do this by correcting
rp and rd for a hypothetical NP shift and use these corrected
values when fitting theory to experiment. Bounds can also be
obtained by following the method outlined in Appendix C,
which is more limited in scope and produces almost iden-
tical results where comparison is possible. Either way, the
confidence levels derived from these calculations depend on
the relative values of the coupling constants gμ and ge. For
simplicity, we assumed that gμ = ge for producing the fig-
ures presented in this section. Results calculated for other
relative values of gμ can be found in Table I and are discussed
below.

As is well known, however, the nuclear radii derived from
the measurements in muonic hydrogen and muonic deuterium
are in severe tension with much of the high-precision data
currently available for electronic hydrogen and electronic
deuterium [37]. These inconsistencies hamper calculations of
bounds combining muonic and electronic species to the extent
that our theoretical model cannot be made to match the whole

FIG. 3. Confidence level that an NP interaction is compatible
with the world spectroscopic data for electronic 1H, electronic deu-
terium, muonic hydrogen, and muonic deuterium, assuming that the
ratio r = gd/gp is either (a) and (b) 1, (c) and (d) 2, or (e) and
(f) 0 and that gμ = ge. The left column refers to an attractive NP
interaction and the right column to a repulsive NP interaction. All
experimental uncertainties have been increased by 60%. As in Fig. 1,
the possibility of an NP interaction with parameters falling in a white
region is excluded at the 95% confidence level and the black curves
indicate the corresponding upper bounds on the value of gegp.

set of data for any value of gegp when gd �= gp. The model
cannot be made to match the data for an attractive NP interac-
tion, whereas a match with a relatively weak confidence level
(up to 38%) is found at nonzero values of gegp for a repulsive
interaction (see Appendix D). The better match found in the
latter case illustrates the fact, already known [7,8,36], that
including a weak NP interaction in the theoretical model may
improve its overall agreement with the world data. However,
the relevance of this result is unclear given the residual incon-
sistencies within this data.

CODATA alleviated the difficulty of fitting the data to
the standard model theory by increasing all the experimen-
tal uncertainties by 60% [29]. Doing so yields the bounds
and distributions of confidence level presented in Fig. 3, for
masses up to 100 keV, and in Fig. 4 (the black curves), for
masses above 100 keV. Comparing with Fig. 1 shows that
taking the muonic data into account tightens the bounds on NP
further, by a considerable extent above 100 keV, despite the
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FIG. 4. Value of |gegp| above which an NP interaction is ex-
cluded at the 95% confidence level, assuming that the ratio gd/gp

is either 2 (solid curves) or 0 (dotted curves) and that gμ = ge, for
a mediator mass above 1 × 105 eV. (a) Attractive NP interaction.
(b) Repulsive NP interaction. The black curves show results based
on the world spectroscopic data as in Fig. 3. The brown curves show
results based only on the isotope shift measurements as in Fig. 5.

larger experimental uncertainties assumed in the calculation.
(Results for an error magnification of 20% rather than 60%
can be found in Appendix D, for comparison.)

The difficulty of fitting the theoretical model to experiment
can also be turned around without magnifying the experi-
mental uncertainties by using only selected subsets of the
available data. For gd �= gp, the tightest bounds are obtained
by combining the muonic values of the nuclear radii with the
isotope shift of the 1s1/2 − 2s1/2 transition in the electronic
species, owing to the particularly small experimental errors on
these quantities.2 The results for r = 0 or 2 are presented in
Fig. 4 (the brown curves) and in Fig. 5. They are also tabulated
in Table I for r = 2 (the column headed gμ = ge). We do not
present results for r = 1, as this approach is unsuitable for this
case (see Appendix C). Compared to the results of Figs. 3(c)–
3(f), the bounds obtained in this approach are significantly
tighter. As in the case of the results based only on the elec-
tronic species, they vary with the ratio r and strengthen rapidly
when this ratio starts departing from 1 (see the brown dashed
curves in Fig. 2). We also note the sensitivity of these results to
the details of small QED corrections. The theory of the Lamb
shift in muonic deuterium has been further extended over the
past few years [31,32,39]. As shown in Appendix D, these
new theoretical developments have significantly impacted on
the conclusions one could draw from the isotope shift data in
respect to the bounds on a hypothetical NP interaction.

2This approach was followed in Ref. [6], with similar results,
although with one important difference: The authors of Ref. [6]
neglected the difference between the theoretical and experimental
shifts [38] whereas we do not. As a result, the bound reported in
Ref. [6] is actually a measure of the sensitivity of the isotope shift
approach rather than a bound in the sense of the present work.

FIG. 5. Confidence level that an NP interaction is compatible
with the 1s1/2 − 2s1/2 transition frequency measured in electronic
hydrogen and electronic deuterium and with the nuclear charge radii
derived from measurements in muonic hydrogen and muonic deu-
terium, assuming that the ratio r = gd/gp is either (a) and (b) 2 or
(c) and (d) 0 and that gμ = ge. The experimental uncertainties are not
changed here. The left column refers to an attractive NP interaction
and the right column to a repulsive NP interaction. As in Fig. 1, the
possibility of an NP interaction with parameters falling in a white
region is excluded at the 95% confidence level. The brown curves
indicate the corresponding upper bounds on the value of gegp.

How these bounds vary with the ratio gμ/ge is illustrated
by Table I. They do not significantly depend on the value
of this ratio for mediator masses up to about 100 keV. At
higher masses, however, they tend to move to higher values
of |gegp| as gμ/ge increases, pass through a maximum, and
become tighter again for still higher values of this ratio. The
maximum is reached at around or above 10 MeV for gμ ≈ ge

and at around 1 MeV for higher values of gμ/ge. Except in
that mass region, taking gμ = ge in the calculation of these
bounds is therefore a conservative assumption.

IV. REACH OF THE ISOTOPE SHIFT APPROACH

The bounds on gegp discussed in the preceding section are
based on the current experimental evidence. We now consider
the prospects for further tightening these bounds. Specifically,
we look at how future isotope shift measurements could be
used to this effect. We address this issue by using a method
similar to that outlined in Appendix C for the specific case of
the 1s1/2 − 2s1/2 interval, here generalized to other transitions.
In effect, we also generalize the isotope shift calculations
reported in Ref. [6].
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A. Bounds based on a single isotope shift

1. Method

The case of a single transition is particularly simple. Let us
assume that a transition from a state a to a state b has been
measured both in hydrogen and in deuterium, the result being
the transition frequencies ν

expt
ba,eH and ν

expt
ba,eD. We equate these

two experimental transition frequencies to the corresponding
theoretical transition frequencies, the latter including a possi-
ble NP shift:

ν
expt
ba,eH = Rν̃

g
ba,eH + r2

p ν̃ns
ba,eH + νoc

ba,eH + νNP
ba,eH, (14)

ν
expt
ba,eD = Rν̃

g
ba,eD + r2

d ν̃ns
ba,eD + νoc

ba,eD + νNP
ba,eD. (15)

As above, R is the Rydberg frequency, νNP
ba,eH and νNP

ba,eD are
NP shifts, r2

pν̃
ns
ba,eH and r2

d ν̃
ns
ba,eD are QED corrections propor-

tional to the square of the respective nuclear radius, and νoc
ba,eH

and νoc
ba,eD are the sums of all the other SM corrections to the

gross structure terms Rν̃
g
ba,eH and Rν̃

g
ba,eD. We will denote the

corresponding isotope shifts by �ν
expt
ba , �ν

g
ba, �νns

ba, �νoc
ba , and

�νNP
ba :

�ν
expt
ba = ν

expt
ba,eD − ν

expt
ba,eH, (16)

�ν
g
ba = Rν̃

g
ba,eD − Rν̃

g
ba,eH, (17)

�νns
ba = r2

d ν̃ns
ba,eD − r2

p ν̃ns
ba,eH, (18)

�νoc
ba = νoc

ba,eD − νoc
ba,eH, (19)

�νNP
ba = νNP

ba,eD − νNP
ba,eH. (20)

As given by Eq. (10),

�ν
g
ba = R

[
meD

r

me
− meD

r

me

](
1

n2
a

− 1

n2
b

)
, (21)

where meH
r (meD

r ) is the reduced masses of electronic hydrogen
(deuterium) and me is the mass of the electron. To conform
with previous work on the isotope shift [40,41], and contrary
to Sec. III A, we only include the main nuclear size correction
in �νns

ba. Thus

�νns
ba = −2α4mec2

3h

[(
meD

r

me

)3 r2
d

λ̄2
C

−
(

meH
r

me

)3 r2
p

λ̄2
C

]

×
(

δla,0

n3
a

− δlb,0

n3
b

)
(22)

and �νoc
ba includes all the other corrections to the gross struc-

ture term.
We now use the fact that νNP

ba,eH is proportional to gegp

and νNP
ba,eD to gegd . Since gegd = rgegp, where r is defined by

Eq. (13), νNP
ba,eH, νNP

ba,eD, and �νNP
ba can be written in terms of

gegp-independent shifts ν̃NP
ba,eH, ν̃NP

ba,eD, and �ν̃NP
ba , namely,

νNP
ba,eH = gegp ν̃NP

ba,eH, (23)

νNP
ba,eD = r gegp ν̃NP

ba,eD, (24)

�νNP
ba = gegp ν̃NP

ba , (25)

with

�ν̃NP
ba = rν̃NP

ba,eD − ν̃NP
ba,eH. (26)

Subtracting Eq. (14) from Eq. (15) and rearranging yields

gegp = �ν
expt
ba − �νSM

ba

�ν̃NP
ba

, (27)

where

�νSM
ba = �ν

g
ba + �νns

ba + �νoc
ba . (28)

Equation (27) gives the strength of a hypothetical NP interac-
tion which would explain a discrepancy between a measured
transition frequency and the value predicted by the standard
model. However, because of the measurements’ finite preci-
sion and the theoretical uncertainties in the QED corrections,
this equation defines this strength only approximately. We
denote the errors on �ν

expt
ba and �νSM

ba by σ
expt
ba and σ SM

ba and
the total error on the numerator of Eq. (27) by σba:

σba =
√(

σ
expt
ba

)2 + (
σ SM

ba

)2
. (29)

The value of gegp predicted by Eq. (27) has a 95% confidence
interval of ±σ (|gegp|), where3

σ (|gegp|) = 1.96σba/�ν̃NP
ba . (30)

It should be noted that σ (|gegp|) is not a bound on the strength
of the NP interaction. Rather, σ (|gegp|) is half the difference
between the most positive and most negative values of gegp

consistent with this interaction. The value of σ (|gegp|) thus in-
dicates the sensitivity of the method. Equations (29) and (30)
show that this sensitivity is determined by the values of σ

expt
ba ,

σ SM
ba , and �ν̃NP

ba for the interval considered. Since σ (|gegp|) is
inversely proportional to �ν̃NP

ba and �ν̃NP
ba is particularly small

for gd ≈ gp, the method is unsuited to the r = 1 case.
In regard to the measurements, we assume errors σ

expt
ba,eD

and σ
expt
ba,eH on ν

expt
ba,eD and ν

expt
ba,eH taken individually and an error

σ
expt
ba on the difference ν

expt
ba,eD − ν

expt
ba,eH. Assuming that σ

expt
ba,eD

and σ
expt
ba,eH are uncorrelated,

σ
expt
ba =

√(
σ

expt
ba,eD

)2 + (
σ

expt
ba,eH

)2
. (31)

Regarding the standard model theory, we note that

σ SM
ba =

√(
σ

g
ba

)2 + (
σ ns

ba

)2 + (
σ oc

ba

)2
, (32)

where σ
g
ba, σ ns

ba , and σ oc
ba are the errors on the gross structure

term �ν
g
ba, on the nuclear size term �νns

ba, and on the other
corrections term �νoc

ba .
We first consider the error on the gross structure term.

Using the CODATA 2018 values of the mass ratios me/mp

and me/md and the correlation in their uncertainties [29],

meD
r

me
− meH

r

me
= 2.719 510 698 49(31) × 10−4. (33)

3There is no need to consider the error on �ν̃NP
ba here, which arises

from the uncertainty on the reduced masses, the use of nonrelativistic
wave functions, etc., as this error is dwarfed by σba.
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The relative error on this result, 1.1 × 10−10, is two orders of
magnitude larger than the relative error on the Rydberg fre-
quency [29]. The error on the gross structure term is therefore
dominated by the error on the difference of mass ratios. We
find4

σ
g
ba = 0.10 kHz ×

(
1

n2
a

− 1

n2
b

)
. (34)

The error on the nuclear size term is dominated by the error
on r2

p and particularly by the more significant error on r2
d . The

other quantities in Eq. (22) have a negligible error. We use
the radii derived from the Lamb shift in muonic hydrogen and
muonic deuterium, here recalculated to take into account a
hypothetical NP interaction (we set gμ = ge when obtaining
the numerical results presented in this section). We find that
the errors on these radii do not significantly vary with gegp in
the range of values of gegp relevant for this work. They can be
taken to be equal to the values determined without allowance
for an NP interaction [30,31], which gives

σ ns
ba = 5.3 kHz ×

(
δla,0

n3
a

− δlb,0

n3
b

)
. (35)

The error on the other corrections term can be derived
from previous work [40,41]. In particular, Pachucki et al.
[41] obtained 0.42 kHz for the total error on the theoretical
1s1/2 − 2s1/2 transition frequency, excluding errors that we
include in σ ns

ba or σ
g
ba in the present work (i.e., the error on the

leading nuclear size contribution and the error on the Dirac
contribution to the isotope shift). Accordingly, we take σ oc

ba to
be 0.42 kHz for the 1s1/2 − 2s1/2 interval. The main contribu-
tion to this error comes from the dominant QED corrections,
which scale with the principal quantum number n like 1/n3.
Some subdominant corrections have a more complicated scal-
ing with n; however, they are negligible in the present context.
Hence, for transitions between two s states, we set

σ oc
ba = 0.48 kHz ×

(
1

n3
a

− 1

n3
b

)
, (36)

which ensures that σ oc
ba = 0.42 kHz for na = 1 and nb = 2. For

transitions between s states, both σ
g
ba and σ oc

ba are thus typically
one order of magnitude smaller than σ ns

ba . Consequently, the
method’s sensitivity for such transitions is primarily limited
by the experimental error and the uncertainty on the nuclear
charge radii.

The error on the Lamb shift is considerably smaller for p
or d states than for s states of the same principal quantum
number. Setting σ oc

ba equal to 0 for intervals not involving s
states is thus appropriate, which results in a smaller value
of σba for the same experimental error. However, the gain in
sensitivity arising from this smaller overall error may be partly
or entirely negated by a smaller value of �ν̃NP

ba (transitions
not involving s states are necessarily transitions between two
excited states, and the NP shift of such transitions is always
smaller than the NP shift of a transition between the ground
state and an excited state).

4Using the value of the proton mass obtained by Heiße et al. [42]
rather than the CODATA 2018 value would reduce this error to 0.085
kHz × (1/n2

a − 1/n2
b ).

TABLE II. Sensitivity parameter σ (|gegp|) for mX0 � 1 eV,
gd/gp = 2, and gμ/ge = 1, as calculated from the isotope shift of
each of the transitions indicated in the first column. The second
column gives the experimental error assumed in the calculation.
The theoretical limit specified in the last column is the value of
σ (|gegp|) for σ

expt
ba = 0. The numbers within square brackets indicate

multiplication by powers of 10.

Transition σ
expt
ba σ (|gegp|) Theoretical limit

1s1/2 − 2s1/2 15 Hz 1.7[−13] 1.7[−13]
1s1/2 − 3s1/2 1 kHz 1.6[−13] 1.6[−13]
1s1/2 − 20s1/2 1 kHz 1.5[−13] 1.5[−13]
2s1/2 − 20s1/2 1 kHz 1.4[−13] 7.5[−14]
2s1/2 − 20s1/2 100 Hz 7.6[−14] 7.5[−14]
2s1/2 − 20s1/2 15 Hz 7.5[−14] 7.5[−14]
8s1/2 − 20s1/2 100 Hz 2.1[−13] 2.1[−14]
8s1/2 − 20s1/2 15 Hz 3.8[−14] 2.1[−14]
8d5/2 − 20d5/2 100 Hz 2.1[−13] 2.8[−15]
8d5/2 − 20d5/2 15 Hz 3.2[−14] 2.8[−15]
3d5/2 − 20d5/2 1 kHz 2.6[−13] 2.8[−15]
3d5/2 − 20d5/2 100 Hz 2.6[−14] 2.8[−15]

2. Numerical illustration

The potential reach of this approach in the low-mass region
is indicated by the values of σ (|gegp|) presented in Table II.
[Recall that this parameter determines the method’s sensitivity
to the effect of an NP interaction, with a lower value of
σ (|gegp|) corresponding to a higher sensitivity.] The values
of σ

expt
ba assumed in the calculation are hypothetical, with the

exception of the entry for the 1s1/2 − 2s1/2 interval, which is
the experimental uncertainty already achieved for this transi-
tion [43]. The rightmost column of the table gives the value of
σ (|gegp|) calculated for σ

expt
ba = 0. Values of σ (|gegp|) based

on actual or hypothetical measurements of the isotope shift of
the 1s1/2 − 2s1/2 and 1s1/2 − 3s1/2 transition frequencies are
also presented in Fig. 6 over a wide range of mediator masses.

The first row of Table II and the black solid curves in the
figure refer to the value of σ (|gegp|) based on the existing
measurement of the isotope shift of the 1s1/2 − 2s1/2 interval
[43]. This value is entirely consistent with the results of Fig. 5
and with the bounds calculated in Appendix C, which are
based on the same data. The second row in the table and the
green dash-dotted curves in Fig. 6 (almost indistinguishable
from the black solid curves) refer to the value of σ (|gegp|) cal-
culated from a hypothetical measurement of the isotope shift
of the 1s1/2 − 3s1/2 interval, assuming an experimental uncer-
tainty of 1 kHz on this quantity (for comparison, the error on
the most recent determination of the 1s1/2 − 3s1/2 transition
frequency in hydrogen is 0.72 kHz [35]). Although σ

expt
ba is

considerably larger here, the resulting values of σ (|gegp|)
are practically the same as those based on the 1s1/2 − 2s1/2

interval. The similarity between these two sets of results arises
from the fact that σba, the numerator of Eq. (30), is dominated
by the nuclear size error for these transitions, which is roughly
the same for the two intervals: In relative terms, the larger
value of σ

expt
ba only produces a small increase in the value

of σba, which is largely compensated by an increase in the
value of �ν̃NP

ba (�ν̃NP
ba is almost 20% larger for the 1s1/2-3s1/2
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FIG. 6. Sensitivity parameter σ (|gegp|) for gμ = ge vs (a) mX0 ,
assuming that gd/gp = 2, and (b) the ratio gd/gp, assuming that
mX0 = 1 eV. The black solid curves show results based on the existing
data for the isotope shift of the 1s1/2 − 2s1/2 interval. The green
dash-dotted curves (almost indistinguishable from the black solid
curves) show results based on a hypothetical measurement of the
isotope shift of the 1s1/2 − 3s1/2 interval with an experimental error
of 1 kHz. The green dashed curves show the results which would be
obtained by combining the isotope shift of the 1s1/2 − 2s1/2 interval
with that of the 1s1/2 − 3s1/2 interval, assuming an experimental
error of 1 kHz on the latter. The orange dashed curves show the
results which would be obtained by combining the isotope shift
of the 1s1/2 − 2s1/2 interval with that of the 2s1/2 − 20s1/2 interval,
assuming an experimental error of 100 Hz on the latter. The orange
dotted curves show the same as the orange dashed curves but for an
experimental error of 15 Hz.

interval). Reducing the experimental uncertainties further
would not improve the method’s sensitivity for these two
transitions. We note, however, that complementing the ex-
isting measurement of the 1s1/2-3s1/2 transition frequency in
hydrogen by a measurement of its isotope shift would be
useful as an independent check of the results derived from the
1s1/2-2s1/2 interval.

The scope for achieving a lower value of σ (|gegp|) within
this approach can be inferred from the remaining rows of
Table II. Using transitions between the ground state and
more highly excited states would not lead to a significant
gain in sensitivity without significantly reducing the uncer-
tainties on the nuclear charge radii. Using transitions from
the metastable 2s1/2 state to Rydberg states could lead to a
twofold increase in sensitivity as long as the experimental
error would not be much larger than 100 Hz (we have previ-
ously noted that reducing the experimental error to this level
is likely to be achievable for such transitions [7]). Reaching
higher sensitivities would require ultrahigh-precision isotope
shift measurements on more highly excited states. As is ex-
plained in Appendix E, the theoretical limit of σ (|gegp|) is
as small as 2.8 × 10−15 for transitions not involving s states,
but approaching this limit would be particularly challenging
experimentally. It is worth noting that the 3d3/2 and 3d5/2

states have a more significant NP shift than the other d states,
which makes transitions from a 3d state to a Rydberg d state
of particular interest in this context. As seen from the table,
a sixfold reduction of σ (|gegp|) from its current best value
could be achieved if the isotope shift of, e.g., the 3d5/2-20d5/2

interval were measured with a precision of 100 Hz.

The other curves plotted in Fig. 6 refer to results obtained
by combining two different isotope shifts in an approach de-
scribed in the next section.

B. Bounds based on two isotope shifts

As noted in Sec. IV A, the sensitivity of the single-
transition method is limited by the error on the nuclear size
term when applied to transitions between s states. However,
as we now discuss, this error can be eliminated by combining
the isotope shifts of two different intervals.

Let us imagine that experimental values of the isotope
shift would be known for two different transitions, say, for
a transition from a state a to a state b and for a transition from
a state c to a state d , all s states. Equations (27) and (28) give

gegp�ν̃NP
ba = �ν

expt
ba − �ν

g
ba − �νns

ba − �νoc
ba, (37)

gegp�ν̃NP
dc = �ν

expt
dc − �ν

g
dc − �νns

dc − �νoc
dc. (38)

(Recall that these equations refer to isotope shifts, not to
transitions for a single isotope.) Let

ε1 = 1

n3
a

− 1

n3
b

, ε2 = 1

n3
c

− 1

n3
d

. (39)

In view of Eq. (22), multiplying Eq. (38) by ε1/ε2 and sub-
tracting the product from Eq. (37) cancels the nuclear size
terms. The result can be written as

gegp = �
expt
ba,dc − �

g
ba,dc − �ns

ba,dc − �oc
ba,dc

�̃NP
ba,dc

, (40)

with

�
expt
ba,dc = �

expt
ba − (ε1/ε2)�expt

cd , (41)

�
g
ba,dc = �

g
ba − (ε1/ε2)�g

cd , (42)

�ns
ba,dc = �ns

ba − (ε1/ε2)�ns
cd , (43)

�oc
ba,dc = �oc

ba − (ε1/ε2)�oc
cd , (44)

and

�̃NP
ba,dc = �̃NP

ba − (ε1/ε2)�̃NP
cd . (45)

We denote the uncertainties on �
expt
ba,dc, �

g
ba,dc, �ns

ba,dc, and

�oc
ba,dc by σ

expt
ba,dc, σ g

ba,dc, σ ns
ba,dc, and σ oc

ba,dc, respectively. Assum-

ing that the individual experimental errors σ
expt
ba and σ

expt
dc are

uncorrelated,

σ
expt
ba,dc =

√(
σ

expt
ba

)2 + (
ε1σ

expt
dc /ε2

)2
. (46)

Given Eq. (34) and the fact that the error on the mass ratios
contributes exactly in the same way for the two transitions,

σ
g
ba,dc = 0.10 kHz ×

[
1

n2
a

− 1

n2
b

− ε1

ε2

(
1

n2
d

− 1

n2
c

)]
. (47)

By construction, �ns
ba,dc = 0. The errors on �ns

ba and �ns
dc being

perfectly correlated, σ ns
ba,dc is also zero. Given how the differ-

ent contributions to the Lamb shift scale with n, and in the
current absence of a more in depth study of this issue, we
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tentatively set

σ oc
ba,dc = 50 Hz, (48)

which is conservative. The 95% confidence interval of the
value of gegp predicted by Eq. (40) is thus ±σ (|gegp|), with

σ (|gegp|) = 1.96

√(
σ

expt
ba,dc

)2 + (
σ

g
ba,dc

)2 + (
σ oc

ba,dc

)2∣∣�̃NP
ba,dc

∣∣ . (49)

Compared to Eq. (30), the numerator of Eq. (49) will
typically be significantly smaller for transitions between s
states. However, the NP shifts of the two intervals also partly
cancel, and therefore the denominator of Eq. (49) may also
be significantly smaller, offsetting the gain made by reduc-
ing the magnitude of the numerator. The result may be a
reduction of sensitivity [a larger value of σ (|gegp|)] com-
pared to the single-transition method. For example, the value
of σ (|gegp|) obtained by combining the existing results for
the 1s1/2-2s1/2 interval with the hypothetical results for the
1s1/2-3s1/2 interval is higher than the values obtained from
each of these intervals taken individually (the result of the
combined calculation is represented by a green dashed curve
in Fig. 6).

Nevertheless, a significant improvement in sensitivity on
the single isotope shift method could be obtained by combin-
ing appropriately chosen intervals, provided the experimental
uncertainties would be small enough. For example, the value
of σ (|gegp|) based on the existing results for the 1s1/2 − 2s1/2

isotope shift would be reduced tenfold by combining these
results with measurements of the 2s1/2 − 20s1/2 isotope shift
if the latter was obtained with an experimental uncertainty
of about 100 Hz (see the orange dashed curve in Fig. 6).
Reducing this experimental uncertainty to 15 Hz would lower
σ (|gegp|) to about 4.3 × 10−15 in the low-mass region (the
orange dotted curve in Fig. 6), which is close to the limit set
by the current uncertainties on the relevant QED corrections
and nuclear masses (3.1 × 10−15 for this transition).

Finally, we should emphasize that the results presented in
Fig. 6 depend on the value assumed for the ratio gd/gp, like
those presented in Sec. III. The values of σ (|gegp|) given by
Eqs. (30) and (49) are roughly proportional to 1/|gd/gp − 1|.
Setting gd = 2gp leads to the results shown in Fig. 6(a).
However, much larger values of σ (|gegp|) would be found for
gd ≈ gp, as shown by Fig. 6(b).

V. CONCLUSION

Precision transition measurements in deuterium and hy-
drogen are a direct way to tension well-motivated extensions
of the standard model. The results presented in this article
illustrate the advantages of combining results for these two
isotopes when setting bounds on a new physics interaction that
couples differently to a deuteron than to a proton.

Specifically, we have presented bounds based on the world
spectroscopic hydrogen and deuterium data and bounds based
only on the isotope shift of the 1s1/2-2s1/2 interval. The former
are more blunt than the latter for models in which gd �= gp (as
defined above, gd and gp denote the coupling constants of the
new physics interaction with a deuteron and a proton, respec-
tively). However, they have the advantage of being based on

a number of independent measurements and a broad range of
transitions. Their scope is limited by their well-known internal
inconsistencies though. Resolving those would be of benefit in
strengthening these bounds, besides reducing the uncertainties
on the values of fundamental constants [29]. Where compari-
son is possible, our results are in broad agreement with those
of Ref. [8], which were obtained independently and focus on
specific theoretical models.

The bounds based on the isotope shift of the 1s1/2-2s1/2

interval are more stringent [6]. As explained in Sec. IV, it
would be useful to complement the existing measurements
of the 1s1/2-3s1/2 interval in hydrogen by measurements in
deuterium at a similar level of precision so as to obtain bounds
based on the isotope shift of this interval. Those bounds would
provide a useful independent check on the results derived from
the 1s1/2-2s1/2 isotope shift. Measurements of that transition
in deuterium at the required level of precision are currently
considered [44].

The sensitivity of the isotope shift method for these two
intervals is limited by the current uncertainties on the theory
and the nuclear charge radii. We found that a measurement
of the isotope shift of the 2s1/2-20s1/2 interval (or more gen-
erally 2s1/2 to Rydberg s state) would make it possible to
bypass this limitation, provided the experimental error would
be sufficiently small, e.g., of the order of 0.1 kHz or better
for the 2s1/2-20s1/2 interval. As described above, theoretical
errors can indeed be reduced by combining the isotope shift
of such intervals and that of the 1s1/2-2s1/2 interval, making
the experimental error the main limitation of the method.
Compared to the results based on currently available spectro-
scopic measurements, achieving an experimental uncertainty
of 0.1 kHz would improve the sensitivity of the method by one
order of magnitude in the low-mass region, for gd �= gp.

These results and those of Ref. [8] thus suggest that any
future precision experiments in hydrogenic atoms should con-
sider whether the experimental method may be extended to
deuterium as part of the planning stage.
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APPENDIX A: IMPACT OF AN NP INTERACTION ON THE
DETERMINATION OF rp AND rd IN MUONIC SPECIES

The nuclear charge radii derived from the experiments on
muonic hydrogen and muonic deuterium were calculated from
the respective Lamb shifts, which were themselves calculated
from measured energy differences between hyperfine compo-
nents of the 2s1/2 and 2p3/2 states [30,32]. In the following,
we ascertain the maximal values of the coupling constants
gμgp and gμgd for which a hypothetical NP shift of the
2s1/2 − 2p3/2 interval would have a negligible impact on these
charge radii. We use atomic units throughout this Appendix,
except where specified otherwise.
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The NP shift in question reduces to δENP
21 − δENP

20 in the
nonrelativistic approximation, with δENP

21 and δENP
20 defined

by Eq. (4). From Appendix B of [7],

δENP
21 − δENP

20 = B

2mr

C2

(C/mr + 1)4
, (A1)

where mr is the reduced mass of the system (mr ≈ 186me for
muonic hydrogen and mr ≈ 196me for muonic deuterium).
When C � 1, this shift is thus smaller by a factor me/mr

for the muonic species as compared to the electronic species.
According to Eq. (A1), it also goes rapidly to zero for C → 0,
i.e., in the low-mass limit. However, this is so only because
Eq. (A1) neglects relativistic effects and the spatial extension
of the nucleus.5

Relativistic effects can be taken into account by replacing
the radial wave functions Rnl (r) by solutions of the Breit
equation or the Dirac equation. We use Dirac wave functions
and replace Eq. (4) by

δENP
nκ =

∫ ∞

0
[|Pnκ (r)|2 + |Qnκ (r)|2]

B exp(−Cr)

r
dr, (A2)

where Pnκ (r) and Qnκ (r) are the radial parts of the large and
small components of the respective four-component spinor
multiplied by r, and κ is the relativistic quantum number (κ =
−1 for the 2s1/2 state, 1 for the 2p1/2 state, and −2 for the
2p3/2 state). The functions Pnκ (r) and Qnκ (r) are calculated
for a particle of mass μ moving in a central potential well
V (r) and are normalized according to the usual prescription,∫ ∞

0
[|Pnκ (r)|2 + |Qnκ (r)|2]dr = 1. (A3)

Setting V (r) ≡ −1/r yields the Dirac wave functions of
the respective hydrogenic states. However, choosing V (r)
in this way would involve neglecting vacuum polarization,
which in muonic hydrogen and muonic deuterium accounts
for a large part of the Lamb shift [46–48]. It would also in-
volve neglecting the finite extension of its charge distribution,
which can be expected to play a larger role here than in normal
hydrogen since the wave functions of muonic species are more
compact. It is therefore preferable to set

V (r) = VUehl(r) + VN (r) (A4)

when estimating the NP shift. Here VUehl(r) is the Uehling po-
tential, which accounts for the bulk of the vacuum polarization
effects in muonic species [46], and VN (r) is the electrostatic
muon-nucleus potential obtained in a model of the charge
distribution of the latter. For convenience, we use a Gaussian
model for this charge distribution, with an rms radius rN equal
to the experimental charge radius of either the proton or the
deuteron. Thus

VN (r) = −1

r
erf(r/r0), (A5)

where erf(·) denotes the error function and r0 = (2/3)1/2rN

[49,50]. The Uehling potential is calculated for this Gaussian

5Setting V (r) ≡ −1/r gives the same value of 〈1/r〉 in both the
2s1/2 and 2p1/2 states [45].

FIG. 7. Green areas show regions of the (mX0 , |gμgN |) plane in
which an NP interaction between the muon and the nucleus would
not shift the measured 2s1/2 − 2p3/2 interval by more than 5% of the
experimental error on the respective Lamb shift in (a) muonic hydro-
gen (gN = gp) and (b) muonic deuterium (gN = gd ). These regions
would be predicted to extend upward to the orange dashed curves if
vacuum polarization and the finite size of the nucleus were ignored
or to the blue solid curves in the nonrelativistic approximation for a
point nucleus. We do not present results for the ranges of values of
mX0 indicated by the shaded regions in view of the uncertainty on the
form of the NP interaction within the nucleus.

charge distribution rather than for a point nuclear charge, and
both VN (r) and VUehl(r) are taken into account to all orders by
solving the Dirac equation nonperturbatively. The approach
follows Ref. [50]. We used the program QEDMOD [51] for
calculating the Uehling potential and the program RADIAL [52]
for integrating the Dirac equation.

As mentioned at the beginning of this Appendix, we want
to ascertain how strong an NP interaction could be with-
out significantly affecting the nuclear charge radii derived
from the muonic data. We define an upper bound on |gμgN |,
|gμgN |max, such that the effect of an NP interaction would be
negligible if |gμgN | < |gμgN |max but might be significant if
|gμgN | � |gμgN |max. Conservatively, we take |gμgN |max to be
the value of |gμgN | at which the NP shift of the 2s1/2 − 2p3/2

interval is 5% of the error on the experimental Lamb shift, i.e.,
0.12 µeV in muonic hydrogen (μH) and 0.17 µeV in muonic
deuterium (μD).

The region of the (mX0 , |gμgN |) plane in which a hypo-
thetical NP interaction would be negligible according to this
definition is identified by the green areas in Fig. 7. We assume
no definite relationship between gμgN for μH and gμgN for
μD. We stress that these green areas only indicate the region
of the parameter space in which an NP shift would not matter
for the deduction of the proton or deuteron radius; they do not
indicate whether a hypothetical NP interaction might or might
not be compatible with existing data. Given the uncertainty
on the form of the NP interaction inside the nucleus, we
do not venture predictions of the importance of an NP shift
for a mediator mass large enough that the region r � 2rN

contributes significantly to the integral in Eq. (A2). This mass
region starts at about 70 MeV for muonic hydrogen and about
30 MeV for muonic deuterium. The corresponding regions of
Fig. 7 are shaded to indicate that they are not considered in
the present analysis.
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Figure 7(a) shows that |gμgN |max does not much ex-
ceed 1 × 10−8 for mX0 < 10 keV. The data for electronic
hydrogen exclude the possibility that |gegp| could be as large
as 1 × 10−8 between 1 eV and 10 keV [see, e.g., Figs. 1(a)
and 1(b)]. Assuming that lepton universality still holds true
for the coupling with an NP interaction, so that gμ = ge, we
can thus conclude that an NP interaction would have but a
negligible impact on the values of rp in this mass range. Given
the results of Figs. 1(c) and 1(d), the same also applies to
the determination of rd from the measurements in muonic
deuterium, at least for carrier masses between 10 eV and
10 keV. However, the bounds based on the spectroscopy of
electronic hydrogen and electronic deuterium do not clearly
exclude the possibility of a significant NP interaction with
carrier mass well above 10 keV.

It is worth noting the importance of VUehl(r) and VN (r)
in this context. Indeed, setting V (r) = −1/r yields the result
indicated by orange dashed curves in Figs. 7(a) and 7(b). As
seen from these figures, |gμgN |max is somewhat overestimated
in the low-mass region, within this approximation.

The value of |gμgN |max derived from Eq. (A1) is also
shown in Fig. 7 (the blue solid curves): As is readily seen,
the nonrelativistic approximation is good for mX0 > 10 keV
and unsuitable for mX0 < 10 keV.

APPENDIX B: NOTES ABOUT THE CALCULATIONS

The results presented in this paper are largely based on the
set of 29 measured transition energies between states of elec-
tronic hydrogen and electronic deuterium used by CODATA in
their most recent determination of the Rydberg constant [29].
This set is listed in Table X of that reference, as the input data
A1–A29. The set of data used in the present work differs in
the following ways.

(i) We also use the recent measurements of the 1s1/2 −
3s1/2 and 2s1/2 − 8d5/2 transition energies in electronic hy-
drogen [35,36], as well as the experimental results quoted
in Ref. [53] for transitions between high circular states of
electronic hydrogen [specifically, and as explained in [7], we
derive an experimental energy for the transition between the
(n = 27, l = 26) and (n = 28, l = 27) states from the value
of R obtained in that work].

(ii) For the input datum A28 (the 2s1/2 − 2p1/2 Lamb shift
measurement of Ref. [54]), we use the value recently recom-
mended in Ref. [55] rather than the original value.

(iii) We exclude the input datum A7 (the 2013 mea-
surement of the 1s1/2-2s1/2 transition energy in electronic
hydrogen [56]), in view of its strong correlation with the input
datum A6 (the 2011 measurement of that transition). This
strong correlation tends to inflate the value of χ2 significantly
in fits using both values. When used individually, the resulting
confidence levels are practically indistinguishable. However,
they tend to decrease significantly when both these transition
energies are included in the fit. The difficulty does not arise
for the other intervals for which several different experimental
values are included in the data set, as in these other cases
the experimental errors are not strongly correlated with each
other.

(iv) We use the input datum A5 (the isotope shift of the
1s1/2-2s1/2 interval in electronic hydrogen [43]) as an inde-

pendent input to the χ2 fit only when combining hydrogen
and deuterium data. We do not use this datum at all in
calculations of bounds based only in measurements in hydro-
gen. For bounds based only in measurements in deuterium, we
use it in conjunction with the input datum A6 to generate an
experimental value for the 1s1/2-2s1/2 transition frequency in
deuterium [57], which is used in the fit.

The experimental data for the muonic species are the Lamb
shifts measured by the CREMA Collaboration [30,32]. The
correlation coefficients used in the χ2 fitting are taken from
Ref. [29] (the errors on the experimental results not consid-
ered in that reference can safely be assumed to be uncorrelated
with those considered in it and with each other). No mag-
nification of the experimental uncertainties was made for
producing the results shown in Figs. 1, 2, and 5 and the results
represented by the brown curves in Fig. 4. The experimental
uncertainties were increased by 60% for producing the results
shown in Fig. 3 and those represented by the black curves in
Fig. 4.

The standard model calculations follow Appendix C of [7]
for the electronic species and, except where specified other-
wise, Refs. [30,31] for the muonic species. We stress that we
take the finite size of the nucleus into account for both the
electronic and the muonic species, which is important for the
accuracy of the models.

APPENDIX C: ISOTOPE SHIFT ANALYSIS
WITH AN NP INTERACTION

As discussed in Sec. III C and in previous work [6], tight
bounds on the NP coupling constants can be derived from the
measurements of the 1s1/2 − 2s1/2 interval in electronic hy-
drogen and deuterium, in conjunction with the measurements
on the nuclear radius in muonic hydrogen and deuterium. The
calculations reported in Sec. III C follow a general approach
applicable to any number of transitions. However, they do not
make use of particularly precise theoretical results, reported
in Refs. [40,41], which are specific to the isotope shift of that
interval. An alternative approach to obtaining bounds on an
NP interaction, taking advantage of these theoretical results,
is outlined in this Appendix.

The key experimental evidence is the difference �νexpt

between the 1s1/2-2s1/2 transition frequency of electronic deu-
terium and that of electronic hydrogen [43]:

�νexpt = �ν
expt
2s1s,eD − �ν

expt
2s1s,eH

= 670 994 334.606(15) kHz. (C1)

Allowing for a hypothetical NP interaction, the theoretical
isotope shift is �νSM + �νNP, where �νSM is the isotope
shift calculated within the standard model and �νSM is a
new physics correction. In terms of the NP shifts defined by
Eq. (8),

�νNP = �νNP
2s1s,eD − �νNP

2s1s,eH. (C2)
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Moreover [41],

�νSM = �νSM
2s1s,eD − �νSM

2s1s,eH

= 670 999 567.88(42) kHz

− 7α4mec2

12hλ̄2
C

[(
meD

r

me

)3

r2
d −

(
meH

r

me

)3

r2
p

]
, (C3)

where h is Planck’s constant, α is the fine-structure constant,
and λ̄C is the reduced Compton wavelength. Equating �νSM +
�νNP to �νexpt and rearranging yields the equation � = 0,
where

� = 5233.27(42) kHz + �νNP

− 7α4mec2

12hλ̄2
C

[(
meD

r

me

)3

r2
d −

(
meH

r

me

)3

r2
p

]
, (C4)

with the nuclear charge radii obtained from the measurements
in muonic hydrogen and muonic deuterium. For any given
values of gp, gd , ge, and gμ, � is known only within a certain
error σ arising primarily from the experimental and theoreti-
cal errors on �νexpt, �νNP, rp, and rd . For given values of the
ratio gd/gp, of the ratio gμ/ge, and of the mass mX0 , setting

|�| = 1.96σ (C5)

then yields the value of gegp beyond which the possibility of
an NP interaction is excluded at the 95% confidence level.

The bounds generated in this way are in close agreement
with the “isotope shift” results of Figs. 4 and 5. The respec-
tive bounds on gegp differ by at most 3% in the mass range
spanned by these figures.

It should be noted that this approach is useful only for cases
where gd/gp �= 1, as for gd = gp the new physics correction
term �νNP is proportional to gegp × (meD

r − meH
r )/me rather

than to gegp. For r = 1, Eq. (C5) yields bounds on gegp well
above the values excluded, e.g., by the results of Figs. 1(e) and
1(f).

APPENDIX D: FURTHER RESULTS

1. World data with reduced error magnification

Distributions of confidence levels obtained without or with
an error magnification of 20% are shown in Fig. 8, for compar-
ison with Fig. 3(b) (for which the error magnification is 60%).
Figures 8(a) and 8(b) both refer to a repulsive interaction with
r = 1, like Fig. 3(b).

2. Other muonic deuterium models

Figure 9 shows the results obtained for a repulsive NP
interaction with r = 2 when muonic deuterium is described
as per Ref. [32] or Ref. [39], rather than as per the more
recent theory of Ref. [31] as we do in Fig. 5. A comparison
of these results to Fig. 5(b) illustrates the sensitivity of these
confidence levels on the details of small QED corrections. In
particular, Fig. 9(a) excludes the possibility of an attractive
NP interaction and strongly points towards the existence of
a repulsive NP interaction, whereas Figs. 9(b) and 5(b) do
not.

FIG. 8. Confidence level that a repulsive NP interaction is com-
patible with the world spectroscopic data for electronic hydrogen,
electronic deuterium, muonic hydrogen, and muonic deuterium, as-
suming that gd = gp and gμ = ge. (a) Results obtained without
magnification of the experimental uncertainties. (b) Results obtained
when the experimental uncertainties are increased by 20%. As in
Fig. 1, the possibility of an NP interaction with parameters falling
in a white region is excluded at the 95% confidence level.

APPENDIX E: COMMENT ON THE SENSITIVITY
OF THE ISOTOPE SHIFT METHOD

IN THE LOW-MASS LIMIT

The right-hand side of Eq. (30) reduces to a simpler form
in the low-mass limit as the denominator can be worked out
in full generality when mX0 = 0. Indeed, the NP interaction
potential VNP tends to a 1/r potential in that limit, which
makes it possible to use the virial theorem to calculate the
NP shifts δENP

nl . The result reads

�ν̃NP
ba ≈ 8πε0

e2
BR

[
r

meD
r

me
− meH

r

me

](
1

n2
a

− 1

n2
b

)
. (E1)

FIG. 9. Confidence level that a repulsive NP interaction is com-
patible with the 1s1/2 − 2s1/2 transition frequency measured in
electronic hydrogen and electronic deuterium and with the nuclear
charge radii derived from measurements in muonic hydrogen and
muonic deuterium, assuming that gd = 2gp and gμ = ge. (a) Results
obtained when the muonic deuterium structure is described as per
Ref. [32]. (b) Results obtained when the muonic deuterium structure
is described as per Ref. [39]. As in Fig. 1, the possibility of an NP
interaction with parameters falling in a white region is excluded at
the 95% confidence level.
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Thus �ν̃NP
ba has the same dependence on na and nb as σ

g
ba, in

this limit. Moreover, the numerator reduces to

1.96
√(

σ
expt
ba

)2 + (
σ

g
ba

)2

in the case of transitions between non-s states, since σ ns
ba =

σ oc
ba = 0 for such transitions. This quantity cannot be lower

than 1.96σ
g
ba. The upshot is that for low values of mX0 ,

σ (|gegp|) cannot be lower than

1.96 × 0.10 kHz

(8πε0BR/e2)
[
rmeD

r /me − meH
r /me

]
for transitions between d states, which for r = 2 is 2.8 ×
10−15 (a value set by the current uncertainty on the proton
and the deuteron masses).
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