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A B S T R A C T

Water is the most valuable natural resource on earth that plays a critical role in the socio-economic development
of humans worldwide. Water is used for various purposes, including, but not limited to, drinking, recreation, irri-
gation, and hydropower production. The expected population growth at a global scale, coupled with the pre-
dicted climate change-induced impacts, warrants the need for proactive and effective management of water re-
sources. Over the recent decades, machine learning tools have been widely applied to various water resources
management-related fields and have often shown promising results. Despite the publication of several review ar-
ticles on machine learning applications in water-related fields, this review paper presents for the first time a com-
prehensive review of machine learning techniques applied to water resources management, focusing on the most
recent achievements. The study examines the potential for advanced machine learning techniques to improve de-
cision support systems in the various sectors within the realm of water resources management, which includes
groundwater management, streamflow forecasting, water distribution systems, water quality and wastewater
treatment, water demand and consumption, hydropower and marine energy, water drainage systems, and flood
management and defence. This study provides an overview of the state-of-the-art machine learning approaches
to the water industry and how they can be used to ensure water supply sustainability, quality, and flood and
drought mitigation. This review covers the most recent related studies to provide the most recent snapshot of ma-
chine learning applications in the water industry. Overall, LSTM networks have been proven to exhibit reliable
performance, often outperforming ANN models, traditional machine learning models, and established physics-
based models. Hybrid ML techniques have exhibited great forecasting accuracy across all water-related fields, of-
ten showing superior computational power over traditional ANNs architectures. In addition to purely data-driven
models, physical-based hybrid models have also been developed to improve prediction performance. These ef-
forts further demonstrate that Machine learning can be a powerful practical tool for water resources manage-
ment. It provides insights, predictions, and optimisation capabilities to help enhance sustainable water use and
management and improve socio-economic development, healthy ecosystems and human existence.

1. Introduction

Water is the most essential natural resource for human life that is
used in various ways, which are keys for human socio-economic devel-
opment. Water is used for drinking, bathing, recreational activities,
agriculture, hydropower production, and more. Although water covers
around 70% of the earth's surface, only about 2.5% is freshwater
(Science Daily, 2020). Therefore, appropriate water resources manage-
ment is crucial to a well-developed society. As a complex system of na-
ture, aquifers are constantly changing. Hence, our accessibility to fresh-

water is continually changing, too. In its water scarcity report (2020),
the United Nations estimates that by 2025, 1.8 billion people will be liv-
ing in water-scarce areas, highlighting the urgent need for innovative
solutions within the water sector. Engineers and decision-makers con-
stantly look for promising methods to address climate change and its
consequential impacts. As temperatures rise rapidly, more extreme
weather is observed. One of the most concerning consequences is flood-
ing, with over one billion people worldwide predicted to live in cities
with a risk of catastrophic flood levels due to climate change
(Rentschler and Salhab, 2020). A natural disaster, such as a devastating
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level of flooding, can cost lives, property, crop destruction and much
more. The damaging effects of flooding can have a long-lasting impact
on the affected area, which can be challenging to recover from (see
Table 1).

On a global scale, the exploitation and consumption of water re-
sources often need to be better managed. An important aspect of water
resources management is providing solutions for optimal resource use,
ensuring overexploitation does not occur, and equipping water re-
sources managers with the appropriate decision-support tools to plan
for potential shortages of effective management. Conventionally, physi-
cal models have assisted decision-makers in enabling a sustainable and
optimal use of water resources. However, the relationships between hy-
drological, meteorological and water table levels are well known to be
very complex. Additionally, these models require a larger number of
data, and such data tend to be very expensive and/or scarce, particu-
larly in developing countries.

Table 1
Summary of statistical and machine learning models as well as their associ-
ated paradigms and tasks.
Models Paradigm Task

Statistical
models

Linear regression Supervised
learning

Regression,

Nonlinear regression Supervised
learning

Regression

Regularized regression
models: Ridge
Regression, LASSO

Supervised
learning

Regression

Generalized linear
models

Supervised
learning

Classification,
regression

ARIMA Supervised
learning

Regression, time
series forecasting

Machine
Learning
models

Decision Trees Supervised
learning

Classification,
regression, time series
forecasting

SVM/SVR Supervised
learning

Classification,
regression

Naïve Bayes Supervised
learning

Classification,
regression, time series
forecasting

Gradient Boosted Trees,
AdaBoost, XGBoost

Supervised
learning

Classification,
regression, time series
forecasting

Random Forest Supervised
learning

Classification,
regression, time series
forecasting

K-NN Supervised
learning

Regression, time
series forecasting

Deep learning:
ANN, RNN, CNN, GAN,
GRU, LSTM, DBN,
DCGAN
Autoencoders, SAE,
DEA, VAE, RBM, DBM

Supervised
learning
Unsupervised
learning

Classification,
regression, time series
forecasting
Feature extraction,
dimensionality
reduction

Clustering: k-mean, k-
medoid, GMM-based
clustering

Unsupervised
learning

Feature extraction,
dimensionality
reduction

PCA, UMAP, Isomap
Embedding, NMF,
Apriori

Unsupervised
learning

Feature extraction,
dimensionality
reduction

Filter Methods Unsupervised
learning

Feature selection,
dimensionality
reduction

Label Spreading, Label
Propagation, Self-
Training classifier

Semi-supervised
learning

Classification

Q-Learning, MDP,
SARSA, PPO, PG

Reinforcement
learning

Decision-making

Hybrid models:
ARIMA-ANN, Deep Q-
Learning, Deep
Reinforcement
Learning

Supervised
learning,
Reinforcement
learning

Classification,
regression, time series
forecasting, decision-
making

In recent years, Machine Learning (ML) has demonstrated its high
efficiency and practicability for water resources management compared
to traditional models due to its capability to handle different sources si-
multaneously and its lower cost and time requirements. ML has been
applied to water resources management in various ways to improve the
monitoring, prediction, and sustainable use of water resources. ML
models are often trained on historical hydrological data for forecasting.
The main hydrological data commonly used as input features include
discharge, rainfall, water table level, temperature, evapotranspiration,
land use, and pumping rates. Preference has recently been given to
data-driven models over physically based or conceptual forecasting
models, which have the potential to unravel the non-linear input-
output relationship and produce reliable predictions of physical sys-
tems, even without prior knowledge of the underlying physical rela-
tionships and the catchment information.

There are numerous examples of how ML can be applied to water re-
sources management. For example, ML can analyse historical usage
data in a water distribution system, provide optimum water allocation,
predict future demand, and help detect system leaks (e.g. Shahra et al.,
2019). With the availability of historical data on groundwater levels,
ML has been widely used for future predictions of water level dynamics,
which helps in the management of groundwater reservoirs (e.g. Pathak
et al., 2021; Ghosh et al., 2022; Kochhar et al., 2021; Teimoori et al.,
2023). ML can also be used for streamflow forecasting (e.g. Cheng et al.,
2020; Mehedi et al., 2022; Dehghani et al., 2023; Akbarian et al., 2023).

There is increasing pressure on irrigation water demand for agricul-
ture use, which is expected to double by 2050 (The Food and
Agriculture Organization of the United Nations, 2017), with only lim-
ited resources. ML has been extensively used to narrow this gap and to
develop smart irrigation practices (e.g. Chen et al., 2021; He et al.,
2022). Another example where ML has proved successful is the water
quality prediction. This has been crucial given that water pollution has
worsened significantly in most rivers in Africa, Asia, and Latin America
(United Nations Environment Programme, 2016). This has prompted
many studies focusing on the applications of ML to estimate and predict
water quality (e.g. Qu et al., 2020; Zhou, 2020).

This study presents an overview of the recent water resources-
related studies that implemented ML algorithms, with the main aim be-
ing to answer the following research question: which ML algorithms
have been used in water resource management in recent years, and
what were the most effective approaches adopted for forecasting appli-
cation? This provides the most up-to-date and relevant information per-
taining to the application of ML to the water sector, thereby highlight-
ing its relevance and potential in practical application. Most of the re-
search studies covered in this review extend from the time we initiated
it until October 2023.

Nomenclature

Abbreviations Significations

ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
Bi-LSTM Bidirectional-LSTM
CNN Convolutional Neural Network
Conv LSTM Convolutional LSTM
DI Data Integration
ELM Extreme Learning Machine
En-De Encoder-Decoder
GA Genetic Algorithm
GB Gradient Boosting
GBRT Gradient Boosted Regression Trees
GHM Global Hydrological Model
GloFAS Global Flood Awareness System
GMDH Group Method of Data Handling
GNN Graph Neural Network
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Nomenclature

Abbreviations Significations

GRU Gated Recurrent Unit
GWO Grey Wolf Optimisation
KGE Kling-Gupta Efficiency
LASSO Least Absolute Shrinkage and Selection Operator
LR Linear Regression
LSSVM Least-squares support-vector machines
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
MLR Multivariate Linear Regression
NARX Nonlinear AutoRegressive network with eXogenous inputs
NSE Nash–Sutcliffe efficiency
PCA Principle Component Analysis
PCC Pearson Correlation Coefficient
PSO Particle Swarm Optimisation
R2 Coefficient of Determination
RF Random Forest
RNN Recurrent Neural Network
SAC-SMA Sacramento Soil Moisture Accounting Model
SAE Stacked Auto Encoder
seq2seq sequence-to-sequence
SVM Support Vector Machine
SVR Support Vector Regression
SWAT Soil & Water Assessment Tool
WT Wavelet Transform

2. Machine learning methods

Various statistical and Machine Learning (ML) techniques have
found significant applications in water resource management for pre-
diction purposes, ranging from pure forecasting to estimating certain
parameters of optimisation models (table 1). Statistical models provide
mathematical representations of observed data, which are used for pre-
diction purposes. They are generally based on variants of regression
models, which include simple linear regression, multiple linear regres-
sion, generalized linear models, nonlinear regression, and autoregres-
sive integrated moving average models (ARIMA) (Bovas and Johannes,
1983; Agresti, 2011; Agresti and Franklin, 2011), regularized regres-
sion models - such as Ridge regression (Hoerl and Kennard, 1970),
Least Absolute Shrinking and Selection Operator (LASSO) (Tibshirani,
1996) - as well as logistic regression models (Agresti, 2011). The latter
are used for classification.

ML can be cast as either (i) supervised learning, (ii) unsupervised
learning, (iii) semi-supervised learning or (iv) reinforcement learning.

2.1. Supervised learning

Supervised learning techniques are used to devise a functional map-
ping between input variables and output variable(s) which have proven
to be efficient for prediction tasks. Depending on the type of the depen-
dent variable(s), a supervised learning technique is categorised as ei-
ther a classification model (for a nominal dependent variable) or a re-
gression model (for a continuous dependent variable). Therefore, statis-
tical models can be viewed as supervised learning techniques. Classifi-
cation models for ML include Decision Trees classifiers (Breiman et al.,
1984; Quinlan, 1986), Support Vector Machines (SVM) classifiers
(Cortes and Vapnik, 1995; Steinwart and Christmann, 2008), Naïve
Bayes classifiers (Domingos and Pazzani, 1997), Adaptive Boosting
(AdaBoost) classifiers (Freund and Schapire, 1995), Gradient Boosted
Trees classifiers (Friedman, 2001; Hastie et al., 2009), Extreme Gradi-
ent Boosting (XGBoost) classifiers (Chen and Guestrin, 2016), Random
Forest classifiers (Breiman, 2001), Linear Discriminant Analysis (LDA)
(Friedman, 1989). Regression models include the regression variants of
the aforementioned classifiers, namely Decision Trees regressors
(Breiman et al., 1984), Support Vector regressors (SVR) (Drucker et al.,
1997), Naïve Bayes regressors (Frank et al., 2000), AdaBoost regressors

(Freund and Schapire, 1995), Gradient Boosted Trees regressors
(Friedman, 2001; Hastie et al., 2009), XGBoost regressors (Chen and
Guestrin, 2016), Random Forest regressors (Breiman, 2001), as well as
K-Nearest Neighbour (KNN) regressors (Cover and Hart, 1967).

Deep learning (Le Cun et al., 2015; Schmidhuber, 2015) is a class of
supervised learning suitable for both classification and regression tasks,
which includes classical Artificial Neural Networks (ANN) (Amari,
1972; Hopfield, 1982), Convolutional Neural Networks (CNN) (Le Cun
et al., 1990), Recurrent Neural Networks (RNN) (Hopfield, 1982), Gen-
erative Adversarial Networks (GAN) (Goodfellow et al., 2014), Gated
Recurrent Unit (GRU) (Cho et al., 2014), Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), Deep Belief Networks
(DBN) (Hinton, 2009), Deep Convolutional Generative Adversarial Net-
works (DCGAN) (Radford et al., 2015).

2.2. Unsupervised learning

Unsupervised learning techniques are used to discover patterns or
relationships within labelled data. These machine learning techniques
can be classified as either:

- feature extraction techniques, including Hierarchical and
Partitional Clustering (e.g., K-means and k-medoid) (MacQueen,
1967; Hartigan and Wong, 1979; Kaufman and Rousseeuw,
1990), Gaussian Mixture Model (GMM)-based Clustering (Maugis
et al., 2009), Principal Component Analysis (PCA) (Jolliffe,
2002), Uniform Manifold Approximation and Projection (UMAP)
(Ghojogh et al., 2021), Isomap Embedding (Tenenbaum et al.,
2000), Non-negative Matrix Factorization (NMF) (Lee and Seung,
2001), Association Rules (e.g. Apriori algorithm, (Agrawal and
Srikant, 1994)), or

- feature selection techniques, which revolve around Filter Methods
based on mutual information (Pudjihartono et al., 2022).

Variants of Deep learning (Le Cun et al., 2015) models used for un-
supervised learning are Auto-Encoders (Kramer, 1991), which include
Sparse Auto-Encoder (SAE) (Frey and Makhzani, 2013), Denoising
Auto-Encoder (DAE) (Vincent and Larochelle, 2010), Variational Auto-
Encoder (VAE) (Welling and Kingma, 2019) and Restricted Boltzman
Machines (RBM) (Sherrington and Kirkpatrick, 1975), and Deep Boltz-
man Machines (DBM) (Salakhutdinov and Hinton, 2009).

2.3. Semi-supervised learning

Semi-supervised learning (Chapelle et al., 2006; van Engelen and
Hoos, 2020) combines both supervising and unsupervised learning
framework, namely when the data available consist of both unlabelled
and labelled data, with the sample of unlabelled data generally out-
weighing the one for labelled data. Semi-supervised learning tech-
niques include Label Spreading (Zhu and Goldberg, 2009), Label Propa-
gation (Zhu and Ghahramani, 2002), and Self-Training classifier
(Triguero et al., 2015).

2.4. Reinforcement Learning.

Reinforcement Learning (RL) (Kaelbling et al., 1996) is a framework
based on an agent's behaviour with a defined environment where some
feedback from previous actions are used to adjust optimally the subse-
quent actions. RL techniques include Q-Learning (Watkins, 1992),
Markov Decision Process (MDP) (Wrobel, 1984), State-Action-Reward-
State-Action (SARSA) (Rummery and Niranjan, 1994), Proximal Policy
Optimisation (PPO) (Schulman, 2017), and Policy Gradient (PG)
(Sutton et al., 2000).

Sometimes, different ML techniques and statistical models are com-
bined to improve the predictive accuracy. Such hybrid approaches in-
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clude the combination of RL with Deep Learning (e.g., Deep Reinforce-
ment Learning, Deep Q-Learning) (Mnih et al., 2015), and the combina-
tion of ANNs with ARIMA (Zhang, 2003).

This study aims to provide a comprehensive overview of the applica-
tions of machine learning in water resources management related
fields, including groundwater management, water distribution systems,
water quality and wastewater treatment, water demand and consump-
tion, hydropower and marine energy, irrigation and agriculture, water
drainage systems, and flood management and defence. The following
sections provide an overview of the recent water resource-related re-
search studies where ML algorithms were implemented. (Fig. 1).

3. Review methodology

This review involved establishing a systematic literature search on
the water industry. ScienceDirect and Scopus were mainly used as the
database. The search also mainly focused on journal articles. Two sets
of keywords were used, where one set included the machine learning el-
ements, and the other set included elements related to the water indus-
try. Those relating to the former included keywords such as ‘machine
learning’, ‘deep learning’, ‘neural networks’, ‘LSTM’, ‘long short-term
memory’, ‘random forest’, ‘genetic algorithm’, ‘support vector ma-
chine’, ‘extreme learning machine’, and ‘extreme gradient boosting’.
Those relating to the latter included keywords such as ‘groundwater’,
‘water distribution systems’, ‘water quality’, ‘wastewater treatment’,
‘water demand’, ‘water consumption’, ‘hydropower’, ‘marine energy’,
‘irrigation’, ‘agriculture’, ‘river basin management’, ‘water drainage
systems’, ‘flood management’, and ‘water retaining structure’. The
searches were limited to mainly include journal publications. While the
search mainly focused on the articles published in the past ten years,
some older articles were cited.

4. Groundwater management

Groundwater resources are large natural reservoir located within
the ground. Arid areas often rely on groundwater resources for water
supply, irrigation and industrial activities. (Pathak et al., 2021; Ghosh
et al., 2022). Half of drinking water is supplied by groundwater, and ir-
rigation accounts for nearly 43% (Rajeevan and Mishra, 2020). How-
ever, natural and human factors have put groundwater resources under
tremendous pressure. The main detrimental factors impacting ground-

water quantity and quality include climate change, population growth,
and agricultural demands. Most groundwater-related studies where ML
was applied focus on groundwater level (GWL) forecasting. Under-
standing groundwater flow dynamics is essential to assess the potential
availability and scarcity of water. Hence, a sustainable management of
the available groundwater resources in arid and semi-arid regions is
contingent of an accurate and reliable prediction of GWL, which di-
rectly reflects groundwater availability and provides relevant cues on
its hydrodynamics. However, characterising groundwater dynamics is a
difficult task since the occurrence and availability present spatial and
temporal variations, which depend on several factors, including, but
not limited to, slope, geology, rainfall, and soil type.

A large number of studies have demonstrated the usefulness of data-
driven models for GWL application, especially in data-scarce context
and/or complex aquifer systems. Conventional approaches applied to
GWL have often involved the use of multivariate linear regression mod-
els (MLR), autoregressive integrated moving average (ARIMA) model,
and seasonal autoregressive moving average (SARIMA) (e.g., Rahaman
et al., 2019), which are generally considered as linear fitting models.
Future predictions could be derived using the SARIMA model along
with the input and output of groundwater data (Kochhar et al., 2021).
Teimoori et al. (2023) demonstrated that K-means clustering and rele-
vance vector machine (RVM) could identify the optimal number and lo-
cation of monitoring wells and thus help design efficient groundwater
level monitoring networks.

Traditional ML models have also yielded acceptable GWL prediction
performance. Rohde et al. (2021) use the ensemble-based Random For-
est model and satellite-based remote sensing for long-term GWL predic-
tion in California, USA. GWL was forecasted within all groundwater-
dependent ecosystems across the state. They demonstrated that their re-
sults could be used to help groundwater data gaps filling and improve
sustainable groundwater management policy in California even in the
absence of groundwater monitoring well data. Liu et al. (2022) also im-
plemented Random Forest and found it very effective in predicting
GWL in the lower Tarim River. They demonstrated that RF was superior
to other models in one-step-ahead predictions of groundwater depth in
the space-time domain. Sharafati et al. (2020) assessed the performance
pattern of the Gradient Boosting Regression (GBR) model to predict the
monthly GWL with short- and long-lead times over the Rafsanjan
aquifer. This study demonstrated the performance of GBR in predicting
GWL. Regions with higher water depth and abstraction rates yielded

Fig. 1. The different water resource management related applications covered in this review.
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better prediction performance. Hikouei et al. (2023) found that XG-
Boost exhibited good performance, reduced prediction uncertainties,
and could capture true features of GWL in areas near canals. Their re-
sults showed that peat surface elevation was the most important para-
meter amongst other parameters tested, including precipitation, dis-
tance from the canal, and evapotranspiration.

Several studies have shown that standalone deep learning models
are more performant than traditional ML models but are still subjected
to data characteristics that can affect their performance. The most com-
mon ML implementation is the use of artificial neural networks, which
have been used to predict the dynamics of GWL in numerous studies.
Ahmadi et al. (2022) showed that feed-forward ANN was very effective
in groundwater characteristics quantitatively with good accuracy.
Taormina et al. (2012) compared the ability of feed-forward neural net-
work (FFANN) in forecasting GWL to regression and statistical models.
Mohanty et al. (2015) and Li et al., 2018 also employed neural net-
works to predict GWL and found positive results.

Another common application of ML in GWL forecasting is using
deep learning models such as the LSTM, Gated Recurrent Unit (GRU)
and the Recurrent Neural Network (RNN). Cai et al. (2021) evidenced
the superiority of the GRU model in regions with higher precipitation,
higher average temperatures, lower snowfall fraction, more extreme
climate events, and more frequent baseflow interactions. Regarding in-
put features for the model, precipitation and streamflow data were
found to be the most influential ones for groundwater level forecasting.
Gharehbaghi et al. (2022) also examined the performance of the GRU
model in Northwest Iran. They used three different layer structures of
GRU-based neural network models via the seq2seq module, a modern
deep learning scheme. Their proposed models could predict groundwa-
ter level fluctuations in arid/semi-arid regions. Wu et al. (2023) showed
that the GRU model outperformed SVM, LSTM and MLP models at most
groundwater monitoring stations.

Recently, Pham et al. (2022) investigated the performance of seven
machine learning models, namely random tree (RT), random forest
(RF), decision stump, support vector machine (SVM), locally weighted
linear regression (LWLR), as well as reduced error pruning tree (REP
Tree), for the prediction of groundwater levels in a drought-prone area.
This study found that the Bagging-RT and Bagging-RF models outper-
formed other models. Yin et al. (2021) compared the performance of
machine learning and physical models in forecasting groundwater dy-
namics. The physically-based models included W3 and CLSM models,
while the data-driven models were based on ANN, RF and LSTM mod-
els, respectively. The predicted GWLs from the LSTM model signifi-
cantly perform better than those of RF and ANN models during valida-
tion and prediction periods. They quantified the importance of GRACE
observations in data-driven models and found noticeable improvements
in the performance metrics considered. Liu et al. (2022) found that
when compared to Support Vector Machine, Generalized Regression
Neural Network, Decision Tree, Convolutional Neural Network, Long
Short-Term Memory and Gated Recurrent Network, Random Forest per-
formed the best in predicting groundwater levels. They showed that RF
was superior to other models in one-step-ahead predictions of ground-
water depth in the space-time domain. Mahamad et al. (2023) com-
pared six ML models, including Linear regression, Decision tree regres-
sor, Support vector regressor, Random Forest regressor, K-nearest
neighbours regressor, and Extreme gradient boost regressor. They
showed that the XGB regressor was the most reliable model for future
prediction, while the Decision Tree proved to be the least efficient tech-
nique for portraying the GWL dynamics. They demonstrated that
changes in GWL over space and time were strongly linked to changes in
rainfall and population in the study area.

Shakya et al. (2022) compared the Support Vector Regression
(SVR) model, Multivariate Linear Regression (MLR) model, Decision
Tree Regression (DTR) model, Random Forest Regression (RFR)
model, Multivariate Polynomial Regression (MPR) model, and two

deep learning algorithms, namely ANN model and ANFIS in the task of
predicting GWL in an arid area in India. They demonstrated that the
MPR model was excellent for GWL forecasting and found that the
groundwater table was highly correlated with evapotranspiration. Sun
et al. (2022) employed three common data-driven models for GWL
forecasting applications, which included a back-propagation artificial
neural network (BP-ANN), an autoregressive integrated moving aver-
age (ARIMA), and long short-term memory (LSTM). The prediction ac-
curacy of the models was tested by deploying them in five zones in a
Northern Plain in China, which exhibited various hydrogeological
properties. Amongst the three models, the LSTM model exhibited the
best performance. Mohapatra et al. (2021) compared the performance
of ANFIS, DNN, and SVM to assess their capability to predict seasonal
GWL in different agroecological Zones of India. They found that the
DNN model was the most efficient in predicting seasonal GWL in most
of these agroecological zones and would, therefore, be a reliable fore-
casting tool for seasonal groundwater levels in different agroecological
zones of India.

Wunsch et al. (2022) investigated the impact of climate change on
groundwater resources in Germany using CNN. Declining trends of
GWL could be observed in most of the sites as well as spatial patterns of
stronger decreases, especially in the northern and eastern parts of the
country. They also observed increased variability of low GWL, which
extended over long periods during the annual cycle towards the end of
the century. Bai and Tahmasebi (2023) compared the performance of a
graph neural network (GNN) to two baseline models - LSTM and GRU -
for GWL forecasting. They demonstrated that the GNN model outper-
formed the other models regarding all the performance metrics consid-
ered. Also, they demonstrated that their model could still learn spatial
dependencies from the data even when these were completely un-
known while still obtaining similar performance. Their model also ex-
hibited a high efficiency since it could simultaneously model GWL
change for all monitoring wells in the system.

In addition to standalone ML models, recent studies have also exam-
ined the performance of hybrid-based models, which combine various
ML methods to improve forecasting performance. Rahman et al. (2020)
used ML models coupled with wavelet transforms and showed that
wavelet-based hybrid models such as WT-XGB and WT-RF were more
accurate than standalone models (non-wavelet-based), which included
Extreme Gradient Boosting, Random Forests, and Support Vector Re-
gression models. They also demonstrated that the coupling of WT fur-
ther improved the performance for all ML approaches, and the improve-
ment was more significant for a longer forecasting horizon (3 months).
Wei et al. (2023) used ANN models combined with wavelet transform
(WT) and phase space reconstruction (PSR) and found that the perfor-
mance of the WT-PSR-ANN model was better than that of the WT-ANN
model and substantially better than the standalone models in GWL fore-
casting. They also found that the type of mother wavelet affected the
accuracy of the WT-hybrid models, which was more apparent for the
WT-ANN models than for the WT-PSR-ANN model. Azizpour et al.
(2021) proposed hybrid models to predict the monthly GWL in Kerman-
shah, Iran. The hybrid models comprised a differential evolutionary al-
gorithm to optimise the ELM and a WT to decompose the input parame-
ters into different time series. Their study suggested that their hybrid
meta-heuristic ML could effectively predict the available water quantity
in the investigated study area.

Yadav et al. (2020) demonstrated that the hybrid models (HANN
and HSVM) perform better than the original models (ANN and SVM)
while predicting groundwater level fluctuations. They found that pre-
diction accuracy decreased with increasing forecasting horizons for
original and hybrid models. They evidenced that groundwater decline
was much higher in peri-urban areas. Van Thieu et al. (2023) pro-
posed a novel hybrid ML model combining Augmented Artificial
Ecosystem Optimisation (AAEO) algorithm with a traditional MLP
network and showed that AAEO-MLP exhibited the highest perfor-
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mance and stability with reasonable convergence. They evidenced
that the AAEO was a promising approach for optimising ML models
(e.g. MLP) and should, therefore, be explored for other hydrological
forecasting applications (e.g., streamflow, rainfall) to further examine
its performance over commonly known methods.

Other than all purely data-driven hybrid models, physical-based hy-
brid models combine ML models and physics-based models to improve
forecasting performance. Su et al. (2020) used deep learning algorithms
combined with a range of complex numerical models and large-scale In-
ternet of Things (IoTs) to measure groundwater levels with acceptable
performance. Kayhomayoon et al. (2022) proposed a new hybrid model
that combines MODFLOW simulation, clustering, and optimisation
tools for GWL prediction. Specifically, they simulated GWL using the
MODFLOW, clustered the study aquifer into different clusters using the
k-mean method, and predicted regional GWL using ANN and ANFIS
methods that were optimised by the Harris Hawks Optimisation (HHO),
Whale Optimisation Algorithm (WOA), and Particle Swarm Optimisa-
tion (PSO). They evidenced that the most important variables for
groundwater levels in different clusters included GWL in the previous
month (produced by MODFLOW), groundwater withdrawal, precipita-
tion, temperature, and evaporation. Patra et al. (2023) compared
Global-LSTM, and Local-LSTM to examine the relevance of groundwa-
ter sequential forecasting. Their study showed that the Global (MS)
model was the least performant model in forecasting applications and
that LSTM was reliable in GWL forecasting. They demonstrated that the
local LSTM models from the mid-fan area exhibited the best choice for
regional groundwater forecasting.

Groundwater is also sensitive to pollution from various sources
which is related to GWL decline, particularly in coastal areas, where the
associated GWL decrease caused by excessive groundwater pumping
leads to seawater intrusion, pollution and groundwater quality degra-
dation. Nitrate contamination has also become a serious threat to
coastal groundwater worldwide. Hence, the application of ML on
groundwater contamination, although outside the scope of this review
study, warrants further investigation.

5. Surface water management

5.1. Streamflow forecasting

Machine learning has widely been applied to river basins, specifi-
cally for short-, mid- or long-term river flow forecasting, which is a piv-
otal task for optimal water resource management during the era of
rapid climate change. The rapid evolution of hydrological variables,
e.g., precipitation, substantially impacts the temporal evolution of river
flow distribution in recent days, thereby rendering prediction chal-
lenges even more complex. The high uncertainty associated with basin
characteristics, hydrological processes, and climatic factors affecting
river flows makes streamflow prediction challenging.

LSTM Networks have gained increasing attention in streamflow
forecast, given its strong learning ability for time series data and ability
to process sequential time-series data (Shen and Lawson, 2021). Nu-
merous studies have demonstrated the superiority of LSTM in stream-
flow forecasting over some traditional physics-based models, including
the SAC-SMA model for runoff predictions (Kratzert et al., 2018) or the
CaMa Flood calibrated model for streamflow and climate data forecast-
ing (Damavandi et al., 2019). LSTM networks have recently yielded the
most promising results in the realm of river streamflow forecasting
(e.g., Wegayehu and Behulu, 2022). Xu et al. (2020a, 2020b) assessed
the performance of LSTM networks for 10-days average flow predic-
tions and the daily flow predictions at Hun River and Upper Yangtze
River basins, respectively. The impacts of network structures and para-
meters, such as the batch size and the number of LSTM cells, impacted
the learning efficiency and predictive accuracy. Overall, LSTM was
proven to yield good forecasting capabilities compared to traditional

hydrological and data-driven models tested, which included the SWAT,
Xinanjiang model (XAJ), multiple linear regression model (MLR) and
back-propagation neural networks (BP).

The predictive performance of LSTM models has also been com-
pared to a wide range of machine learning models. Cheng et al. (2020)
examined and compared the performance of ANN and LSTM in long
lead-time forecasting in the Nan River Basin and Ping River Basin. Their
ANN and LSTM models were shown to yield reliable daily forecasts up
to 20 days lead time, albeit the LSTM model outperformed the ANN
model when the forecasting horizon was increased. Mehedi et al.
(2022) used the LSTM neural network to forecast river discharge and
demonstrated its higher performance than other neural network regres-
sion models, including for longer lead periods. Dehghani et al. (2023)
compared LSTM, CNN, and Convolutional Long Short-Term Memory
(ConvLSTM), in hourly streamflow prediction in two rivers in Malaysia,
namely the Kelantan and Muda River basins. They showed all three
deep learning methods performed with high accuracy in predicting
streamflow, but LSTM outperformed CNN and ConvLSTM in small
basins with well-spatial distributed rainfall stations, while it underper-
formed them in moderate to high streamflow and large river basin. Le et
al. (2021) examined and compared the performance of six supervised
machine learning models in forecasting streamflow in the Red River
basin in Vietnam. These included a convolutional neural network
(CNN), a feed-forward neural network (FFNN), and four LSTM-based
models. They also compared two standard models, LSTM and GRU,
which comprised a single hidden layer, to two more complex algo-
rithms: the stacked LSTM (Stacked LSTM) and the Bidirectional LSTM
(BiLSTM). They showed that their four LSTM-based models performed
better and were more stable than the FFNN and CNN models. They also
evidenced that the complexity of the Stacked LSTM and BiLSTM models
did not substantially improve the prediction accuracy compared to the
two standard and simple models comprising a single layer (LSTM and
GRU).

Akbarian et al. (2023) examined the ability of the European Centre
for Medium-Range Weather Forecasts (ECMWF) ensembles in runoff
forecast application, with one-to three-months lead time in Iran. Five
ML models were also used for the runoff prediction, including RF, ANN,
XGBoost, SVR, and MLR, while results were compared to observations.
Results showed that the ANN exhibited the best fit, followed by XG-
Boost and RF models, while SVR and MLR models yielded lower perfor-
mance. ANN and XGBoost outperformed the other models for longer
lead times, but the performance decreased with an increase in forecast-
ing horizon. Ilhan (2023) explored a variety of ML algorithms in the es-
timations of one-ahead instantaneous measurement of streamflow rate
in the Ergene River, including LSTM neural network, ANFIS with fuzzy
c-means (FCM), ANFIS with subtractive clustering (SC), and the ANFIS
with grid partition (GP). All four algorithms could successfully perform
in the task of streamflow prediction.

To further improve streamflow forecasting accuracy and model effi-
ciency, a variety of traditional ML models that belong to the supervised
category have also been either used directly or combined to develop hy-
brid models (Granata et al., 2022; Wang et al., 2023; Akbarian et al.,
2023). Granata et al. (2022) proposed a novel ensemble model com-
posed of RF and MLP algorithms and compared its forecasting capabil-
ity to a deep learning model based on bidirectional LSTM networks. The
results show that the two models showed comparable performance, but
the forecast horizon strongly affected the predictive accuracy. Wang et
al. (2023) developed a hybrid decomposition-based multi-model and
multi-parameter (DMP) ensemble streamflow forecast method. Their
novel ensemble forecast method extracted the characteristic periodic
term and trend term of hydrological series, improved streamflow fore-
casting accuracy, reduced ensemble uncertainty and expanded the en-
semble size.

Hybrid models combining numerical models and ML models have
also been tested to improve streamflow forecasting accuracy, especially
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for longer forecasting horizons. Hunt et al. (2022) tested LSTM for
streamflow forecasting purposes for up to 10 days lead time at ten hy-
drological stations in the western US. The catchment-mean meteorolog-
ical and hydrological variables from the ERA5 and Global Flood Aware-
ness System (GloFAS)–ERA5 reanalyses were used to train the LSTM
model, as well as historical streamflow data. They showed for the first
time that their LSTM model could be used in a hybrid system to create a
medium-range streamflow forecast outperforming established physics-
based models. Chu et al. (2023) assessed the ability of novel integrated
streamflow modelling method combined with the DC-LSTM model with
the DC-B-LSTM model in improving the forecasting performance. Both
the DC-LSTM and DC-B-LSTM models were shown to outperform the
standalone LSTM models for all river basins considered. Li et al. (2022)
examined a hybrid model composed of a convolutional neural network
and long short-term memory network (CNN-LSTM) and evidenced its
superiority over the Soil and Water Assessment Tool (SWAT) model, es-
pecially in wet seasons, due to its nonlinear learning ability.

5.2. Water demand, allocation, and irrigation

5.2.1. Water demand and consumption
Potable water can be inaccessible for many reasons, including inad-

equate water infrastructures, climate-based issues such as drought, and
overexploitation of freshwater resources. Researchers have recently at-
tempted to apply ML in drought forecasting, including Wang et al.
(2022), who assessed the feasibility of using extreme learning machines
(ELMs) to forecast hydrological droughts. They deployed support vec-
tor machine models and ELMs with approximately 144 different mod-
els, and they confirmed that ELMs could forecast the standardised hy-
drological drought index with high precision. Their study also demon-
strated that self-adaptive differential evolution ELM could outperform
all other tested models and that the wavelet hybrid positively impacted
the model's performance, yielding less error in their predictions.

Global water scarcity presents an extraordinary challenge, so the
United Nations prioritise it among its 17 sustainable development goals
for 2030. Many regions are coming dangerously close to enclosing the
gap between water demand and its sustainable limit. United Nations
Water (2020) estimated that the water demand rate is more than twice
the population growth rate within the last century. Arid areas are facing
the worst of the water crisis. Therefore, monitoring water demand is of
considerable significance for decision-makers. Water resources can be
more efficiently managed if demand is accurately forecasted. This will
help resolve the overexploitation of precious and limited water re-
sources.

Forecasting water demand is a challenging problem. As such, it has
been approached in various ways, ranging from linear methods (Zhou
et al., 2000; Alhumoud, 2008) to nonlinear regression models (Nasseri
et al., 2011; Bennett et al., 2013). However, modelling water demand
could be quite complex, and not all input variables have linearity be-
tween them. Due to the complexities of the water demand data,
Romano and Kapelan (2014) explored the use of deep learning for fore-
casting and management of smart water distribution using real-life data
from a water distribution network within the United Kingdom. Perea et
al. (2019) applied deep learning to a previous study by Romano and
Kapelan (2014) to improve the performance of existing short-term wa-
ter forecasting models in Southern Spain. Banadkooki et al. (2022) at-
tempt to resolve conflicts related to water resources in arid basins
through the exploration of intelligent algorithms: genetic algorithms
(GA) and non-dominated sorting genetic algorithm (NSGA-II). The
study considered environmental parameters and the integrated water
management indices to determine optimal water management scenar-
ios. The study performed a variety of trade-offs to balance economic
benefit and demand management. The results showed that less water
was allocated to industries with high water demand to conserve
aquifers and meet water demands.

The real-life application of smart metering has become more appar-
ent in recent years. Monitoring demand is vital for the adequate man-
agement of resources across all service sectors. Recently, neural net-
works have been more commonly implemented to address water de-
mand prediction issues. While the water industry has not explored the
use of deep learning for smart metering as extensively as in the energy
sector (Kavousian et al., 2013), Pesantez et al. (2020) attempted to ad-
dress this gap using artificial neural networks and cluster analysis to
forecast the water demand at the customer level. They used smart me-
tered data on water consumption, with no differentiation between the
type of user, whether residential or non-residential. The study found
that support vector regression underperformed compared to random
forest and artificial neural network models despite applying optimisa-
tion methods supported by previous works (Herrera et al., 2010;
Mouatadid and Adamowski, 2017; Antunes et al., 2018). As inferred
previously by Herrera et al. in (2010), the random forest technique was
found to be either on par with or slightly outperformed the artificial
neural network model.

Salloom et al. (2021) explored the use of GRU on historic water
demand data and implemented k-means, an unsupervised classifica-
tion method, to enhance prediction accuracy whilst also reducing the
parameters fed into the model. The model was found to significantly
reduce the complexity required (six times what was archived in the
most current literature at the time of the study) while maintaining the
predictive accuracy rate. Salloom et al. (2022) explored using a pro-
portional-integral-derivative (PID) control approach to boost the per-
formance and efficiency of neural network models for water demand
prediction. The PID's prediction error experienced the same level of
reduction as other techniques in the study; however, the efficiency of
error reduction showed superior performance compared to other tech-
niques. This was evident by the negligible effects on the number of
variables via the PID approach.

Wang et al. (2022) explored the use of principal component analy-
sis (PCA) and backpropagation (BP) neural network in water resource
demand prediction in Taiyuan, China, a city subject to severe water
shortages. Compared with other models (namely PCA-ANN, ARIMA,
NARX, Grey-Markov, serial regression, and LSTM), the PCA-BP model
outperformed them by making highly complex variables easier to com-
pute. The model achieved this by reducing the dimensionality of the
variables and transforming them into uncorrelated composite data.
However, their model was limited by limited data collection, affecting
its accuracy. In addition, although the model's computation accuracy
was sufficient to meet the threshold, there was still room for further
development.

5.2.2. Water allocation and irrigation
Water plays a vital role in irrigation and agriculture all over the

world. The Food and Agriculture Organization of the United Nations
(2017), FAO, states that 70% of freshwater withdrawn globally is sup-
plied to agriculture to sustain the ever-growing human population. Fu-
ture projections on the water demand for irrigated food production will
double by 2050, increasing pressure on the already limited freshwater
supplies. The FAO also anticipated an increase in water withdrawal by
agriculture by 2050; however, this increase is only by 10%. This small
increase is attributed to improved management and practices for irriga-
tion. Therefore, efficient water use within the irrigation and agricul-
tural sectors is crucial to lessen the strain on water demand worldwide.
Evapotranspiration is an important aspect of irrigation and agriculture,
which is split into two components: evaporation and transpiration.
Evaporation refers to the water evaporated over a specific area,
whereas transpiration refers to the water lost through the stomata of
the vegetation. As these natural processes occur simultaneously, they
are difficult to disentangle. Accurate estimation of the evapotranspira-
tion rate is a vital parameter for farmers and agricultural engineers, as
it helps reduce crop water demand.
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Traditional methods to address these issues include the Penman-
Monteith equation, which Baille et al. (1994) used as a simplified
method for the rate of evapotranspiration prediction. Other approaches
found success using scintillometer and meteorological measurements
applied to the FAO-PM56 model, as used by Poisson et al. (2017) study.
However, the authors showed that the FAO-PM56 model had more sig-
nificant uncertainties when minor variations were applied and fewer in-
put variables were used. Deep learning techniques have been exten-
sively used to model and forecast evapotranspiration within the agricul-
tural sector. Feedforward backpropagation ANN outperformed multi-
linear regression models (MLR) for predicting wind drift and evapora-
tion losses of sprinkler irrigation systems (Al-Ghobari et al., 2018). Var-
ious studies found that convolutional neural networks (or CNN-hybrids)
were more accurate than other nonlinear regression models, such as
random forest or extreme gradient boosting, for evapotranspiration
forecasting (Ferreira and da Cunha, 2020a, 2020b; Lucas et al., 2020).

Elbeltagi et al. (2020) opted for a more modern approach to the
problem by modelling long-term evapotranspiration dynamics using
deep learning algorithms in major wheat-producing sites in Egypt.
They applied deep neural networks using real-life data collected from
remote sensors, which included the monthly maximum temperature,
the monthly minimum temperature, and the monthly solar radiation.
The model parameters were intentionally chosen to give the lowest
root mean squared error, following a similar procedure presented by
Maroufpoor et al. (2019a,b). He et al. (2022) successfully demon-
strated the use of biological heuristic algorithms integrated with an ex-
treme learning machine (ELM) to accurately determine the daily evap-
otranspiration (ETo) in the Hetao irrigation district of China. In the hy-
brid ELMs, the optimisers include grey wolf optimiser (GWO), moth-
flame optimisation (MFO), particle swarm optimisation (PSO), and
whale optimisation algorithm (WOA). The GWO was highlighted as the
strongest performer of the four algorithms, obtaining the highest accu-
racy (R2 = 0.945–0.955), specifically using mass transfer (Tmax,
Tmin, RH, u2) combination as opposed to temperature or radiation.
GWO is characterised by the avoidance of local optimisation when
dealing with nonlinear and multivariate functions.

Water resources can often become contaminated by agricultural
runoff. Improper agricultural practices lead to elevated levels of faecal
coliforms and other pollutants, thus negatively impacting the water
quality of the surrounding area. Bilali and Taleb (2020) found that arti-
ficial neural networks and other machine learning models, such as ran-
dom forest, multi-linear regression and decision tree, are highly accu-
rate at predicting irrigation water quality parameters, such as the
sodium absorption ratio and the TDS dissolved in the water surface. The
study found that the ANNs outperformed k-nearest neighbours and sup-
port vector regression models. H. Chen et al. (2020) found that the
CNNs architecture could be developed and integrated with decision tree
algorithms to aid in smart feature extraction and to establish intelligent
spectroscopic modelling of agricultural water pollution.

Furthermore, ANNs have been used to forecast infiltration water
volume under furrow irrigation (Mattar et al., 2015), to forecast irriga-
tion flow (Mouatadid et al., 2019), and to forecast estimates for drip ir-
rigation systems (Karimi et al., 2020). However, Mouatadid et al.
(2019) highlighted that LSTM models were able to outperform the
other models used in their study, which included an ANNs model, least
squares support vector regression (LSSVR), multi-linear regression
(MLR) and extreme learning machine (ELM). The LSTM was coupled
with a maximal overlap discrete wavelet transform analysis and boot-
strap technique. The wavelet-bootstrap-ANN and wavelet-LSTM, both
with three hidden layers, displayed the most accurate forecasting capa-
bility compared to the other models used in the study.

Chen et al. (2021) explored reinforcement learning, a deep Q-
learning network (DQN), to develop smart irrigation practices focusing
on conserving irrigation water and time without losing paddy rice
yield. DQN combines the perception ability of deep learning with deci-

sion-making ability. The study found that the DQN strategy could con-
serve 23 mm of irrigation water compared to conventional irrigation
decisions. Drainage water was also reduced by 21 mm without a reduc-
tion in yield. Alibabaei et al.’s (2022) case study in Portugal utilised a
deep reinforcement learning model to optimise irrigation requirements
on the site. The model would serve as a smart irrigation scheduling sys-
tem that would aid farmers in water quantity and the irrigation fre-
quency required for the site. The model, post-training, would not re-
quire expertise to operate and, thus, would be a valuable system for
farmers to use after the completion of the study. The model would also
adjust the irrigation requirements based on climate change, as climate
data is used in the model. The study considered ANN, LSTM, and CNN.
However, the LSTM was found to be better at predicting the Q-table
than the other models. The trained model decreased the water require-
ment by 20–30% and increased productivity by 11% compared to the
fixed method.

Gorgi et al. (2023) demonstrated the predictive potential of LSTM
for spatiotemporal forecasting of the quality of groundwater used for ir-
rigation. Sodium Adsorption Ratio (SAR) was highlighted as a crucial
criterion for the study. An 18-year SAR dataset based in northwest Iran
was supplied to the model to forecast the irrigation water quality for the
subsequent year. They found that the LSTM marked against the perfor-
mance indicator RBIAS showed underestimation by the model. How-
ever, when assessed against the performance indicator GA (generalisa-
tion ability), the LSTM model exhibited more acceptable performance.

The allocation of water sourced from the Transboundary River gen-
erally involves many stakeholders in different countries that share the
water resource. Water scarcity and the often-conflicting use of water re-
sources ultimately increase tensions between riparian countries. Ten-
sion can be eased by the efficient management and allocation of trans-
boundary water resources, which warrants the need for advanced tech-
niques to enable the proactive and efficient planning of available water
for human well-being and environmental sustainability. As an attempt
to apply ML techniques for water allocation in a transboundary context,
Yan et al. (2019) comprehensively evaluated the water resources of
China's transboundary river basins at the basin and country levels. They
assessed the performance of several ML algorithms, including random
forest, gradient boosting, and stacking in the task of forecasting runoff.
Their study provided valuable information on long-term averaged sur-
face water resources by country and basin in China's transboundary
river basins and high-resolution runoff coefficient and runoff maps of
all the riparian countries, thereby providing valuable spatially distrib-
uted runoff information. Their study also demonstrated the satisfactory
implementation of ML models for water resources assessment and their
superiority over traditional linear models and two popular runoff data
products (the UNH/GRDC Global Composite Runoff Fields and the
Global Streamflow Characteristics Dataset) from a predictive accuracy
standpoint.

6. Hydropower management, marine energy and reservoir
operation

6.1. Hydropower management and marine energy

Statistics from Our World in Data (2020) showed that in 2019,
global fossil fuel consumption totalled 136,761 TW-hours, reaching a
new record and continuing the increasing trend observed in the past
years. Fossil fuels were classified into three categories: gas, coal and oil.
The data showed that most consumption was attributed to oil
(53,620 TW-hours), while the least consumed fossil fuel was gas
(39,292 TW-hours). This leaves global coal consumption at 43,849 TW-
hours. Global efforts to struggle against climate change have been in-
creasingly witnessed over recent years by shifting towards clean and re-
newable energy. According to the International Hydropower
Association (2020), the 2020 Hydropower Status report showed that
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global clean electricity generation through hydropower achieved a new
record 4306 TW-hours. This record was acknowledged as the “single
greatest contribution from a renewable energy source in history”. How-
ever, this record can only account for a small portion of the global fossil
fuel consumption in 2019, approximately 3%. Therefore, it is essential
to maximise the full potential of hydropower and marine energy by ex-
ploring new methodologies to solve current problems and increase the
energy efficiency provided, particularly in some parts of the developing
world where the load on the system is increasing, but hydro-turbines
struggle to match the demand.

The application of ML in hydropower management and marine en-
ergy has recently met some level of success. Hammid et al. (2018) ex-
plored the use of artificial neural networks on a small hydropower plant
using a Kaplan turbine at the Himreen Lake dam in Diyala, Iraq, to en-
hance the accuracy of forecasting the energy produced. Wang et al.
(2020) developed a novel integrated approach using traditional and
more modern methodologies for the production capacity prediction of a
hydropower station to enhance energy efficiency. A previous study by
Zhang et al. (2017) found that a backpropagation neural network
model, although powerful in terms of performance, took a relatively
long time to train on the input data. Although a radial basis function
neural network model could outperform the backpropagation neural
network (Li et al., 2018), they were both prone to the risk of local mini-
mum convergence. To avoid this challenge, Wang et al. (2020) opted
for using a simple single hidden layer feedforward neural network, de-
fined as an extreme learning machine (ELM). The corresponding model
showed a generalisable performance with a relatively quick training
time.

Technological advances have made it possible to predict energy that
can be gained from ocean waves. This type of renewable energy carries
a higher power density than other renewable resources, such as solar or
wind energy. Accurate predictions can enhance energy efficiency to
reach the full extent of potential wave energy, ultimately helping the
shift from fossil fuels. An early comparative study by Reikard (2009)
supported a time-varying parameter approach, attributing the weak-
ness of the neural network model to inadequate architecture and opti-
misation for that dataset. Hybrid models have been found to have the
potential to achieve accurate predictions. Real-life application of wave
energy control is difficult as it depends on accurate predictions of future
waves. Li et al. (2018) explored the use of deep learning, namely ANNs,
and showed that the model was able to provide accurate predictions,
which substantially increased the average energy absorption from 60%
to 80%. However, the control efficiency could still be further developed
and improved as it was slightly lower than the optimal level. Avila et al.
(2020) showed that using ANNs and fuzzy interference systems (FIS)
proved to be effective tools to accurately predict wave power at any
point in deep oceanic waters, even with a small dataset of a few months
collected from buoys in the Micronesian region.

Recently, Giles et al. (2021) explored the issue caused by sun glint
for high-resolution red-green-blue (RGB) imagery collected by drones
over shallow marine environments. An artificial neural network model
was developed to automatically detect and classify the sun glint in high-
resolution aerial imagery. The model was supplied with a highly imbal-
anced dataset, with the pixels of sun glint accounting for only 1.19% of
the training dataset. Despite this, 99.18% of overall predictions were
correct. It was also shown that large hydropower plants could have high
environmental impacts. Bortoluzzi et al. (2022) used Data Envelopment
Analysis (DEA) and an artificial neural network to accurately predict
the local impact of such projects. While the DEA allowed the environ-
mental impacts to be ranked, the ANN allowed the assessment of the
size of the local environmental impact. In other words, they created a
hybrid DEA-ANN decision-making approach, which enables a more in-
formed evaluation of hydroelectric generation projects. The GRU-LSTM
hybrid model of Ma et al. (2023) successfully predicted water levels in
cascade hydropower stations at different time scales. Such information

is vital for irrigation and flood control. Authors note prediction errors
associated with downstream tributary backwater jacking could be sig-
nificantly reduced by adding downstream tributary flow as an addi-
tional parameter in the dataset. The LSTM parameters implemented the
Archimedes optimisation algorithm. The output results of the GRU and
LSTM were weighted. This resulted in increased accuracy of the water
levels predicted. The authors highlight the use of a semisoft threshold
function to improve the model in various ways, such as eliminating the
noise of the original hydrological dataset.

6.2. Reservoir operation

Reservoirs provide a plethora of services, including the provision of
freshwater supply. On the other hand, groundwater level fluctuation is
subject to factors such as changes in precipitation during different sea-
sons. National Thailand (2019) pointed out that the Vajiralongkorn
Dam in Kanchanaburi was at 51% capacity with 4500 million cubic me-
tres of water, down from 70% the same time the previous year, high-
lighting the harsh reality of dams drying up due to climate change.
Given this fact, decision-makers are under more pressure to be aware of
potential shortages in the future. Therefore, accuracy in predicting the
water balance of a reservoir is crucial.

Artificial neural networks (ANN) have been applied by Hadiyan et
al. (2020) to accurately forecast the Sefidroud Dam reservoir inflow.
Their study compared different types of static and dynamic ANNs,
which included static feedforward neural networks (FFNN), nonlinear
autoregressive (NAR) neural networks, and nonlinear autoregressive
neural networks with exogenous inputs (NARX). The models were
trained using two input variables, namely, the monthly inflow dis-
charge and the precipitation data. The architectures were optimised by
adjusting the number of neurons within the hidden layers. They found
that the dynamic NAR model outperformed the other two models and
could predict high inflows while achieving the lowest RMSE values.
They evidenced that the most optimum number of time delays was 12
for the input variable as the model could perform computation more ac-
curately. They also attempted to use dynamic artificial neural networks
instead of static ones for forecasting discharge inflows. Recurrent
neural networks have also been used to forecast water levels to improve
water resource management, and long short-term memory (LSTM)
models have proved to be efficient for this purpose, achieving an accu-
racy of 97.05% (Ren et al., 2020).

Amongst the main hydrological processes impacting the sustainable
planning and management of river, dam operation and reservoir capac-
ity is suspended sediment load (SSL). AlDahoul et al. (2022) success-
fully demonstrated the application of ML models to accurately classify
suspended sediment load SSL using the data from the Johor River in
Malaysia. The analysed models include extreme gradient boosting XGB,
random forest, support vector machine, multi-layer perceptron, and k-
nearest neighbours. The XGB model exhibited superior classification
performance over the other ML techniques. The model used several pa-
rameters, such as environmental factors influencing the SSL pattern,
while using two different time scales. Nonetheless, they demonstrated
that most of the ML models achieved acceptable classification results.

7. Water distribution and drainage systems

7.1. Water distribution systems

As water demands increase and freshwater availability decreases,
water resource mapping (WRM) becomes a key aspect of water resource
management. Water resource managers need to know where the next
set of potential resources are to use them in their plans for the future.
Therefore, accurate predictions are imperative to ensure the availabil-
ity of freshwater supply is over- or underestimated during the planning.
Due to inadequate information, traditional approaches for WRM, such
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as water spectral indices (WSI), reach an impasse with high-resolution
multispectral images. This can be problematic for more complex areas.
To provide an alternative approach to mediate the issue, K. Chen et al.
(2020) deployed a water body extraction neural network (WBE-NN)
model for a more accurate surface water resource mapping. This ap-
proach outperformed previous methods (e.g., Feng et al., 2018; Nandi
et al., 2017) with reduced processing time and a reduction of underesti-
mated water areas.

Water distribution networks (WND) are crucial infrastructure sys-
tems that provide potable water to the public. However, according to
Interreg Central Europe (2020), up to 50% of water is lost in some parts
of Europe, with an average of 26% due to various structural problems,
including poor water pressure management, deteriorated infrastruc-
ture, and leakages. For instance, the Consumer Council for Water
(2017) stated that England and Wales collectively have a water leakage
loss of 3.1 billion litres daily. Many traditional approaches have been
undertaken to resolve water leakage issues; however, these methodolo-
gies are limited as they need to consider the complex and nonlinear de-
terioration of the infrastructures over time. To resolve the issue of leak-
age detection, Arsene et al. (2012) explored the use of deep learning
combined with graph theory.

Water distribution systems require adequate pressure management
to sustain many operational aspects, which include demand control,
maintenance, water leakage and failure management, cost reductions,
and energy efficiency. Non-revenue water is largely attributed to water
that is lost through leakage within the distribution network, thus result-
ing in substantial amounts of water loss through leakage. This increases
operational costs, impacting the economic value of water companies.
Traditional approaches for pressure monitoring often leave high uncer-
tainties about pressure values at the nodal points that do not have sen-
sors on them. Ridolfi et al. (2014) used artificial neural networks with a
combination of the entropy-based methodology, which was outlined as
shifting towards conditions of the highest order. The study found that
optimal sensor placement on nodes could be achieved by finding the
best trade-off between sampling design and model accuracy.

Other studies show the successful use of neural networks for leakage
or contamination detection within a water distribution system.
Rutkowski and Prokopiuk (2018) used learning vector quantisation
(LVQ) neural networks to pinpoint contamination locations within a
water distribution system in Poland, whereas Zhou et al. (2019) used a
convolutional neural network as part of a novel burst location identifi-
cation framework. Hu et al. (2021) proposed a novel approach to leak-
age detection within a water distribution system using multiscale fully
convolutional networks integrated with spatial clustering of applica-
tions with noise. This approach outperformed k-nearest neighbour
(KNN), support vector machine (SVM) and naive bayes classifier (NBC)
by 28%, 78%, and 72%, respectively.

Water resource carrying capacity (WRCC) is an essential aspect of
urban planning, which aims to balance out the amount of water de-
mand concerning the available water resources within an urbanised
area. Analysis of the WRCC of a city helps prevent the exploitation and
degradation of the water resources and environment while ensuring a
sustainable standard of living for the people. However, addressing this
issue depends on multiple input variables, which become far too com-
plex and reduce the accuracy of the predictions. Yu et al. (2020) pro-
posed two simple types of feedforward neural networks (FNN) based on
the normalisation value (NV) and error correction to address these is-
sues.

Almheiri et al. (2021) outlined the superior performance of deep
learning compared to other machine learning methodologies, e.g., sur-
vival random forest (SRF). However, since the amount of data available
controls DL approach, it is therefore limited as pipe failure data are not
widely scarce. They developed a hybrid model using an ANN-based
method and integrated an ML process to predict the hazard ratio of wa-
ter pipes. The performance of ML approaches (e.g., SRF) decreased as

the training shots decreased, whereas the stability of the hybrid model
remained constant despite the decrease in the training shots. The au-
thors suggested the two learning phases allow the hybrid to effectively
generalise, while one phase was used in the baseline approaches.
Garðarsson et al. (2022) successfully demonstrated strong performance
of Graph Neural Networks (GNNs) to predict pressure values in water
distribution networks in order to detect leakage and localisation. Re-
sults were evaluated by the benchmark set in the Battle of the Leakage
Detection and Isolation Methods challenge (BattLeDIM by Vrachimis et
al. (2020)). The authors noted that the model was limited by false posi-
tives; however, the GNN model could obtain the highest economic score
among the contestants, suggesting the model was still considered a vi-
able approach to leakage detection. More recently, Yu et al. (2023) im-
plemented ML methods with piezoelectric accelerometers installed
within real-life pipe networks across several cities in China that classi-
fied vibration signals in order to detect leakages within the systems.
They demonstrated that a pre-trained compact CNN with 18 deep learn-
able layers with the ability to classify images into 1000 classes, namely
SqueezeNet, performed the best and showed a 95.15% in leak-detection
accuracy compared to the other ML approaches, which included SVM,
DTR and KNN. They also demonstrated that larger dataset enabled
SqueezeNet to achieve more accurate results.

7.2. Water drainage system

The advent of advanced sewage and drainage systems can be traced
back to the Indus Valley Civilisation around 3000 BC. This historical in-
frastructure spanned 91 cm across and 1.5 m in depth as a watertight
sanitary drainage system (Harappa, 2020). Nowadays, natural
processes required for drainage systems, namely the infiltration, which
enables water to move into the ground easily, is hindered and reduced
in urbanised areas. Therefore, increased stormwater can easily over-
whelm surface water drainage systems of urbanised areas. Pollutants
and contaminants within the system can potentially be released and
have serious consequences on public health, as well as the health of any
surrounding organisms. Concerns over climate change and future pro-
jections of heavier rainfall can present a challenge to decision-makers
and drainage engineers. If drainage systems cannot function properly,
urban flooding is inevitable and may eventually lead to various issues
for both the public and the environment.

An important aspect when designing drainage systems is under-
standing the rainfall-runoff relationship for any given catchment. Gong
et al. (1996) and Loke et al. (1997) have attempted to address this issue
using ANNs models as a predictive tool for urban stormwater drainage.
Loke et al. (1997) were able to show that neural networks had a high
fault tolerance, good generalisation, and a high ability to learn. How-
ever, limitations of the models included the need for substantial
amounts of data for more accurate predictions, little transparency, and
relatively long training times. Pektaşa and Cigizoglu (2013) highlighted
the inadequate performances of ANNs, univariate autoregressive inte-
grated moving average (ARIMA), and multivariate autoregressive inte-
grated moving average (ARIMAX) models for time series predictions for
direct runoff coefficients within large drainage basins. They proposed a
hybrid ANN-ARIMA model and found that it could be generalized to en-
hance the computational power of the neural networks and offer for
more accurate time-series predictions.

On the other hand, ANNs have also been explored to alleviate issues
pertaining to stormwater and optimisation of the drainage system (Hsu
et al., 2013; Rjelly et al., 2018; Mullapudi et al., 2020). An early study
by Tran et al. (2007) outlined the use of neural network modelling with
CCTV data to identify the deterioration of stormwater pipes made from
concrete. The architecture used backpropagation weight estimation and
was compared to a Monte Carlo simulation using Bayesian weight esti-
mation. Although the neural network model outperformed the Monte
Carlo simulation, the model struggled to accurately process irrelevant
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features, namely redundant factors such as 'soil type' and 'buried depth'.
More recently, Li et al. (2019) used backpropagation neural networks
(BPNN) as a monitoring tool to assess the performance of stormwater
green infrastructure practices. The model was successfully able to re-
duce peak flow rate averages of 61% per storm event and reduce the
flow volume by 33% per storm event.

Truong et al. (2021) input a 21-year dataset of water levels into a
gradient tree boosting (GTB) model to forecast the water levels in the
culverts within irrigation and drainage systems. The GTB consistently
outperformed eight other machine learning methods. Over 91% of pre-
dicted and observed values had an error rate below 10%. The compara-
tive common machine learning techniques such as DTR, DL, Adaboost,
SVM, XGBoost, RF, and LightGBM. The resultant predictions could aid
in forming a strategic approach considering water resources realloca-
tion, affordable pumping technologies, or water rotation in times of low
water levels. Zhang et al. (2022) utilised deep reinforcement learning
(DRL), specifically a Duelling Double Deep Qu-learning (D3QN) strat-
egy, to evaluate the uncertainty of control within drainage systems.
DRL-based real-time control showed reduced statistical dispersion by
15.48–81.93% compared to the conventional rule-based control strat-
egy, thus demonstrating an advantage over the rule-based strategy. The
reduction in statistical dispersion specifically pertained to random and
system uncertainties in monitoring water level signals within an urban
drainage system.

8. Water quality monitoring

Water quality is an absolute necessity for public health and safety.
However, since the 1990s, water pollution has worsened in most rivers
in Africa, Latin America and Asia (United Nations Environment
Programme, 2016). The global population has only increased and inten-
sified the global demand for potable water, thus putting enormous pres-
sure on water treatment plants. Extensively urbanised cities such as
London, Hong Kong and New York experience high levels of stormwater
runoff. Much of the effluents carry various types of pollutants, which
lower the drinking water quality, in some cases making the water dan-
gerous for marine life. Therefore, water treatment engineers faced vari-
ous challenging issues requiring advanced and innovative solutions.

For instance, estuaries face various environmental issues, including
toxic chemicals, water flow changes, and habitat loss. According to the
National Biodiversity Network (2019), physical changes impact a third
of the water ecology in the United Kingdom, thus hindering the natural
functions of the estuaries. Many estuaries undergo large-scale conver-
sions into urbanised areas, agricultural areas, and shipping ports.
Therefore, human interference imposes a great burden on the natural
environment, and a substantial number of estuarine habitats are lost,
forcing more competitive survival pressures on the species inhabiting
those areas. Other environmental issues include toxins within the water
supply, such as Cyanobacteria, also known as blue-green algae. Human
interference can haphazardly provide optimum conditions for
Cyanobacteria to bloom. This includes degradation of the surrounding
water quality caused by the release of fertiliser-polluted runoff from
farms, eutrophication of waterways and septic tank overflows. These
environments allow Cyanobacteria to thrive and multiply above a safe
level for humans, animals, and plants.

Various studies have been conducted using deep learning for estima-
tions and predictions regarding water quality, including Zhou (2020),
who used transfer-based LSTMs, and Yu and Qu (2020), who used ra-
dial basis function neural networks. Zhang and Hu (2020) used differ-
ence-gated neural networks, and Y. Chen et al. (2020) used deep cas-
cade forests. Jouanneau et al. (2014) found that monitoring Biochemi-
cal Oxygen Demand (BOD), a key water quality indicator, required
more time and effort to detect. Ma et al. (2020) addressed this issue by
developing a deep matrix factorization (DMF) combined with deep
neural networks (DNN) in a New York City (United States) harbour. The

proposed model showed strong computational power, superior to other
machine learning algorithms such as gradient-boosted decision trees,
random forest, and support vector regression. Traditional linear meth-
ods, such as Ridge, LR, and LASSO, were also used as a benchmark but
underperformed compared to the machine learning methods.

The history of modern-day water supply infrastructures can be
traced back to the 1600s in Medieval London (Water History, 2020).
Newhart et al. (2019) found that water treatment plants are excellent
subjects for neural network studies due to the large quantity of histori-
cal data that is usually available and easily accessible. Several studies
have shown that ANNs outperform other machine learning algorithms
for investigating the operations of the water treatment plant (Guo et al.,
2015; Ghaedi and Vafaei, 2017; Najafzadeh and Zeinolabedini, 2019).
These operations ranged from predictions for membrane fouling in the
filtration systems of a water treatment system to predictions for real-
time coagulant dosage (Dharman et al., 2012; Kim and Parnichkun,
2017; Bagheri et al., 2019). Alternatively, Zhang et al. (2019a, 2019b)
used ANN with genetic algorithms to predict the performance of drink-
ing water treatment plants under varying pressures and stresses to ef-
fectively manage the water treatment plant.

Wastewater treatment is imperative to ensure the health and safety
of the public and the surrounding environment. In 2015, the United Na-
tions International Children's Emergency Fund (UNICEF) estimated that
1.8 billion people have no other water source except water contami-
nated by faecal matter. Therefore, a significant part of the world's popu-
lation is highly exposed to various water-related diseases, including po-
lio, cholera and typhoid. The United Nations Educational, Scientific and
Cultural Organization (2017) reported that 80% of inadequately
treated wastewater is released into the environment worldwide. The
pollutants in this water can severely impact human health and the sur-
rounding ecosystem, such as decaying organic matter, reducing oxygen
availability, and essentially killing the aquatic inhabitants.

Proper management of wastewater treatment is pivotal before efflu-
ent can be safely discharged back into the environment. Ráduly et al.
(2007) used ANNs to evaluate the performance of wastewater treat-
ment plants, while Shi and Xu (2018) proposed a model based on a
stacked denoising auto-encoders deep learning network to predict
biofilm system's performance under various wastewater treatment
plant operations. Zhang et al. (2018) used LSTMs to forecast flow to op-
timise inter-catchment wastewater transfer and reduce overflow, and
Niu et al. (2020) used genetic algorithms integrated into deep belief
networks to accurately predict effluent quality and improve process
monitoring. Bhagat et al. (2020) provided a critical analysis of the de-
velopment of artificial intelligence for modelling the removal of heavy
metals within wastewater. The approaches investigated included en-
semble models, various metaheuristics, different ANN models, and un-
supervised methods. Recently, Sang-Soo et al. (2020) used a convolu-
tional neural network (CNN) and long short-term memory (LSTM) com-
bined with a deep learning approach to predict the water level and wa-
ter quality in the Nakdong river basin. The study highlighted the pro-
posed model's performance and ability to capture the temporal varia-
tions of the pollutants in the Nakdong River basin.

Zhu et al. (2022) successfully used enhanced feed-forward neural
networks to predict biochemical oxygen demand (BOD) and ammo-
nia nitrogen (NH3–N) water quality indicators within wastewater
treatment plants. The highly accurate model obtained a mean error
of less than 10% with an R2 of 90%, thus improving on the previous
feed-forward neural network with the least square support vector
machine (FFNN-LSSVM) model. However, the authors suggested that
the data obtained from real-time monitoring should be used to in-
form future research and improve the model performance. Yang et
al. (2023) demonstrated the sufficient accuracy of LSTM network in
the task of forecasting the effluent quality of a constructed wetland.
Their model could outperform other predictive ML methods includ-
ing multiple linear regression, backpropagation neural network
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(BPNN), and a GA-BPNN-hybrid neural network (genetic algorithm as
an optimisation method integrated into a BPNN model) to resolve lo-
cal minima issues. They showed that their data exhibited significant
effluent population fluctuations. A moving average method was ap-
plied to smooth the data, improving the accuracy of the traditional
and hybrid neural networks. Ibrahim et al. (2023) outlined using
ANNs to successfully predict the water quality index (WQI). The au-
thors used principal component analysis (PCA) to identify the sources
of pollution within the Terengganu River and reflect the general con-
ditions. They applied three ANN models with differing input layers to
predict the water quality index (WQI) of the river. The best-
performing ANN was found to be the one that used the raw data as
the input layer, as opposed to principal component factor scores (ob-
tained from the previously conducted PCA).

9. Flood management and water-retaining structures

9.1. Flood prediction

Flooding poses a serious risk to many people worldwide, with many
regions of the earth impacted by this natural disaster. Flooding is
caused by a wide range of factors, including (i) heavy, prolonged rain-
fall events, which are more likely to rise in the future as a consequence
of climate change, (ii) urbanisation., which substantially increases the
surface water runoff and impedes the rate of infiltration, or (iii) infra-
structure failure such as overtopping of dams. The impacts of flooding
can have a substantial economic burden, particularly in the developing
world. Some studies (e.g., Ward et al., in 2017; Peduzzi in 2017; Alfieri
et al., 2018) anticipate the global economic impact of flooding to cost
approximately $1 trillion by 2050. Other impacts include mass migra-
tion, socio-psychological implications, loss of livelihood and property
and, in more severe cases, loss of life. According to a report presented
by the United Nations (2015), 2.3 billion people were affected by flood-
ing, with a significantly high death toll of 157,000 people between
1995 and 2015. Future flooding events have been predicted to become
more frequent and more intense than they have been in the past. There-
fore, to sufficiently mitigate and manage the consequences of flooding,
exploring innovative solutions and technologies that enhance the accu-
racy of predicting flood occurrences is imperative.

Conventional methodologies include prediction using flood inunda-
tion models (Salvadore et al., 2015; Gires et al., 2015; Teng et al.,
2017). However, these models can only simulate results based on dis-
tinct types of flooding, and complete real dynamic processes are omit-
ted, resulting in the decayed accuracy of the projections. Fenech et al.
(2019) attempt to follow a similar methodology but include dynamic
processes. They aimed to improve this model by using a model that di-
vides the irregular urban area into various grid cells. The proposed
model considered the characteristics of the urban environment, includ-
ing urban drainage systems and impermeable surfaces. To evaluate the
model, the authors attempted to reproduce the flood in Lafayette Parish
in Louisiana in 2016. Results showed that due to coarse resolutions,
simulations could not reproduce the flood regions of the 2016 Lafayette
Parish flooding. However, spatial patterns were observed after the
model resolution was refined. Fang et al. (2019) introduced deep learn-
ing for flood prediction and proposed an integrated LSTM and reduced-
order-model (ROM) framework to perform time series prediction and
prescriptive analysis on flooding. Their study found that the LSTM-
ROM model outperformed the full model and maintained its accuracy
in predicting flooding. However, they found that when lead time is ex-
tended, the predictive accuracy decreases.

Bui et al. (2020) introduced a novel approach using deep learning
neural networks to aid in forecasting the likelihood of flash floods.
This type of ANNs architecture was selected due to its ability to rep-
resent and process highly complex input data and to produce highly
accurate projections despite the non-linearity of the given data

(Lewis, 2016). Their study was specifically designed to address the
challenges in regions susceptible to a high frequency of tropical
storms. Therefore, the model was based on real-life data collected in
the northwest mountainous region of Vietnam. The geographic infor-
mation system (GIS) input dataset included the slope, lithology, rain-
fall, soil type, elevation, steam density, curvature, and normalised dif-
ference vegetation index (NDVI). All nine factors influenced the sus-
ceptibility of flash flooding within the area. The influencing factors
were selected based on the information gain ratio method proposed
by Quinlan (1986) and Dai and Xu (2013), thus eliminating the need
for data collection on unnecessary factors.

Hosseiny's (2021) study utilised U-net, an advanced CNN, to pre-
dict river flood depth and extent. The results surmised an improved ac-
curacy in predicting the maximum flood depth by 29%. Löwe et al.’s
(2021) research also successfully implemented advanced convolutional
neural networks, U-Net, to predict urban pluvial flood water depth. It
was found that deeper networks improved the prediction until reach-
ing a limit of around 28 million trainable parameters. It was noted that
too many datasets led to overfitting and increased prediction errors.
The dataset that led to the model performing the best included a com-
bination of terrain aspect, curvature, depth of depressions, flow accu-
mulation and imperviousness. Ahmed et al. (2021) found exponential
Gaussian process regression (GPR) accurately predicted the daily water
levels in a river subject to annual flash flooding in Malaysia based on
data collected from 1990 to 2019. The GPR model outperformed sev-
eral other machine learning models such as linear regression (LR), in-
teraction regression (IR), robust regression (RR), stepwise regression
(SR), support vector regression, boosted trees ensemble regression
(BOOSTER), bagged trees ensemble regression (BAGER), XGBoost, and
tree regression (TR). The GPR was further used to predict water levels
based on 10-day minimum and maximum water levels and could fore-
cast the extremes of the water levels. The authors of the study denote
the study was limited by data availability.

Ramayanti et al. (2022) explored the generation of flood suscepti-
bility mapping, where they implemented two deep learning architec-
tures to the problem: group method of data handling (GMDH) and
CNN. The study was centred around the March 2019 flood in the Beria
Area, Mozambique. The models were both able to produce similar map-
ping, where lower-sloped areas (i.e., areas along the river) were at a
higher risk of flooding. The CNN performance indicator, RMSE value,
was four times lower than the RMSE value derived from GMDH. This
showed that CNN could generate an accurate flood susceptibility map
more than the GMDH. Sorkhabi et al. (2023) employed CNN and LSTM
to predict the variability in sea level and flooding to measure coastal
city resilience. Variables included wind speed, sea surface temperature,
precipitation, and mean sea level. The study found that deep learning
approaches offered good predictive accuracy in the resilience of the
city against flooding due to the variable sea level. However, future
works suggested are to incorporate more parameters, such as updated
satellite data, to improve the accuracy of the models.

9.2. Water retaining structures

Throughout human history, dating back more than 5000 years, ac-
cording to Biswas and Tortajada (2010), water-retaining structures
have been constructed in many places worldwide. Dams provide many
benefits, although their fundamental purpose is to facilitate water stor-
age. These benefits include, but are not limited to, flood control, hy-
dropower and human consumption. Currently, there are 50,000 of
these large hydraulic structures (Tata and Howard, 2016) being used
worldwide, of which a large majority are embankment dams. The
British Dam Society (2019) attributes the most common dam failure
modes to overtopping during floods.

The health and structural integrity of dams are crucial since the con-
sequences of failure can be severe. Therefore, understanding dam be-
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haviour and failure mechanisms is vital. De Granrut et al. (2019) ex-
plored using ANNs to analyse the behaviour of piezometric data on arch
dams, focusing on the rock-concrete interface to monitor uplift pres-
sures on the dam. The study highlighted the limitations of traditional
multi-linear regression (MLR) models, such as the Hydrostatic-Season-
Time (HST) model, which are commonly used across engineering prac-
tices to monitor dams (Crépon and Lino in 1999; Penot et al., in 2005;
Léger and Leclerc in 2007). The advantage of using HST is that only the
reservoir level is required and performs well only under certain circum-
stances. On the other hand, various mathematical approaches have
been proposed to model dam seepage (Ding and Han, 2017). Cui and
Zhu (2009) successfully implemented a three-dimensional finite ele-
ment method integrated with genetic algorithms; however, issues with
convergence and basic operators in the genetic algorithms impacted the
model's accuracy. Zhang et al. (2020) successfully applied ANNs inte-
grated with a three-dimensional finite element model to forecast the re-
gions of weakness (particularly seepage) of concrete dam foundations.
Unlike the HST model, ANNs enable the capture of the non-linearity of
the piezometric data, such as the leakage flows, movements, and head
of the reservoir.

Overtopping occurs when the dam's design, such as the freeboard, is
not sufficient to cater to the actual requirements, which may change
over time. Hence, a suitable design during the initial construction may
no longer be appropriate later due to the changes in conditions. The
likelihood of overtopping is further exacerbated during extreme
weather conditions. For example, due to fluctuations caused by the
weather, the head of the water rises above the designed freeboard,
which leads to overtopping. The Environment Agency (2018) reports
that the projections show increased winter precipitation over the
United Kingdom because of climate change. Although seasonal varia-
tion is expected, there will be times during the year when dams will be
subjected to store more water due to the high precipitation, increasing
the risk of overtopping. As the years go on, the trend of a rainfall event
is expected to further increase the risk of overtopping. Huang et al.
(2003) used convolutional ANNs for coastal water level predictions.
However, this method requires large amounts of long-term historical
data, which is not always readily available. Fuzzy logic parameters inte-
grated into ANNs provide effective estimations of water levels under
uncertainty; however, they do not give insight into the parameters' un-
certainties alone (Alvisi and Franchini, 2011). Yang et al. (2019) ap-
plied recurrent ANNs to simulate reservoir operations using inflow,
storage and climate data. In this study, the authors used a long-short
term memory (LSTM), nonlinear autoregressive models with exogenous
input (NARX) and a NARX-based genetic algorithm, and they found
that the latter was able to outperform the other models.

Ren et al. (2021) implemented an interpretable mixed attention
mechanism long short-term memory (MAM-LSTM) model to predict
displacement associated with concrete dams. The authors found suc-
cess in their two-staged encoder approach. The highly influential fac-
tors were adaptively selected by the factor attention mechanism mod-
ule. The temporal attention mechanism module, in contrast, was able
to select the relevant hidden states. This model outperformed classical
statistical modelling and other deep learning and machine learning
models. Fan et al. (2022) utilised a transfer learning approach, MA-
AttUNet. This sophisticated methodology applied previous knowledge
from a source domain to underwater crack image segmentation. The
knowledge transfer occurs using a multi-level adversarial transfer net-
work. An attention mechanism also limited background noise during
detection. Although the model exhibited poor real-time performance, it
was able to accurately identify underwater dam crack images.
Nonetheless, the model outperformed other methods at the time of the
study. Zhang et al. (2023) used a unifying transformer encoder inte-
grated into a CNN architecture for pixel-level dam crack detection. The
proposed model demonstrated flexibility and was able to adapt to a va-
riety of scenarios. Although the model performed well against quanti-

tative indicators, the authors showed that the model's accuracy in de-
tection was critically impacted by weak or disturbing background in-
formation. They also highlighted that the model's speed was slightly
lower than comparative machine learning models, thereby suggesting
that future works could include a lightweight deep learning architec-
ture for faster training.

10. Conclusions, open issues, and prospects

Machine learning techniques have successfully been used to identify
patterns within nonlinear datasets. This study explored the various ML
techniques that have been applied within the realm of water resources
management. Various Machine Learning techniques have found signifi-
cant applications for prediction purposes, ranging from pure forecast-
ing to estimating certain parameters of optimisation models. Particu-
larly, implementing artificial neural networks has found great success
in recent years.

Proactive and effective water management requires accurate predic-
tion, and several studies have shown that standalone deep learning
models could outperform conventional machine learning models, albeit
the data characteristics could substantially affect their performance.
Specifically, LSTM networks have been proven to exhibit reliable fore-
casting performance and even outperform ANN models, traditional ma-
chine learning models, and established physics-based hydrological
models. Complexifying the architecture of LSTM-based models (via
stacked structure) has not substantially improved forecasting perfor-
mance. More complex ML models require more data, and thus, the com-
plexity of the deep learning model should be in accordance with the
data. However, the performance of standalone deep learning models
could sometimes be limited and unable to effectively capture features
from multivariate time series.

Presently, more studies have considered hybrid ML techniques, such
as hybrid ANNs, as they have shown superior computational power
over traditional ANNs architectures. Hybrid models combining classic
deep learning models such as the LSTM or GRU and decomposition al-
gorithms (WT, EMD, and VMD) have shown good performance and
should, therefore be further developed. The development of hybrid ma-
chine learning models has often yielded comparable performance in
terms of forecasting accuracy. Hence, these models could still be further
improved and developed, especially for long forecasting horizons, as
the predictive accuracy has always decreased with increasing lead time.
Hybrid deep learning models should be more developed than stand-
alone deep learning models, considering their superiority in terms of
prediction performance.

Physics-hybrid models, which combine data-driven models and
physical models, have also proven to improve prediction performance.
Physical-based hybrid models are commonly either developed by feed-
ing the ML model with the simulation outputs of physical-based mod-
els, or by forecasting its errors. When forecasting the error, the deep
learning models can detect the location of most errors made by the
physical-based models. When using the output of physical-based mod-
els as input for the ML model, its contribution should be first assessed to
ascertain it would add positive impact on model performance.

Other advanced deep learning architectures, such as transformers
(Polosukhin et al., 2017), have yet to be tested in water resources man-
agement. Transformers have so far been successfully used to design
neural networks in various application domains, including natural lan-
guage processing, genomic sequences, time series data, and signal pro-
cessing. Such models are known for their general structure, which in-
cludes an additional layer between the encoder and decoder, enabling
them a high degree of parallelisation and, hence, faster training. This
could be a valuable feature when handling complex data, which is very
valuable given that several studies have shown that several hydrologi-
cal/meteorological variables could contribute positively to prediction
performance. Recent studies (e.g., Janner et al., 2021) highlighted how
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transformer architectures can be used to simplify reinforcement learn-
ing by formulating it into a single big sequence. Such an approach pro-
vided more capacity and power to reinforcement models in their at-
tempt to address decision-making problems via the distributions of re-
wards and actions over sequences of states. Furthermore, transformer
architecture offers some promising features for dynamics prediction as
well as long-horizon dynamics prediction, which could tremendously
improve groundwater level or river streamflow forecasting.

In a data-scarce context, implementing Transfer Learning tech-
niques could be a potential solution when developing hybridising phys-
ical-based and deep learning models. In the future, it is thus highly rec-
ommended to further employ Transfer Learning to improve ML model
performance, particularly for long forecasting horizons, as predictive
accuracy has always been shown to decrease with increasing lead times.
The implementation of Transfer Learning could substantially improve
the performance of hybrid deep learning models, and thus enable more
informed decision-making process in the realm of water resource man-
agement and flood defence applications.

In the real-world context, ML has proven to be a powerful tool in
water resources management, providing insights, predictions, and opti-
misation capabilities. The practical application of ML in the water sec-
tor has taken a wide disparity of forms, depending on the intended use
or desired benefits. For instance, ML has successfully been used to de-
velop a Smart Water Networks in Barcelona, Spain, where ML and IoT
(Internet of Things) technologies were implemented to improve water
efficiency and reduce losses in the distribution network (Shahra et al.,
2019). This was done by monitoring water quality, detecting leaks, and
optimising water distribution using sensors and data analytics. Another
example was the application of ML for burst locations in water distribu-
tion network in Jiangsu province, east China (Zhou et al., 2019). They
correctly located 57 of 58 synthetic bursts in the system.

Another practical application of ML is the development and deploy-
ment of decision support systems (DSS) to help water resources man-
agers and authorities to make informed decisions. DSS have also been
greatly beneficial for water resources allocations in several countries,
including the US (WRF-Hydro), Australia (AQUATOR), or the Nether-
lands (HydroNET). These often leverage machine learning to analyse
complex data including – but not limited to - satellite imagery, real-time
sensor data, and hydrological and weather data, to make predictions
and assist decision-makers. ML algorithms have also been implemented
to develop an early warning system that helps residents and authorities
take preventive measures during heavy rainfall events (Dong et al.,
2022). Weather patterns, river levels, and historical flood data are first
analysed to enable the system to provide early warnings. All in all, Ma-
chine learning has become a valuable asset in the water sector, provid-
ing valuable insights, predictions, and optimisation capabilities applic-
able in real-world practice to enhance sustainable water use and man-
agement, and subsequently improving socio-economic development,
healthy ecosystems and human existence itself.
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