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Abstract

The derived category Db(X) of a variety contains a lot of information aboutX . If
X andX ′ are Fano, then an equivalence Db(X) ≃ Db(X ′) implies thatX andX ′

are isomorphic. For prime Fano threefoldsX (of Picard rank 1, index 1, and genus
g ≥ 6) the derived category decomposes semiorthogonally as ⟨Ku(X), E ,OX⟩,
where E is a certain vector bundle on X . Therefore one can ask whether less
data (in particular the Kuznetsov component Ku(X)) than the whole of Db(X)
determines X isomorphically (or at least birationally).

In this thesis, we focus on this question in the case of ordinary Gushel–Mukai
threefolds (genus 6 prime Fano threefolds). We show that Ku(X) determines the
birational class ofX which proves a conjecture of Kuznetsov–Perry in dimension
3. We also prove a refined categorical Torelli theorem for oridnary Gushel–Mukai
threefolds. In other words, we show that Ku(X) along with the data of the vector
bundle E is enough to determine X up to isomorphism.
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Chapter 1

Introduction

Given a smooth projective variety X over the complex numbers, one can ask
whether topological invariants (for example its singular cohomology) recover
it up to isomorphism, or birational equivalence. If they hold, such statements
are called Torelli theorems, after Ruggiero Torelli who showed [Tor13] that the
Jacobian

J(C) := Pic0(C) =
H0(C,Ω1

C)
∨

H1(C,Z)

of an algebraic curve recovers the curve.
Analogous statements in terms of intermediate Jacobians, Hodge isometries

between the middle primitive cohomology of varieties, etc., have subsequently
been shown to hold (see for example [CG72, Tju70, Don83]).

On the other hand, one can consider the abelian category of coherent sheaves
Coh(X) on X and ask how much of the geometric information of X it recovers.
Due to a theorem of Gabriel [Gab62], Coh(X) reconstructsX up to isomorphism.
However, in some sense Coh(X) is too restrictive to work with (see for example
[Tho00]). Furthermore, physics (for example the Homological Mirror Symmetry
conjecture [Kon95]) also calls for a looser object of study, the bounded derived
category of coherent sheaves Db(X) on X . Coherent sheaves get replaced with
complexes of coherent sheaves, and they are identified up to quasi-isomorphism
(as opposed to up to actual isomorphism like in Coh(X)).

One can then start asking similar questions as before; how much of the geo-
metric information ofX does Db(X) carry? It turns out that Db(X) is no longer
a perfect invariant, in the sense that there are examples of derived equivalent
varieties which are not even birationally equivalent [Căl07].
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Categorical Torelli qestions
However, in the setting of Fano varieties (those with ample anti-canonical bun-
dle), Bondal–Orlov showed that Db(X) recovers X up to isomorphism [BO01].
Derived categories of Fano varieties also admit semiorthogonal decompositions
(roughly a collection of subcategories which generate Db(X) and have restric-
tions on the direction in which morphisms can exist between the objects of the
subcategories). For example, certain Fano varieties Y have semiorthogonal de-
compositions of the form

Db(Y ) = ⟨Ku(Y ),OY ,OY (H)⟩

where Ku(Y ) is a special subcategory of Db(Y ) called the Kuznetsov component
of Y defined by its semiorthogonality to the line bundles OY and OY (1). This
subcategory has been extensively studied by Kuznetsov and others in e.g. [Kuz04,
Kuz06, Kuz07, Kuz09, Kuz10, KP17, KPS18, Kuz19, KP23].

With this in mind, one can ask whether the Kuznetsov component of Y (in
particular, not the whole derived category) determines Y up to isomorphism.

Motivating examples
A particularly geometric motivating example of this occurring is the intersec-
tion of two 4-dimensional quadrics in P5. Such varieties give one of the de-
formation classes of smooth Picard rank 1 Fano threefolds (the ones of index 2
and degree 4), and to each such Fano threefold we can associate a curve. In-
deed, following [Kuz09, Section 4.2] let Y4 = Q ∩ Q′ ⊂ P5 where Q,Q′ are
4-dimensional quadrics. Now consider the pencil of quadrics {Qλ}λ∈P1 gener-
ated by Q and Q′. Since Y4 is smooth, the generic Qλ is smooth, and there are
six points λ1, . . . , λ6 ∈ P1 where Qλ is singular. The smooth quadrics Qλ have
two choices of ruling, and the singular ones have one choice of ruling. This gives
a double cover C → P1 branched in the points λ1, . . . , λ6. Then C is a genus
2 curve. This gives an isomorphism between the moduli space of smooth Picard
rank 1, index 2, degree 4 Fano threefolds and the moduli space of genus 2 curves.

Furthermore, it is shown in [BO95, Kuz08] that Ku(Y4) := ⟨OY ,OY (H)⟩⊥ ≃
Db(C), where C is the curve associated to the Fano threefold Y4. Therefore, an
equivalence of the Kuznetsov components Ku(Y4) ≃ Ku(Y ′

4) of two such Fano
threefolds Y4, Y ′

4 gives rise to an equivalence Db(C) ≃ Db(C ′) of the associated
genus 2 curves C,C ′. Bondal–Orlov’s Reconstruction Theorem [BO01] gives an
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isomorphism C ∼= C ′, and as we have seen the curves determine their corre-
sponding associated Fano threefolds, thus we get an isomorphism Y4 ∼= Y ′

4 and
categorical Torelli holds in this case.

For certain other deformation classes of smooth Picard rank 1 Fano three-
folds, such a geometric picture no longer exists. However, we still have semiorthog-
onal decompositions and therefore Kuznetsov components, which we can in
these cases regard as “non-commutative curves”. Already for cubic threefolds
Y3 ⊂ P4, there is no geometric description of Ku(Y3). The categorical Torelli
question in this case can be tackled by considering Bridgeland stable objects in-
side Ku(Y3). In [BMMS12] (and later [PY22]), the authors realise these moduli
spaces with respect to the numerical class of the ideal sheaf of a line as Hilbert
schemes of lines on Y3. An equivalence Ku(Y3) ≃ Ku(Y ′

3) induces an isomor-
phism of these moduli spaces, and in turn an isomorphism of the corresponding
Hilbert schemes of lines on the cubic threefolds. Since a cubic threefold can be
recovered from its Hilbert scheme of lines, categorical Torelli also holds in this
case.

We also remark here that the moduli space MC(2,L) of stable rank 2 vector
bundles with fixed determinant on C (the genus 2 curve associated to Y4) is iso-
morphic to Y4, i.e. MC(2,L) ∼= Y4 (see [New68, NR69]). Furthermore, we have
Mσ(Ku(Y4), v) ∼= MC(2,L) where Mσ(Ku(Y4), v) is a moduli space of Bridge-
land stable objects in Ku(Y4) with numerical class v. So in a similar fashion to the
previous paragraph an equivalence of Kuznetsov components Ku(Y4) ≃ Ku(Y ′

4)
induces an isomorphism MC(2,L) ∼= MC′(2,L′) and therefore an isomorphism
Y4 ∼= Y ′

4 .

The case of Gushel–Mukai threefolds
This thesis focuses on answering the question of whether categorical Torelli
holds for a certain deformation class of Fano threefolds known as Gushel–Mukai
threefolds X , whose derived categories have the semiorthogonal decompositions

Db(X) = ⟨AX ,OX , E∨⟩ ≃ ⟨AX ,Q∨,OX⟩

where E (and Q) is a certain rank 2 (rank 3) vector bundle on X . Like in the
cubic threefold case, there is no known geometric description of the Kuznetsov
component AX so we can also regard it as a non-commutative curve. In the spirit
of [BMMS12], we first study moduli spaces of Bridgeland stable objects in AX for
certain choices of numerical class. We specifically choose so-called (−1)-classes
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in the numerical Grothendieck group of AX . There are two of these, x and y,
up to sign, and we prove that Mσ(AX , x) is isomorphic to the minimal surface
Cm(X) of the Hilbert scheme of conics on X . We also show that Mσ(AX , y)
is isomorphic to a certain Gieseker moduli space MX

G (2, 1, 5) of Gieseker stable
sheaves on X .

Now take two Gushel–Mukai threefoldsX,X ′ and suppose there is an equiv-
alence of Kuznetsov components AX ≃ AX′ . Since an equivalence takes a (−1)-
class to a (−1)-class, we get two possible isomorphisms of Bridgeland moduli
spaces: Cm(X) ∼= Cm(X ′) and Cm(X) ∼= MX′

G (2, 1, 5). Then results on the bira-
tional geometry of Hilbert schemes of conics on Gushel–Mukai threefolds due
to [Log82, DIM12] allow us to deduce the following:

Theorem 1.0.1 (= Theorem 6.6.3). Let X,X ′ be general ordinary Gushel–Mukai
threefolds. Suppose there is an equivalence AX ≃ AX′ . Then X and X ′ are bira-
tional.

This proves a conjecture of Kuznetsov–Perry [KP23, Conjecture 1.7] in di-
mension 3, with the assumption that the threefolds are general within their mod-
uli. Notice that in this case, the Kuznetsov component does not determine the
Fano threefold up to isomorphism, only birational equivalence. Indeed, there are
birational but non-isomorphic Gushel–Mukai threefolds which have equivalent
Kuznetsov components [KP23, Theorem 1.6].

If we further impose the condition that certain extra categorical data is pre-
served (the gluing data of the category ⟨AX ,Q∨⟩ ⊂ Db(X)), then we can recover
X up to isomorphism. More precisely:

Theorem 1.0.2 (= Theorem 6.6.2). Let X,X ′ be general ordinary Gushel–Mukai
threefolds. Suppose there is an equivalence Φ: AX ≃ AX′ such that Φ(G) ∼=
G ′, where G,G ′ are the gluing data of the categories ⟨AX ,Q∨⟩ and ⟨AX′ ,Q′∨⟩,
respectively. Then X and X ′ are isomorphic.

Recall the period map

P : X → A10, X 7→ J(X)

from Hodge theory, whereX is the moduli space of Gushel–Mukai threefolds and
A10 is the moduli space of dimension 10 principally polarised abelian varieties.
Its fibers can be thought of as measuring how badly classical Torelli fails to hold.
Debbarre–Iliev–Manivel make the following conjecture:
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Conjecture 1.0.3 (Debarre–Iliev–Manivel).

P−1(J(X)) = Cm(X) ∪MX
G (2, 1, 5).

Now consider the categorical period map

Pcat : X → {AX}/ ∼, X 7→ AX .

We prove that the fibers of the categorical period map are equal to the conjectural
fibers of the classical period map:

Theorem 1.0.4 (= Theorem 6.8.3).

P−1
cat(AX) = Cm(X) ∪MX

G (2, 1, 5).

Indeed, the precise statement (see Theorem 6.6.3) of Theorem 1.0.1 gives pre-
cisely what X ′ can be after fixing X . It turns out that X ′ can be either a conic
transformation or a conic transformations of a line transformation of X , both
certain types of birational surgery on X . Since Cm(X) and MX

G (2, 1, 5) together
parametrise all conic and line transformations of X , the categorical period map
fiber statement follows.

The theorem above allows us to restate the Debarre–Iliev–Manivel Conjec-
ture as follows:

Conjecture 1.0.5 (= Conjecture 6.8.6). IfX andX ′ are Gushel–Mukai threefolds,
then

J(X) ∼= J(X ′) =⇒ AX ≃ AX′ .
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Notation

• We use the symbol ∼= for isomorphisms of varieties, vector spaces, groups,
and rings. We use the symbol ≃ for birational equivalence of varieties, and
for equivalences of categories.

• If F is an object in a triangulated category T , we use [F ] to denote its class
in the numerical Grothendieck group N (T ).

• Unless otherwise stated, varieties X are smooth Picard rank 1, index 1
Fano threefolds, and varieties Y are smooth Picard rank 1, index 2 Fano
threefolds. The notation Xg means that Xg has genus g, and the notation
Yd means Yd has degree d.

• We denote by Hi
σ the i-th cohomology object with respect to the heart Aσ.

If A = Coh(X), we denote the cohomology objects by Hi for simplicity.

• Unless otherwise stated, ifX is a Fano variety thenX ′ belongs to the same
deformation class. All functors associated to X decorated with a dash will
be understood to be the analogous functor associated to X ′.

• If F ∈ Db(X), then F (H) := F ⊗ OX(H) where H is the ample hyper-
plane class on X .

• D(−) := RHom(−,OX) denotes the derived dual functor.

• We use the notation hom(−,−) := dimHom(−,−) and exti(−,−) =
dimExti(−,−).
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Chapter 2

Fano threefolds

A Fano variety X is an irreducible and reduced scheme whose anti-canonical di-
visor−KX is ample. Fano varieties were originally studied by Gino Fano (see e.g.
[Fan29, Fan41]). Restricting to smooth Fano varieties of dimension 3, a detailed
modern account of their classification into deformation classes can be found in
[Isk99]. These threefolds were originally classified by Fano. Another method
using vector bundles was used by Gushel and Mukai [Gus83b, Gus83a, Gus92,
Muk89, Muk92].

In this thesis we will only be concerned with smooth Fano threefolds with
PicX = Z. The index of such a Fano threefold is the positive integer iX such
that −KX = iXH where H is the ample hyperplane class of X . There are 17
deformation classes of Picard rank 1 Fano threefolds, and they satisfy 1 ≤ iX ≤
4. When iX = 4 we have X = P3 and when iX = 3 then X is a quadric
in P4. For this thesis, we restrict to the other 15 deformation classes of index
1 and 2. Such Fano threefolds are classified into their deformation classes by
their degrees (equivalently their genera). By the degree of a Fano threefold, we
mean the number dX := −K3

X . By the genus we mean the geometric genus
g = h0(X,KX).

Remark 2.0.1. We make the following remark on notational convention. For
this thesis, we will denote index 2 Fano threefolds by Yd where the subscript d
is the degree dY of Yd. We will denote index 1 Fano threefolds by Xg where g
denotes the genus gX := 1

2
dX + 1 of Xg.

For index 1 Fano threefolds, we have 2 ≤ g ≤ 12 and g ̸= 11. For index 2
Fano threefolds, we have 1 ≤ d ≤ 5. We now list the Fano threefolds of index 1

7



and 2, and their geometric descriptions. We have taken the table from [Kuz09].
See also [Bel23] which lists details of all of these Fano threefolds.

X12 The zero locus of a global section of the vector bundle
(Λ2U∨)⊕3 on Gr(3, 7), where U is the tautological bundle.

X10 A linear section of codimension 2 of the minimal compact
homogeneous space G2Gr(2, 7) for the simple algebraic
group G2, inside P13

X9 A linear section of codimension 3 of the symplectic La-
grangian Grassmannian Plücker embedded into P13

X8 a linear section of codimension 5 of Gr(2, 6) which is
Plücker embedded into P14

X7 a codimension 7 linear section of the connected component
of the orthogonal Lagrangian Grassmannian OGr+(5, 10)
inside P15 via the half-spinor embedding

X6 a quadric section of a linear section of codimension 2 of
Gr(2, 5) which is Plücker embedded into P9; or the double
cover of Y5 ramified in a quadric

X5 the intersection of three 5-dimensional quadrics in P6

X4 the intersection of a quadric and a cubic in P5

X3 a quartic in P4; or a double cover of a quadric Q ⊂ P4

ramified in the intersection of Q with a quartic
X2 the double cover of P3 ramified in a sextic

Table 2.1: Fano threefolds of index 1.

Remark 2.0.2. We call the first type of genus 6 index 1 Fano threefolds ordinary
Gushel–Mukai threefolds, and the second type special Gushel–Mukai threefolds.
We will discuss both of these types in Section 6.

We write Xg to mean the moduli stack parametrising the deformation class of
genus g Fano threefolds of index 1. We similarly write Yd to mean the analogous
object parametrising Fano threefolds of index 2 and degree d.
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Y5 a codimension 3 linear section of Gr(2, 5) Plücker embed-
ded into P9

Y4 an intersection of two 4-dimensional quadrics in P5

Y3 a cubic hypersurface in P4

Y2 the double cover of P3 ramified in a quartic
Y1 a degree 6 hypersurface is P(1, 1, 1, 2, 3); or the double

cover of the cone over a Veronese surface ramified in a sex-
tic

Table 2.2: Fano threefolds of index 2.

Theorem 2.0.3 ([Muk92], [Kuz09, Theorem 2.5]). LetX be a Picard rank 1, index
1 Fano threefold with genus g = 2s where s is a positive integer. Then there exists a
unique µ-stable1 vector bundle E on X of rank 2, with c1(E) = −H and ch2(E) =
(s− 2)L. Moreover, E is exceptional and H•(X, E) = 0.

Remark 2.0.4. Mukai’s original proof of this theorem has a gap; an upcoming
paper of Bayer–Macr̀ı–Kuznetsov fixes this gap.

1See Definition 4.1.1 for the definition of µ-stability.
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Chapter 3

Derived categories

3.1 Derived categories of coherent sheaves
We briefly recall the derived category of coherent sheaves on a smooth variety
X . A detailed and complete account on triangulated categories and derived cat-
egories of coherent sheaves on varieties can be found in [Huy06].

Definition 3.1.1. The Serre functor SD of a triangulated category D, when it
exists, is the autoequivalence of D such that there is a functorial isomorphism of
vector spaces

HomD(A,B) ∼= HomD(B, SD(A))
∨

for any A,B ∈ D.

We will use the following fact frequently:

Example 3.1.2. The Serre functor of Db(X) is given by SDb(X)(−) = (− ⊗
KX)[dimX].

3.2 Semiorthogonal decompositions
Definition 3.2.1. Let D be a triangulated category. We say that E ∈ D is an
exceptional object if Hom•(E,E) = C. Now let {E1, . . . , Em} be a collection of
exceptional objects in D. We say it is an exceptional collection if Hom•(Ei, Ej) =
0 for i > j.

10



Definition 3.2.2. Let D be a triangulated category and C a triangulated subcate-
gory. We define the right orthogonal complement of C in D as the full triangulated
subcategory

C⊥ = {X ∈ D | Hom(Y,X) = 0 for all Y ∈ C}.

The left orthogonal complement is defined similarly, as
⊥C = {X ∈ D | Hom(X, Y ) = 0 for all Y ∈ C}.

Definition 3.2.3. Let D be a triangulated category. We say a triangulated sub-
category A ⊂ D is admissible, if the inclusion functor i : A → D has a left
adjoint i∗ and right adjoint i!.

Definition 3.2.4. Let D be a triangulated category, and A1, . . . ,Am be full ad-
missible subcategories of D. We say that D = ⟨A1, . . . ,Am⟩ is a semiorthogonal
decomposition of D if Aj ⊂ A⊥

i for all i > j, and the subcategories A1, . . . ,Am

generate D, i.e. the category resulting from taking all shifts and cones of objects
in the categories C1, . . . , Cm is equivalent to D.

Proposition 3.2.5. If D = ⟨D1,D2⟩ is a semiorthogonal decomposition, then D =
⟨SD(D2),D1⟩ = ⟨D2, S

−1
D (D1)⟩ are also semiorthogonal decompositions.

3.2.1 Mutations
Let A ⊂ D be an admissible subcategory. Then the left mutation functor LA
throughA is defined as the functor lying in the canonical functorial exact triangle

ii! −→ id −→ LA

and the right mutation functor RA through A is defined similarly, by the triangle

RA −→ id −→ ii∗.

When E ∈ Db(X) is an exceptional object, and F ∈ Db(X) is any object, the
left mutation LEF fits into the triangle

E ⊗ Hom•(E,F ) −→ F −→ LEF, (3.2.1)

and the right mutation REF fits into the triangle

REF −→ F −→ E ⊗ Hom•(F,E)∨. (3.2.2)

11



Proposition 3.2.6. Let D = ⟨A,B⟩ be a semiorthogonal decomposition. Then

SB = RA ◦ SD and S−1
A = LB ◦ S−1

D .

Lemma 3.2.7 ([Kuz10, Lemma 2.7]). Let D = ⟨C1, C2, ..., Cn⟩ be a semiorthogonal
decomposition with all components being admissible. Then for each 1 ≤ k ≤ n−1,
there is a semiorthogonal decomposition

D = ⟨C1, ..., Ck−1,LCkCk+1, Ck, Ck+2..., Cn⟩

and for each 2 ≤ k ≤ n there is a semiorthogonal decomposition

D = ⟨C1, ..., Ck−2, Ck,RCkCk−1, Ck+1..., Cn⟩.

3.3 Group actions on categories
Definition 3.3.1 ([Del97], [Ela14, Definition 3.1]). Let C be a pre-additive C-
linear category, and let G be a finite group. A (right) action of G on C is defined
as the following data:

1. a family of autoequivalences ϕg : C → C for all g ∈ G;

2. a family of isomorphisms ϵg,h : ϕgϕh → ϕhg for which the diagrams all the
diagrams

ϕfϕgϕh ϕfϕhg

ϕgfϕh ϕhgf

ϵg,h

ϵf,ghϵf,g

ϵgf,h

are commutative.

Definition 3.3.2 ([Ela14, Definition 3.5]). A G-equivariant object of C is a pair
(F, ϕ) consisting of an object F ∈ C and a collection of isomorphisms ϕg : F

∼−→
g∗(F ) for all g ∈ G such that the diagram

F h∗(F ) h∗(g∗(F ))

(gh)∗(F )

h∗(ϕg)

cg,h(F )ϕgh

ϕh

12



commutes for all g, h ∈ G. The isomorphisms ϕ = {ϕg}g∈G are called the G-
linearisation. The G-equivariant category CG of C is the category whose objects
are theG-equivariant objects of C, and morphisms are those betweenG-invariant
objects of C that commute with the G-linearisations.

3.4 Derived categories of Fano threefolds
We now define one of our main objects of study, the Kuznetsov component of a
Fano threefold.

Definition 3.4.1 ([Kuz09]). Let Y ∈ Yd. The Kuznetsov component of Y is de-
fined by the semiorthogonal decomposition

Db(Y ) = ⟨Ku(Y ),OY ,OY (H)⟩.

Definition and Proposition 3.4.2 ([Kuz09]). Let X ∈ Xg with even genus
g ≥ 6. Then the vector bundles {E ,OX} (cf. Theorem 2.0.3) form an exceptional
collection, and the Kuznetsov component of X is defined by the semiorthogonal
decomposition

Db(X) = ⟨Ku(X), E ,OX⟩.

Next we come to the case of the odd genus index 1 Fano threefolds with g ≥ 6.

Definition and Proposition 3.4.3 ([Muk92], [Kuz06]). Let X be a Picard rank
1, index 1 Fano threefold of genus 7 (respectively 9). Then there exist rank 5 (re-
spectively rank 3) vector bundles, both denoted by E , such that the pair {E ,OX}
is an exceptional collection. The Kuznetsov components of these Fanos are defined
by the semiorthogonal decompositions

Db(X) = ⟨Ku(X), E ,OX⟩.

It is useful to note the Chern characters of the vector bundle E for each case
of the genus:

ch(E) =



(2,−H,L, 1
3
P ), g = 6

(5,−2H, 0, P ), g = 7

(2,−H, 2L, 1
6
P ), g = 8

(3,−H, 0, 1
3
P ), g = 9

(2,−H, 3L, 0), g = 10

(2,−H, 4L,−1
6
P ), g = 12.
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We lastly come to the case of the index 1 Fano threefolds with genus g < 6.

Definition 3.4.4. Let X be a Picard rank 1, index 1 Fano threefold of genus g <
6. The Kuznetsov components of these Fanos are defined by the semiorthogonal
decompositions

Db(X) = ⟨Ku(X),OX⟩.

We now summarise all of these semiorthogonal decompositions in the fol-
lowing tables. These tables are taken from [BLMS23, p. 24]:

Xg SOD ∃ SOD ∃ σ
X12 Db(X12) = ⟨E4, E3, E2,O⟩ [Kuz09] [BLMS23]
X10 Db(X10) = ⟨Db(C2), E2,O⟩ [Kuz06] [BLMS23]
X9 Db(X9) = ⟨Db(C3), E3,O⟩ [Kuz06] [JLZ22]
X8 Db(X8) = ⟨Ku(X8), E2,O⟩ [Kuz04] [BMMS12, BLMS23]
X7 Db(X7) = ⟨Db(C7), E5,O⟩ [Kuz06] [JLZ22]
X6 Db(X6) = ⟨Ku(X6), E2,O⟩ [Kuz09] [BLMS23]
X5 Db(X5) = ⟨Ku(X5),O⟩ [BLMS23]
X4 Db(X4) = ⟨Ku(X4),O⟩ [BLMS23]
X3 Db(X3) = ⟨Ku(X3),O⟩ [BLMS23]
X2 Db(X2) = ⟨Ku(X2),O⟩ [BLMS23]

Table 3.1: Semiorthogonal decompositions of Fano threefolds of index 1. The
right-most column indicates whether stability conditions are known to exist on
the Kuznetsov component, see Section 4.4. The subscripts of E mean the rank of
E .

Yd SOD ∃ SOD ∃ σ
Y5 Db(Y5) = ⟨F2(−H),O(−H),F2,O⟩ [Orl91] [BLMS23]
Y4 Db(Y4) = ⟨Db(C2),O(−H),O⟩ [BO95] [BLMS23]
Y3 Db(Y3) = ⟨Ku(Y3),O,O(H)⟩ [BMMS12, BLMS23]
Y2 Db(Y2) = ⟨Ku(Y2),O,O(H)⟩ [BLMS23]
Y1 Db(Y1) = ⟨Ku(Y1),O,O(H)⟩ [BLMS23]

Table 3.2: Semiorthogonal decompositions of Fano threefolds of index 2
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Remark 3.4.5. Fano threefolds X ∈ Xg when g ≥ 6 also have alternative
Kuznetsov components AX which are defined by the semiorthogonal decomposi-
tions

Db(X) = ⟨AX ,OX , E∨⟩.

It turns out that AX ≃ Ku(X). Indeed, we have the following lemma.
Lemma3.4.6. We have the equivalenceΞ: Ku(X) ≃ AX given byE 7→ LOX

(E⊗
OX(H)), with inverse given by F 7→ (ROX

F )⊗OX(−H).

Proof. Using Lemma 3.2.7 and noting that E(H) ∼= E∨, we manipulate the semiorthog-
onal decomposition as follows:

Db(X) = ⟨Ku(X), E ,OX⟩
≃ ⟨Ku(X)⊗OX(H), E∨,OX(H)⟩
≃ ⟨OX ,Ku(X)⊗OX(H), E∨⟩
≃ ⟨LOX

(Ku(X)⊗OX(H)),OX , E∨⟩.

Now comparing with the definition of AX , we get AX ≃ LOX
(Ku(X)⊗OX(H))

and the desired result follows. The reverse direction is similar.
Definition 3.4.7.

• Denote the left adjoint to the inclusion Ku(X) ⊂ Db(X) by i∗. We have
i∗ = LELOX

;

• Denote the left adjoint to the inclusion AX ⊂ Db(X) by pr. We have
pr = LOX

LE∨ .

3.4.1 Numerical Grothendieck groups of index 1 Fanos
Let K0(D) denote the Grothendieck group of a triangulated category D. We have
the bilinear Euler form

χ(E,F ) =
∑
i∈Z

(−1)i exti(E,F )

for E,F ∈ K0(D). The numerical Grothendieck group is defined to be N (D) :=
K0(D)/ kerχ. We also have [Kuz09, p. 5] χ(u, v) = χ0(u

∗ ∩ v) where u 7→ u∗ is
an involution of⊕3

i=0H
i(X,Q) given by multiplication with (−1)i onH2i(X,Q).

By Hirzebruch–Riemann–Roch, we have

χ0(x+ yH + zL+ wP ) = x+
17

6
y +

1

2
z + w. (3.4.1)
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Kuznetsov components

When g ≥ 6 and g is even, by [Kuz09, p. 5] we know that the numerical
Grothendieck group N (Ku(X2g−2)) is a rank two integral lattice and generated
by

N (Ku(X2g−2)) = ⟨v := 1− g

2
L+

g − 4

4
P,w := H − 3g − 6

2
L+

7g − 40

12
P ⟩

with Euler form given by [
1− g

2
−g

2

3− g 1− g

]
.

When g = 7, the Todd class ofX is given by td(X) = 1+ 1
2
H+3L+P . Using

Hirzebruch-Riemann-Roch theorem, one can verify with a direct computation
that the numerical Grothendieck group is a rank two integral lattice generated
by

N (Ku(X7)) = ⟨v := 2− 5L+
1

2
P,w := H − 6L⟩

with Euler form given by [
−6 −5
−7 −6

]
.

When g = 9, the Todd class of X is given by td(X) = 1 + 1
2
H + 10

3
L + P .

The numerical Grothendieck group is a rank two integral lattice generated by

N (Ku(X9)) = ⟨v := 1− 3L+
1

2
P,w := H − 8L+

2

3
P ⟩

with Euler form given by [
−2 −3
−5 −8

]
.

Alternative Kuznetsov components of Gushel–Mukai threefolds

In the g = 6 case, we also give a description of N (AX6) which will be useful later
on in the thesis. As in [Kuz09, Proposition 3.9], it follows from a straightforward
computation that

N (AX6) = ⟨x := 1− 2L, y := H − 4L− 5

6
P ⟩.
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with Euler form given by [
−1 −2
−2 −5

]
.

Remark 3.4.8. It is straightforward to check that the (−1)-classes of N (AX6)
are x and 2x− y, up to sign.

3.4.2 Numerical Grothendieck groups of index 2 Fanos
Similarly, 1 ≤ d ≤ 5, by [Kuz09, pp. 5-6] we know that the numerical Grothendieck
group N (Ku(Yd)) is a rank two integral lattice and generated by

N (Ku(Yd)) = ⟨s := 1− L, t := H − d

2
L+

d− 6

6
P ⟩

with Euler form given by [
−1 −1
1− d −d

]
.
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Chapter 4

Bridgeland stability conditions

Bridgeland stability was introduced by Bridgeland in [Bri07] as a generalisation
of the notion of slope/Gieseker stability of sheaves, to the world of complexes of
objects in triangulated categories.

4.1 Classical notions of stability
Before we outline the construction of Bridgeland stability conditions on trian-
gulated categories, we recall the classical notions of slope stability and Gieseker
stability. For this section, letX be a smooth projective threefold withH an ample
divisor.

Definition 4.1.1 ([Mum62, Tak72]).

1. Let E ∈ Coh(X). Then its slope is defined as

µ(E) :=

{
H2·ch1(E)
H3rk(E)

, rk(E) ̸= 0

0, else

2. We say E ∈ Coh(X) is µ-(semi)stable if for any non-trivial proper sub-
sheaf F ⊂ E we have µ(F ) < (≤)µ(E/F ).

One construct moduli spaces of stable vector bundles on curves using µ-
stability, but to construct moduli spaces of sheaves on higher-dimensional va-
rieties we require the notion of Gieseker stability. For E ∈ Coh(X) define its
Hilbert polynomial to be P (E,m) := χ(OX , E(mH)) =

∑3
i=0 αi(E)m

i, and let
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P2(E,m) :=
∑3

i=1 αi(E)m
i. Since we do not use it explicitly in this thesis, we

refer the reader to [BBF+22, Definition 4.2] for a definition of the partial order ⪯
that we will use to define Gieseker stability below.

Definition 4.1.2 ([BBF+22, Definition 4.3]).

1. The sheafE is Gieseker-(semi)stable if for all non-trivial proper subsheaves
F ⊂ E we have P (F,m) ≺ (⪯)P (E,m).

2. The sheafE is 2-Gieseker-(semi)stable if for all non-trivial proper subsheaves
F ⊂ E we have P2(F,m) ≺ (⪯)P2(E,m).

4.2 Weak stability conditions
For background on abelian categories, Grothendieck groups, t-structures and
hearts see e.g. [MS17]. LetD be a triangulated category, andK0(D) its Grothendieck
group. Fix a surjective morphism v : K0(D) → Λ to a finite rank lattice. For this
thesis, we let Λ be the numerical Grothendieck group N (D).

Definition 4.2.1 ([Bri07, Lemma 3.2]). The heart of a bounded t-structure on D is
an abelian subcategory A ⊂ D such that the following conditions are satisfied:

1. for any E,F ∈ A and n < 0, we have Hom(E,F [n]) = 0;

2. for any object E ∈ D there exist objects Ei ∈ A and maps

0 = E0
ϕ1−−→ E1

ϕ2−−→ · · · ϕm−−→ Em = E

such that Cone(ϕi) = Ai[ki] where Ai ∈ A and the ki are integers such
that k1 > k2 > · · · > km.

Definition 4.2.2 ([BLMS23, Definition 2.2]). Let A be an abelian category and
Z : K0(A) → C be a group homomorphism such that for any E ∈ A we have
ℑZ(E) ≥ 0 and if ℑZ(E) = 0 then ℜZ(E) ≤ 0. Then we call Z a weak stability
function on A. If furthermore we have for 0 ̸= E ∈ A that ℑZ(E) = 0 implies
that ℜZ(E) < 0, then we call Z a stability function on A.

Definition 4.2.3 ([BLMS23, Definition 2.3]). A weak stability condition on D is
a pair σ = (A, Z) where A is the heart of a bounded t-structure on D, and
Z : Λ → C is a group homomorphism such that
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1. the composition Z ◦ v : K0(A) ∼= K0(D) → C is a weak stability function
on A. From now on, we write Z(E) rather than Z(v(E)).

Much like the slope in classical µ-stability, we can define a slope µσ for σ using
Z . For any E ∈ A, set

µσ(E) :=

{
−ℜZ(E)

ℑZ(E)
, if ℑZ(E) > 0

+∞, otherwise.

We say an object 0 ̸= E ∈ A is σ-(semi)stable if µσ(F ) < µσ(E/F ) (respectively
µσ(F ) ≤ µσ(E/F )) for all proper subobjects F ⊂ E.

2. any object E ∈ A has a Harder–Narasimhan filtration in terms of σ-
semistability defined above.

3. there exists a quadratic form Q on Λ ⊗ R such that Q|kerZ is negative
definite, and Q(E) ≥ 0 for all σ-semistable objects E ∈ A. This is known
as the support property.

If the composition Z ◦ v is a stability function, then σ is a stability condition on
D.

Let us briefly give an alternative (equivalent) interpretation of a weak Bridge-
land stability condition σ = (A, Z). We take the following definitions from
[PY22, p. 5] and [MS17, Definition 5.5]:

Definition 4.2.4. The phase of an object E ∈ A is defined to be

ϕ(E) :=
1

π
arg(Z(E)) ∈ (0, 1].

If Z(E) = 0 then ϕ(Z(E)) = 1 and ϕ(E[n]) := ϕ(E) + n.

Definition 4.2.5 ([Bri07]). A slicing P of the triangulated category D is a col-
lection of full additive subcategories P(ϕ) ⊂ D for ϕ ∈ R such that

1. for ϕ ∈ (0, 1], the subcategory P(ϕ) is given by the zero object and all
σ-semistable1 objects of phase ϕ;

2. for ϕ+ n with ϕ ∈ (0, 1], we set P(ϕ+ n) := P(ϕ)[n].
1Where σ-stability is defined using Z in the same way as in Definition 4.2.3.
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3. If ϕ1 > ϕ2 and A ∈ P(ϕ1), B ∈ P(ϕ2), then Hom(A,B) = 0;

4. For all E ∈ Db(X) there are real numbers ϕ1 > · · · > ϕm, objects Ei ∈
Db(X) for i = 1, . . . ,m and a collection of triangles

0 = E0 E1 E2 · · · Em−1 Em = E

A1 A2 Am−1 Am

where Ai ∈ P(ϕi).

The last property in the above definition is called the Harder–Narasimhan
filtration of E. For an object E ∈ Db(X), we write ϕ−(E) := ϕm and ϕ+(E) :=
ϕ1.

In what follows, we will interchange between σ = (A, Z) and σ = (P , Z)
where A = P((0, 1]).

4.3 Tilt-stability conditions
Let σ = (A, Z) be a weak stability condition on a triangulated category D. Now
consider the following subcategories of A, where ⟨−⟩ denotes the extension clo-
sure:

T µ
σ = ⟨E ∈ A | E is σ-semistable with µσ(E) > µ⟩

Fµ
σ = ⟨E ∈ A | E is σ-semistable with µσ(E) ≤ µ⟩.

Then it is a result of [HRS96] that

Proposition 4.3.1. The abelian category Aµ
σ := ⟨T µ

σ ,Fµ
σ [1]⟩ is the heart of a

bounded t-structure on D.

We call Aµ
σ the tilt of A around the torsion pair (T µ

σ ,Fµ
σ ). Let X be an n-

dimensional smooth projective complex variety. Tilting can be applied to the
weak stability condition (Coh(X), ZH)

2 to form the once-tilted heart Cohβ(X),
where ZH(E) := −ch1(E)H

n−1 + irk(E)Hn for any E ∈ Coh(X). Define for
E ∈ Cohβ(X)

Zα,β(E) =
1

2
α2Hnchβ0 (E)−Hn−2chβ2 (E) + iHn−1chβ1 (E). (4.3.1)

2Note that this coincides with the usual notion of µ-stability.

21



Proposition 4.3.2 ([BMT13, BMS16]). Letα > 0 and β ∈ R. Then the pair σα,β =
(Cohβ(X), Zα,β) defines a weak stability condition on Db(X). The quadratic form
Q is given by the discriminant

∆H(E) = (Hn−1ch1(E))
2 − 2Hnch0(E)H

n−2ch2(E).

The stability conditions σα,β vary continuously as (α, β) ∈ R>0 ×R varies. Fur-
thermore, for any v ∈ Λ2

H there is a locally finite wall-and-chamber structure on
R>0 ×R controlling stability of objects with class v.

Weak stability conditions of the above form are called tilt-stability conditions.
We now state a useful lemma which relates 2-Giesesker-stability and tilt-stability.

Lemma 4.3.3 ([BMS16, Lemma 2.7], [BBF+22, Proposition 4.8]). LetE ∈ Db(X).

1. Let β < µ(E). Then E ∈ Cohβ(X) is σα,β-(semi)stable for α ≫ 0 if and
only if E ∈ Coh(X) and E is 2-Gieseker-(semi)stable.

2. If E ∈ Cohβ(X) is σα,β-semistable for β ≥ µ(E) and α ≫ 0, then H−1(E)
is a torsion free µ-semistable sheaf and H0(E) is supported in dimension not
greater than one. If β > µ(E) and α > 0, then H−1(E) is also reflexive.

4.3.1 Finding solutions for walls in tilt-stability
In this section, we describe a way of finding (potential) walls in tilt-stability with
respect to objects in the derived category with a given truncated Chern character.
This is similar to the method used in e.g. [PY22, Proposition 4.1] to find walls for
certain objects. LetM ∈ Cohβ(X) be the object in question, and let its truncated
Chern character be ch≤2(M) = (m0,m1H,

m2

d
H2), where d is the degree of X .

Assume there is a short exact sequence 0 → E → M → F → 0 which
makes M strictly semistable. We can assume that E and F are tilt-semistable
using the existence of Harder–Narasimhan or Jordan–Hölder filtrations. Then
the following conditions must be satisfied:

1. ch≤2(M) = ch≤2(E) + ch≤2(F );

2. µα,β(E) = µα,β(M) = µα,β(F );

3. ∆H(E) ≥ 0 and ∆H(F ) ≥ 0;

4. ∆H(E) ≤ ∆H(M) and ∆H(F ) ≤ ∆H(M).
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Since E,F ∈ Cohβ(X), we also must have chβ1 (E) ≥ 0 and chβ1 (F ) ≥ 0.
Solving the system of inequalities above gives an even number of solutions of
(e0, e1, e2) ∈ Z3; half of them are solutions for the destabilising subobject E,
and the other half are the corresponding quotients F .

4.3.2 Stronger BG ineqalities
In this subsection, we state stronger Bogomolov–Gieseker (BG) style inequalities,
which hold for tilt-semistable objects. The first is a stronger version of Propo-
sition 4.3.2, which was proved by Chunyi Li in [Li18, Proposition 3.2] for Fano
threefolds of Picard rank one.

Lemma 4.3.4 (Stronger BG I). Let X be an index 1 prime Fano threefold with
degree d, and E ∈ Db(X) a σα,β-stable object where α > 0. Let k := ⌊µ(E)⌋.
Then we have:

H · ch2(E)

H3 · ch0(E)
≤ max

{
kµH(E)−

k2

2
,
1

2
µH(E)

2 − 3

4d
, (k + 1)µH(E)−

(k + 1)2

2

}
.

Moreover, if the equality holds, then E has rank one or two.

The second is due to Naoki Koseki and Chunyi Li. It is based on [Kos22,
Lemma 4.2, Theorem 4.3], however for our purposes we quote a reformulation
for Fano threefolds from [JLZ22]. Chunyi Li also sent us a similar inequality from
his upcoming paper [Li23].

Lemma 4.3.5 (Stronger BG II). Let X2g−2 be an index 1 Fano threefold of degree
d = 2g − 2, and E ∈ Coh0(X) be a σα,0-semistable object for some α > 0 with
|µH(E)| ∈ [0, 1] and rk(E) ≥ 2. Then

H · ch2(E)

H3 · ch0(E)
≤ max

{
1

2
µH(E)

2 − 3

4d
, µH(E)

2 − 1

2
|µH(E)|

}
.

4.4 Stability conditions onKuznetsov components
In this section we recall the construction of Bridgeland stability conditions on
the subcategory Ku(X) ⊂ Db(X) due to [BLMS23].
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4.4.1 Double-tilted stability conditions
As in [BLMS23], we pick a weak stability condition σα,β and tilt the once-tilted
heart Cohβ(X) with respect to the tilt slope µα,β (i.e. the slop with respect to
the tilt stability function (4.3.1)) and some second tilt parameter µ. One gets a
torsion pair (T µ

α,β,F
µ
α,β) and another heart Cohµα,β(X) of Db(X). Now “rotate”

the stability function Zα,β by setting

Zµ
α,β :=

1

u
Zα,β

where u ∈ C such that |u| = 1 and µ = −ℜu
ℑu .

Proposition 4.4.1 ([BLMS23, Proposition 2.15]). The pair (Cohµα,β(X), Zµ
α,β) de-

fines a weak stability condition on Db(X).

For example, if we choose µ = 0, we have

Z0
α,β(E) = Hn−1chβ1 (E) + i(Hn−2chβ2 (E)−

1

2
α2Hnchβ0 (E)).

The slope of an object E with respect to this central charge will be denoted
µ0
α,β(E).

We next state a result which gives a criterion for checking when weak sta-
bility conditions on a triangulated category can be used to induce stability con-
ditions on a subcategory.

Proposition 4.4.2 ([BLMS23, Proposition 5.1]). Let D be a triangulated category
with an exceptional collection {E1, . . . , Em}, and let D2 be the category generated
by the exceptional collection. Consider the resulting semiorthogonal decomposition
D = ⟨D1,D2⟩. Let (A, Z) be a weak stability condition on D such that for all
i = 1, . . . ,m:

1. Ei ∈ A;

2. SD(Ei) ∈ A[1]; and

3. Z(Ei) ̸= 0.

Assume further that Z1 := Z|K0(A1) (where A1 := A ∩ D1) is a stability function.
Then σ1 = (A1, Z1) is a stability condition on D1.

Each criterion of this proposition can be checked for Ku(X) ⊂ Db(X) to
give stability conditions on Ku(X), as we will see in the next section.
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4.4.2 Stability conditions on Kuznetsov components
Let A(α, β) := Cohµα,β(X)∩Ku(X) and Z(α, β) := Zµ

α,β|Ku(X). Furthermore, let
0 < ϵ ≪ 1, β = −1 + ϵ and 0 < α < ϵ. Also impose the following condition on
the second tilt parameter µ:

µα,β(E(−H)[1]) < µα,β(OX(−H)[1]) < µ < µα,β(E) < µα,β(OX). (4.4.1)

Then we get the following theorem.

Theorem 4.4.3 ([BLMS23, Theorem 6.9]). Let X be a Fano threefold of genus
6, 8, 10 or 12, and let ϵ, α, β and µ be parameters as above. Then the pair σ(α, β) =
(A(α, β), Z(α, β)) defines a Bridgeland stability condition on Ku(X).

Remark 4.4.4. In slicing notation, we will write σ(α, β) = (P(α, β), Z(α, β))
where

P(α, β)((0, 1]) = A(α, β)

as in [PY22, Section 3.3].

In this thesis, we fix µ = 0, i.e. σ(α, β) := σ0
α,β|Ku(X). The same definition

also applies when we replace Ku(X) by the alternative Kuznetsov component
AX .

Proposition 4.4.5 ([JLZ22, Proposition 4.9]). LetX = Xg be a prime Fano three-
fold of index 1 and even genus 6 ≤ g ≤ 12, g ̸= 11, and Eg the vector bundles
defined in Section 3.4. Then σ(α, β) := (A(α, β), Z0

α,β|Ku(X)) is a stability condi-
tion for (α, β) listed below:

• g = 6: β = − 9
10
, 0 < α < 1 + β,

• g = 8: β = −22
25

, 0 < α < 1 + β,

• g = 10: β = −22
25

, 0 < α < 1 + β,

• g = 12: β = −21
25

, 0 < α < 1 + β.

Proof. One can check that Eg, Eg(−H)[1],OX ,OX(−H)[1] ∈ Cohβ(X), and that
they satisfy

µα,β(E(−H)[1]) < µα,β(OX(−H)[1]) < 0 < µα,β(E) < µα,β(OX)

for each (α, β) listed above.
Since g ≥ 6 is even, from [PR23, Proposition 3.2] we know that σ(α, β) is a

stability condition for (α, β) as above.
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The result above with appropriate choices of (α, β) is also true for the odd
genus cases by [JLZ22, Appendix A.1], but since we do not require these cases
for this thesis we omit them.

4.4.3 Stability conditions on the alternativeKuznetsov com-
ponent of a Gushel–Mukai threefold

For a Gushel–Mukai threefoldX , the focus of this thesis, consider AX ⊂ Db(X)
and set Aalt(α, β) := Coh0

α,β(X) ∩ AX and Zalt(α, β) := Z0
α,β|N (AX). Then

analogously to Proposition 4.4.5 we have:

Proposition 4.4.6 ([JLLZ21, Theorem 4.10]). LetX be a Gushel–Mukai threefold.
Then σalt(α, β) := (Aalt(α, β), Zalt(α, β)) is a Bridgeland stability condition for
(α, β) in

V := {(α, β) | − 1

10
< β < 0, 0 < α < −β}.

Proof. By [BLMS23, Theorem 6.9] and [PR23, Proposition 3.2].

4.5 Serre-invariance of stability conditions
We now introduce the notion of Serre-invariance of stability conditions on Kuznetsov
components. This becomes very important when one uses equivalences of Kuznetsov
components to induce (iso)morphisms between the corresponding moduli spaces
of stable objects. We will see this later on in Chapter 6.

Definition 4.5.1. Let σ be a stability condition on the Kuznetsov component
Ku(X). It is called Serre-invariant if SKu(X)(σ) = σ · g for some g ∈ G̃L

+
(2,R).

Theorem 4.5.2. The stability conditions from Propositions 4.4.5 and 4.4.6 are Serre-
invariant.

Proof. For the cases when g ≥ 6 is even, Serre-invariance follows from [PR23,
Theorem 3.18].

4.5.1 Serre-invariant stability conditions onGushel–Mukai
threefolds

In this section, we state a few Serre-invariance related results specifically for
Gushel–Mukai threefolds. Here, we work with the alternative Kuznetsov com-
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ponent AX as it will be more convenient for us to use later on, but everything
written below holds for Ku(X) too (see Lemma 3.4.6).

Note that by [KP18, Proposition 2.6], there is a natural involutive autoequiv-
alence functor of AX , denoted by τA. It is related to the Serre functor as follows:

SAX
= τA[2].

We will discuss this in more detail in Section 6.3.1.
Section 4.5.1 and Section 4.5.2 are joint work with Xun Lin, Zhiyu Liu, and

Shizhuo Zhang, and are taken from the paper [JLLZ21].

Proposition 4.5.3 ([JLLZ21, Proposition 4.12]). Let σ be a Serre-invariant stabil-
ity condition on AX . Then

1. the homological dimension of the heart of σ is 2.

2. ext1(A,A) ≥ 2 for every non-trivial object A in the heart of σ.

Proof. Let A,B be objects in the heart A of σ. Then Hom(A,B[i]) = 0 for
i < 0. Note that the phases of the semistable factors of τA(A) are in the interval
(0, 1), and the phases of the semistable factors of B[i] are in (i, i + 1). Then
Hom(A,B[i]) ∼= Hom(B[i], τA(A)[2]) = 0 if i ≥ 3. This proves (1). For (2), note
that χ(A,A) ≤ −1 for all non-zero objects A ∈ A, so the result follows.

Proposition 4.5.4 ([JLLZ21, Proposition 4.14]). Let X be a Gushel–Mukai three-
fold and E an object in Ku(X) such that ext1(E,E) = 2 or 3 and χ(E,E) = −1.
Then E is σ-stable for every Serre-invariant stability condition σ on AX .

Proof. The proof is the same as in [Zha21, Corollary 4.15].

4.5.2 Uniqeness of Serre-invariant stability conditions
In this section, we show that all Serre-invariant stability conditions on Ku(Yd)

and Ku(X4d+2) (or AX4d+2
) are in the same G̃L

+
(2,R)-orbit (which is what we

mean by uniqueness) for each d ≥ 2.

Lemma 4.5.5 ([JLLZ21, Lemma 4.15]). Let σ′ be a Serre-invariant stability con-
dition on Ku(Yd) where d ≥ 2. Then the heart of σ′ has homological dimension at
most 2.
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Proof. When d = 2, this follows from the same argument as in Proposition 4.5.3.
When d = 3, this follows from [PY22, Lemma 5.10]. When d = 4 and 5, since
Ku(Y4) ≃ Db(C2) and Ku(Y5) ≃ Db(Rep(K(3))) where C2 is a genus 2 smooth
curve andRep(K(3)) is the category of representations of the 3-Kronecker quiver
([KPS18, p. 173]), then in these two cases the heart has homological dimension
1.

Lemma 4.5.6 ([JLLZ21, Lemma 4.16]). Let σ be a Serre-invariant stability condi-
tion on Ku(Yd) where d ≥ 2. If E and F are two σ-semistable objects with phases
ϕ(E) < ϕ(F ), then Hom(E,F [2]) = 0.

Proof. When d = 4 and 5, this follows from the fact that the heart of σ has
homological dimension 1. When d = 2 and 3, this is by [PY22, Section 5, Section
6].

Lemma 4.5.7 (Weak Mukai Lemma, [PY22, Lemma 5.12]). Let F → E → G be
an exact triangle in Ku(Yd) such that Hom(F,G) = 0 and such that the phases of
all the σ′-semistable factors of F are greater than the phases of the σ′-semistable
factors of G. Then we have

ext1(F, F ) + ext1(G,G) ≤ ext1(E,E).

Lemma 4.5.8 ([JLLZ21, Lemma 4.18]). Let σ be a Serre-invariant stability condi-
tion on Ku(Yd) where d ≥ 2. Assume that there is a triangle F → E → G of E ∈
Ku(Yd) such that the phases of all the σ-semistable factors of F are greater than the
phases of the σ-semistable factors of G. Then we have ext1(F, F ) < ext1(E,E)
and ext1(G,G) < ext1(E,E).

Proof. Since ϕ−(F ) > ϕ+(G), we have Hom(F,G) = 0. By [PY22, Lemma 5.11]
we have that there do not exist non-zero objects A in the heart of A such that
Ext1(A,A) = 0 or C. Thus ext1(A,A) ≥ 2 and by the Weak Mukai Lemma 4.5.7
the result follows.

Let σ = σ(α,−1
2
) and Y := Yd where d ≥ 2. As shown in [PY22, Section 4],

the moduli spaces Mσ(Ku(Y ),−s) and Mσ(Ku(Y ), t − s) are non-empty. Let
A,B ∈ A(α,−1

2
) with [A] = −s, [B] = t− s be σ-stable objects. We denote the

phase with respect to σ = σ(α,−1
2
) by ϕ(−).

Now let σ1 = (A1, Z1) be any Serre-invariant stability condition on Ku(Y ).
By [PY22, Remark 5.14], there is a T = (tij)1≤i,j≤2 ∈ GL+(2,R) such that Z1 =
T · Z(α,−1

2
). Since A is stable with respect to every Serre-invariant stability
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condition by [PY22, Lemma 5.13], we can assume A[m] ∈ A1 for some m ∈ Z.
Let σ2 = σ · g̃ for g̃ := (g, T ) ∈ G̃L

+
(2,R) such that A[m] ∈ A2 and Z2 = Z1.

Then we have ϕ1(A) = ϕ2(A) and A2 = P(α,−1
2
)((g(0), g(0) + 1]).

Lemma 4.5.9 ([JLLZ21, Lemma 4.19]). Fix the notation as above. Then A and B
are σ1-stable with phase ϕ1(A) = ϕ2(A) and ϕ1(B) = ϕ2(B).

Proof. The stability of A and B is from [PY22, Lemma 5.13]. By definition of
σ2, we know ϕ1(A) = ϕ2(A) and ϕ2(B) < ϕ2(A) < ϕ2(B) + 1. Also, from
[PY22, Remark 4.8] we know ϕ1(B) < ϕ1(A) = ϕ2(A) < ϕ1(B) + 1. Thus
ϕ1(B) = ϕ2(B).

Recall that the numerical Grothendieck group of a Gushel–Mukai threefold
X isN (Ku(X)) = ⟨v, w⟩, a rank two lattice generated by v = 1−3L+ 1

2
P = [IC ]

and w = H − 6L+ 1
6
P , where C is a twisted cubic on X .

Lemma 4.5.10 ([JLLZ21, Lemma 4.21]). Let X be a smooth Gushel–Mukai three-
fold and A′′, B′′ ∈ Ku(X) be two σ-stable objects of numerical class [A′′] =
−(3v − 2w) and [B′′] = v, where σ is a Serre-invariant stability condition. Then
we have ϕσ(B′′) < ϕσ(A

′′) < ϕσ(B
′′) + 1.

Proof. Let X be a Gushel–Mukai threefold. Let A′′, B′′ and B′ be (−2)-class σ-
stable objects in Ku(X) with respect to a Serre-invariant stability condition σ.
In particular, let B′′ := i∗(IC) where3 IC ̸∈ Ku(X). Thus i∗(IC) ∼= i∗(G), where
G is the twisted derived dual of a line L such that L∪C = Z(s), and where s is
a section of E∨. Note that G is given by the triangle

OX(−H)[1] → G→ OL(−2). (4.5.1)

Let A′′ := i∗(IL) and B′ := i∗(ID) = ID, where D is a twisted cubic with an
irreducible component L and ID ∈ Ku(X). Note that [B′′] = [B′] = v. Then the
result follows Lemma 4.5.11, Lemma 4.5.12, and Lemma 4.5.13, all of which we
prove below.

Lemma 4.5.11 ([JLLZ21, Lemma 4.22]). We have Hom(A′′, B′′[1]) ̸= 0.

Proof. By adjunction, we haveHom(i∗(IL), i
∗(G)[1]) ∼= Hom(IL, i

∗(G)[1]). Note
that i∗(G) fits into the exact triangle

G→ i∗(G) → E
3Recall the notation for left adjoint (projection) functors from Definition 3.4.7
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by [Zha21, Proposition 5.3]. Next apply Hom(IL,−) to the above triangle to get
the exact sequence

· · · → Hom(IL, E) → Ext1(IL, G) → Ext1(IL, i
∗(G)) → Ext1(IL, E) → · · · .

It is clear that Hom(IL, E) = 0 and Ext1(IL, E) ∼= Ext2(E∨, IL) = 0 so we
get Ext1(IL, i∗(G)) ∼= Ext1(IL, G). Applying Hom(IL,−) to the triangle (4.5.1)
defining G, we get a long exact sequence

· · · → Exti(IL,OX(−H)[1]) → Exti(IL, G) → Exti(IL,OL(−2)) → · · · .

By Serre duality, we have Exti(IL,OX(−H)) = Ext3−i(OX , IL) = 0 for all i.
Then we have Ext1(IL, G) ∼= Ext1(IL,OL(−2)). By the adjunction associated to
the embedding j : L → X , we get Ext1(IL,OL(−2)) ∼= Ext1(j∗IL,OL(−2)) ∼=
Ext1(NL|X ,OL(−2)). As the normal bundle of L in X is either NL|X = OL ⊕
OL(−1) or OL(1)⊕OL(−2), we get

Ext1(IL,OL(−2)) ∼= Ext1(OL ⊕OL(1),OL(−2)) = C3

or Ext1(IL,OL(−2)) ∼= Ext1(OL(−1)⊕OL(2),OL(−2)) = C3.

Lemma 4.5.12 ([JLLZ21, Lemma 4.23]). We have Hom(B′, A′′) ̸= 0.

Proof. ApplyingHom(ID,−) to the triangle E⊕2 → IL → i∗(IL), we get an exact
sequence

0 → Hom(ID, E⊕2) → Hom(ID, IL) → Hom(ID, i
∗(IL)) → · · · .

Note that Hom(ID, E) = 0, thus hom(ID, i
∗(IL)) ≥ hom(ID, IL). Since L ⊂ D

is an irreducible component ofD, hom(ID, IL) = 1. Then the result follows.

Lemma 4.5.13 ([JLLZ21, Lemma 4.24]). The twisted cubics C and D, and a line
L as in Lemma 4.5.10 exist.

Proof.

1. Let X be a special Gushel–Mukai threefold, π : X → Y5 the double cover
and B ⊂ Y5 the branch locus. Let c = l1 ∪ l2 ∪ l3 be a twisted cubic on Y5
such that each li is tangent to B. Note that l1 is in the conic l1 ∪ l2; pulling
back to X via π, we get a twisted cubic C such that L ∪ C = π−1(l1 ∪ l2)
and τ(L) ⊂ C . On the other hand, l1 is in c = l1 ∪ l2 ∪ l3; it is a twisted
cubic triple tangent to B, and pulling back to X we get a twisted cubic D
and ID ∈ Ku(X). Note that L ⊂ D.
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2. IfX is an ordinary Gushel–Mukai threefold, the locus of irreducible twisted
cubics has dimension≤ 2, and the locus of twisted cubics that are inKu(X)
has dimension 3. Thus there exists a twisted cubic D that contains a line
L and ID ∈ Ku(X). On the other hand, since Hom(E , IL) = C2, the locus
of twisted cubics C such that C ∪ L is the zero locus of a section of E∨ is
parametrized by P1, where IC ̸∈ Ku(X). Choose one such twisted cubic
C .

Theorem4.5.14 ([JLLZ21, Theorem 4.20]). All Serre-invariant stability conditions
on Ku(X) are in the same G̃L

+
(2,R)-orbit. Here X := X2d+2 or Yd for d ≥ 2.

Proof. Fix the notation to be the same as after Lemma 4.5.8. We are going to show
that σ1 = σ2. SinceKu(X7), Ku(X9) andKu(X10) ≃ Ku(Y4) are equivalent to the
bounded derived categories of some smooth curves of positive genus, the results
for these three cases follow from [Mac07, Theorem 2.7]. The results for Ku(X8)
and Ku(X12) are from the results for Ku(Y3) and Ku(Y5) and the equivalences
Ku(Yd) ≃ Ku(X2d+2), where d ≥ 3 (see [Kuz09]). Thus we only need to prove
this for Yd when d ≥ 2 and X := X6.

We first prove this for Yd when d ≥ 2. Let E ∈ A(α,−1
2
) be a σ-semistable

object with [E] = as+ bt. First we are going to show that if E is σ1-semistable,
then ϕ2(E) = ϕ1(E). Note that we have the following relations:

1. χ(E,A) = a+(d−1)b, χ(A,E) = a+ b; and µ0
α,− 1

2

(E) > µ0
α,− 1

2

(A) ⇐⇒
b < 0

2. χ(E,B) = −b, χ(B,E) = −[(d − 2)a + (d − 1)b]; and µ0
α,− 1

2

(E) >

µ0
α,− 1

2

(B) ⇐⇒ a+ b < 0.

From the definition of σ = σ(α,−1
2
)-stability we have a ≤ 0. When a = 0, by the

definition of a stability condition we have b < 0. Thus in the case b > 0we always
have a < 0. Note that by the proof of Lemma 4.5.9, we have ϕ2(B) < ϕ2(A) and
both of them lie in the interval (g(0), g(0) + 1].

• Assume that b > 0 and a+b > 0. Then µ0
α,− 1

2

(E) < µ0
α,− 1

2

(B) < µ0
α,− 1

2

(A)

and hence ϕ2(E) < ϕ2(B) < ϕ2(A). We also have χ(E,A) > 0. Thus by
Lemma 4.5.6 we know Hom(E,A[2]) = 0. Thus χ(E,A) = hom(E,A)−
hom(E,A[1]) > 0 implies hom(E,A) > 0, and therefore ϕ1(E) < ϕ1(A).
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Also from χ(B,E) < 0 and Lemma 4.5.5 we have ϕ1(B) − 1 < ϕ1(E).
Then we have ϕ1(B)− 1 < ϕ1(E) < ϕ1(A). But by Lemma 4.5.9 we know
ϕ1(B) = ϕ2(B), ϕ1(A) = ϕ2(A). Also, from the definition of σ2 we have
|ϕ2(B)− ϕ2(A)| < 1 and |ϕ2(A)− ϕ2(E)| < 1. Thus ϕ2(E)− ϕ1(E) = 0
or 1. But if ϕ2(E) = ϕ1(E) + 1, then ϕ2(B)− 1 = ϕ1(B)− 1 < ϕ2(E) <
ϕ1(B) = ϕ2(B). This implies 1 = ϕ1(B)− ϕ1(B) + 1 > ϕ2(E)− ϕ1(B) +
1 = ϕ1(E) − ϕ1(B) + 2, which is impossible since ϕ1(B) − 1 < ϕ1(E).
Thus we have ϕ1(E) = ϕ2(E).

• Assume that b > 0 and a+b < 0. Then µ0
α,− 1

2

(B) < µ0
α,− 1

2

(E) < µ0
α,− 1

2

(A)

and hence ϕ2(B) < ϕ2(E) < ϕ2(A). Since χ(A,E) < 0 and χ(E,B) < 0,
from Lemma 4.5.5 we know hom(A,E[1]) > 0 and hom(E,B[1]) > 0,
hence ϕ1(A)− 1 < ϕ1(E) < ϕ1(B) + 1. This means |ϕ1(E)− ϕ2(E)| = 0
or 1. But |ϕ1(E) − ϕ2(E)| = 1 is impossible since ϕ1(B) = ϕ2(B) <
ϕ2(E) < ϕ2(A) = ϕ1(A). Therefore we have ϕ1(E) = ϕ2(E).

• Assume that b < 0. Then µ0
α,− 1

2

(B) < µ0
α,− 1

2

(A) < µ0
α,− 1

2

(E) and hence
ϕ2(B) < ϕ2(A) < ϕ2(E). Since χ(E,A) < 0, from Lemma 4.5.5 we have
hom(E,A[1]) > 0 and ϕ1(E) < ϕ1(A) + 1. By Lemma 4.5.6, µ0

α,− 1
2

(B) <

µ0
α,− 1

2

(E) and χ(B,E) > 0, we know that hom(B,E) > 0. Thus ϕ1(B) <

ϕ1(E) < ϕ1(A)+1. Hence ϕ1(E)−ϕ2(E) = 0 or 1. But since µ0
α,− 1

2

(A) <

µ0
α,− 1

2

(E), we have ϕ2(A) = ϕ1(A) < ϕ2(E). Thus ϕ1(A) < ϕ2(E) <

ϕ1(A)+1. Then ϕ1(E)−ϕ2(E) = 1 is impossible since ϕ1(E) < ϕ1(A)+1.
Therefore we have ϕ1(E) = ϕ2(E).

• When b = 0, we have [E] = −a · [A]. Hence χ(E,A) = χ(A,E) < 0 and
we have ϕ1(A) − 1 ≤ ϕ1(E) ≤ ϕ1(A) + 1. But µ1(E) = µ1(A), so we
know ϕ1(E) − ϕ1(A) is an integer. Thus ϕ1(E) = ϕ1(A) ± 1. But from
the definition of a stability function, we have Z1(E[±1]) = −Z1(A). Thus
ϕ1(E) = ϕ1(A) = ϕ2(E).

• When a+ b = 0, we have [E] = −a · [B]. Hence χ(E,B) = χ(B,E) < 0
and we have ϕ1(B) − 1 ≤ ϕ1(E) ≤ ϕ1(B) + 1. But µ1(E) = µ1(B), so
we know ϕ1(E)−ϕ1(B) is an integer. Thus ϕ1(E) = ϕ1(B)± 1. But from
the definition of a stability function, we have Z1(E[±1]) = −Z1(B). Thus
ϕ1(E) = ϕ1(B) = ϕ2(E).
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Next we show that E ∈ A2 is σ2-semistable if and only if E ∈ A1 is σ1-
semistable. We prove this by induction.

If ext1(E,E) < 2, this is by [PY22, Section 5]. Now assume this is true for
all E ∈ A2 σ2-semistable such that ext1(E,E) < N .

When E ∈ A2 is σ2-semistable and has ext1(E,E) = N , assume otherwise
that E is not σ1-semistable. Let A0 be the first HN-factor of E with respect to σ1
and An be the last one. Then ϕ1(A0) > ϕ1(An). By Lemma 4.5.8, ext1(A0, A0) <
N and ext1(An, An) < N . Thus A0 and An are σ2-semistable by the induction
hypothesis and ϕ2(A0) > ϕ2(An) by the results above. Since Hom(A0, E) and
Hom(E,An) are both non-zero, we know that ϕ2(A0) ≤ ϕ2(E) and ϕ2(E) ≤
ϕ2(An), which implies ϕ2(A0) ≤ ϕ2(An) and gives a contradiction. Thus E is
σ1-semistable. When E ∈ A1 is σ1-semistable, the same argument shows that
E ∈ A2 is also σ2-semistable.

Since every object in the heart is the extension of semistable objects, we have
A1 = A2. And from Z1 = Z2, we know that σ1 = σ2 = σ · g̃. Hence σ1 is in the
orbit of σ = σ(α,−1

2
).

For a Gushel–Mukai threefold X6, the result follows from Lemma 4.5.10 and
a similar argument as the previous index 2 cases.

Remark 4.5.15. The idea of the proof of Theorem 4.5.14 was first explained to us
by Arend Bayer. In [Zha21, Proposition 4.21], Zhang made an attempt to prove
this statement but the argument was incomplete. Here, we fill the gaps and give
a uniform argument for all Ku(Yd) and Ku(X4d+2) when d ≥ 2.

In the paper [FP23, Theorem 3.1], the authors prove the uniqueness of Serre-
invariant stability conditions for a general triangulated category satisfying a list
of very natural assumptions; these categories include Kuznetsov components of
all of the Fano threefolds that we consider.
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Chapter 5

Categorical Torelli qestions

Before we begin reviewing and investigating categorical Torelli questions, we
very briefly review the Hodge-theoretic construction of the intermediate Jaco-
bian of a complex smooth projective variety (Fano threefolds in our case). We
also briefly touch on the classical notion of a Torelli theorem to motivate the
categorical perspective.

5.1 Intermediate Jacobians, periodmaps, and clas-
sical Torelli theorems

Definition 5.1.1. The intermediate Jacobian of a Fano threefold is the complex
torus

J(X) :=
H1,2(X)

H3(X,Z)
∼=
H2,1(X)∨

H3(X,Z)
.

The intermediate Jacobian comes with a principal polarisation, and it is a
generalisation of the Jacobian variety J(C) := H0(Ω1

C)
∨/H1(C,Z) of a curve.

Note here that H1(C,Z) is embedded in H0(Ω1
C)

∨ via the map ω 7→
∫
γ
ω where

γ is a closed path in C . The homologyH3(X,Z) is embedded analogously inside
H2,1(X)∨.

In [Tor13], Torelli showed that J(C) considered as a principally polarised
abelian variety determines C up to isomorphism. The same question can be
asked for the intermediate Jacobian of a Fano threefold. In the celebrated papers
[CG72, Tju70], it is proved that the intermediate Jacobian of a cubic threefold
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Y ⊂ P4 considered as a principally polarised abelian variety determines the
cubic threefold up to isomorphism. This can be restated as the period map

P : Y3 → A5, Y 7→ J(Y )

being injective, where A5 is the moduli space of dimension 5 principally po-
larised abelian varieties.

On the other hand, there are ordinary Gushel–Mukai threefolds which are
non-isomorphic but have isomorphic intermediate Jacobians [DIM12]. So Torelli
does not hold and the associated period map P : X6 → A10 has non-trivial fibers.
The form that these fibers take is still a conjecture (see Conjecture 6.8.1).

As we will see later on in this thesis, analogous categorical statements can be
made, and these may end up shedding some light on the classical Hodge-theoretic
situation (see Section 6.8).

5.2 Categorical Torelli qestions
For Fano threefolds, one can ask the following natural questions:

Questions 5.2.1.

1. Does Ku(X) determine the isomorphism class of X? In other words, for
Fano threefolds X and X ′ of the same deformation family, does Ku(X) ≃
Ku(X ′) imply X ∼= X ′? We call such an implication a categorical Torelli
theorem.

2. Does Ku(X) determine the birational equivalence class of X? In other
words, for Fano threefolds X and X ′ of the same deformation family, does
Ku(X) ≃ Ku(X ′) implyX is birational toX ′? We call such an implication
a birational categorical Torelli theorem.

3. What extra data along with Ku(X) is required to identify X within its
birational equivalence class? We call such a statement a refined categorical
Torelli theorem.

Remark 5.2.2. Similar questions can be asked for other (non-Fano) varieties,
providing they admit a semiorthogonal decomposition with a non-trivial piece.
We will touch on these questions in the next Section 5.3.
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5.3 Related work
In this section, we give an overview of which categorical Torelli-type statements
are known outside of the work in this thesis. We note here the fantastic overview
[PS22] on this topic.

5.3.1 Higher genus index 1 Fano threefolds
In [JLZ22], via a uniform argument we prove refined categorical Torelli theo-
rems for Fano threefolds of Picard rank 1, index 1 and genus g ≥ 6. We show
that ⟨OX⟩⊥ = ⟨Ku(X), E⟩ ⊂ Db(X) (see Table 3.1 for the relevant semiorthogo-
nal decompositions) is precisely the data required to recover X . More precisely,
we show that given an equivalence of Kuznetsov components Ku(X) ≃ Ku(X ′)
preserving the gluing objects associated to the subcategories ⟨Ku(X), E⟩ and
⟨Ku(X ′), E ′⟩, the threefolds X and X ′ are isomorphic. We do this by recovering
X as a Brill–Noether locus of objects inside the moduli space of Bridgeland sta-
ble objects in Ku(X). The moduli space is with respect to the numerical class of
the projection of a skyscraper sheaf into Ku(X), and the Brill–Noether locus is
defined using the gluing data of ⟨Ku(X), E⟩. An equivalence of Kuznetsov com-
ponents preserving the gluing data induces an ismorphism of the Brill–Noether
loci, and thus of X and X ′.

5.3.2 Index 2 Fano threefolds
In this section we summarise what is known about categorical Torelli theorems
for Fano threefolds Yd. Before we do, we note recent work of [FLZ23] which
provides two new ways of proving categorical Torelli for Ku(Yd) when 2 ≤ d ≤
4.

One of the methods is to show that the gluing object (in the same sense as
Section 6.1) is uniquely/canonically determined in the Kuznetsov component
[FLZ23, Theorem 1.1]. A categorical Brill–Noether theorem [FLZ23, Theorem
1.2] (in the same sense as Section [JLZ22]) is proved which proves categorical
Torelli.

The second method is to show that any Fourier–Mukai equivalence of Kuznetsov
components lifts to an equivalence of their derived categories [FLZ23, Theorem
1.4]. Categorical Torelli then follows by Bondal–Orlov’s Reconstruction Theo-
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rem [BO01].

Y5. This Fano threefold is rigid, i.e. it has no moduli (see e.g. [Bel23]). Therefore
there is no Torelli theorem to prove here.

Y4. Recall that the derived category of Y4 has the semiorthogonal decomposition
Db(Y4) = ⟨Db(C2),O(−H),O⟩, i.e. Ku(Y4) is the derived category of a genus 2
curve. This case is discussed in detail in the introduction (see the section “Moti-
vating Examples”). In short, since Y4 can be recovered from the associated curve
C2, categorical Torelli follows.

Y3. Categorical Torelli for the cubic threefold Y3 ⊂ P4 was first proved in
[BMMS12, Theorem 1.1]. Since this paper was written before the uniform con-
struction of stability conditions on Kuznetsov components [BLMS23], the au-
thors used the fact that Ku(Y3) is equivalent to an admissible subcategory of
Db(P2,B) to induce stability conditions onKu(Y3). HereDb(P2,B) is the bounded
derived category of the abelian categoryCoh(P2,B0) of right coherentB0-modules,
where B0 is the even part of the Clifford algebra on corresponding to a certaain
conic fibration of P2 related to a strict transform of Y3. They then showed that
the moduli space of stable objects in Ku(Y3) of numerical class the ideal sheaf of
a line in Y3 (with respect to the aforementioned stability condition) is isomorphic
to the Hilbert scheme of lines on Y3. Classical results imply that Y3 is determined
by the Hilbert scheme of lines on it; indeed the intermediate Jacobian J(Y3) is the
Albanese variety of the Hilbert scheme of lines on Y3 and J(Y3) determines Y3 by
the Torelli theorem for cubic threefolds due to [CG72, Tju70]. Hence, categorical
Torelli follows.

Another proof of categorical Torelli for cubic threefolds was provided in
[PY22, Theorem 5.17]. In this paper, the authors showed that given a Serre-
invariant stability condition as constructed in [BLMS23], the moduli space of
stable objects with respect to the same numerical class as in the previous para-
graph is isomorphic to the same Hilbert scheme as before. Categorical Torelli
then follows from the same argument.

Yet another proof of categorical Torelli was provided in [BBF+22]. In this pa-
per, the authors considered the moduli space of Bridgeland stable (with respect
to a Serre invariant stability condition) objects with respect to the class of the
projection of the skyscraper sheaf into Ku(Y3). They showed that the Bridgeland
moduli space is isomorphic to a Gieseker moduli space with respect to the same
numerical class. They also showed that the Gieseker moduli space is the blow-up
of the theta divisor of J(Y3) in the unique singular point of the theta divisor, with
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the exceptional divisor being Y3 itself. Assuming an equivalence of Kuznetsov
components, due to the Serre invariance of the stability conditions the Bridge-
land moduli spaces end up being isomorphic. Thus the aforementioned Gieseker
moduli spaces are isomorphic, and since they uniquely determine Y3, this gives
a proof of categorical Torelli for Ku(Y3).

Under a Fourier–Mukai assumption on the equivalence, [BT16, Corollary 3.1]
also proved the categorical Torelli theorem for cubic threefolds (see more details
on this in the next Y2 section).

Y2. Categorical Torelli for the quartic double solid Y2 was first considered in
[BT16, Corollary 3.1]. Using the language of non-commutative motives, they
showed that a Fourier–Mukai equivalence of Kuznetsov components induces an
isomorphism of intermediate Jacobians as principally polarised abelian varieties.
By the classical Torelli theorem for quartic double solids due to [Voi88, Deb90],
the categorical Torelli theorem (with the Fourier–Mukai assumption) follows.

Remark 5.3.1. Using the same technique, [BT16] also proved categorical Torelli
theorems (with a Fourier–Mukai assumption) for intersections of two even di-
mensional quadrics, and intersections of three odd dimensional quadrics; in other
words whenever a classical Torelli theorem in terms of the intermediate Jacobian
holds, for a variety whose Kuznetsov component is the orthogonal to an excep-
tional collection (which implies their J(Ku(Y )⊥,dg) = 0 condition; cf. [BT16,
Theorem 2.4]).

The same categorical Torelli theorems follow from Perry’s construction of
the intermediate Jacobian of the Kuznetsov component [Per22].

A proof which does not require the Fourier–Mukai assumption on the equiv-
alence was given in [APR22]. The authors studied moduli spaces of stable objects
in Ku(Y2) of a certain numerical class (related to the projection of the skyscraper
sheaf into Ku(Y2) by the Serre functor of Ku(Y2)) with respect to Serre invariant
stability conditions. They described the irreducible components of these moduli
spaces (by tracking changes of objects during wall-crossing to the Bridgeland
moduli spaces, from Gieseker moduli spaces of the same numerical class). One
of the irreducible components is Y2 itself, and the authors showed that given an
equivalence of Kuznetsov components, the component Y2 is sent to the corre-
sponding component Y ′

2 thus proving categorical Torelli.

Y1. The categorical Torelli problem for Ku(Y1) is currently open. One cannot use
the moduli-theoretic approach from [APR22] due to the homological dimension
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of the heart of stability conditions on Ku(Y1) being too large. Furthermore, we
do not know whether Serre invariant stability conditions on Ku(Y1) are unique.

5.3.3 Cubic fourfolds and other hypersurfaces
For hypersurfaces of projective space satisfying certain numerical conditions, in
[HR19], the authors relate the “twisted” Hochschild cohomology of the Kuznetsov
component HH∗(Ku(Y ), (1)) to the Jacobian ring

Jac(Y ) := C[y0, . . . , yn]/(∂0y0, . . . , ∂yn)

of Y . When Y ⊂ P5 is a cubic fourfold (and other hypersurfaces satisfying a nu-
merical condition on degree and dimension), the map between HH∗(Ku(Y ), (1))
and Jac(Y ) ends up being an isomorphism. Therefore, assuming that we have
an equivalence of Kuznetsov components which commutes with the twist func-
tor (1), this induces an isomorphism of the Jacobian rings of the cubic fourfolds.
Then by the Mather–Yau Theorem [Don83] the two cubic fourfolds are isomor-
phic.

In [Pir22], the author generalises the results of [HR19] by dropping a numer-
ical assumption required in their paper.

In [LZ23], the authors prove categorical Torelli theorems for a range of hy-
persurfaces in projective space by relating the Serre algebra of the Kuznetsov
component to the Jacobian ring, and then using the Mather–Yau Theorem as in
previous paragraphs. This allows them to drop that the equivalence commutes
with the degree shift functor (1) as it needs to do in [HR19, Pir22].

In [BLMS23, Theorem A.1], the authors prove a categorical Torelli theorem
for cubic fourfolds using Bridgeland moduli spaces of stable objects in Kuznetsov
components of cubic fourfolds.

5.3.4 X2

Recall that X2 is a cover of P3 branched in a sextic hypersurface Z . In [DJR23],
we relate the equivariant Kuznetsov component ofX2 to the middle primitive co-
homology ofZ . More precisely, we show that the orthogonal (inside the topolog-
ical K-theory of the equivariant Kuznetsov component of X) to the algebraic K-
theory of the equivariant Kuznetsov component ofX , is isomorphic to the middle
primitive cohomology of Z . In this case, an equivalence of Kuznetsov compo-
nents descends to an equivalence between the equivariant Kuznetsov compo-
nents. We show that this equivariant equivalence induces a Hodge isometry
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between the middle primitive cohomologies of the respective branch divisors,
which by Donagi’s Torelli theorem for hypersurfaces [Don83] implies that the
branch divisors are isomorphic. This gives the categorical Torelli theorem.

In [LZ23, 6. Appendix], the authors can adapt their methods to weighted
projective hypersurfaces, and thus also show a categorical Torelli theorem for
X2 considered as a hypersurface in P(1, 1, 1, 1, 3).

The upcoming work [LPS23] also treats this case with independent methods.

5.3.5 Enriqes surfaces
The derived category of an Enriques surface determines it up to isomorphism
([BM01] in characteristic 0 and [HLT21] in positive characteristic). Furthermore,
derived categories of Enriques surfaces admit (non-full) length 10 exceptional
collections. Thus, one can ask whether categorical Torelli holds in this case too.

In [LNSZ21], the authors prove a categorical Torelli theorem for generic En-
riques surfaces by starting with an equivalence between the Kuznetsov compo-
nents, and showing that one can uniquely extend this equivalence, exceptional-
by-exceptional to an equivalence of the whole derived categories. The afore-
mentioned derived Torelli result is then used to complete the proof of categori-
cal Torelli. Uniquely extending this equivalence through the semiorthogonal de-
composition relies on the projections of the exceptional objects intoKu(X) being
spherical objects. The non-generic case is proved in the sequel paper [LSZ22].
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Chapter 6

Categorical Torelli for
Gushel–Mukai threefolds

We begin by studying the categorical Torelli question for ordinary Gushel–Mukai
threefolds. In the paper [KP23, Theorem 1.6], the authors show that birational
but non-isomorphic Gushel–Mukai threefolds (in their language, period partners)
have equivalent Kuznetsov components. Therefore, it makes sense to ask (2) and
(3) from Questions 5.2.1.

We first recall the definition of an n-dimensional Gushel–Mukai variety X .
They are given asX = Cone(Gr(2, 5))∩Pn+4∩Qwhere 2 ≤ n ≤ 6,Cone(Gr(2, 5))
is the cone over the Plücker embedded Grassmannian, andQ ⊂ Pn+4 is a quadric
hypersurface. Projecting from the vertex of the cone gives a morphism X →
Gr(2, 5) and a vector bundle E associated to this morphism. Gushel–Mukai va-
rieties have semiorthogonal decompositions [KP18, Proposition 2.3]

Db(X) = ⟨AX ,OX , E∨,OX(H), E∨(H), . . . ,OX((n− 3)H), E∨((n− 3)H)⟩.
(6.0.1)

Remark 6.0.1. We make a remark on notation. Take for example a Gushel–
Mukai threefold (n = 3). The semiorthogonal decomposition (6.0.1) above gives
the semiorthogonal decompositionDb(X) = ⟨AX ,OX , E∨⟩whereas the semiorthog-
onal decomposition from Table 3.1 gives Db(X) = ⟨Ku(X), E ,OX⟩. It is im-
portant to note that while these two Kuznetsov components are equivalent by
Lemma 3.4.6, i.e. Ku(X) ≃ AX , they are not equal. However, for the purposes of
this thesis (categorical Torelli statements etc.), they can be considered the same
since they carry the same data up to equivalence.
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Therefore, for the rest of the thesis we set some notational convention. When
X is an index 1 Fano threefold and we writeKu(X)we mean the right orthogonal
to ⟨E ,OX⟩. We call Ku(X) the Kuznetsov component. When we write AX we
mean the right orthogonal to ⟨OX , E∨⟩, and we call AX the alternative Kuznetsov
component.

For the rest of Section 6 we will work with the alternative Kuznetsov com-
ponent AX .

Remark 6.0.2. Recall the rank 2 vector bundle E on Gushel–Mukai threefolds
X . In the ordinary case, it is the restriction of the tautological bundle on the
Grassmannian Gr(2, 5) which the Gushel–Mukai threefold lives in. There is a
tautological short exact sequence

0 → E → O⊕5
X → Q → 0

where Q is the tautological quotient bundle. It is the pullback of the tautological
quotient bundle on Gr(2, 5) to X .

Kuznetsov and Perry make the following conjecture regarding the Kuznetsov
components of Gushel–Mukai varieties:

Conjecture 6.0.3 ([KP23, Conjecture 1.7]). SupposeX andX ′ are Gushel–Mukai
varieties of the same dimension such that there is an equivalenceKu(X) ≃ Ku(X ′).
Then X ≃ X ′.

In Section 6.6.3, we give a proof of this conjecture for the case of general (in
their moduli) ordinary Gushel–Mukai threefolds.

Chapter 6 is joint work with Xun Lin, Zhiyu Liu, and Shizhuo Zhang, and is
taken from the paper [JLLZ21].

6.1 Gluing data
In this section, we study the projection i!(E) of E into the Kuznetsov compo-
nent along the right adjoint functor of the inclusion i : Ku(X) → ⟨Ku(X), E⟩.
We call this object the gluing data/object, because we have the following gluing
category description (see e.g. [KL15, Definition 2.4, Lemma 2.5]) of the two term
semiorthogonal decomposition ⟨Ku(X), E⟩ ⊂ Db(X):

⟨Ku(X), E⟩ ≃ {(E1, E2, φ) | E1 ∈ Ku(X), E2 ∈ ⟨E⟩, φ : E1 7→ i!(E2)}
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In other words, we see that the two term semiorthogonal decomposition
⟨Ku(X), E⟩ is essentially determined by Ku(X) and the object i!(E).

6.1.1 For Ku(X)

Lemma6.1.1 ([JLLZ21, Lemma 5.1]). The projection object i!(E) is given byLEQ(−H)[1].
It is a two-term complex with cohomologies

Hi(i!(E)) =


Q(−H), i = −1

E , i = 0

0, i ̸= −1, 0.

Proof. Indeed, by e.g. [Kuz10, p. 4] we have the exact triangle

ii!(E) → E → LKu(X)E → .

But note that ⟨Ku(X), E⟩ = ⟨SD(E),Ku(X)⟩ = ⟨LKu(X)E ,Ku(X)⟩. The first
equality is by Proposition 3.2.5 and the second is by Lemma 3.2.7. Therefore the
triangle above becomes ii!(E) → E → SD(E). To find SD(E) explicitly, note
that SD ∼= ROX(−H) ◦ SDb(X). Since ROX(−H)E(−H) ∼= Q(−H)[−1], we have
SD(E) ∼= Q(−H)[2]. So the triangle above becomes

ii!(E) → E → Q(−H)[2].

Applying i∗ = LE to the triangle and using the fact that i∗i ∼= id and i∗E = 0
gives i!(E) ∼= LEQ(−H)[1], as required. Taking the long exact sequence with
respect to H∗ gives the cohomology objects.

Remark 6.1.2. Since hom(E ,Q(−H)[2]) = 1, the object i!(E) is the unique
object that lies in the non-trivial triangle

Q(−H)[1] → i!(E) → E . (6.1.1)

Lemma 6.1.3 ([JLLZ21, Lemma 5.3]). Let X be a Gushel–Mukai threefold. Then
we have

1. Hom•(Q(−H), E) = Hom•(E ,Q∨) = C2 when X is ordinary.

2. Hom•(Q(−H), E) = Hom•(E ,Q∨) = C3 ⊕C[−1] when X is special.

3. Hom•(E ,Q(−H)) = C[−2].
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Proof. When X is ordinary, this follows from the Koszul resolution of X ⊂
Gr(2, 5) and the Borel–Bott–Weil Theorem. WhenX is special, note thatπ∗OX =
OY ⊕OY (−1). Then the result follows from the projection formula and [San14,
Lemma 2.14, Proposition 2.15].

Lemma 6.1.4 ([JLLZ21, Lemma 5.4]). Let X be a Gushel–Mukai threefold. Then
we have

• Hom•(i!(E), i!(E)) = C⊕C2[−1] when X is ordinary.

• Hom•(i!(E), i!(E)) = C⊕C3[−1]⊕C[−2] when X is special.

Hence i!(E) is stable with respect to every Serre-invariant stability condition on
Ku(X).

Proof. The first statement follows from applying Hom(−, E) to triangle (6.1.1)
and Lemma 6.1.3, and also the fact that Hom•(i!(E), i!(E)) = Hom•(i!(E), E)
which is by adjunction. The last statement follows from Proposition 4.5.4.

6.1.2 For AX

In this section, we compute the analogous gluing object for AX . Recall that we
have the semiorthogonal decompositions

Db(X) = ⟨AX ,OX , E∨⟩ ≃ ⟨AX ,Q∨,OX⟩

where the second equivalence is because LOX
E∨ ∼= Q∨[1]. Let D = ⟨AX ,Q∨⟩

and let i : AX → D be the inclusion functor1. Because AX ⊂ D is an admissible
subcategory, i has a left adjoint i∗ and a right adjoint i!. The aim of this section
is to compute and describe the image i!(Q∨).

Lemma 6.1.5 ([JLLZ21, Lemma 5.5]). The object i!(Q∨) is given by LQ∨E [1]. It is
a two-term complex with cohomologies

Hi(i!(Q∨)) =


E , i = −1

Q∨, i = 0

0, i ̸= −1, 0.

Proof. By the same argument as Lemma 6.1.1.
1By abuse of notation, we use i for the analogous inclusion to the Ku(X) case.
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Similarly to the Ku(X) gluing data case, i!(Q∨) lies in the triangle

E [1] → i!(Q∨) → Q∨. (6.1.2)

Remark 6.1.6. The gluing object in Ku(X) can be identified with the one in
AX via the equivalence Ξ from Lemma 3.4.6. Indeed, applying Ξ to the triangle
(6.1.1) gives the triangle (6.1.2) shifted by [1], i.e. Ξ(i!(E)) ∼= i!(Q∨)[1].

Remark 6.1.7. Later in Section 6.3, we will see that we in fact have i!(Q∨) ∼=
pr(IC) where pr : Db(X) → AX is the projection functor, and C ⊂ X is a conic
such that IC ̸∈ AX (see Proposition 6.3.2).

6.2 Conics on Gushel–Mukai threefolds
In this section, we summarise the different types of conics which appear on or-
dinary Gushel–Mukai threefolds X , and the geometry of these conics. A conic
means a closed subscheme C ⊂ X with Hilbert polynomial pC(t) = 1 + 2t, and
a line means a closed subscheme L ⊂ X with Hilbert polynomial pL(t) = 1 + t.
Denote their Hilbert schemes by C(X) and Γ(X), respectively. All the results in
this section are from [DIM12, Ili94, Log82].

6.2.1 Conics on ordinary Gushel–Mukai threefolds
Recall thatX is a quadric section of a codimension 2 linear section of Gr(2, 5) =
Gr(2, V5) where V5 is a 5-dimensional complex vector space. Denote by Vi an
i-dimensional vector subspace of V5.

There are two types of 2-planes inGr(2, 5); σ-planes are given set-theoretically
as {V2 | V1 ⊂ V2 ⊂ V4}, and ρ-planes are given by {V2 | V2 ⊂ V3}.

Definition 6.2.1 ([DIM12, p. 5]).

• A conic C ⊂ X is called a τ -conic if the 2-plane ⟨C⟩ is not contained in
Gr(2, V5), there is a unique V4 ⊂ V5 such that C ⊂ Gr(2, V4), the conic C
is reduced and if it is smooth, the union of corresponding lines in P(V5) is
a smooth quadric surface in P(V4).

• A conic C ⊂ X is called a σ-conic if the 2-plane ⟨C⟩ spanned by C is an σ-
plane, and if there is a unique hyperplane V4 ⊂ V5 such thatC ⊂ Gr(2, V4)
and the union of the corresponding lines in P(V5) is a quadric cone in
P(V4).
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• A conic C ⊂ X is called a ρ-conic if the 2-plane ⟨C⟩ spanned by C is a
ρ-plane, and the union of corresponding lines in P(V5) is this 2-plane.

Lemma 6.2.2 ([JLLZ21, Lemma 6.2]). Let X be an ordinary Gushel–Mukai three-
fold and C ⊂ X a conic.

1. If C is a τ -conic, then Hom•(E , IC) = C and Hom•(E∨, IC) = 0.

2. If C is a ρ-conic, then Hom•(E , IC) = C2 ⊕C[−1] and Hom•(E∨, IC) = 0.

3. If C is a σ-conic, then Hom•(E , IC) = C and Hom•(E∨, IC) = C[−1] ⊕
C[−2].

Proof. Note that if hom(E , IC) = a, then C ⊂ Gr(2, 5 − a) ∩ X . Since for any
conic, there is some V4 such that C ⊂ Gr(2, V4), we have hom(E , IC) ≥ 1.

If hom(E , IC) ≥ 2, then C ⊂ Gr(2, 3) which is a ρ-plane. For a τ -conic, C is
not inGr(2, 5) and for a σ-conic, ⟨C⟩ is a σ-plane, so for these two types of conics
Hom(E , IC) = C and for ρ-conics, hom(E , IC) ≥ 2. But if hom(E , IC) ≥ 3 then
C ⊂ Gr(2, 2) which is impossible, hence Hom(E , IC) = C2 for ρ-conics. Now
the result on Ext groups follows from applying Hom(E ,−) to the short exact
sequence 0 → IC → OX → OC → 0 and the fact that χ(E , IC) = 1.

Applying Hom(E∨,−) to the short exact sequence 0 → IC → OX → OC →
0 gives Hom(E∨, IC) = Ext3(E∨, IC) = 0. Since χ(E∨, IC) = 0, we only need to
compute Ext1(E∨, IC). So apply Hom(−, IC) to the dualised tautological short
exact sequence 0 → Q∨ → O⊕5

X → E∨ → 0. Since Hom•(OX , IC) = 0 we
get Hom(Q∨, IC) ∼= Ext1(E∨, IC). Similarly to the first paragraph of the proof,
if hom(Q∨, IC) = a then C ⊂ Gr(2 − a, 5 − a) ∩ X . Thus hom(Q∨, IC) ≤ 1
for any conic C . Note that hom(Q∨, IC) = 1 if and only if C is contained in
the zero locus of a global section of Q. But such a zero locus is a σ-plane in
Gr(2, 5). Hence, Hom(Q∨, IC) = 0 for τ and ρ-conics, and Hom(Q∨, IC) = C
for σ-conics. The result follows.

We now discuss the geometry of the Hilbert scheme of conics on X , which
we denote by C(X).

Theorem 6.2.3 ([Log82, Section 0], [DIM12]). The Hilbert scheme C(X) is an
irreducible projective surface. If X is general, then C(X) is furthermore smooth.

There is a unique ρ-conic onX , denoted by cX , and there is a line Lσ ⊂ C(X)
of σ-conics on X [DIM12, Section 5.1].
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Lemma 6.2.4 ([DIM12, p. 16]). The only rational curve in C(X) is Lσ. Further-
more, there exists a surface Cm(X) and a map C(X) → Cm(X) which contracts Lσ
to a point [π]. If X is general, then Cm(X) is the minimal surface of C(X).

Lemma 6.2.5 ([DIM12, Section 5.2]). LetX be general. Then there is an involution
on Cm(X) switching the points [cX ] and [π].

Remark 6.2.6. In the paper [DIM12], their Fg(X) is our C(X), and their Fm(X)
is our Cm(X).

The following theorem reconstructs a general ordinary Gushel–Mukai three-
fold from its Hilbert scheme of conics. It was originally proved in [Log82, Theo-
rem 7.7] and later reproved in [DIM12, Theorem 9.1].

Theorem 6.2.7 (Logachev’s Reconstruction Theorem). Let X and X ′ be general
ordinary Gushel–Mukai threefolds. Then C(X) ∼= C(X ′) implies X ∼= X ′.

6.2.2 Conics and line transforms
For this section we follow [DIM12, Section 6.1]. Let X be a general ordinary
Gushel–Mukai threefold, and let c ̸= cX be a smooth conic onX . Let πc : P7 99K
P4 be the projection away from the 2-plane ⟨c⟩. Let ϵ : X̃ → X be the blow
up of X at c with exceptional divisor E. The composition πc ◦ ϵ : X̃ → P4 is
the morphism ϕ|−K

X̃
| associated to the linear system | − KX̃ |, and it has Stein

factorisation
X̃ P4

X

ϕ

ϕ|−K
X̃

|

Since the conditions in [Isk99, Theorem 1.4.15] are all satisfied, there exists a
(−E)-flop

X̃ X̃c

X

ϕ

f

ϕc

A study of the properties of −KX̃c
shows that there is a contraction ϵc′ : X̃c →

Xc, where Xc is an ordinary Gushel–Mukai threefold, and ϵc′ : X̃c → Xc is the
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blow-up ofXc in a smooth conic c′ with exceptional divisorE ′ = −2KX̃c
−f(E).

In summary, there exists a commutative diagram

X̃ X̃c

X

X Xc

ϵ

f

ϕ ϕc

ϵc′

πc

ψc

πc′

where ψc : X → Xc is the elementary transformation ofX along the conic c. Note
that the elementary transformation of Xc along the conic c′ is ψ−1

c : Xc → X .

Remark 6.2.8. A similar flopping procedure can be done to construct the ele-
mentary transformation of X along the line L, which we denote as ψL : X → XL

(see [DIM12, § 6.2]).

Conic transforms can be defined for any conic c ⊂ X . Such an Xc is called
the period partner of X in [DK18], and the line transforms are called the period
duals. We now list some important results about conic and line transforms below.

Theorem 6.2.9 ([DIM12, Theorem 6.4]). Let X be a general ordinary Gushel–
Mukai threefold, and let c ⊂ X be any conic. Then one can give a general ordinary
Gushel–Mukai threefold Xc ≃ X , such that C(Xc) is isomorphic to Cm(X) blown
up at the point [c] ∈ Cm(X), where Cm(X) is the minimal surface of C(X).

Proposition 6.2.10 ([DIM12, Theorem 6.4, Remark 7.2]). Let X be a general or-
dinary Gushel–Mukai threefold. Then the isomorphism classes of conic transforms
of X are parametrized by the surface Cm(X)/ι.

Theorem 6.2.11 ([KP23, Theorem 1.6]). Let X be a general ordinary Gushel–
Mukai threefold. Then the Kuznetsov components of all conic transforms and line
transforms of X are equivalent to AX .

6.2.3 Conics on special Gushel–Mukai threefolds
Let X be a special Gushel–Mukai threefold. Recall that X is a double cover
X → Y of a degree 5 Fano threefold Y with branch locus a quadric hypersurface
B ⊂ Y . When X is general, B is a smooth K3 surface of Picard rank 1 and
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degree 10. Recall that Y is a codimension 3 linear section of Gr(2, 5). Let V be
the tautological quotient bundle on Y . We recall some properties of C(X) from
[Ili94].

Theorem 6.2.12 ([Ili94, Proposition 2.1.2]). Let X be a special Gushel–Mukai
threefold. Then C(X) has two components C1 and C2. One of the components C2 ∼=
Σ(Y ) ∼= P2 parametrizes preimages of lines on Y . Moreover, when X is general,
C(X) is smooth away from C1 ∩ C2.

The following lemma will be useful in computations; it is similar to Lemma
6.2.2.

Lemma 6.2.13 ([JLLZ21, Lemma 6.12]). Let X be a special Gushel–Mukai three-
fold and C a conic on X . Then Hom•(E∨, IC) ̸= 0 if and only if C is the preimage
of a line on Y . In this case Hom•(E∨, IC) = C[−1]⊕C[−2], and such a family of
conics is parametrized by the Hilbert scheme of lines Σ(Y ) ∼= P2 on Y .

Proof. Recall from the proof of Lemma 6.2.2 that Hom(Q∨, IC) ∼= Ext1(E∨, IC),
so Hom•(E∨, IC) ̸= 0 if and only if Hom(Q∨, IC) ̸= 0. The image of a non-zero
map Q∨ → IC is the zero locus of a section s of Q, which is the preimage of the
zero locus of a section of V . By [San14, Lemma 2.18], the zero locus of a section
of V is either a line or a point. Thus the zero locus of a section of Q is either the
preimage of a line on Y which is a conic onX , or a zero-dimensional closed sub-
scheme of length two. But this zero locus contains a conic C ⊂ X , so C = Z(s)
is the preimage of a line on Y and the map Q∨ → IC is surjective. In particular,
such conics are exactly the preimages of lines on Y , and are parametrized by
Σ(Y ) ∼= P2.

6.3 The Hilbert scheme of conics as a Bridgeland
moduli space

In this section, we construct the moduli space of σ-stable objects of the (−1)-class
−x in the alternative Kuznetsov component AX of a Gushel–Mukai threefoldX .

Proposition 6.3.1 ([JLLZ21, Proposition 7.1]). LetC ⊂ X be a conic on a Gushel–
Mukai threefold X . Then IC ̸∈ AX if and only if

1. C is a σ-conic when X is ordinary. In particular, such a family of conics is
parametrized by the line Lσ.
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2. C is the preimage of a line on Y when X is special. In particular, such a
family of conics is parametrized by the Hilbert scheme of lines Σ(Y ) ∼= P2

on Y .

Moreover, we have a short exact sequence

0 → E → Q∨ → IC → 0.

Proof. Recall that the projection functor Db(X) → AX is given by LOX
LE∨ . So

(1) follows from Lemma 6.2.2. When X is special, this is by Lemma 6.2.13. Note
that since IC /∈ AX , we haveHom(Q∨, IC) ̸= 0. The non-trivial mapQ∨ → IC is
surjective by the arguments in Lemma 6.2.2 and 6.2.13. Note that by the stability
of Q∨, the kernel of Q∨ ↠ IC is µ-stable with the same Chern character as E ,
hence we have ker(Q∨ ↠ IC) ∼= E by [DIM12, Proposition 4.1].

Proposition 6.3.2 ([JLLZ21, Proposition 7.2]). Let X be a Gushel–Mukai three-
fold and C ⊂ X a conic on X . If IC ̸∈ AX , then we have the exact triangle

E [1] → pr(IC) → Q∨.

Proof. By Proposition 6.3.1, IC fits into the short exact sequence 0 → E → Q∨ →
IC → 0. Applying the projection functor to this short exact sequence, we get a
triangle pr(E) → pr(Q∨) → pr(IC), where pr = LOX

LE∨ . Note that applying
the functor pr to the exact sequence 0 → Q∨ → O⊕5

X → E∨ → 0 gives pr(Q∨) =
0. Thus pr(IC) ∼= pr(E)[1]. Now we compute the projection pr(E) = LOX

LE∨E .
We have the triangle

Hom•(E∨, E)⊗ E∨ → E → LE∨E .

Since Hom•(E∨, E) ∼= C[−3], we get E∨[−3] → E → LE∨E . Now applying
LOX

to this triangle, we get LOX
E∨[−3] → E → LOX

LE∨E = pr(E), which is
equivalently Q∨[−2] → E → pr(E). Therefore we obtain the triangle

E [1] → pr(E)[1] → Q∨

and the desired result follows.

6.3.1 Involutions acting on conics
By [KP18, Proposition 2.6], there is a natural involutive autoequivalence functor
of AX , denoted by τA. When X is special, it is induced by the natural involution
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τ onX , which comes from the double coverX → Y . In this case it is easy to see
that

τA(pr(IC)) ∼= pr(Iτ(C)).

When X is ordinary, the situation is more subtle. In the following, we de-
scribe the action of τA on the projection into AX of an ideal sheaf of a conic
pr(IC) in this case.

Proposition 6.3.3 ([JLLZ21, Proposition 7.3]). Let X be an ordinary Gushel–
Mukai threefold and C a conic on X .

1. If IC ∈ AX , then τA(IC) is either

• IC′ such that C ∪ C ′ = Z(s) for s ∈ H0(E∨), where Z(s) is the zero
locus of the section s;

• or i!(Q∨) (cf. Section 6.1), where i!(Q∨) is given by the triangle

E [1] → i!(Q∨) → Q∨.

2. If IC /∈ AX , then τA(pr(IC)) ∼= IC′′ for a conic C ′′ ⊂ X .

Remark 6.3.4. Once we have proved Theorem 6.3.13, this will imply that the
involution induced by τA on Cm(X) is the same as ι in Lemma 6.2.5, described
in [DIM12, Section 5.2].

We first state some technical lemmas which we require for the proof of Propo-
sition 6.3.3 above.

Lemma 6.3.5 ([JLLZ21, Lemma 7.5]). LetX be a Gushel–Mukai threefold andE a
µ-semistable sheaf on X with truncated Chern character ch≤2(E) = (2,−H, aL).
Assume that a ≥ 1 and c3(E) ≥ 0. Then we have E ∼= E .

Proof. By Lemma 4.3.5 (Stronger BG II), we have a ≤ 1 which means a = 1 by
our assumption. Thus c1(E) = −1 and c2(E) = 4. Note that ch≤2(E(H)) =
(2, H, L), and c3(E(H)) ≥ 0 by assumption. Thus, by [BF14, Proposition 3.5(i)]
we have χ(OX , E) = 0. But by formula (3.4.1),

χ(OX , E) = χ0(2−H + L+
1

3
P +

1

2
c3(E)) =

1

2
c3(E)

which implies that c3(E) = 0. Moreover, E is a globally generated bundle by
[BF14, Proposition 3.4(ii)]. Thus E ∼= E by [DIM12, Proposition 4.1].
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Lemma 6.3.6 ([JLLZ21, Lemma 7.6]). Let X be a Gushel–Mukai threefold and E
a µ-semistable sheaf on X with ch(E) = ch(Q). Then we have E ∼= Q.

Proof. First we show that h2(E) = 0. Indeed, if h2(E) ̸= 0, then we have
Hom(E,OX(−H)[1]) ̸= 0 by Serre duality. Therefore, we have a non-trivial
extension

0 → OX(−H) → F → E → 0.

If F is not µ-semistable, then the minimal destabilising quotient sheaf F ′ of F
has ch≤1(F

′) = (1,−H) by the µ-stability of OX(−H) and E. Thus F ′∨∨ ∼=
OX(−H). Now applyHom(−,OX(−H)) = 0 to the short exact sequence above.
We obtain Hom(F,OX(−H)) = 0 because Ext1(E,OX(−H)) ̸= 0. But this is
a contradiction to F ′∨∨ ∼= OX(−H), thus F is µ-semistable. Note also that
ch≤2(F ) = (4, 0, 4L), so ∆(F ) < 0 which contradicts µ-semistability of F . Thus
h2(E) = 0.

Since χ(OX , E) = 5, it follows that h0(E) ≥ 5. Now take five linearly
independent sections of E and consider the map t : O⊕5

X → E. Because O⊕5
X and

E are µ-semistable, we have 0 ≤ µ(im(t)) ≤ 1/3, i.e. either µ(im(t)) = 0 or
1/3. But the first case cannot happen, because then im(t) would be some direct
sum of a number of copies of OX , and this would contradict the fact that we took
linearly independent sections. Thus µ(im(t)) = 1/3 and ch≤1(im(t)) = (3, H).
Note also that ch≤2(ker(t)) = (2,−H, xL) where x ≥ 1. The sheaf ker(t) is
reflexive and has rank two, so c3(ker(t)) ≥ 0. Then by µ-stability of OX and
the fact that Hom(OX , ker(t)) = 0, we have that ker(t) is µ-semistable. Thus
by Lemma 6.3.5 we have ker(t) ∼= E . Therefore ch(im(t)) = ch(E) and thus t is
surjective.

Now apply Hom(Q, 0) to the short exact sequence 0 → E → O⊕5
X → E → 0.

Since Hom•(Q,OX) = 0 and Ext1(Q, E) = C, we get Hom(Q, E) = C. Now
since Q and E are both µ-stable and have the same Chern character, we get
E ∼= Q.

Lemma 6.3.7 ([JLLZ21, Lemma 7.7]). Let X be an ordinary Gushel–Mukai three-
fold and C a ρ-conic on X . Then the natural morphism s′ : E⊕2 → IC is surjective
and there is a short exact sequence

0 → Q(−H) → E⊕2 → IC → 0.

Proof. By Lemma 6.2.2, we have Hom(E , IC) = C2. Thus, taking two linearly
independent elements in Hom(E , IC), we have a map s′ : E⊕2 → IC . Moreover,
since ⟨C⟩ = Gr(2, 3) and ⟨C⟩ ∩X = C , we know that s′ is surjective. Let K :=
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ker(s′). Then one can check that ch(K) = ch(Q(−H)). Note that Hom(E , K) =
0 and K is reflexive.

We claim that K is µ-semistable. Indeed, suppose K is not µ-semistable and
let K ′ be its maximal destabilising subsheaf. Then K ′ is also reflexive. Since
Hom(E , K) = 0, we have K ′ ̸= E . Since E⊕2 is µ-semistable and K ′ is maximal,
we have µ(K ′) = −1/2. Since Hom(K ′, E) ̸= 0, by the µ-stability of E and
K ′ we have K ′ ⊂ E . Now since ch≤1(K

′) = ch≤1(E) we have that E/K ′ is
supported in codimension ≥ 2. But this is a contradiction since E and K ′ are
both reflexive. So K is µ-semistable.

Now the result follows from Lemma 6.3.6 becauseK(H) is µ-semistable with
ch(K(H)) = ch(Q).

We define the derived dual of an object E ∈ Db(X) to be

D(E) := RHom(E,OX).

Lemma 6.3.8 ([JLLZ21, Lemma 7.8]). Let X be an ordinary Gushel–Mukai three-
fold. Consider the semiorthogonal decomposition Db(X) = ⟨Ku(X), E ,OX⟩. Let
C be a conic on X . Then

LE(IC) =

{
D(IC′)⊗OX(−H)[1], Hom•(E , IC) = C

i!(E), Hom•(E , IC) = C2 ⊕C[−1]

where C ′ is the involutive conic of C .

Proof. By Lemma 6.2.2, we have that Hom•(E , IC) is either C or C2 ⊕ C[−1].
If Hom•(E , IC) = C, then we have the triangle E → IC → LE(IC). Taking
cohomology of this triangle with respect to the standard heart we get

0 → H−1(LE(IC)) → E s−→ IC → H0(LE(IC)) → 0.

The image of the map s is the ideal sheaf of an elliptic quartic D, thus we have
following two short exact sequences: 0 → H−1(LE(IC)) → E → ID → 0
and 0 → ID → IC → H0(LE(IC) → 0. Thus H−1(LE(IC)) is a torsion-free
sheaf of rank 1 with the same Chern character as OX(−H). So H−1(LE(IC)) ∼=
OX(−H). On the other hand H0(LE(IC)) is supported on the residual curve C ′

of C in D and H0(LE(IC)) ∼= OC′(−H). Thus we have the triangle

OX(−H)[1] → LE(IC) → OC′(−H)
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and we observe that LE(IC) is exactly the twisted derived dual of the ideal sheaf
IC′ of a conic C ′ ⊂ X , i.e. LE(IC) ∼= D(IC′)⊗OX(−H)[1].

If Hom•(E , IC) = C2 ⊕ C[−1], then we have the triangle E2 ⊕ E [−1] →
IC → LE(IC). Taking the long exact sequence in cohomology with respect to
the standard heart, we get

0 → H−1(LE(IC)) → E⊕2 s′−→ IC → H0(LE(IC)) → E → 0.

Now by Lemma 6.3.7, s′ is surjective and the cohomology objects are given by
H−1(LE(IC)) ∼= Q(−H) and H0(LE(IC)) ∼= E , which implies that LE(IC) ∼=
i!(E) (see Lemma 6.1.1).

Proof of Proposition 6.3.3. Since SAX
= τA[2], by Proposition 3.2.6 we have that

τ−1
A = LOX

LE∨(−⊗OX(H))[−1]. Thus τA(IC) = LOX
(LE(IC)⊗OX(H))[−1].

Recall that there are two cases for LE(IC) by Lemma 6.3.8; either Hom•(E , IC) =
C or Hom•(E , IC) = C2 ⊕C[−1].

If Hom•(E , IC) = C then τA(IC) ∼= LOX
(D(IC′)). Associated to this left

mutation we have the triangle

Hom•(OX ,D(IC′))⊗OX → D(IC′) → LOX
(D(IC′)).

Note that2 Hom•(OX ,D(IC′)) ∼= Hom•(IC′ ,OX) = C ⊕C[−1]. Then we have
the triangle

OX ⊕OX [−1] → D(IC′) → LOX
(D(IC′)). (6.3.1)

The derived dual D(IC′) is given by the triangle OX → D(IC′) → OC′ [−1]. Then
taking cohomology with respect to the standard heart of triangle (6.3.1) we have
the long exact sequence

0 0 = H−1(D(IC′)) H−1(LOX
(D(IC′)))

OX OX H0(LOX
(D(IC′)))

OX OC′ H1(LOX
(D(IC′))) 0.

Therefore we have H−1(LOX
(D(IC′))) = 0, H1(LOX

(D(IC′))) = 0 and also
H0(LOX

(D(IC′))) ∼= IC′ . Hence τA(IC) ∼= LOX
(D(IC′)) ∼= IC′ .

2For these cohomology computations, it is useful to recall that for conics C we have
OX(H)|C ∼= OC(2)
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If we are in the second case and Hom•(E , IC) = C2 ⊕C[−1], then τA(IC) ∼=
LOX

(i!(E)⊗OX(H)[−1]). Then using Lemma 3.4.6, we have τA(IC) ∼= i!(Q∨).
So we have proved both cases of Proposition 6.3.3(1). To see part (2) of the

proposition, if IC ̸∈ AX then we have the triangle from Proposition 6.3.2, and in
particular we are in the second bullet point of Proposition 6.3.3(1), i.e. τA(IC′′) ∼=
pr(IC) for some conic C ′′. But then τ−1

A = τA gives the result.

6.3.2 Stability of objects associated to conics
Lemma 6.3.9 ([JLLZ21, Lemma 7.9]). LetX be a Gushel–Mukai threefold. If C ⊂
X is a conic such that IC ̸∈ AX , then

1. Hom•(pr(IC), pr(IC)) = C⊕C2[−1] when X is ordinary.

2. Hom•(pr(IC), pr(IC)) = C⊕C3[−1]⊕C[−2] when X is special.

Proof. Recall that by Remark 6.1.6 we have Ξ(i!(E)) ∼= i!(Q∨)[1]. Furthermore
by Proposition 6.3.2 we have i!(Q∨) ∼= pr(IC) for C ⊂ X such that IC ̸∈ AX .
Using these two facts and Lemma 6.1.4 gives the required result.

Lemma 6.3.10 ([JLLZ21, Lemma 7.10]). Let X be a Gushel–Mukai threefold. If
IC ̸∈ AX , the projection pr(IC)[1] is stable with respect to every Serre-invariant
stability condition on AX .

Proof. Since the dimensions of the Hom spaces are the same as in Lemma 6.1.4,
the same argument gives the result.

When IC ∈ AX , we cannot use Proposition 4.5.4 to prove the Bridgeland
stability of IC , since C(X) may be singular and Ext1(IC , IC) may have large di-
mension. Instead, we use a wall-crossing argument and the uniqueness of Serre-
invariant stability conditions (see Theorem 4.5.14).

Lemma 6.3.11 ([JLLZ21, Lemma 7.11]). Let X be a Gushel–Mukai threefold. Let
F be an object with ch≤2(F ) = (1, 0,−2L). Then there are no walls for F in the
range −1

2
≤ β < 0 and α > 0.

Proof. Firstly, β = 0 is the unique vertical wall of F . Any other wall is a semi-
circle centered along the β-axis, and its apex lies on the hyperbola µα,β(F ) = 0.
Moreover, no two walls intersect. These facts are all by e.g. [BBF+22, Theorem
4.12].
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Note that when µα,β(F ) = 0 holds, we have β < −
√

2
5
< −1

2
, thus we

know that there is no semicircular wall centered in the interval −1
2
≤ β < 0.

Therefore, any semicircular wall passing through the range −1
2
≤ β < 0 will

intersect the line β = −1
2
. Therefore, to prove the statement of the lemma, we

only need to show that there are no walls when β = −1
2
. But this follows from

the fact that ch− 1
2

1 (F ) = 1
2

is minimal.

Proposition 6.3.12 ([JLLZ21, Proposition 7.12]). Let C ⊂ X be a conic on a
Gushel–Mukai threefold X such that IC ∈ AX . Then IC [1] ∈ AX is stable with
respect to every Serre-invariant stability condition on AX .

Proof. By Lemma 4.3.3 and Lemma 6.3.11, IC is σα,β-stable for all (α, β) ∈ V .
Since IC is torsion-free, we know that IC [1] ∈ Coh0

α,β(X) is σ0
α,β-semistable.

Thus IC [1] ∈ Aalt(α, β) is σalt(α, β)-semistable.
The stability with respect to every Serre-invariant stability condition follows

from Theorem 4.5.2 and Theorem 4.5.14.

6.3.3 Contraction of Fano surface of conics as a Bridge-
land moduli space

We are now ready to realise the Bridgeland moduli space Mσ(AX ,−x) as a con-
traction of the Fano surface of conics C(X).

Theorem 6.3.13 ([JLLZ21, Theorem 7.13]). Let X be a Gushel–Mukai threefold
andσ a Serre-invariant stability condition onAX . The projection functor pr : Db(X) →
AX induces an isomorphismS := p(C(X)) ∼= Mσ(AX ,−x), where p : C(X) → S
is

1. a blow-down morphism to a smooth point when X is ordinary;

2. a contraction of the component P2 to a singular point when X is special.

In particular, when X is general and ordinary, Mσ(AX ,−x) is isomorphic to the
minimal model Cm(X) of the Fano surface of conics on X . When X is general and
special, the moduli space Mσ(AX ,−x) has only one singular point.

Proof. Suppose that X is ordinary. By Proposition 6.3.1, it is known that the
family of σ-conics3 C ⊂ X with the property that IC ̸∈ AX is parametrized by

3Note σ here is not the stability condition.
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the line Lσ. By Lemma 6.3.10, pr(IC)[1] is σ-stable when IC /∈ AX . The ideal
sheaves IC for all the conicsC in the complement ofLσ in the Fano surface C(X)
of conics are contained in AX by Proposition 6.3.1(1). Then pr(IC [1]) = IC [1] ∈
AX , and they are σ-stable by Proposition 6.3.12.

Using the universal family of conics on X × C(X), the functor pr induces
a morphism p : C(X) → Mσ(AX ,−x) factoring through one of the irreducible
components S of Mσ(AX ,−x) as in [LZ22, Lemma 4.3]. The complement of
Lσ in C(X) is a dense open subset U1 of C(X) since C(X) is irreducible. The
morphism p|U1 is injective and étale, so p(U1) ⊂ S is also a dense open subset
of S . But p is proper, so p(C(X)) = S . In particular, Lσ is contracted by p to a
smooth point by Lemma 6.3.9. By Proposition 6.5.5, we have S = Mσ(AX ,−x).
Thus part (1) follows. Part (2) follows by a similar argument.

When X is general and ordinary, the Fano surface C(X) is smooth (Theorem
6.2.3). Thus S is a smooth surface obtained by blowing down a smooth rational
curve Lσ on the smooth irreducible projective surface C(X). This implies that
S is also a smooth projective surface. Also, it is known that there is a unique
rational curve Lσ ⊂ C(X) and it is the unique exceptional curve by Lemma
6.2.4. Thus S is the minimal model Cm(X) of Fano surface of conics on X .

When X is general and special, the last statement follows by a similar argu-
ment to the preceding paragraph, by Theorem 6.2.12 and Lemma 6.3.9.

6.4 Another moduli space
In this section we investigate the moduli space of rank 2 Gieseker-semistable
torsion-free sheaves on a Gushel–Mukai threefold X with Chern classes c1 = 1
and c2 = 5, denoted MX

G (2, 1, 5). We drop X from the notation when it is clear
from context on which threefold we work. Note that if F ∈MG(2, 1, 5), then

ch(F ) = (2, H, 0,−5

6
P ).

Recall the following theorem [DIM12, Section 8]:
Theorem 6.4.1. Let X be a Gushel–Mukai threefold and F ∈ MX

G (2, 1, 5). Then
F is either a

1. globally generated bundle which fits into a short exact sequence

0 → OX → F → IZ(H) → 0

where Z is a projective normal smooth elliptic quintic curve;
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2. non-locally free sheaf with a short exact sequence

0 → F → E∨ → OL → 0

where L is a line on X . Moreover, F is uniquely determined by L;

3. non-globally generated vector bundle which fits into the exact sequence

0 → E → H0(X,F )⊗OX → F → OL(−1) → 0.

Moreover, F is uniquely determined by L.

Furthermore, in all of the cases above we have Hom•(OX , F ) = C4 and the van-
ishing Hom•(OX , F (−H)) = 0.

Proof. The proofs for statements in this theorem can be found in [DIM12, Section
8]. The result also follows from [BF14, Proposition 3.5].

A natural question to ask is what Bridgeland moduli space we get after pro-
jecting an object from MG(2, 1, 5) into the Kuznetsov component. Since it is
easier in this setting, we will work with the alternative Kuznetsov component
AX in this section (like we did when investigating C(X) in Section 6.3). Our
analysis of the projections of objects in MG(2, 1, 5) is based on the three cases
listed in Theorem 6.4.1. We begin with a Hom-vanishing result.

Proposition 6.4.2 ([JLLZ21, Proposotion 8.2]). Let X be a Gushel–Mukai three-
fold and F ∈MX

G (2, 1, 5). Then we have Hom•(E∨, F ) = 0.

Proof. We have Ext3(E∨, F ) ∼= Hom(F, E)∨ = 0 by Serre duality, 1/2 = µ(F ) >
µ(E) = −1/2 and the µ-stability of F and E . We also have Hom(E∨, F ) = 0
because µ(E∨) = µ(F ), E∨ and F are µ-stable, and E∨ ̸∼= F . Since χ(E∨, F ) = 0,
we only need to show that Ext1(E∨, F ) = 0 or Ext2(E∨, F ) = 0.

1. First, letF be globally generated. ApplyingHom(E∨,−) to the sequence in
Theorem 6.4.1(1), fromHom•(E∨,OX) = 0we obtain thatHom•(E∨, IZ(H)) ∼=
Hom•(E∨, F ).
Now we turn toHom•(E∨, IZ(H)) ∼= Hom•(E , IZ). We haveHom(E , IZ) =
Ext3(E , IZ) = 0 from Serre duality and stability (by a similar argument as
at the beginning of this proof). Since χ(E , IZ) = 0, we only need to show
that Ext2(E , IZ) = 0. To this end, we apply Hom(E ,−) to the ideal sheaf
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sequence 0 → IZ → OX → OZ → 0. Since Exti(E ,OX) = 0 for i ̸= 0,
we only need to show that Ext1(E ,OZ) = 0. We claim that

Hom•(E ,OZ) = Hom•(OZ , E∨|Z) = C5.

Indeed, by Atiyah’s classification of vector bundles on elliptic curves [Ati57]
and the case described in e.g. [IM07, Section 5.2], we have that E∨|Z can
only split as the direct sum of line bundles with degrees (2, 3) or (0, 5).
Note that the second case in [IM07, Section 5.2] is not possible because
E∨|Z has odd degree. But as shown in loc. cit., E∨|Z cannot split as the sum
of line bundles with degrees (0, 5), otherwise Z would not be projectively
normal as explained in [IM07, Section 5.2], which is a contradiction. So
E∨|Z ∼= OZ(2p)⊕OZ(3p)where p ∈ Z is a point. Then a cohomology com-
putation shows that H0(Z,OZ(2p) ⊕ OZ(3p)) = Hom(OX , E∨|Z) = C5.
Finally, an Euler characteristic computation shows that

χ(E ,OZ) = 5 = hom(E ,OZ)− ext1(E ,OZ),

as required for the claim. Hence it follows that Hom•(E∨, F ) = 0 as re-
quired.

2. Now let F be non-locally free. Apply Hom(E∨,−) to the sequence from
Theorem 6.4.1(2). Because Hom•(E∨, E∨) = C by exceptionality of E ,
and Hom•(E∨,OL) = C by a cohomology calculation (E|L splits as OL ⊕
OL(−1)), we get the exact sequence

0 → Hom(E∨, F ) → C → C → Ext1(E∨, F ) → 0.

Hence byHom(E∨, F ) = 0, we obtainExt1(E∨, F ) = 0 andHom•(E∨, F ) =
0 as required.

3. Now letF be a non-globally generated vector bundle. Recall from Theorem
6.4.1(3) the exact sequence

0 → E → H0(X,F )⊗OX → F → OL(−1) → 0.

Let G := im(H0(X,F ) ⊗ OX → F ). Then the exact sequence above can
be split up into the short exact sequences

0 → E → H0(X,F )⊗OX → G→ 0 (6.4.1)
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and
0 → G→ F → OL(−1) → 0. (6.4.2)

ApplyingHom(E∨,−) to sequence (6.4.1), we have the long exact sequence

0 → Hom(E∨, E) → Hom(E∨,O⊕m
X ) → Hom(E∨, G) →

→ Ext1(E∨, E) → · · ·

wherem := h0(X,F ). Firstly, we know that Hom•(E∨,OX) = 0. Next we
find Hom•(E∨, E). By Serre duality, Exti(E∨, E) ∼= Ext3−i(E , E) which
is C for i = 3 and 0 else by exceptionality of E . Therefore we have
Hom•(E∨, G) = C[−2].
Next we apply Hom(E∨,−) to the sequence (6.4.2). We get the long exact
sequence

0 → Hom(E∨, G) → Hom(E∨, F ) → Hom(E∨,OL(−1)) →
→ Ext1(E∨, G) → · · · .

Since E|L(−1) splits as OL(−1) ⊕ OL(−2), cohomology computations
show that Hom•(E∨,OL(−1)) = C[−1], so the resulting long exact se-
quence and the paragraph above gives that Hom•(E∨, F ) = 0.

6.4.1 Involutions onMG(2, 1, 5)

In this subsection, we briefly recall the involutions which exist on MG(2, 1, 5).
We follow [DIM12]. Let F be a globally generated vector bundle, and consider
the short exact sequence

0 → ker(ev) → H0(X,F )⊗OX
ev−→ F → 0. (6.4.3)

Note that ker(ev) is a rank 2 vector bundle with c1 = −1 and c2 = 5 and no global
sections, hence ker(ev)∨ ∈MG(2, 1, 5). Define ιF := ker(ev)∨. The bundle ιF is
globally generated, and we have H0(X, ιF ) ∼= H0(X,F )∨ (see [DIM12, p. 29]).
If F is a non-locally free sheaf, then the same construction gives a non-globally
generated bundle ιF = ker(ev)∨ ([DIM12, p. 32]).

Remark 6.4.3. To summarise, under the involution ι, globally generated vector
bundles get sent to globally generated vector bundles, and non-globally gener-
ated vector bundles and non-locally free sheaves get exchanged.
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Note that for a special Gushel–Mukai threefold, there is another involution
on MG(2, 1, 5) induced by the involution τ on X ,

τ ∗ : MG(2, 1, 5) →MG(2, 1, 5), F 7→ τ ∗F,

which is different from the one we just defined, since if F is not a bundle, then
ιF is a bundle but τ ∗F is not.

6.4.2 An explicit description of pr(F )
We are now ready to give an explicit description of pr(F ), for all objects F ∈
MG(2, 1, 5).
Proposition 6.4.4 ([JLLZ21, Lemma 8.3]). Let X be a Gushel–Mukai threefold
and F ∈MG(2, 1, 5). Then we have

pr(F ) =

(ιF )∨[1] ∼= ker(ev)[1], F globally generated
or non-locally free

E [1] → pr(F ) → OL(−1), F non-globally generated

where ι is the involution on MG(2, 1, 5), defined in Section 6.4.1.

Proof. As a result of Proposition 6.4.2, LE∨F = F , so pr(F ) = LOX
F . By Theo-

rem 6.4.1 we have Hom•(OX , F ) = C4, and the triangle defining the left muta-
tion is

O⊕4
X

ev−→ F → pr(F ). (6.4.4)
In the cases where F is globally generated or non-locally free, the evaluation
map ev is surjective, so pr(F ) = ker(ev)[1]. Section 6.4.1 relates ker(ev) to ιF
as required.

If F is non-globally generated, ev is not surjective. So we take the long exact
sequence in cohomology with respect to the standard heart of the triangle (6.4.4).
This gives an exact sequence

0 → H−1(pr(F )) → O⊕4
X → F → H0(pr(F )) → 0. (6.4.5)

Comparing the sequence (6.4.5) with the sequence in Theorem 6.4.1(3) gives that

Hi(pr(F )) =


E , i = −1

OL(−1), i = 0

0, else.

Thus pr(F ) in this case fits into the triangle E [1] → pr(F ) → OL(−1) as re-
quired.
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6.4.3 Compatibility of categorical and classical involutions
for ordinary Gushel–Mukai threefolds

Let X be an ordinary Gushel–Mukai threefold, τA be the involution of AX , and
ι be the geometric involution of MG(2, 1, 5) defined in Section 6.4.1. Then τA in-
duces involutions of the Bridgeland moduli spaces ofσ-stable objectsMσ(AX ,−x)
and Mσ(AX , y − 2x). In Proposition 6.3.3, we already showed that the action
of τA on Mσ(AX ,−x) induces a geometric involution on Cm(X). In this sec-
tion, we show that the involution induced by τA is also compatible with ι on
MG(2, 1, 5).

Proposition 6.4.5 ([JLLZ21, Proposition 8.4]). Let X be an ordinary Gushel–
Mukai threefold and F ∈MX

G (2, 1, 5). Then τApr(F ) ∼= pr(ιF ).

Proof.

1. Let F be globally generated. Recall that F fits into the short exact se-
quence (6.4.3) 0 → ker(ev) → H0(X,F )⊗OX

ev−→ F → 0. Dualising this
sequence and applying pr, we get the triangle

pr(F∨) → pr(O⊕4
X ) → pr(ker(ev)∨) ∼= pr(ιF ).

Note that pr(OX) = 0. Also, F∨ ∈ AX since Hom•(OX , F ) = 0 by the
last part of Theorem 6.4.1, and Hom•(E∨, F ) = 0 by Proposition 6.4.2.
Therefore we get pr(ιF ) ∼= F∨[1].
Since F ∈MG(2, 1, 5) is a globally generated vector bundle, we have F ∼=
ιE for some4 globally generated vector bundleE. Then pr(F ) = pr(ιE) ∼=
E∨[1] ∼= E ⊗OX(−H)[1], hence

τA(pr(F )) ∼= τA(E ⊗OX(−H))[1] ∼= pr(E) ∼= pr(ιF ).

2. Let F be non-globally generated. Then by Corollary 6.4.4 we have the tri-
angle E [1] → pr(F ) → OL(−1). Then τA(pr(F )) is given by the triangle

LOX
LE∨(E∨) → τA(pr(F )) → LOX

LE∨(OL)[−1].

Note that LE∨(E∨) = 0, hence τA(pr(F )) ∼= LOX
LE∨(OL)[−1]. Since

E∨|L ∼= OL ⊕ OL(1), we have Hom•(E∨,OL) = C, therefore we have
4By Section 6.4.1 E is ker(ev)∨.
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the triangle E∨ → OL → LE∨OL. Also, since E∨ → OL is surjective,
we have LE∨OL

∼= ker(E∨ → OL)[1], where F ′ := ker(E∨ → OL) is a
non-locally free sheaf in MG(2, 1, 5) by Theorem 6.4.1. Thus τA(pr(F )) ∼=
LOX

F ′ ∼= ker(ev)[1] where ev : H0(X,F ′) ⊗ OX → F ′. But note that
F ′ = ker(E∨ → OL) ∼= ιF since F ′ and F are associated with the same
line L (recall that the line L from Theorem 6.4.1(3) determines the bundle
uniquely).
Thus τA(pr(F )) ∼= LOX

(ιF ). Note that ιF is a non-locally free sheaf and
Hom•(E∨, ιF ) = 0 by Proposition 6.4.2. Thus we have ιF ∼= LE∨ιF . Then
τA(pr(F )) ∼= LOX

LE∨ιF ∼= pr(ιF ) as required.

3. Let F be non-locally free. Then F ∼= ιE for some non-globally gen-
erated vector bundle E by Section 6.4.1. Thus we only need to check
τA(pr(ιE)) ∼= pr(ι ◦ ι(E)) ∼= pr(E), but this is true by part (2) of the
proof.

6.4.4 ABridgelandmoduli space interpretationofMG(2, 1, 5)

We arrive at the first of the main results of Section 6.4.

Theorem 6.4.6 ([JLLZ21, Theorem 8.5]). Let X be a Gushel—Mukai threefold
and σ a Serre-invariant stability condition on AX . Then the projection functor
pr : Db(X) → AX induces an isomorphism MG(2, 1, 5) ∼= Mσ(AX , y − 2x).

We split the proof of this theorem into a series of lemmas and propositions.

Proposition 6.4.7 ([JLLZ21, Proposition 8.6]). The functor pr : Db(X) → AX is
injective on all objects in MG(2, 1, 5), i.e. if pr(F1) ∼= pr(F2), then F1

∼= F2.

Proof. For the case of globally generated vector bundles or non-locally free sheaves,
by Corollary 6.4.4, pr(F1) ∼= pr(F2) implies that

(ιF1)
∨ ∼= (ιF2)

∨. (6.4.6)

Note that (ιFi)∨ ∼= ιFi ⊗OX(−H) for i = 1, 2. Then we get ιF1
∼= ιF2. Finally,

we apply ι to both sides. Since it is an involution ι2 = id, so F1
∼= F2 as required.

For the case of non-globally generated vector bundles, we have that

Ext1(OL(−1), E [1]) = C
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because of the splitting of E|L. Thus the extension E [1] → pr(F ) → OL(−1)
is unique, and L uniquely determines F , so pr(F ) is uniquely determined by L
too. Thus pr(F1) ∼= pr(F2) implies F1

∼= F2, as required.
Proposition 6.4.8 ([JLLZ21, Proposition 8.7]). The functor pr : Db(X) → AX

induces isomorphisms between Extk(pr(F1), pr(F2)) and Extk(F1, F2) for all k
and for all F1, F2 ∈MG(2, 1, 5).

Proof. We apply Hom(F1,−) to the exact triangle O⊕4
X → F2 → pr(F2). By

adjunction of pr and the inclusion AX ↪→ Db(X), we have Extk(F1, pr(F2)) ∼=
Extk(pr(F1), pr(F2)) for all k. Thus we get a long exact sequence

· · · → Extk(F1,O⊕4
X ) → Extk(F1, F2) → Extk(pr(F1), pr(F2))

→ Extk+1(F1,O⊕4
X ) → · · · .

Note that Extk(F1,OX) ∼= Ext3−k(OX , F1(−H))∨ = 0 for all k by Serre duality
and [BF14, Proposition 3.5]. Thus the desired result follows.

In what follows, we show the stability of pr(F ) in AX .
Proposition 6.4.9 ([JLLZ21, Proposition 8.8]). Let X be a Gushel–Mukai three-
fold and F ∈MX

G (2, 1, 5). Then we have

1. Hom•(F, F ) = C⊕C2[−1] when X is ordinary;

2. Hom•(F, F ) = C⊕C2[−1] or Hom•(F, F ) = C⊕C3[−1]⊕C[−2] when
X is special.

Proof. Fist we assume that X is ordinary. By [DIM12, Theorem 8.2], we have
ext1(F, F ) = 2. Now hom(F, F ) = 1 and ext3(F, F ) = 0 by Serre duality and
the Gieseker stability of F . Note that χ(F, F ) = −1, so ext2(F, F ) = 0.

Now we assume thatX is special. Then by Proposition 6.4.8 and Serre duality
in Ku(X), we have

Ext2(F, F ) ∼= Ext2(pr(F ), pr(F ))
∼= Hom(pr(F ), τA(pr(F )))

∨

∼= Hom(pr(F ), pr(τ ∗F ))∨

∼= Hom(F, τ ∗F )∨

where τ is the involution on X induced by the double cover. Thus when F ∼=
τ ∗F , we haveExt2(F, F ) = C, andExt2(F, F ) = 0 otherwise. SinceExt3(F, F ) =
0 and Hom(F, F ) = C by Serre duality and Gieseker stability of F as before, the
result follows from χ(F, F ) = −1.
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Lemma 6.4.10 ([JLLZ21, Lemma 8.9]). For every F ∈ MG(2, 1, 5), the object
pr(F ) is stable with respect to every Serre-invariant stability condition on AX .

Proof. This follows from Proposition 6.4.8, Proposition 6.4.9, and Proposition
4.5.4.

We are now ready to prove Theorem 6.4.6.

Proof of Theorem 6.4.6. First note that MG(2, 1, 5) is a fine moduli space. This is
a consequence of [HL10, Theorem 4.6.5]. Using Lemma 6.4.10, by the same argu-
ment as in [Zha21, Theorem 8.10], the projection functor pr induces a morphism

p : MG(2, 1, 5) → Mσ(AX , y − 2x)

which is bijective on points by Proposition 6.4.7 and Theorem 6.5.2, and bijective
on tangent spaces by Proposition 6.4.8. Hence it is an isomorphism.

6.5 Irreducibility of certain Bridgeland moduli
spaces

In this section we prove that the Bridgeland moduli spaces of numerical class
y − 2x and −x are irreducible.

We first fix some notation. Let α > 0 and β < 0. For an object E ∈ Db(X),
the limit central charge Z0

0,0(E) is defined as the limit of Z0
α,β(E) when (α, β) →

(0, 0). Note that Z0
α,β(E) is given by Q-linear combinations of α, β, α2, β2, thus

the limit Z0
0,0(E) always exists. For Z0

0,0(E) ̸= 0, we can also define the limit
slope µ0

0,0(E) as follows:

µ0
0,0(E) :=


−ℜ(Z0

0,0(E))

ℑ(Z0
0,0(E))

, ℑ(Z0
0,0(E)) ̸= 0

−∞, ℑ(Z0
0,0(E)) = 0 and ℜ(Z0

0,0(E)) > 0

+∞ ℑ(Z0
0,0(E)) = 0 and ℜ(Z0

0,0(E)) < 0

We will use the following two facts repeatedly throughout this section.

Remark 6.5.1.

1. Note that Z0
0,0(E) = 0 if and only if ch≤2(E) is a multiple of ch≤2(OX).
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2. Let E ∈ Coh0
α,β(X). By continuity, we can find a neighborhood UE of

the origin such that for any (α, β) ∈ UE , the slopes µ0
α,β(E) and µ0

0,0(E)

are both positive or negative. Let F ∈ Coh0
α,β(X) be another object such

thatE,F are both σ0
α,β-semistable in a neighborhood UE,F of the origin. If

µ0
0,0(E) > µ0

0,0(F ), then by continuity, we can find a smaller neighborhood
U ′
E,F such that µ0

α,β(E) > µ0
α,β(F ) holds for every (α, β) ∈ U ′

E,F . Thus we
have Hom(E,F ) = 0.

6.5.1 The moduli space of class y − 2x

In this section, we show that the moduli space Mσ(AX , y − 2x) is irreducible,
i.e. that Mσ(AX , y − 2x) ∼= MG(2, 1, 5).

Theorem 6.5.2 ([JLLZ21, Theorem 9.1]). LetF ∈ Aalt(α, β) be a σalt(α, β)-stable
object with numerical class y−2x for every (α, β) ∈ V . Then F = pr(E) for some
E ∈MG(2, 1, 5).

Proof. We argue as in [PY22, Proposition 4.6]. When (α0, β0) = (0, 0), we have
µ0
α0,β0

(F ) = −∞. Since there are no walls intersecting with β = 0 as in [PY22,
Proposition 4.6], we know that F is σ0

α,0-semistable for all α > 0. By the defini-
tion of the double tilted heart, we have a triangle

A[1] → F → B

such thatA (respectivelyB) is inCoh0(X)with its σα,0-semistable factors having
slope µα,0 ≤ 0 (respectively µα,0 > 0). Since F is σ0

α,0-semistable and µ0
α,0(F ) <

0, we have that A[1] = 0 and B ∼= F . Since ch0
1(F ) is minimal, there are no

walls intersecting β = 0, and we know that F is σα,0-semistable for every α > 0.
Thus by Lemma 4.3.3, H−1(F ) is a µ-semistable reflexive sheaf and H0(F ) is 0
or supported in dimension ≤ 1.

If H0(F ) is supported in dimension 0, then ch(H0(F )) = bP for b ≥ 1. But
this is impossible since then c3(H−1(F )) > 0 and by [BF14, Proposition 3.4(i)]
we have χ(H−1(F )) = 0, which implies that b = 0.

IfH0(F ) is supported in dimension 1, we can assume that ch(H0(F )) = aL+
b
2
P where a ≥ 1 and b are integers. Thus ch(H−1(F )) = 2−H+aL+(5

6
+ b

2
)P .

Now from Lemma 6.3.5, we know H−1(F ) ∼= E and ch(H0(F )) = L − P
2

. Thus
H0(F ) ∼= OL(−1) for some line L on X . Therefore we have a triangle

E [1] → F → OL(−1).
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In this case we have

Hom(OL(−1), E [2]) = Hom(E∨(H),OL[1])

= H1(L, E(−H)|L)
= H1(L,OL(−1)⊕OL(−2)) = C.

Hence by Lemma 6.4.4, F ∼= pr(E) for some E ∈ MG(2, 1, 5) such that E is
locally free but not globally generated.

If H0(F ) = 0, we have F [−1] ∼= H−1(F ). Then F [−1] is a µ-semistable
sheaf. Since F [−1] is reflexive and c3(F [−1]) = 0, F [−1] ∈ MG(2,−1, 5) is a
stable vector bundle. Thus by Lemma 6.4.4, we know F [−1] = pr(E) for some
E ∈MG(2, 1, 5) such thatE is a globally generated vector bundle or non-locally
free sheaf.

6.5.2 The moduli space of class −x
In this subsection, we show that Cm(X) ∼= Mσ(AX ,−x).

Lemma 6.5.3 ([JLLZ21, Lemma 9.2]). If F ∈ Aalt(α, β) is σalt(α, β)-stable such
that [F ] = −x and F is σ0

α,β-semistable for some (α, β) ∈ V , then F ∼= IC [1] for
some conic C on X .

Proof. Since F is σ0
α,β-semistable and µ0

α,β(F ) > 0, as in [PY22, Proposition 4.6]
there is a triangle

F1[1] → F → F2

where F1 ∈ Cohβ(X) with µ+
α,β(F1) < 0 and F2 is supported on points. Thus

ch(F1) = (1, 0,−2L,mP ), where m is the length of F2. By Lemmas 6.3.11 and
4.3.3, F1 is a rank 1 torsion free sheaf, hence it is the ideal sheaf of a closed
subscheme. Thus by [San14, Corollary 1.38] (see the Case (2) in the proof), we
have m ≤ 0, which means F2 = 0 and F1

∼= F [−1]. Thus by Lemmas 6.3.11
and 4.3.3 again, F [−1] is a µ-semistable torsion free sheaf, which is of the form
F [−1] ∼= IC for some conic C on X since Pic(X) = Z ·H .

When F is not σ0
α,β-semistable for (α, β) ∈ V , the argument is slightly more

complicated.

Lemma 6.5.4 ([JLLZ21, Lemma 9.3]). If F ∈ Aalt(α, β) is σalt(α, β)-stable such
that [F ] = −x and F is not σ0

α,β-semistable for every (α, β) ∈ V , then F fits into
a triangle

E [2] → F → Q∨[1].
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Proof. Since there are no walls forF tangent to the wall β = 0, by the local finite-
ness of walls and [BMT13, Proposition 2.2.2] we can find an open neighborhood
U ′ of the origin such that the Harder–Narasimhan filtration with respect to σ0

α,β

is constant for every (α, β) ∈ U := U ′∩V . In the following we will only consider
σ0
α,β for (α, β) ∈ U .

Let B be the minimal destabilizing quotient object of F and 0 → A→ F →
B → 0 be the destabilizing short exact sequence of F in Coh0

α,β(X). Hence
we know that A,B ∈ Coh0

α,β(X) and B is σ0
α,β-semistable with µ0,−

α,β(A) >
µ0
α,β(F ) > µ0

α,β(B) for all (α, β) ∈ U . By [BLMS23, Remark 5.12], we have
µ0
α,β(B) ≥ min{µ0

α,β(F ), µ
0
α,β(OX), µ

0
α,β(E∨)}. Hence the following relations

hold for all (α, β) ∈ U :

a. µ0
α,β(A) > µ0

α,β(F ) > µ0
α,β(B),

b. Im(Z0
α,β(A)) ≥ 0, Im(Z0

α,β(B)) > 0,

c. µ0
α,β(B) ≥ min{µ0

α,β(F ), µ
0
α,β(OX), µ

0
α,β(E∨)},

d. ∆(B) ≥ 0.

By continuity we have this list which we call (⋆):

1. µ0
0,0(A) ≥ µ0

0,0(F ) = 0 ≥ µ0
0,0(B),

2. Im(Z0
0,0(A)) ≥ 0, Im(Z0

0,0(B)) ≥ 0,

3. µ0
0,0(B) ≥ min{µ0

0,0(F ), µ
0
0,0(OX), µ

0
0,0(E∨)},

4. ∆(B) ≥ 0.

Assume [A] = a[OX ] + b[OH ] + c[OL] + d[OP ]. Then [B] = (−1− a)[OX ]−
b[OH ]+(2−c)[OL]−(1+d)[OP ]. Then ch(A) = (a, bH, c−5b

10
H2,

5
3
b+ c

2
+d

10
H3) and

Z0
0,0(A) = bH3 + ( c−5b

10
H3) · i, Z0

0,0(B) = −bH3 + (2−c+5b
10

H3) · i and µ0
0,0(A) =

10b
5b−c , µ

0
0,0(B) = −10b

c−5b−2
. Note that [F ] = −[OX ] + 2[OL] − [OP ]. From (2) we

know c− 5b = 0, 1 or 2. But when c− 5b = 2, it is not hard to see that (c) fails
near the origin. Thus c− 5b = 0 or 1.

We begin with two claims.
Claim1: Hom•(OX , B) = Hom(OX , B) andHom•(OX , A) = Ext1(OX , A)[−1].
Since F ∈ AX , we only need to prove that Exti(OX , A) = 0 for i ̸= 1.

Indeed, since OX ∈ Coh0
α,β(X) and F ∈ AX , we have Exti(OX , A) = 0 for all
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i ≤ 0. Also, by Serre duality we have Exti(OX , A) = Hom(A,OX(−H)[3− i]).
Thus from OX(−H) ∈ Coh0

α,β(X), we obtain Hom(A,OX(−H)[3− i]) = 0 for
i ≥ 2. Therefore we have Exti(OX , A) = 0 for i ̸= 1.

Claim2: Hom•(E∨, B) = Hom(E∨, B) andHom•(E∨, A) = Ext1(E∨, A)[−1].
Since E∨ and E [2] ∈ Coh0

α,β(X), the argument is the same as Claim 1.
Now we deal with the cases c− 5b = 0 and c− 5b = 1 separately.
Case 1 (c− 5b = 0):
First we assume that c− 5b = 0. By (⋆), we have:

1. −2 ≤ b ≤ 0,

2. b2 + 2a+2
5

≥ 0.

Case 1.1 (b = 0): If b = 0, then c = 0 and a ≥ −1. In this case we have
ch≤2(B) = (−1 − a, 0, 2L). If a = −1, then ch≤2(B) = (0, 0, 2L), which is
impossible since B ∈ Coh0

α,β(X). Thus a ≥ 0, but then we have µ0
α,β(F ) ≥

µ0
α,β(B) when (α, β) ∈ U is sufficiently close to the origin. This contradicts our

assumption on B.
Case 1.2 (b = −1): If b = −1, we have c = −5. In this case ch≤2(A) =

(a,−H, 0). Since A ∈ Coh0
α,β(X), we have Im(Z0

α,β(A)) ≥ 0 for every (α, β) ∈
U . Note that Im(Z0

α,β(A)) = (β + a(β2−α2)
2

)H3 and α < −β, and we have
a ≥ −2β

β2−α2 . But note that when α = −β
2

and β → −0, we have −2β
β2−α2 → +∞,

thus we get a contradiction since a is a finite number.
Case 1.3 (b = −2): If b = −2, we have c = −10. In this case we have

ch≤2(A) = (a,−2H, 0). Similarly to case 1.2, we have Im(Z0
α,β(A)) ≥ 0 for

every (α, β) ∈ U . Note that Im(Z0
α,β(A)) = (2β + a(β2−α2)

2
)H3 and α < −β,

and we have a ≥ −4β
β2−α2 . Then as in Case 1.2, we get a contradiction.

Case 2 (c− 5b = 1): Now we assume that c− 5b = 1. Then by (⋆), we have:

1. −1 ≤ b ≤ 0,

2. b2 + a+1
5

≥ 0.

Case 2.1 (b = 0): If b = 0, then c = 1. Therefore −1 ≤ a. If a = −1, since
B is σ0

α,β-semistable, we know H0
Cohβ(X)

(B) is either 0 or supported on points.
Thus ch≤2(H−1

Cohβ(X)
(B)) = (0, 0,−L). But Re(Zα,β(H−1

Cohβ(X)
(B))) > 0 which

is impossible since H−1

Cohβ(X)
(B) ∈ Cohβ(X) with Im(Zα,β(H−1

Cohβ(X)
(B))) = 0.
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Therefore we have a ≥ 0. Hence ch≤2(B) = −(a+1, 0,−L), where a+1 ≥ 1.
This is also impossible since when (α, β) ∈ U is sufficiently close to the origin,
we have µ0

α,β(B) > µ0
α,β(F ).

Case 2.2 (b = −1): We have b = −1 and c = −4. Hence −6 ≤ a. In this
case ch≤2(B) = (−1− a,H, L) and we have µ0

α,β(B) < 0 for when (α, β) ∈ U

is sufficiently close to the origin. Therefore, B ∈ Cohβ(X) is σα,β-semistable.
Applying Lemma 4.3.4 to B, we have a ≥ −3.

We first prove a claim.
Claim 3: In the situation of Case 2.2, we have A is σ0

α,β-semistable. Hence
Hom•(OX , A) = 0, ch(A) = (a,−H,L, (7

3
− a)P ) and χ(E∨, A) = 3− 2a.

Assume A is not σ0
α,β-semistable for some (α, β) ∈ U . Then we can take

a neighborhood U ′
A of the origin such that A has constant Harder–Narasimhan

factors for any (α, β) ∈ UA := U ∩ U ′
A ∩ V . Let C be the minimal destabi-

lizing quotient object of A with respect to σ0
α,β for (α, β) ∈ UA. In this case

we have ch≤2(A) = (a,−H,L). Since Im(Z0
0,0(A)) = 1

10
H3, we know that

Im(Z0
0,0(C)) = 0 or 1

10
H3. If Im(Z0

0,0(C)) = 0, then µ0
0,0(C) = +∞ or −∞.

But the previous case contradicts µ0
α,β(A) > µ0

α,β(C) and the latter case contra-
dicts µ0

α,β(C) > µ0
α,β(F ). Therefore we have Im(Z0

0,0(C)) =
1
10
H3 and we can

assume that ch≤2(C) = (e, fH, L) where e, f ∈ Z. Since µ0
0,0(A) ≥ µ0

0,0(C) ≥
µ0
0,0(F ) = 0, we have 10 ≥ −10f ≥ 0. If f = 0, then ch≤2(C) = (e, 0, L) and

ch≤2(D) = (a − e,−H, 0), where D = cone(A → C)[−1]. Then µ0−
α,β(D) >

µ0
α,β(A) for any (α, β) ∈ UA. Hence µ0

α,β(D) = 1+(a−e)β
β+a−e

2
(β2−α2)

. But note that if
we take α = −β

2
and |β| < | 1

a−e |, when (α, β) ∈ UA and |β| is sufficiently small
we get 1 + (a − e)β > 0 and β + a−e

2
(β2 − α2) < 0. This implies µ0

α,β(D) < 0
for such (α, β), which gives a contradiction since µ0

α,β(D) > µ0
α0,β0

(F ) holds for
any (α, β) ∈ UA.

Therefore the only possible case is f = −1, and hence µ0
0,0(C) = 10. Since

µ0
α,β(A) > µ0

α,β(C) for (α, β) ∈ UA, we have rkC > a. But this is impossible
sinceD,OX ∈ Coh0

α,β(X) but ch≤2(D) = (s, 0, 0) = s·ch≤2(OX)where s = a−
rkC < 0. Now for the last statement, note thatOX(−H)[2] ∈ Coh0

α,β(X) is σ0
α,β-

semistable with µ0
0,0(OX(−H)[2]) = 2, hence we have Hom(A,OX(−H)[2]) =

Hom(OX , A[1]) = 0. Now combining with Claim 1, this proves our claim.
Now we deal with the three cases a = −3, −2 ≤ a ≤ 1 and a ≥ 2 separately.
When a = −3, we have ch≤2(B) = ch≤2(E∨). Then since ch≤2(B) is on

the boundary of Lemma 4.3.4, by a standard argument we know that B is σα,β-
semistable for every α > 0 and β < 0, as explained in [PR23, Proposition
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3.2]. Thus by Lemma 4.3.3, B is a µ-semistable sheaf. From Claim 3 we have
χ(OX , B) = 0, hence ch(B) = ch(E∨) and by Lemma 6.3.5 we have B ∼= E∨.
But this implies Hom(OX , A[1]) = C5 since F ∈ AX , which contradicts Claim
3.

When−2 ≤ a ≤ 1, we haveµ0
α,β(A) > µ0

α,β(E [2]). SinceA isσ0
α,β-semistable,

we have Hom(A, E [2]) = Hom(E∨, A[1]) = 0. Thus Hom•(E∨, A) = 0 by Claim
2. But this contradicts Claim 3 since χ(E∨, A) = 3− 2a.

When a ≥ 2, applying Lemma 4.3.5 to B, we have a = 2. Thus ch≤2(B) =
ch≤2(Q∨[1]). By Claim 3, we know that Hom•(OX , B) = 0 and we get ch(B) =
ch(Q∨[1]). Thusχ(E∨, B) = hom(E∨, B) > 0. Therefore, if we applyHom(−, B)
to the exact sequence 0 → Q∨ → O⊕5

X → E∨ → 0, we obtain hom(Q∨[1], B) >
0. Now by stability, we have B ∼= Q∨[1]. Now ch(A) = ch(E [2]). By Claims 2
and 3, we have ext1(E∨, A) = hom(A, E [2]) = 1. Since A is σ0

α,β-semistable and
E [2] is σ0

α,β-stable, we have A ∼= E [2].

Theorem 6.5.5 ([JLLZ21, Theorem 9.4]). Let X be a Gushel–Mukai threefold.
Then the the irreducible component S in Theorem 6.3.13 is the whole moduli space
Mσ(AX ,−x).

Proof. Note that hom(Q∨[1], E [2]) = 1. Then the result follows from Lemma
6.5.3 and Lemma 6.5.4.

6.6 Categorical Torelli theorems forGushel–Mukai
threefolds

In this section, we will prove several refined/birational categorical Torelli theo-
rems for Gushel–Mukai threefolds, using results from the previous sections.

We first show that the Bridgeland moduli space Mσ(AX ,−x) ∼= Cm(X)
admits a universal family, which in turn implies that it is a fine moduli space.
Note that Mσ(AX , y−2x) ∼= MG(2, 1, 5) immediately admits a universal family,
since it is isomorphic to a Gieseker moduli space.

6.6.1 The universal family for Cm(X)

Let I be the universal ideal sheaf of conics onX×C(X), i.e. for every x ∈ C(X),
I|X×x is an ideal sheaf of a conic on X . Let ILσ be the universal ideal sheaf of
conics restricted to X ×Lσ. Let q : X ×C(X) → X and π : X ×C(X) → C(X)
be the projection maps on the first and second factors, respectively.
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Let G ′ := pr(ILσ) be the projected family in AX×Lσ . Let t ∈ Lσ ∼= P1 be
any point. Then j∗t pr(ILσ)

∼= A, where jt : Xt → Xt × Lσ and A ∈ AX is
A ∼= pr(IC) for IC /∈ AX by Proposition 6.3.2. Then G ′ ∼= q∗(A)⊗ π∗OLσ(k) for
some k ∈ Z. Now let G := pr(I) ⊗ π∗OC(X)(kE), where E ∼= Lσ ∼= P1 is the
unique exceptional curve on C(X).
Proposition 6.6.1 ([JLLZ21, Proposition 10.1]). The object (pX)∗G is the universal
family of Cm(X), where pX = idX × p : X × C(X) → X × Cm(X).

Proof. We first fix some notation via the commutative diagrams below which
summarise the maps in the proof:

Xs Xs {s}

X × C(X) X × Cm(X) Cm(X)

∼=

js

πs

is

pX

Xs X × C(X)

{s} C(X)

js

πs π

fs

1. If s = [A] = π ∈ Cm(X), s is contracted from the unique rational curve
Lσ ∼= P1 ⊂ C(X). Note that in this case pX |Lσ = q. Then

i∗s(pX)∗G ∼= i∗s(pX)∗(G ′ ⊗ π∗OC(X)(kE))
∼= i∗sq∗(q

∗(A)⊗ π∗OLσ(k)⊗ π∗OC(X)(kE))
∼= i∗sq∗(q

∗(A)⊗ (π∗OLσ(k)⊗OLσ(kE)))
∼= i∗sq∗(q

∗(A)⊗ π∗(OLσ(k)⊗OLσ(−k)))
∼= i∗sq∗(q

∗(A)) ∼= i∗s(A)
∼= A.

2. If s = [IC ], then Cm(X) and C(X) are isomorphic outside Lσ. Note that p
restricts to id on C(X)∖ Lσ. Then

i∗s(pX)∗G ∼= i∗s(pX)∗(pr(I)⊗ π∗OC(X)(kE))
∼= j∗s (pr(I))⊗ j∗sπ

∗OC(X)(kE)
∼= IC ⊗ (π ◦ js)∗OC(X)(kE)
∼= IC ⊗ (fs ◦ πs)∗OC(X)(kE) ∼= IC .
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6.6.2 Refined categorical Torelli for Gushel–Mukai three-
folds

We now prove a refined categorical Torelli theorem for ordinary Gushel–Mukai
threefolds.

Theorem 6.6.2 ([JLLZ21, Theorem 10.2]). Let X and X ′ be general ordinary
Gushel–Mukai threefolds such that Φ: Ku(X) ≃ Ku(X ′) is an equivalence and
Φ(i!(E)) ∼= (i′)!(E ′). Then X ∼= X ′.

Proof. Note that Ξ(i!(E)) ∼= pr(IC)[1] ∼= i!(Q∨)[1], where IC ̸∈ AX . Then the
equivalence Φ induces an equivalence Ψ := Ξ ◦ Φ ◦ Ξ−1 : AX ≃ AX′ such that
Ψ(π) = π′, where π := i!(Q∨)[1] ∼= pr(IC)[1] ∈ AX and π′ := (i′)!(Q′∨)[1] ∼=
pr′(IC′)[1] ∈ AX′ . The existence of the universal family on Cm(X) guarantees
a projective dominant morphism from Cm(X) to Cm(X ′), denoted by ψ, which
is induced by Ψ (for more details on the construction of the morphism ψ, see
[BMMS12, APR22]). Since Ψ is an equivalence, ψ is bijective on closed points
by Theorem 6.3.13 and Theorem 4.5.14. It also identifies the tangent spaces of
each point on Cm(X) and Cm(X ′), hence it is an isomorphism. On the other
hand, we have ψ(π) = π′. Then ψ induces an isomorphism ϕ : C(X) ∼= C(X ′) by
blowing up π ∈ Cm(X) and π′ ∈ Cm(X ′), respectively. Then we have X ∼= X ′

by Logachev’s Reconstruction Theorem 6.2.7.

6.6.3 Birational categorical Torelli forGushel–Mukai three-
folds

In this subsection, we show a birational categorical Torelli theorem for ordinary
Gushel–Mukai threefolds, i.e. assuming the Kuznetsov components are equiva-
lent leads to a birational equivalence of the ordinary Gushel–Mukai threefolds.

Theorem 6.6.3 ([JLLZ21, Theorem 10.3]). Let X and X ′ be general ordinary
Gushel–Mukai threefolds such that AX ≃ AX′ . Then X ′ is a conic transform,
or a conic transform of a line transform of X . In particular, we have X ≃ X ′.

Proof. Assume that Φ: AX
∼−→ AX′ , and fix a (−1)-class −x in N (AX). The

equivalence Φ sends −x to either itself or y − 2x in N (AX′) up to sign. By
the same argument as in [BMMS12, APR22], we thus get two possible induced
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morphisms between Bridgeland moduli spaces

Mσ(AX ,−x) Mσ(AX′ ,−x)

Mσ(AX′ , y − 2x)

γ

γ′

As we have seen in Theorems 6.3.13 and 6.4.6, Mσ(AX ,−x) ∼= Cm(X) and
Mσ(AX , y−2x) ∼= MG(2, 1, 5). So we have two cases: either Cm(X) ∼= Cm(X ′)
or Cm(X) ∼= MX′

G (2, 1, 5).
For the first case, blow up Cm(X) at the distinguished point π := Ξ(i!(E)),

and blow up Cm(X ′) at the point c := Φ(π). We have C(X) ∼= BlπCm(X) and
we have BlcCm(X ′) ∼= C(X ′

c) by Theorem 6.2.9, so C(X) ∼= C(X ′
c). Therefore by

Logachev’s Reconstruction Theorem 6.2.7 we have X ∼= X ′
c. But X ′

c is birational
to X ′, so X and X ′ are birational.

For the second case, we get Cm(X) ∼= MX′
G (2, 1, 5) but we have a birational

equivalenceMX′
G (2, 1, 5) ≃ C(X ′

L) of surfaces by [DIM12, Proposition 8.1]. Thus
Cm(X) is birationally equivalent to C(X ′

L). Let Cm(X ′
L) be the minimal surface

of C(X ′
L). Note that the surfaces here are all smooth surfaces of general type. By

the uniqueness of minimal models of surfaces of general type, we get Cm(X) ∼=
Cm(X ′

L), which implies X ∼= (X ′
L)c ≃ X ′ as in the first case.

As a corollary, we obtain a stronger result than what is proved in [DIM12],
which claims that Cm(XL) is birational to MX

G (2, 1, 5).

Corollary 6.6.4 ([JLLZ21, Corollary 10.5]). Let X be a general ordinary Gushel–
Mukai threefold, and XL be a line transform of X . Then we have Cm(XL) ∼=
MX

G (2, 1, 5). Moreover, this isomorphism commutes with involutions ι and ι′ on
both sides, thus giving an isomorphism Cm(XL)/ι ∼= MX

G (2, 1, 5)/ι′.

Proof. By the same argument as in the proof of Theorem 6.6.3, we have Cm(XL) ∼=
Cm(X) or Cm(XL) ∼= MX

G (2, 1, 5). Note that Cm(XL) ∼= Cm(X) implies that
XL

∼= Xc for some conic c ⊂ X as in Theorem 6.6.3. But this is impossible
by [DIM12, Remark 7.3]. Thus we always have Cm(XL) ∼= MX

G (2, 1, 5). The
last statement follows from the fact that any equivalence between Kuznetsov
components commutes with Serre functors, and the involutions on Cm(XL) and
MX

G (2, 1, 5) can be induced by Serre functors up to shift by Propositions 6.3.3
and 6.4.5.
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Since the intermediate Jacobian J(X) is invariant under conic and line trans-
forms, we have the following corollary.

Corollary 6.6.5 ([JLLZ21, Corollary 10.6]). Let X and X ′ be general ordinary
Gushel–Mukai threefolds. If Ku(X) ≃ Ku(X ′), then we have J(X) ∼= J(X ′).

Note the corollary above also follows from Perry’s construction of the inter-
mediate Jacobian of a category [Per22].

6.7 A categorical Torelli theorem for specialGushel–
Mukai threefolds

In this section, we show that the Kuznetsov component of a general special
Gushel–Mukai threefold X determines the isomorphism class of X .

Recall from Section 2 that every special Gushel–Mukai threefold X is a dou-
ble cover of a degree 5 index 2 prime Fano threefold Y branched over a quadric
hypersurface B in Y . Since X is smooth and general, (B, h) is a smooth degree
h2 = 10 K3 surface with Picard rank 1. There is a natural geometric involution
τ on X induced by the double cover. The Serre functor on Ku(X) is given by
SKu(X) = τA ◦ [2].

Theorem 6.7.1 ([JLLZ21, Theorem 10.9]). LetX andX ′ be smooth general special
Gushel–Mukai threefolds such that there is an equivalence Φ: Ku(X) ≃ Ku(X ′).
Then X ∼= X ′.

Proof. By [KP17, Theorem 1.1, Section 8.2], the equivariant triangulated category
Ku(X)µ2 is equivalent to Db(B), where µ2 is the group of square roots of 1 gen-
erated by the involution τA acting on Ku(X)5. Assume there is an equivalence
Φ: Ku(X) ≃ Ku(X ′).

We now check that Φ descends to an equivalence of equivariant Kuznetsov
components. The argument will be analogous to those in [DJR23, Lemmas 6.2 and
6.3]. We first check that Φ preserves 1-categorical actions (all actions we discuss
in this proof will be understood to be Z/2 ∼= µ2-actions). Let E ∈ Ku(X) and
consider the arrow E → τA(E) in Ku(X). The equivalence Φ sends this arrow
to the arrow Φ(E) → Φ(τA(E)) ∼= τ ′A(Φ(E)) in Ku(X ′), where we have used
the fact that τA = SKu(X)[−2] and τ ′A = SKu(X′)[−2], and that Serre functors

5By abuse of notation, we denote the involution on Ku(X) as τA, which is also the involution
on AX .
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commute with equivalences of categories. The above holds for all objects E ∈
Ku(X), soΦ takes the 1-categorical action τA ∈ Aut(Ku(X)) to the 1-categorical
action τ ′A ∈ Aut(Ku(X ′)).

Next, we check that Φ respects 2-categorical actions. The 1-categorical ac-
tions from the previous paragraph lift to 2-categorical actions, because the func-
tors τA : Ku(X) → Ku(X) and τ ′A : Ku(X ′) → Ku(X ′) are given by pulling back
the geometric involutions τ : X → X and τ ′ : X ′ → X ′. Since pullbacks are
functorial, the 1-categorical actions τ and τ ′ lift to 2-categorical actions.

Finally, these lifts are unique because H2(BZ/2,C×) = 0 (see [BP23, Corol-
lary 3.4] for the lifting criterion, and [BP23, Example 3.12] for the vanishing).
Thus Φ sends the 2-categorical action τA to the unique 2-categorical action τ ′A.
So Φ respects 2-categorical actions, as required.

We thus get an induced equivalence

Ψ: Ku(X)µ2 ≃ Ku(X ′)µ
′
2

where µ2 = ⟨τA⟩, µ′
2 = ⟨Φ ◦ τA ◦ Φ−1 = τ ′A⟩ and µ2

∼= µ′
2. Thus we have

Ψ: Db(B) ≃ Db(B′). We know that B and B′ are smooth projective surfaces
with polarisations h and h′, respectively, so Ψ is a Fourier–Mukai functor by
Orlov’s Representability Theorem [Orl97, Theorem 2.2]. Moreover, (B, h) and
(B′, h′) are both Picard rank 1 smooth projective K3 surfaces of degree h2 =
h′2 = 10 = 2 · 5. Then by [Ogu02, Theorem 1.10] and [HLOY03, Corollary 1.7],
there is an isomorphism ϕ : B ∼= B′. Since they both have Picard rank one, we
obtain ϕ∗(h′) = h.

We claim that the polarised isomorphism ϕ : B ∼= B′ implies that X ∼= X ′.
Indeed, ϕ sends the Mukai bundle E|B on B to the Mukai bundle E ′|B′ on B′

because E|B is the unique stable vector bundle of its Chern character on B. So
ϕ preserves the embeddings of B,B′ in Gr(2, 5). But recall that Y5 is a linear
section of Gr(2, 5), so the embeddings B ⊂ Y5 and B′ ⊂ Y5 are preserved. This
proves the claim that X ∼= X ′, and hence the categorical Torelli theorem.

To make a more general categorical Torelli statement for Gushel–Mukai three-
folds, we can relax the assumptions on X by looking at the singularities of
Bridgeland moduli spaces:

Theorem 6.7.2. Let X and X ′ both be general Gushel–Mukai threefolds, and sup-
pose we have an equivalence AX ≃ AX′ . Then X and X ′ are both either ordinary
or special. In particular, in the ordinary case they are birationally equivalent, and
in the special case they are isomorphic.
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Proof. First we claim that ifX andX ′ are general Gushel–Mukai threefolds such
that Φ: AX ≃ AX′ , then both X and X ′ are ordinary or special simultaneously.
Indeed, we may assume X ′ is ordinary and X is special. Then the equivalence
would identify the moduli space Mσ(AX ,−x) of stable objects of class −x in
AX with either the moduli space Mσ′(AX′ ,−x) or Mσ′(AX′ , y− 2x). Then the
surface Cm(X) for a special Gushel–Mukai threefoldX would be identified with
the minimal Fano surface Cm(X ′) or the moduli space MX′

G (2, 1, 5) for a general
ordinary Gushel–Mukai threefold X ′. But Cm(X) has a unique singular point
and both Cm(X ′) and MX′

G (2, 1, 5) are smooth for X ′ general. This means that
neither identification is possible, so the claim follows.

Now X and X ′ are both general ordinary or general special. Hence the bira-
tional categorical Torelli result follows from Theorem 6.6.3 if X and X ′ are both
ordinary, and the categorical Torelli result if X and X ′ are both special follows
from 6.7.

6.8 The Debarre–Iliev–Manivel conjecture
In [DIM12, pp. 3-4], the authors make the following conjecture regarding the
general fiber of the period map:

Conjecture 6.8.1 ([DIM12, pp. 3-4]). A general fiber P−1(J(X)) of the period
map P : X6 → A10 at an ordinary Gushel–Mukai threefold X is the union of
Cm(X)/ι and a surface birationally equivalent to MG(2, 1, 5)/ι

′, where ι, ι′ are
geometrically meaningful involutions.

Remark 6.8.2. Note that by Corollary 6.6.4, the surface birationally equivalent
to MG(2, 1, 5)/ι

′ in [DIM12], parametrising conic transforms of a line transform
of X , is actually isomorphic to MG(2, 1, 5)/ι

′. Thus this conjecture predicts
that a general fiber P−1(J(X)) is actually the disjoint union of Cm(X)/ι and
MG(2, 1, 5)/ι

′.

We will prove a categorical analogue of this conjecture. Consider the cate-
gorical period map

Pcat : X6 → {AX}/ ≃, X 7→ AX

where X6 is the moduli space of isomorphism classes of Gushel–Mukai three-
folds and {AX}/ ≃ is the set of equivalence classes of Kuznetsov components of
Gushel–Mukai threefolds. Note that a global description of a “moduli of Kuznetsov
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components” {AX}/ ≃ is not known, however local deformations are controlled
by the second Hochschild cohomology HH2(AX). The fiber of the categorical
period map Pcat over AX for an ordinary Gushel–Mukai threefold is defined as
the isomorphism classes of all ordinary Gushel–Mukai threefolds X ′ such that
AX′ ≃ AX .

Theorem 6.8.3 ([JLLZ21, Theorem 11.3]). The general fiber P−1
cat(AX) of the cate-

gorical period map over the alternative Kuznetsov component of an ordinary Gushel–
Mukai threefold X is the union of Cm(X)/ι and MX

G (2, 1, 5)/ι′ where ι, ι′ are ge-
ometrically meaningful involutions.

Proof. The general fiberP−1
cat(AX) of the categorical period map consists of Gushel–

Mukai threefolds X ′ such that there is an equivalence of Kuznetsov components
AX′ ≃ AX . Then by Theorem 6.7.2, X ′ is also a general ordinary Gushel–Mukai
threefold. Thus by Theorem 6.6.3 and Theorem 6.2.11, we know thatAX′ ≃ AX if
and only if X ′ is a conic transform of X , or a conic transform of a line transform
of X . Then the result follows from Proposition 6.2.10 and Corollary 6.6.4.

Remark 6.8.4. The Kuznetsov components of prime Fano threefolds of index 1
and 2 are often regarded as categorical analogues of the intermediate Jacobians
of these threefolds.

Proposition 6.8.5. LetX andX ′ be smooth Picard rank 1 Fano threefolds of index
1 or 2 in the same deformation class. Suppose Ku(X) ≃ Ku(X ′) is a Fourier–Mukai
equivalence6. Then J(X) ∼= J(X ′) as principally polarised abelian varieties.

Proof. By Perry’s construction [Per22, Section 5] of the intermediate Jacobian
of an admissible subcategory of Db(X), we have J(Ku(X)) ∼= J(X). Thus the
result follows.

For the converse in the Gushel–Mukai case, we have the following conjecture.

Conjecture 6.8.6 ([JLLZ21, Conjecture 11.5]). The intermediate Jacobian J(X)
of a Gushel–Mukai threefold X uniquely determines the Kuznetsov component
Ku(X), i.e. if X and X ′ are Gushel–Mukai threefolds then J(X) ∼= J(X ′) =⇒
Ku(X) ≃ Ku(X ′).

6We require the Fourier–Mukai assumption on the equivalence, since for the Hodge structure
to be preserved in Perry’s construction of the intermediate Jacobian of a category, the stable ∞-
category structure of the category must be preserved, and this is equivalent to requiring the
equivalence to be Fourier–Mukai by [Toë07, Theorem 8.9].
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If we replace Gushel–Mukai threefolds by certain other Fano threefolds in
Conjecture 6.8.6, then it becomes a theorem:

Theorem6.8.7 ([JLLZ21, Theorem 11.6]). LetX andX ′ be both be Fano threefolds
in one of the following deformation classes:

• Yd, 2 ≤ d ≤ 5

• X2g−2, g = 5, 7, 8, 9, 10, 12.

Then we have the following implication: J(X) ∼= J(X ′) =⇒ Ku(X) ≃ Ku(X ′).

Proof. IfX is an index 2 prime Fano threefold Yd where 2 ≤ d ≤ 5, then the state-
ment follows from the Torelli theorems for Yd. If X = X8, the statement follows
from its Torelli theorem. If X = X12, X18, X16, their intermediate Jacobians are
Jacobians of curves: J(X12) ∼= J(C7), J(X16) ∼= J(C3), and J(X18) ∼= J(C2).
But Ku(X12) ≃ Db(C7), Ku(X16) ≃ Db(C3) and Ku(X18) ≃ Db(C2). Thus the
statement follows from the classical Torelli theorem for curves. If X = X14, the
statement follows from [Kuz09, Corollary 4.9] and the Torelli theorem for cubic
threefolds [CG72, Tju70]. If X = X22, the statement is trivial since Ku(X22) ∼=
Ku(Y5) ([KPS18]) and Y5 is rigid, so Ku(X) ≃ Ku(X ′) is always true.

In the case of general ordinary Gushel–Mukai threefolds X6, we have the
following equivalence of conjectures.

Proposition 6.8.8 ([JLLZ21, Proposition 11.7]). The Debarre–Iliev–Manivel Con-
jecture 6.8.1 is equivalent to Conjecture 6.8.6.

Proof. First we assume that Conjecture 6.8.6 holds. Then by Corollary 6.6.5 and
Theorem 6.8.3, the Debarre–Iliev–Manivel Conjecture 6.8.1 holds.

On the other hand, we assume the Debarre–Iliev–Manivel Conjecture 6.8.1
holds. Then for any X and X ′ such that J(X) ∼= J(X ′), X is either a conic
transform ofX ′, orX is a conic transform of a line transform ofX ′. In both cases,
we have Ku(X) ≃ Ku(X ′) by Theorem 6.2.11. Thus Conjecture 6.8.6 holds.
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7, 2023.

[Gab62] Pierre Gabriel. Des catégories abéliennes. Bulletin de la Société Mathématique
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