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Greater local cooling effects of trees across globally distributed urban 
green spaces 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We compiled local in-situ air tempera
tures for global urban green spaces 
(UGS). 

• Temperature differential relationships 
with climate, plant and urban variables 
were analysed. 

• A robust hierarchical linear-mixed effect 
model was used for parsimony. 

• UGS demonstrated stronger local cool
ing in milder climates with higher plant 
growth. 

• Trees dominated UGS cooling effects 
globally, compared to grass and green 
roofs and walls.  
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A B S T R A C T   

Urban green spaces (UGS) are an effective mitigation strategy for urban heat islands (UHIs) through their 
evapotranspiration and shading effects. Yet, the extent to which local UGS cooling effects vary across different 
background climates, plant characteristics and urban settings across global cities is not well understood. This 
study analysed 265 local air temperature (TA) measurements from 58 published studies across globally 
distributed sites to infer the potential influence of background climate, plant and urban variables among different 
UGS types (trees, grass, green roofs and walls). We show that trees were more effective at reducing local TA, with 
reductions 2–3 times greater than grass and green roofs and walls. We use a hierarchical linear mixed effects 
model to reveal that background climate (mean annual temperature) and plant characteristics (specific leaf area 
vegetation index) had the greatest influence on cooling effects across UGS types, while urban characteristics did 
not significantly influence the cooling effects of UGS. Notably, trees dominated the overall local cooling effects 
across global cities, indicating that greater tree growth in mild climates with lower mean annual temperatures 
has the greatest mitigation potential against UHIs. Our findings provide insights for urban heat mitigation using 
UGS interventions, particularly trees across cities worldwide with diverse climatic and environmental conditions 
and highlight the essential role of trees in creating healthy urban living environments for citizens under extreme 
weather conditions.   
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1. Introduction 

Today, over half of the global population lives in cities, and this trend 
is expected to rise to 70 % by 2050 (United Nations. Department of 
Economic and Social Affairs, Population Division, 2019). Urban pop
ulations face increasing pressure from extreme heat, as rapid develop
ment and global climate change intensify urban heat islands (UHIs) 
(Krayenhoff et al., 2018; Mora et al., 2017; Zhao et al., 2018). Devel
oping UHI mitigation strategies is thus crucial for healthy and resilient 
urban systems in the future. Most UHI studies measure differences in 
land surface temperature (LST) between urban and surrounding subur
ban or rural areas using remote sensing data (Estoque et al., 2017; 
Imhoff et al., 2010; Manoli et al., 2019). These studies have revealed 
that UHIs vary in magnitude from 0.8 to 8.0 ◦C (Imhoff et al., 2010; 
Manoli et al., 2019), are stronger in summer and during night-time 
(Gartland, 2008), and are strongly influenced by urban size, local 
climate, urbanisation gradients and impervious surface area (Estoque 
et al., 2017; Li et al., 2019; Manoli et al., 2019; Shi et al., 2023; Varquez 
and Kanda, 2018; Zhao et al., 2014). However, we currently lack an 
understanding of how these disparate UHI findings can be applied to 
urban interventions (e.g., green infrastructure) that aim to reduce urban 
heat at local scales across global cities. 

Urban green spaces (UGS) have the potential to reduce the temper
ature of surrounding areas through evapotranspiration, the provision of 
shade, and increased albedo (Bowler et al., 2010). UGS has thus been 
extensively studied as a UHI mitigation strategy for diverse UGS types (e. 
g., parks, grass, green roofs and walls) according to various methods (e. 
g., field measurements, remote sensing and model simulations) (Balany 
et al., 2020; Bartesaghi Koc et al., 2018; Saaroni et al., 2018). However, 
the magnitude of UGS cooling effects varies substantially with the UGS 
type, urban and climate context (Manoli et al., 2019; Shi et al., 2023; Su 
et al., 2022). For instance, greater cooling effects have been identified 
for urban trees compared to grasslands (Bartesaghi-Koc et al., 2020), at 
higher background temperatures (Su et al., 2020), and for drier intra- 
climate regions (Manoli et al., 2019). Most studies of local UGS cool
ing effects have also focused on a limited scope of locations, particular 
UGS types and/or a range of methods that are not directly comparable 
(Bartesaghi Koc et al., 2018; Su et al., 2020), restricting the identifica
tion of UGS cooling effects that are applicable across globally diverse 
urban areas. 

Quantifying the local cooling effects of UGS across diverse urban and 
climatic contexts on a global scale would guide a better understanding of 
the role of UGS in UHI mitigation. The application of the remote sensing 
approaches used to study landscape-scale UHIs, however, is often 
restricted by the micro-scale implementation of UGS in real urban areas. 
Field measurements, empirical observations of air temperature (TA) 
using sensors, weather stations and thermistors, provide a more direct 
measure of UGS's instantaneous and real-world effects on temperature 
(Bowler et al., 2010). A recent synthesis of observational field data on a 
global scale demonstrated vegetation growth, seasonality and latitude as 
the key driving factors of UGS cooling effects (Su et al., 2020). Subse
quent statistical analysis of these observations partially explained the 
influence of key interacting factors (evapotranspiration and leaf area 
index) on point TA measurements across globally distributed sites and 
UGS types according to polynomial and additive regression models (Su 
et al., 2022). A unified understanding of the global cooling potential of 
UGS, however, will depend on more parsimonious approaches to dis
entangling these complex non-linear patterns in TA. 

In this study, we compiled a global dataset of locally measured TA 
differentials (ΔTA) between various UGS types (trees, grass and green 
roofs and walls) and neighbouring urban spaces (impervious surfaces). 
ΔTA measurements were then supplemented with climatic, plant and 
urban metrics to reveal whether the effects of UGS on local TA follow 
similar trends to those identified for UHIs on a global scale. Taking the 
observations from local to global urban heat studies outlined above, we 
hypothesised that background climate influences the magnitude of ΔTA 

through large-scale controls on vegetation physiology, while plant and 
urban characteristics influence the direction (positive or negative) of 
ΔTA across globally distributed sites. That is, we expect greater plant 
productivity in temperate and wet climates to promote local UGS cool
ing effects, while urban areas with greater impervious surfaces outweigh 
the cooling benefits of UGS due to greater heat absorption. 

2. Methods 

2.1. Data collection 

We collected TA measurements for green and urban spaces across 
globally distributed sites using PRISMA systematic literature review 
guidance (Page et al., 2021). The systematic literature review was 
conducted using Web of Science for all peer-reviewed journal articles 
available until April 2023 with no restrictions on start date or location. 
The following search terms were used to include all studies reporting 
UGS types and a measure of urban heat and/or cooling: (green infra
structure OR green space* OR sustainable drainage system* OR water 
sensitive urban design OR green*roof OR living roof* OR green*wall OR 
vertical green* OR urban garden OR urban*farm OR urban forest) AND 
(urban heat island OR urban*cooling OR climate*mediation OR clima
te*regulation) AND (air temperature* OR heat intensity*). The 
following criteria to screen and select appropriate studies were used: (1) 
only field measurements were selected, and laboratory incubation 
studies or computer model outputs were not included; (2) only TA effects 
were considered for consistency between studies; (3) at least one TA 
dataset for both green and urban spaces that can calculate ΔTA between 
green and urban spaces is reported; and (4) studies only written in En
glish are considered. Based on the result of PRISMA, a total of 58 peer- 
reviewed articles with 277 measurements were included that quantified 
the effect of UGS on TA (Fig. 1). Additionally, we removed (i) the tem
perature data collected from water sources due to few data points (n = 4) 
and (ii) outliers that were identified from the trends of collected ΔTA, 
excluding the range of <−5.5 to >3 ◦C (n = 8). Finally, a total of 265 
observed temperature measurements from 58 published studies 
(Table S1) were used for the data analysis outlined in the following 
sections. 

2.1.1. Site-specific field measurements 
TA observations for green and urban spaces were retrieved directly 

from tables and text within each paper, or from plots using Web
PlotDigitizer software (version 4.6) (Rohatgi, 2022). We included TA 
observations exclusively from sunny days and excluded data from 
cloudy and rainy days to ensure the quality of remote sensing data for 
assessing plant characteristics at the measurement sites. As measure
ment heights of TA vary across the published papers, the effect of mea
surement heights on ΔTA was tested using one-way ANOVAs. The result 
showed no significant interaction between ΔTA and measurement 
heights (Fig. S1). In addition, 25 ΔTA observations (9.4 % of 265 total 
ΔTA observations) were measured in shaded conditions, ranging from 
−4.32 to −0.03 ◦C, which fell within the range of ΔTA observations after 
removing outliers. Alongside TA, the dataset also included basic site 
information such as city, country, latitude, longitude, measurement 
time/periods, experimental method, climate classification based on 
Köppen–Geiger climate classification system (tropical, dry, temperate 
and cold (continental)) (Beck et al., 2018). UGS were classified into 
three common types: trees, grass and green roofs and walls (Bartesaghi 
Koc et al., 2018). Here, grass included low UGS types such as grass, 
shrubs and forbs, and trees encompassed urban forests, parks, street 
trees and trees mixed with low UGS. Measurement times for day and 
night in each city were determined by sunrise and sunset times (htt 
ps://www.sunrise-and-sunset.com/en/sun), which were selected based 
on the starting date of the TA measurements. 
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2.1.2. Background climate data 
Background climate was characterised according to variations in 

annual and monthly temperature and precipitation measurements. If 
mean annual temperature (MAT, ◦C), minimum/maximum annual 
temperature (MinAT/MaxAT, ◦C), and mean annual precipitation (MAP, 
mm) measurements were missing from the corresponding paper they 
were extracted for the study site/s (at the city level) and year from the 
World Bank Group (https://climateknowledgeportal.worldbank.org/). 
Temperature variation (MATv, ◦C) was calculated using MinAT and 
MaxAT (MATv = MaxAT − MinAT). Additionally, monthly temperature 
data were included to consider monthly temperature variation for 
background climate. Mean, minimum and maximum temperature by 
month (MTM/MinTM/MaxTM, ◦C) and mean precipitation by month 
(MPM, mm) across the study sites were collected via the Climate Data 
(https://en.climate-data.org/). The months for MTM, MinTM, MaxTM 
and MPM were based on TA measurement period from each study to 
ensure consistency of observed TA and meteorological conditions during 
the TA observation periods. If TA was observed for more than two 
months, MTM, MinTM and MaxTM were averaged and MPM was 
accumulated for the entire observation period. 

2.1.3. Plant and urban characteristics data 
Plant and urban characteristics data were collected using open- 

access remote sensing data. Landsat satellite imagery was used as it 
covers the broader data period from 1972 to the present compared to 
other sources such as MODIS and Sentinel (Adab et al., 2016; Zhou et al., 
2019). Owing to the data availability of Landsat, two Landsat imagery 

collections were used: Landsat 8 data collection for TA measurements 
taken on or after April 11, 2013, and Landsat 7 data collection for TA 
measurements preceding that date. Both image collections are atmo
spherically corrected and meet geometric and radiometric quality re
quirements with 30 m spatial resolution. Average values for each 
vegetation index were computed in Google Earth Engine using the Py
thon eemont package (Montero, 2021). As a proxy of plant characteris
tics vegetation indices were used including the Normalized Difference 
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized 
Difference Moisture Index (NDMI), Leaf Area Index (LAI) and Specific 
Leaf Area Vegetation Index (SLAVI). Normalized Difference Built-up 
Index (NDBI) was further used as an urban characteristic proxy for 
each site. These indices were selected in relation to the function of 
evapotranspiration and the shading benefits of UGS (Table 1). Robust 
vegetation (NDVI, EVI and SLAVI) and plant water content (NDMI) were 
determined based on evapotranspiration, which is indicative of active 
transpiration. Leaf density (LAI) and greenness (NDVI and EVI) were 
chosen for shading benefits, which contribute to effective shading by 
intercepting solar radiation. All indices were captured from the remotely 
sensed imageries in a buffer of a 500 m radius around the observed site 
in the city, which was chosen based on the strong relationship between 
TA and LST in a wider environment (Unger et al., 2009). A cloud and 
cloud shadow masking based on the quality assessment band included in 
Landsat surface reflectance (SR) products was applied using eemont to 
ensure that the imagery used for index calculation is not affected by 
cloud cover (Montero, 2021). During the TA observation periods, the 
likelihood of coming across Landsat images at specific sites varied due to 

Fig. 1. PRISMA flow diagram of the systematic literature review process for identification, screening and inclusion of studies on in-situ temperature measurements 
on urban green space areas across global cities. 
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factors like the absence of images (given Landsat's 2-week revisit time) 
or cloud and shadow cover. To address this, we chose to compute 
average indices over a one-year duration, using exclusively cloud and 
shadow-free images. Annual vegetation indices smooth out the season
ality effects, making it easier to see the underlying land use/cover 

patterns for globally distributed sites. Using annual averages provided a 
robust approach, ensuring data consistency, quality and availability 
across all sites. This enhanced our ability to highlight vegetation and 
non-vegetation patterns more effectively throughout the TA observation 
period. In addition, data for the human population of the city in the 
study were collected from the online database https://citypopulation. 
de/. 

2.2. Data summary 

A total of 265 ΔTA measurements between green and urban spaces 
were used for the data analysis outlined in the following section. These 
measurements were extracted from 58 studies across 46 cities and 23 
countries between 2002 and 2021 (Fig. 2; Fig. S2). Of 46 cities, 31, 7, 5 
and 3 cities were located in temperate, dry, cold (continental) and 
tropical climates, respectively. Broad UGS types were classified into 
three distinct types: trees (35 studies), grass (17 studies) and green roofs 
and walls (16 studies). The sampling times for temperature observations 
were during both the daytime and night-time (29 studies), during the 
daytime (28 studies) and the night-time (1 study). The measurement 
methods used for temperature were mainly sensors (36 studies), fol
lowed by thermistors (10 studies), weather stations (9 studies) and 
mobile (3 studies). Here, sensors are devices that measure air temper
ature using the principles of electrical resistance, while thermistors rely 
on the temperature-dependent resistance of semiconductor materials. 
Mobile is classified under sensors, but they utilise sensors to measure air 
temperature while being mobile (e.g., bicycles, cars, and drones). 

2.3. Data analysis 

Data analysis was performed in the R software environment (R Core 
Team, 2022) and focused on explaining relationships between local ΔTA 
between green and urban spaces. First, a global trend of UGS cooling 
effects on local ΔTA was presented across MAT (<10 ◦C, 10–20 ◦C, 

Table 1 
Selected vegetation and urban indices as proxies of plant and urban character
istics used in the study, indicating index abbreviation, index name, plant char
acteristic, formula and reference.  

Index 
abbreviation 

Index name Plant 
characteristic 

Formula Reference 

NDVI Normalized 
Difference 
Vegetation 
Index 

Plant 
greenness 

(NIR − R)/ 
(NIR + R) 

(Wilson and 
Sader, 2002) 

NDMI Normalized 
Difference 
Moisture Index 

Plant water 
content 

(NIR −
SWIR1)/ 
(NIR +
SWIR1) 

EVI Enhanced 
Vegetation 
Index 

Plant 
Greenness 

2.5 × ((NIR 
− R)/(NIR +
6 × R − 7.5 
× B + 1)) 

(Li et al., 
2018) 

LAI Leaf Area 
Index 

Leaf density −ln[(0.69 −
SAVI*) / 
0.59] / 0.91 

(Biudes 
et al., 2014) 

SLAVI Specific Leaf 
Area 
Vegetation 
Index 

Plant size and 
growth 

NIR / (R +
SWIR2) 

(Lymburner 
et al., 2000) 

NDBI Normalized 
Difference 
Built-up Index 

Urban built- 
up area 

(SWIR −
NIR)/(SWIR 
+ NIR) 

(Zha et al., 
2003) 

Abbreviations in the formula: near infrared (NIR), red (R), blue (B), shortwave 
infrared 1 (SWIR1) and shortwave infrared 2 (SWIR2). 

* SAVI (Soil Adjusted Vegetation Index) = ((NIR − R) / (NIR + R + 0.5)) * (1 
+ 0.5) (Huete, 1988). 

Fig. 2. Location of the globally distributed urban green spaces included in this study, representing 265 local air temperature differentials between green spaces and 
urban areas (impervious surfaces) from 58 studies across 46 cities (symbol size indicates the number of studies as in the legend). The climate zones were classified 
into four groups according to the Köppen–Geiger climate classification system (tropical (yellow), dry (blue), temperate (green) and cold (continental) (red)). 
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20–30 ◦C), latitude (40–30◦S, 30–0◦S, 0–30◦N, 30–40◦N, >40◦N), UGS 
types (trees, grass and green roofs and walls) and climate zones (trop
ical, dry, temperate and cold (continental)). Following this, ΔTA was 
investigated across broad categorical variables (MAT, latitude, UGS 
types, climate zones, sampling times (day and night) and measurement 
methods (mobile, sensor, thermistor and weather station)) before a hi
erarchical model was used to disentangle the importance of various 
environmental controls on local ΔTA across globally distributed sites. 

2.3.1. Response ratios between local green and urban spaces 
Differences in observed TA between broad groups including MAT, 

latitude, UGS types, climate zones, sampling times and measurement 
methods were analysed in the dataset. To compare response ratios 
among these broad groups, the standardised mean difference of 
observed TA between green and urban spaces was calculated (SMD = ln 
(TA_green / TA_urban)) and used as a response variable (Fig. S3a). Effects 
were tested using one-way ANOVAs and taking p < 0.05 to support a 
significant difference between groups. 

2.3.2. Hierarchical model of UGS controls on ΔTA 
A hierarchical linear mixed-effects model was used to test the in

fluence of environmental and urban characteristics on ΔTA measure
ments. Here, in regions with higher background temperatures, larger 
temperature differences are observed, while in regions with lower 
background temperatures, smaller differences are observed. To facilitate 
the comparison of temperature data across various global locations, it is 
important to normalise observed TA by correcting ΔTA by MAT ac
cording to: MAT-corrected ΔTA = (TA_green / MAT) − (TA_urban / MAT) 
(Fig. S3b) (Parishwad et al., 1998). 

We use a hierarchical modelling approach to test the importance of 
background climate, plant and urban characteristics on MAT-corrected 
ΔTA across globally distributed sites. To evaluate the effect of using 
MAT-corrected ΔTA as a response variable, we also run the hierarchical 
model for the SMD between TA measurements in local green and urban 
spaces. The hierarchy of terms tested explains the effects of ‘controls’ 
before ‘function’. That is, variables that cause variations in multiple UGS 
and urban properties (e.g., background climate) are added first, so that if 
‘controls’ explain the variation in ‘functions’ (e.g., plant characteristics) 
then the addition of these variables does not improve the model likeli
hood. All models were linear mixed-effects models, with latitude (N =
46) considered as a random effect across 265 observations, using the 
lme4 package (Bates et al., 2015). The random effects in the hierarchical 
mixed effects model account for spatial autocorrelation, which reflects 
the proximity of latitude values to one another (e.g., north vs south), 
rather than indicating positive and negative values for the north and 
south hemispheres. 

Hierarchical terms, which include groups of variables associated 
with the overall term, were added in the following order: background 
climates (MAT, MAP, MTM, MinTM, MaxTM, MATv and MPM), plant 
characteristics (NDVI, EVI, NDMI, LAI and SLAVI) and urban charac
teristics (human population and NDBI). Each variable was added as a 
linear or quadratic (non-linear) term, with and without interactions 
between variables. For a list of variable combinations and procedures 
tested by the model see Table S2. Models were then compared by testing 
their influence on the goodness of fit (Akaike's Information Criterion, 
AIC), model likelihood (Chi-square p < 0.05) and parsimony (ΔAIC > 5 
for additional degrees of freedom). Models that met these criteria were 
tested with the subsequent hierarchical terms and groups of variables. 
Pseudo-marginal (fixed effect) and conditional (fixed and random effect) 
R2 values for the hierarchical models were calculated using the MuMIn 
package in R (Bartoń, 2023). In addition, isolated fixed effects of the 
final hierarchical linear mixed-effects model were tested using lm 
function which is the base R package for general linear models. 

3. Results 

3.1. Cooling effects of UGS on local TA 

Across globally distributed sites ΔTA varied from −5.4 to 2.6 ◦C with 
a median of −1.2 ◦C, where negative values indicate a cooling effect 
(Fig. S3c). 85 % of all observed ΔTA measurements present a cooling 
effect of UGS (i.e., ΔTA < 0). ΔTA showed distinctions across different 
MAT, latitude, UGS type and climate zone groups during the daytime 
and night-time (Fig. 3). ΔTA in each group tends to exhibit greater 
cooling effects during the daytime than at night-time. Specifically, UGS 
had a greater cooling effect during both daytime and night-time at lower 
MATs (<10 ◦C), with ΔTA of −1.9 ± 0.30 ◦C in the day and −1.5 ±

0.44 ◦C at night. ΔTA was reduced at higher MATs (20–30 ◦C, daytime: 
−0.7 ± 0.16 ◦C; night-time: ΔTA = −0.6 ± 0.26 ◦C) (Fig. 3a). The most 
substantial cooling effects were observed during the daytime at the 
lower southern latitude of 30–0◦S (ΔTA = −2.0 ± 0.33 ◦C), followed by 
the higher northern latitude of 30–40◦N (ΔTA = −1.7 ± 0.13 ◦C) and 
>40◦N (ΔTA = −1.4 ± 0.25 ◦C). During night-time, the greatest cooling 
effects occurred at the higher southern latitude (40–30◦S: ΔTA = −1.9 ±
0.24 ◦C), which stands out from the overall trend of greater cooling 
effects in the day (Fig. 3b). This exceptional night-time cooling was 
determined by a specific study attributed to increased transpiration from 
street trees, countering the absorbed heat released by buildings (Coronel 
et al., 2015). From the broad UGS types, trees had a greater cooling 
effect (daytime: ΔTA = −1.5 ± 0.10 ◦C; night-time: ΔTA = −1.5 ±

0.18 ◦C) followed by grass (daytime: ΔTA = −0.8 ± 0.21 ◦C; night-time: 
ΔTA = −0.6 ± 0.25 ◦C) and green roofs and walls (daytime: ΔTA = −0.6 
± 0.23 ◦C; night-time: ΔTA = −0.4 ± 0.13 ◦C) (Fig. 3c). Cold (conti
nental) climate regions during both daytime and night-time exhibited 
pronounced cooling effects (daytime: ΔTA = −1.9 ± 0.22 ◦C; night-time: 
ΔTA = −1.1 ± 0.41 ◦C). Greater differences between daytime and night- 
time in dry climate regions (daytime: ΔTA = −1.4 ± 0.34 ◦C; night-time: 
ΔTA = 0.5 ± 0.31 ◦C) were observed, whereas smaller differences were 
observed in temperate climate regions (daytime: ΔTA = −1.2 ± 0.10 ◦C; 

Fig. 3. The local air temperature differential (ΔTA) variability by sampling 
times: day (light red boxes) and night (light blue boxes) across globally 
distributed sites for different a) mean annual temperature (MAT), b) latitude, c) 
urban green space (UGS) types, and d) climate zones. The number of ΔTA is 
indicated for each bar (total N = 265). 
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night-time: ΔTA = −1.0 ± 0.16 ◦C) (Fig. 3d). 

3.2. TA response ratios 

SMD between TA measurements in local green and urban spaces 
differed significantly with MAT (Fig. 4a; ANOVA: F = 8.849, p < 0.001), 
latitude (Fig. 4b; ANOVA: F = 3.626, p < 0.01) and UGS types (Fig. 4c; 
ANOVA: F = 4.176, p < 0.05), but did not differ significantly across 
other groups including sampling times, climate zones or measurement 
methods (Fig. 4d, e & f; Table S3). 

3.3. Hierarchical model of UGS effects on local TA 

A hierarchical model was used to test the importance of various 
environmental and urban controls on global relationships between 
MAT-corrected ΔTA and background climate, plant and urban charac
teristics. Addition of two terms (MAT and SLAVI) improved the hierar
chical model goodness of fit and likelihood in comparison to the null 
model, with the condition that adding an additional term must be met 
with a goodness of fit of ΔAIC > 5 and Pr(>Chisq) < 0.05 (Table 2; 
Table S4). No urban characteristics met the model selection criteria. We 
also tested the hierarchical model using SMD as the response variable 
and found the influence of climate to be masked, with selected hierar
chical terms restricted to plant characteristics (Table S5). 

The final hierarchical model included quadratic MAT and SLAVI 
terms, with these fixed effects explaining ~31 % of the variation in 
MAT-corrected ΔTA across globally distributed sites (Fig. 5). Alongside 
the fixed effect terms, addition of latitude as a random effect to account 
for spatial autocorrelation between measurements explains an overall 
~71 % of variation in MAT-corrected ΔTA observations (Fig. 5a & b). 
Thus, while MAT and SLAVI capture general trends in the direction and 
magnitude of background climate and plant characteristics on MAT- 
corrected ΔTA, site-specific conditions (e.g., different UGS sizes, built- 
up areas and building heights) leading to high variation in measure
ments at single sites were not captured in the hierarchical model 
(Fig. 5b). Representation of the isolated fixed effects in Fig. 5c & d in
dicates that, in general, the cooling benefits of UGS were greater at lower 
MATs and at higher SLAVI values (Table S6). 

3.4. Cooling effects of different UGS types 

The hierarchical model aimed to explain variations in the cooling 
benefits of UGS according to general background climate, plant and 
urban characteristics. Here, we investigate whether the fixed effects of 
MAT and SLAVI varied significantly between UGS types (Fig. 6; 
Table S7). Relationships between MAT-corrected ΔTA with MAT and 
SLAVI were only significant for trees (Fig. 6a & d), whereas no clear 
relationship existed for grass (Fig. 6b & e) and green roofs and walls 
(Fig. 6c & f). Fixed effect relationships with MAT-corrected ΔTA iden
tified by the hierarchical model in Table 2 and Fig. 5 above were, thus, 
dominated by the response of trees including urban forests, parks, street 
trees and trees mixed with low UGS to both background climate and 
plant characteristics (Table S8). 

4. Discussion 

Our synthesis of ΔTA between UGS and urban spaces across globally 
distributed sites (Fig. 2) identified a median cooling effect of −1.2 ◦C, 
which was much higher for urban trees (−1.5 ◦C) than grass (−0.7 ◦C) or 
green walls and roofs (−0.6 ◦C) during the daytime (Figs. 3 & 4; Fig. S3). 
We used the global dataset of local ΔTA measurements compiled from 
urban heat studies to test the influence of background climate, plant and 
urban characteristics on UGS cooling effects. Using a robust hierarchical 
model that favours parsimony we found climate and plant characteris
tics had a strong influence on ΔTA, with the cooling effects of UGS 
increasing at lower MATs and higher SLAVIs (Fig. 5 & Table 2). Trees 

dominated these global relationships between ΔTA and MAT and SLAVI, 
whereas no clear relationships existed for the cooling effects of grass and 
green roofs and walls (Fig. 6). 

4.1. Local ΔTA across globally distributed cities 

In our analysis, the local ΔTA ranged from −5.4 to 2.6 ◦C across all 
sites. These findings align with similar global studies by Su et al. (2020), 
which reported local ΔTA ranging from −9.7 to 5.2 ◦C worldwide, as 
well as by Marando et al. (2022), which reported a range of −3.3 to 
5.2 ◦C across Europe. In general, UGS cooling effects were greater during 
the daytime compared to night-time due to active plant evapotranspi
ration and shading intervention during the day. However, an excep
tional night-time trend was observed in our study at higher southern 
latitudes (40–30◦S: ΔTA = −1.9 ± 0.24 ◦C), influenced by exceptional 
raw data from a specific study due to increased transpiration from street 
trees, countering the absorbed heat released by buildings (Coronel et al., 
2015). In addition, there is no data at night-time observed at southern 
latitudes between 30 and 0◦S. To ensure a fair comparison between 
latitude groups, more representative studies should be conducted in the 
southern latitude regions. The local ΔTA for urban trees in our study 
(−1.5 ◦C) was slightly lower than previous findings for trees in general 
(urban parks: −1.7 ◦C; street trees: −1.3 ◦C), but grass (−0.7 ◦C) showed 
slightly higher cooling effects than previous findings for grass (−0.6 ◦C) 
(Su et al., 2020). These differences can be attributed to the broader 
categories of trees applied in our analysis, such as forests, trees mixed 
with low plants and street trees, while grass-type included broader low 
plants such as shrubs and forbs. 

4.2. Effects of background climate on UGS cooling 

Background temperature had the largest influence on UGS cooling 
effects globally, particularly in milder climates with MAT < 10 ◦C 
(Figs. 3, 4 & 5). Several larger-scale climate effects on vegetation growth 
and ecophysiological processes could underpin this relationship. Longer 
growing seasons, greater water availability and the absence of severe 
temperature extremes, for instance, support wider spread and abundant 
vegetation growth in milder climates by providing optimal conditions 
for plant development (Winbourne et al., 2020). Greater plant richness 
in milder climates can also support more resilient GS, in response to 
extremes such as droughts and floods (Iio et al., 2014). However, the 
applicability of this relationship may vary in managed urban environ
ments, such as selecting plant species and providing irrigation. We also 
found the cooling benefits of UGS to be more pronounced at MAT's 
below 20 ◦C. Previous research in the continental USA by Wang et al. 
(2020) showed that regions with MAT ranging from 8.0 to 16.6 ◦C 
exhibited greater UGS cooling effects due to stronger ecophysiological 
mechanisms, such as evapotranspiration, shading, reflection and radia
tive absorption. However, there is a wide variation reported from other 
similar studies, suggesting that UGS have greater cooling effects in re
gions with higher MAT and during heat waves due to the increased 
sensitivity of UGS cooling capacity to temperature changes (Su et al., 
2020; Wang et al., 2019). In our analysis, seasonal temperatures (MTM, 
MinTM and MaxTM) did not show a significant relationship with 
observed TA measurements in the climatic hierarchical term. This 
finding suggests that annual climate variables and vegetation indices 
better reflect variations in temperature and plant constraints on UGS 
cooling effects across globally distributed sites. The annual vegetation 
data effectively smooth out seasonal variations, which can vary signif
icantly based on the specific geographical location of the site. Although 
our analysis highlights the significant influence of background temper
ature, particularly in regions with milder temperatures in regulating the 
magnitude of local TA, considering other environmental factors, such as 
water availability, albedo, and plant species and seasonality is necessary 
for gaining a comprehensive understanding of the UGS cooling effects on 
a global scale. 
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Fig. 4. The relationships between the standardised mean difference (SMD) of observed local air temperatures in green and urban spaces across globally distributed 
sites (total N = 265) and different a) mean annual temperature (MAT), b) latitude, c) urban green space (UGS) types, d) sampling times, e) climate zones, and f) 
measurement methods. NS indicates non-significant interactions between SMD and each group. 
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Table 2 
Comparison of models used to explain global patterns in MAT-corrected ΔTA between green and urban spaces, indicating the hierarchical term, model (if selected) and 
measures of model goodness of fit and likelihood (total N = 265). NA indicates that addition of the hierarchical term did not improve the model fit to the data. Overall 
goodness of fit is determined by AIC values, where lower AICs indicate a better fit to the data. ΔAICs present the difference in AIC values between each selected model 
and the final hierarchical model. R2m and R2c indicate pseudo-marginal (fixed effect only) and conditional (fixed and random effect) R2 values for the hierarchical 
models, respectively. Q indicates that the term selected was quadratic.  

Hierarchical term Variable df R2m R2c Pr(>Chisq) AIC ΔAIC 

Null   3  0  0.629   −505.29  32.68 
Background climate (MAT, MAP, MTM, MinTM, MaxTM, MATv, MPM) MAT (Q)  5  0.284  0.648  <0.0001  −524.24  13.73 
Plant characteristics (NDVI, EVI, NDMI, LAI, SLAVI) SLAVI  6  0.314  0.710  <0.0001  −537.97  0 
Urban characteristics (Population, NDBI) NA        

Fig. 5. Final hierarchical linear mixed-effects model (total N = 265) a) predictions compared to observed local air temperatures in green and urban spaces corrected 
for MAT; b) model residuals against latitude, with the lowess fit (black line with shaded area showing standard error) displaying deviations between model pre
dictions and observed temperature differences; together with the fixed relationships between local air temperature differences and c) MAT and d) SLAVI. 
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Water availability through atmospheric humidity, rainfall and irri
gation also controls plant growth and consequent evapotranspiration 
rates that promote UGS cooling effects (Manoli et al., 2019; Nooraei 
Beidokhti and Moore, 2021; Zhao et al., 2014). In regions with limited 
water availability (e.g., mean annual precipitation below 1000 mm), 
UGS cooling effects on LST are more effective in mitigating UHIs due to 
lower UHI intensity (<0.5 ◦C) in these areas compared to regions with 
higher precipitation, where UHI intensity is higher (≥0.5 ◦C) (Manoli 
et al., 2019). In our analysis, precipitation did not show a significant 
interaction with local ΔTA in the hierarchical model, while other studies 
have shown a significant relationship between UHIs and precipitation 
(Gu and Li, 2018; Zhao et al., 2014). Similarly, the response ratio of SMD 
did not differ significantly with climate zones (Fig. 4e), which is deter
mined by long-term temperature and precipitation patterns. This 
discrepancy may be due to the limitations of instantaneous in-situ field 
measurements in capturing the long-term effects of water availability on 
plant ecophysiology. Contrarily, remotely sensed LSTs provide real-time 
data with high spatio-temporal resolution and global coverage, allowing 
for long-term records (Venter et al., 2021; Zhang et al., 2014). 

4.3. Effects of plant growth on UGS cooling 

Our hierarchical model was designed to account for the major con
trols of plant functions, before introducing it as a term in the model. Still, 
SLAVI showed a significant interaction with MAT in explaining the 
cooling effects of UGS across globally distributed sites (Table 2 & 
Fig. 5d). SLAVI is a relatively new index for estimating Specific Leaf Area 
(SLA) from remote sensing imageries (Lymburner et al., 2000), and so 
limited studies are available for comparison with our SLAVI result 
(Barati et al., 2011; Morcillo-Pallarés et al., 2019). SLA, which relates to 

the growth and expansion of plant canopies through the production of 
new leaf area relative to biomass (Kimball et al., 2002; Liu et al., 2017), 
can be used to interpret our SLAVI findings here. Across the range of 
SLAVI values measured here, we consider lower SLAVI values (close to 
0.5) and higher SLAVI values (close to 3.1) to indicate smaller photo
synthetic capacity and higher plant growth rates, respectively (Fig. 5d) 
(Lymburner et al., 2000). This result is consistent with previous findings 
that suggest vegetation growth plays a significant role in the UGS 
cooling effect (Su et al., 2020). Similarly, previous studies in tundra sites 
across urban and forest land covers have found a robust positive linear 
relationship between TA and SLA together with soil moisture, suggesting 
that plants with high SLA (e.g., the larger size of trees and leaves with 
higher photosynthetic capacity) influence global temperature in the 
long-term (Bjorkman et al., 2018). Sharmin et al. (2023) also demon
strated that SLA determines the cooling benefits of urban trees associ
ated with lowering TA in surrounding areas. Despite these strong 
associations between SLA and the cooling effects of plants, such 
response of TA to SLA varies depending on the different plant structural 
characteristics (e.g., functional type, growing size, wood anatomy and 
leaf colour, shape and thickness) (Liu et al., 2017; Sharmin et al., 2023). 
Due to the intricate nature of plant characteristics, this study lacks 
adequate data sources to offer a more precise estimation of the SLAVI 
response to specific plant traits. Further investigation is, thus, needed to 
understand how the relationship between TA and SLAVI is influenced by 
plant functional traits across plant species that dominate UGS globally 
(e.g., leaf shape and thickness). Moreover, future research should 
consider the varying spatial resolutions between remote sensing data (e. 
g., 30 m pixels) and fine-scale in-situ measurements, as compared here, 
and how these patterns are underpinned by varying biophysical and 
biochemical mechanisms. 

Fig. 6. The fixed effect relationships between MAT-corrected ΔTA and MAT and SLAVI across UGS types: a & d) trees (light blue; N = 177), b & e) grass (green; N =
52), e & f) green roofs and walls (light red; N = 36). Grey dashed lines present non-significant (NS) interactions between variables. 
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4.4. Effects of urban characteristics on UGS cooling 

Urban characteristics including NDBI and human population did not 
show a significant relationship with observed TA measurements in the 
hierarchical model (Table 2). Although large and dense cities tend to 
emit more anthropogenic heat that causes increased urban temperature 
with population, urban characteristics alone are not sufficient to regu
late urban temperatures (Manoli et al., 2019). While background climate 
plays a crucial role in controlling UGS cooling effects by influencing 
plant functions, particularly evapotranspiration, urban characteristics 
contribute to temperature regulation by affecting surface convection 
efficiency associated with urban fabric and density (Manoli et al., 2019). 
Meanwhile, many local scale studies have reported a strong positive 
relationship between urban surface temperature and NDBI obtained 
from various sources of remote sensing data including Landsat 5–8 and 
MODIS (Purio et al., 2022; Zhang et al., 2009). Although we expected 
this observation in our study, differences in resolution between in-situ 
measurements and remotely sensed data may interfere with this rela
tionship. The effect of urban characteristics was also likely captured by 
vegetation indices, whereby the addition of urban characteristics did not 
explain additional variation in the temperature observations. Future 
research could use finer-resolution remote sensing observations to ac
count for direct links between urban temperature and site-specific 
conditions such as the structure and composition of built-up areas, 
and more strategically pair neighbouring grey, urban, impervious sur
faces and UGS temperatures. 

4.5. Effects of different UGS types on urban cooling 

The cooling effects associated with background climate and plant 
characteristics identified here differ significantly among UGS types 
(trees, grass and green roofs and walls) (Fig. 6). Trees dominated the 
overall cooling effects of UGS and were better explained by MAT and 
SLAVI relationships compared to other UGS types such as grass and 
green roofs and walls. Consistent with our findings, other studies have 
demonstrated that trees with dense canopies are more efficient in urban 
cooling compared to grass and shrubs, attributed to greater shading and 
evapotranspiration cooling (Richards et al., 2020; Su et al., 2022). 
Brown et al. (2015) reported that using trees for shade is highly effective 
in regulating TA, even surpassing plant transpiration. In contrast, 
grassland exhibited reduced cooling effects and even caused warming 
effects during the daytime (i.e., ΔTA > 0) (Su et al., 2020, 2022; Yu et al., 
2018). Overall, our analysis highlights trees are considered the most 
beneficial UGS type for cooling local TA through shading and evapo
transpiration (Zupancic and Bulthuis, 2015) in comparison with other 
UGS types, grass and green roofs and walls. Our analysis, however, 
found no clear relationships between ΔTA with MAT and SLAVI for grass 
and green roofs and walls due to the relatively smaller measured areas in 
green roofs and walls and limited plant growth in grasslands, which 
potentially hinders the evaluation of these relationships. 

4.6. Limitations and future research 

Our analysis of in-situ ΔTA from globally distributed sites is based on 
a compiled dataset from selected peer-reviewed journal papers but is 
limited by scope and data availability. In the systematic literature re
view, only peer-reviewed journal papers written in English were 
included, potentially resulting in the data loss of literature in other 
languages. The primary bias of this study is that the majority of ΔTA 
(total N = 265) is situated in temperate climate regions (73.6 %), while 
cold (continental), dry and tropical climates are underrepresented at 
12.5 %, 8.7 % and 5.3 %, respectively. The majority of ΔTA measure
ments were from Asia (50.2 %), followed by Europe (21.9 %), South 
America (21.9 %), North America (4.5 %) and Oceania (1.5 %) (Fig. S2). 
Additionally, there is a lack of published studies measuring in-situ ΔTA 
of UGS in Africa and cold boreal regions (e.g., northern Canada, 

northern Scandinavia and Russia). Further research on the global-scale 
cooling effects of UGS should expand to include broader cities, cold 
boreal and tundra regions and the global south (including African 
countries). While there is a lack of consideration for the influence of UGS 
spatial composition and configuration on temperature, our study aimed 
to synthesise local cooling effects on a global scale to test general re
lationships, rather than focusing on context-specific conditions such as 
UGS structure and species within cities. Future studies in remote sensing 
explore the impact of spatial composition and patterns of UGS on tem
perature on a global scale. To enhance our understanding of these effects 
on a global scale, future research should employ standardised method
ologies to systematically measure temperatures and explore the inter
active effects of different climate zones, plant traits, and urbanisation 
gradients. For instance, standardised methodologies could be designated 
at specific locations such as urban centres, residential areas and parks. 
The same measurement instruments and heights (e.g., 1.5 m above the 
ground) should be used, as well as consistent data recording intervals (e. 
g., every minute or hourly) and periods (daily, monthly or yearly). 

5. Conclusion 

This study aimed to identify the cooling effects of UGS according to 
background climate, plant and urban characteristics across different 
UGS types and globally distributed sites. We found trees to be 2–3 times 
more effective in reducing local TA compared to grass and green roofs 
and walls. Cooling benefits are most pronounced at lower MATs and 
with higher SLAVIs, while urban characteristics such as the human 
population and NDBI did not show statistical significance. Importantly, 
trees predominantly drive the overall cooling effects in UGS, exhibiting 
the most significant cooling impact across UGS types, especially in re
gions with milder climates and robust tree growth. These findings 
reinforce the significance of background temperature and plant growth 
on UGS cooling benefits, highlighting the crucial role of trees in globally 
mitigating urban heat. Understanding how UGS effectiveness varies 
based on background climates and plant traits across cities worldwide is 
essential to regulate the severity of UHI effects, particularly amid rising 
extreme weather. Further investigation into the global impact of urban 
trees and their constraints, on UHI intensity under changing extreme 
weather scenarios is needed to fully appreciate their role in mitigating 
the urban heat. 
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Data availability 

Sunrise and sunset times are obtained from https://www. 
sunrise-and-sunset.com/en/sun (accessed on 4 October 2021). Back
ground climate data are collected from the World Bank Group 
(https://climateknowledgeportal.worldbank.org/; accessed on 21 
September 2021) and the Climate Data (https://en.climate-data.org/; 
accessed on 28 October 2023). Landsat remote sensing data for Plant 
and urban characteristics are available Earth Engine Data Catalog 
(https://developers.google. 
com/earth-engine/datasets/catalog/landsat; accessed on 7 February 
2022). The human population data are available at 
https://citypopulation.de/ (accessed on 30 April 2023). The dataset 
used for analysis in the R and Python codes during the current study is 
available at https://zenodo.org/records/10154151. 
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Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., 
McDonald, S., Moher, D., 2021. The PRISMA 2020 statement: an updated guideline 
for reporting systematic reviews. Syst. Rev. 10, 89. https://doi.org/10.1186/s13643- 
021-01626-4. 

Parishwad, G.V., Bhardwaj, R.K., Nema, V.K., 1998. Prediction of monthly-mean hourly 
relative humidity, ambient temperature, and wind velocity for India. Renew. Energy 
13, 363–380. https://doi.org/10.1016/S0960-1481(98)00010-X. 

Purio, M.A., Yoshitake, T., Cho, M., 2022. Assessment of intra-urban heat island in a 
densely populated city using remote sensing: a case study for Manila City. Remote 
Sens. (Basel) 14, 5573. https://doi.org/10.3390/rs14215573. 

R Core Team, 2022. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ 
(accessed on 10 October 2021). 

Richards, D.R., Fung, T.K., Belcher, R.N., Edwards, P.J., 2020. Differential air 
temperature cooling performance of urban vegetation types in the tropics. Urban 
For. Urban Green. 50, 126651 https://doi.org/10.1016/j.ufug.2020.126651. 

Rohatgi, Ankit, 2022. WebPlotDigitizer (version 4.6). https://automeris.io/WebPlotDigit 
izer. September, 2022, Pacifica, CA, USA. (accessed on 6 October 2021).  

Saaroni, H., Amorim, J.H., Hiemstra, J.A., Pearlmutter, D., 2018. Urban Green 
Infrastructure as a tool for urban heat mitigation: survey of research methodologies 
and findings across different climatic regions. Urban Clim. 24, 94–110. https://doi. 
org/10.1016/j.uclim.2018.02.001. 

Sharmin, M., Tjoelker, M.G., Pfautsch, S., Esperón-Rodriguez, M., Rymer, P.D., Power, S. 
A., 2023. Tree traits and microclimatic conditions determine cooling benefits of 
urban trees. Atmosphere 14, 606. https://doi.org/10.3390/atmos14030606. 

J. Kim et al.                                                                                                                                                                                                                                      

https://www.sunrise-and-sunset.com/en/sun
https://www.sunrise-and-sunset.com/en/sun
https://climateknowledgeportal.worldbank.org/;
https://en.climate-data.org/;
https://developers.google.com/earth-engine/datasets/catalog/landsat;
https://developers.google.com/earth-engine/datasets/catalog/landsat;
https://citypopulation.de/
https://zenodo.org/records/10154151
https://doi.org/10.1016/j.scitotenv.2023.168494
https://doi.org/10.1016/j.scitotenv.2023.168494
https://doi.org/10.3390/rs8110961
https://doi.org/10.3390/w12123577
https://doi.org/10.1016/j.ejrs.2011.06.001
https://doi.org/10.1016/j.ejrs.2011.06.001
https://doi.org/10.1016/j.solener.2018.03.008
https://doi.org/10.1016/j.landurbplan.2020.103893
https://CRAN.R-project.org/package=MuMIn
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1007/s00484-013-0713-4
https://doi.org/10.1038/s41586-018-0563-7
https://doi.org/10.1038/s41586-018-0563-7
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.1016/j.landurbplan.2015.02.006
https://doi.org/10.1016/j.landurbplan.2015.02.006
https://doi.org/10.3934/environsci.2015.3.803
https://doi.org/10.3934/environsci.2015.3.803
https://doi.org/10.1016/j.scitotenv.2016.10.195
https://doi.org/10.1016/j.scitotenv.2016.10.195
http://refhub.elsevier.com/S0048-9697(23)07122-X/rf0070
http://refhub.elsevier.com/S0048-9697(23)07122-X/rf0070
https://doi.org/10.1016/j.uclim.2017.12.001
https://doi.org/10.1016/j.uclim.2017.12.001
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1111/geb.12133
https://doi.org/10.1016/j.rse.2009.10.008
https://doi.org/10.1016/S0065-2113(02)77017-X
https://doi.org/10.1016/S0065-2113(02)77017-X
https://doi.org/10.1038/s41558-018-0320-9
https://doi.org/10.1038/s41558-018-0320-9
https://doi.org/10.1109/LGRS.2018.2865516
https://doi.org/10.1126/sciadv.aau4299
https://doi.org/10.1126/sciadv.aau4299
https://doi.org/10.1038/s41598-017-11133-z
http://refhub.elsevier.com/S0048-9697(23)07122-X/rf0115
http://refhub.elsevier.com/S0048-9697(23)07122-X/rf0115
http://refhub.elsevier.com/S0048-9697(23)07122-X/rf0115
https://doi.org/10.1038/s41586-019-1512-9
https://doi.org/10.1038/s41586-019-1512-9
https://doi.org/10.1016/j.scs.2021.103564
https://doi.org/10.1016/j.scs.2021.103564
https://doi.org/10.21105/joss.03168
https://doi.org/10.1038/nclimate3322
https://doi.org/10.3390/rs11202418
https://doi.org/10.1016/j.ufug.2021.127052
https://doi.org/10.1016/j.ufug.2021.127052
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1016/S0960-1481(98)00010-X
https://doi.org/10.3390/rs14215573
https://www.R-project.org/
https://doi.org/10.1016/j.ufug.2020.126651
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
https://doi.org/10.1016/j.uclim.2018.02.001
https://doi.org/10.1016/j.uclim.2018.02.001
https://doi.org/10.3390/atmos14030606


Science of the Total Environment 911 (2024) 168494

12

Shi, Z., Li, X., Hu, T., Yuan, B., Yin, P., Jiang, D., 2023. Modeling the intensity of surface 
urban heat island based on the impervious surface area. Urban Clim. 49, 101529 
https://doi.org/10.1016/j.uclim.2023.101529. 

Su, Y., Liu, L., Liao, J., Wu, J., Ciais, P., Liao, J., He, X., Liu, X., Chen, X., Yuan, W., 
Zhou, G., Lafortezza, R., 2020. Phenology acts as a primary control of urban 
vegetation cooling and warming: a synthetic analysis of global site observations. 
Agric. For. Meteorol. 280, 107765 https://doi.org/10.1016/j. 
agrformet.2019.107765. 

Su, Y., Wu, J., Zhang, C., Wu, X., Li, Q., Liu, L., Bi, C., Zhang, H., Lafortezza, R., Chen, X., 
2022. Estimating the cooling effect magnitude of urban vegetation in different 
climate zones using multi-source remote sensing. Urban Clim. 43, 101155 https:// 
doi.org/10.1016/j.uclim.2022.101155. 

Unger, J., Gál, T., Rakonczai, J., Mucsi, L., Szatmári, J., Tobak, Z., Van Leeuwen, B., 
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