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A B S T R A C T   

Nanofiltration (NF) membranes, extensively used in advanced wastewater treatment, have broad application 
prospects for the removal of emerging trace organic micropollutants (MPs). The treatment performance is 
affected by several factors, such as the properties of NF membranes, characteristics of target MPs, and operating 
conditions of the NF system concerning MP rejection. However, quantitative studies on different contributors in 
this context are limited. To fill the knowledge gap, this study aims to assess critical impact factors controlling MP 
rejection and develop a feasible model for MP removal prediction. The mini-review firstly summarized mem-
brane pore size, membrane zeta potential, and the normalized molecular size (λ = rs/rp), showeing better in-
dividual relationships with MP rejection by NF membranes. The Lindeman-Merenda-Gold model was used to 
quantitatively assess the relative importance of all summarized impact factors. The results showed that mem-
brane pore size and operating pressure were the high impact factors with the highest relative contribution rates 
to MP rejection of 32.11% and 25.57%, respectively. Moderate impact factors included membrane zeta potential, 
solution pH, and molecular radius with relative contribution rates of 10.15%, 8.17%, and 7.83%, respectively. 
The remaining low impact factors, including MP charge, molecular weight, logKow, pKa and crossflow rate, 
comprised all the remaining contribution rates of 16.19% through the model calculation. Furthermore, based on 
the results and data availabilities from references, the machine learning-based random forest regression model 
was trained with a relatively low root mean squared error and mean absolute error of 12.22% and 6.92%, 
respectively. The developed model was then successfully applied to predict MPs’ rejections by NF membranes. 
These findings provide valuable insights that can be applied in the future to optimize NF membrane designs, 
operation, and prediction in terms of removing micropollutants.   

1. Introduction 

With the continuous development of detection technology, various 
emerging trace organic micropollutants (MPs),such as pharmaceuticals 
and personal care products (PPCPs) or pharmaceutically active com-
pounds (PhACs), disinfection by-products (DBPs), endocrine disrupting 
chemicals (EDCs), carcinogenic polycyclic aromatic hydrocarbons 
(PAHs), have been frequently detected in the aquatic environment 
(Bolong et al., 2009; Liu et al., 2020; Lv et al., 2017). Even though the 

concentrations of MPs in waters are low, usually in the order of ng L−1 to 
μg L−1, they are very difficult to be naturally biodegraded, therefore 
posing potential risks to aquatic organisms (Lin et al., 2016; Pan et al., 
2021). If the contaminated water is consumed by aquatic organisms, 
they may affect the functioning of nervous system, induce the produc-
tion of drug-resistant strains, and cause biological reproduction disor-
ders or abnormal development (Overturf et al., 2015). 

Wastewater treatment plants (WWTPs) have been recognized as the 
primary sources of MPs in the water environment, as the traditional 
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secondary biological treatment process is largely ineffective in removing 
MPs from wastewater (Roberts et al., 2016). To date, membrane tech-
nologies, such as microfiltration (MF), ultrafiltration (UF), reverse 
osmosis (RO), and nanofiltration (NF), have been widely used in 
advanced wastewater treatment with one of the specific targets being 
MPs (Goh et al., 2022; Luo et al., 2018). Among them, the NF membrane 
approach has broad application prospects for wastewater treatment, 
owing to the advantages of selective permeability, low monovalent ion 
rejection rates, and effective MP rejection (Ahmad et al., 2022; Gar-
cia-Ivars et al., 2017; Li et al., 2022). 

Previous studies have demonstrated that several factors can affect 
the MP rejection efficiencies of NF membranes. Those factors include 
membrane properties (e.g., pore size, hydrophilicity or hydrophobicity, 
zeta potential, surface groups, etc.), MPs properties (e.g., molecular 
radius, molecular weight, molecular structure, ionization state, etc.), NF 
system operation conditions (e.g., operation pressure, crossflow rate, 
and recovery rate), and properties of NF influent (e.g., influent tem-
perature, inorganic ion concentration, organic matter concentration, 
and solution pH) (Azais et al., 2016; Garcia-Ivars et al., 2017; Yanga-
li-Quintanilla et al., 2010). Several experiments have been conducted to 
assess the properties of NF membranes, characteristics of target MPs, 
and system operation conditions (Taheran et al., 2016). However, sys-
tematic quantitative assessment of these individual factors on MP 
rejection by NF membranes and the potential interactions are essential 
to facilitate the design and operation of effective NF membranes for MP 
removal. 

Even though several classical mathematical models have been used 
to predict targeted MP rejection by NF membranes (Bowen and Mukh-
tar, 1996, Lab Ba N et al., 2017), relatively reliable models for the 
assessment of important available parameters related to MP rejection 
under different conditions are lacking. Therefore, machine 
learning-based models, such as support vector machine (SVM), multi-
layer perceptron (MLP), and extreme gradient boosting (XGBoost) 
models, have been developed in membrane process researches (Lyu 
et al., 2018; Wang et al., 2023; Zhu et al., 2023), which are powerful 
tools to deal with complex nonlinear problems and provide a higher 
accurate interpretation of membrane separation process. Due to fewer 
training variables, high prediction accuracy, and effective capacity to 
model complex nonlinear dimensional relationships, random forest 
regression (RFR) model has been deemed as an easy-to-use and powerful 
approach (Chang et al., 2023; Giri et al., 2023). Previous studies have 
successfully applied the RFR model to understand the organic solvent 
movement in membrane separation processes (Hu et al., 2021; Zhu 
et al., 2023). However, the feasibility and effectiveness of RFR model in 
predicting MPs rejections through NF membranes need further 
exploration. 

Therefore, this study aims to investigate the contribution and in-
teractions of individual impact factors on MP rejection by NF mem-
branes, and further develop an effective machine-learning based 
prediction model. Firstly, a literature review was conducted to collect 
available data on MP rejection during NF membrane treatment. The 
individual relationships between the membrane properties (e.g., pore 
size and zeta potential), MP properties (e.g., molecular weight and 
molecular radius), and operation conditions (e.g., operation pressure, 
crossflow rate, and solution pH) were investigated. The Lindeman- 
Merenda-Gold (LMG) model was used to quantitatively assess the rela-
tive contributions of the related impact factors to MP rejection. The RFR 
theory was used to model the rejection of targeted organic MPs by NF 
membranes using primary parameters detected by the LMG model. 

2. Materials and methods 

2.1. Data selection 

The Web of Science and Science Direct databases were used to 
extract literature using the search keywords “nanofiltration” and 

“micropollutant/trace organic pollutant/emerging contaminant/anti-
biotic/PPCPs/EDCs/PhACs”. As the temperature at which a filtration 
experiment is carried out could lead to obvious differences in MP 
rejection (Xu et al., 2020), the summarized data were obtained at a 
temperature range 20–25 ◦C in this study. A total of 21 journal articles, 
covering six types of NF membranes and 30 species of MPs, were ob-
tained (Table 1). The physicochemical properties of the MPs are listed in 
Table S1. In total, 290 rows of data were analyzed to investigate the 
impacts of individual factors on MP rejection and then quantitatively 
evaluate their contributions. 

2.2. Data analysis 

Relative contribution rate. The Lindeman-Merenda-Gold (LMG) 
model was used to quantitatively assess the relative importance of each 
impact factor, including membrane pore size, membrane zeta potential, 
operation pressure, crossflow rate, solution pH, molecular weight, pKa, 
LogKow, MP charge, and molecular radius to MP rejection. Based on 
multiple regression analysis, the LMG model offers the possibility to 
quantify the contribution of each individual impact factor to the vari-
ance of the model. Considering the correlation and sequential effect 
between dependent variables, it decomposes the variance of dependent 
variables by averaging all possible marginal contributions to the vari-
ables to calculate the relative contribution of each dependent variable 
(Gong et al., 2020; Liu et al., 2019; Meng et al., 2018). The “relaimpo” 
package (Groemping, 2006) in R studio (https://cran.r-project.org) was 
used to support the analysis following Eq. (1). (Carvalhais et al., 2014). 
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(1)  

where x is the regression variable, S is the set of variables that were 
entered into the model, and R is the fit goodness of model. 

Rejection prediction. The RFR is composed of a set of regression 
subtrees{h(x, θt), t = 1,2, …, T}and selects the means of regression re-
sults of each decision tree{h(x, θt)}as the regression prediction value 
(Eq. (2)). 

h(x) =
1
T

∑T

t=1
{h(x, θt)} (2)  

where θt represents the independent and identically distributed random 
variable, x represents the independent variable, T represents the number 
of regression decision trees, h(x, θt) represents the output based on x, h 
(x) represents the predicted result of model. 

In the summarized dataset, the explanatory variables included 
membrane pore size, operation pressure, membrane zeta potential, so-
lution pH, and molecular radius, while the response variable was the 
rejection rate of MP. The dataset contained 201 sample groups. After 
normalization, the sample groups of the dataset was disordered and 
divided into training samples and testing samples according to the ratio 
of 7:3 (Chang et al., 2023). The training samples were used to optimize 
the random forest regression and develop the prediction model, while 
the testing samples were used to evaluate the model’s accuracy. After 
the calculation results were denormalized, the root mean squared error 
(RMSE), mean absolute error (MAE) and goodness of fit (r2) were used 
for model evaluation. RFR used Python 3.10 operations in the Pycharm 
development environment. 

3. Results and discussion 

3.1. Effect of membrane properties on MP rejection 

Previous studies have demonstrated that the mechanisms of MP 
rejection by NF membranes primarily include adsorption, electrostatic 
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rejection, screening, and steric resistance (Semiao et al., 2013). It has 
also been observed that the properties of NF membranes, including pore 
size, zeta potential, and the hydrophilicity or hydrophobicity of the 
membrane surface, can significantly influence the rejection of different 
MPs (Garcia-Ivars et al., 2017). Generally, the surface of the active layer 
of NF membranes is usually negatively charged. This can result in 
electrostatic repulsion between the active layer and negatively charged 
MPs as well as electrostatic adsorption towards positively charged MPs. 
Besides, MP adsorption onto NF membranes mainly occurs at the initial 
stage of the entire filtration process, while the mechanism of steric 
resistance plays a major role in MP rejection at later membrane filtration 
stages (Kim et al., 2018). 

In this study, we investigated the effects of membrane pore size and 
zeta potential on MP rejection by different NF membranes. The results 
showed that the pore size of the NF membranes varied in the range 
0.128–1.28 nm as reported in different studies (Fig. 1a). While different 
studies reported different pore sizes for the same NF membrane, for 
example, the pore size of the NF270 membrane was determined to be 
0.258, 0.42, and 0.84 nm in different studies (Fig. 1a). In summary, the 
results indicated that MP rejection decreased with increasing NF mem-
brane pore size, showing a general negative correlation (r2 = 0.21, 
Fig. 1a). 

The zeta potentials of the NF membranes investigated in this study 
were in the range of −82.1 to −10.4 mV (Fig. 1b). Specifically, different 
studies reported varied zeta potentials of the NF270 membrane, such as 
−82.1, −24.7, and −19.0 mV (Azaïs et al., 2014; Lin, 2018; Lin et al., 
2014; Nghiem and Hawkes, 2007; Vogel et al., 2010). Similarly, the 
NF90 membrane also showed varied zeta potentials of −59.3, −32.0, 

−27.3, −27.0, and −24.9 mV in different studies (Lin et al. 2014, 2018; 
Nghiem and Hawkes, 2007; Yangali-Quintanilla et al., 2010). With a 
zeta potential of −27.3 mV, the NF90 membrane showed the highest MP 
rejection rate, with an average value of 98.88%. While the SR2 mem-
brane, with a zeta potential of −10.4 mV, showed the lowest MP 
rejection rate, with an average value of 32.10%. The relationship be-
tween the zeta potential values of the NF membranes and MP rejection 
showed an inverted “U” type relationship with an r2 value of 0.74, 
suggesting that the zeta potential of NF membrane should be in a 
reasonable range to achieve a high rejection rate to different charged 
MPs. 

3.2. Effect of operation conditions on MP rejection 

The operation conditions of the NF filtration process, including 
operation pressure, influent temperature, crossflow rate, and solution 
pH, can significantly influence MP rejection. With an increase in oper-
ation pressure, the interception effect on MPs is enhanced. One reason 
for this observation is that the contaminated layer on the membrane 
surface could be gradually compacted, resulting in a decrease in the 
number and diameter of membrane pores as well as an increase in the 
MP rejection rate by the NF membranes (Fig. 2). Moreover, according to 
the analysis based on the dissolution diffusion model, water flux in-
creases with an increase in operation pressure, thereby leading to a 
relative decrease in the concentration of MPs in the permeate, while 
their concentration in the stock solution increases. Therefore, this 
analysis indicated that MP rejection by NF membranes increased with 
increasing operation pressure. 

Table 1 
Properties of NF membranes investigated in this study.  

Membrane Active layer 
material 

Manufacturer Water 
permeability 
(L/m2 h bar) 

MgSO4 

rejection 
(%) 

Membrane 
molecular 
weight cut-off 
(Da) 

Membrane zeta 
potential at pH 
7.0–8.0 (mV) 

Pore 
radius 
(nm) 

Contact 
angle (◦) 

References 

NF270 Polypiperazine- 
based 

Film Tec, Dow 0.46 >97 200–400 – – 30.6 Higgins and 
Duranceau (2020) 

13.5 – – – 0.42 55 (Nghiem et al. 2004, 
2005) 

17.8 – 300 −19 0.84 64.1 Lin et al. (2014) 
17.8 85–95 300 −24.7 0.42 63.2 Lin (2018) 
13.5 – – −24.7 0.84 32 Vogel et al. (2010) 
13.5 – – −24.7 0.84 – Nghiem and Hawkes 

(2007) 
14.1 – – – 0.42 – Azais et al. (2016) 
– 97 – – 0.42 – Shah et al. (2012) 
– 96 220 −82.1 0.258 35 Azaïs et al. (2014) 

NF90 Composite 
polyamide 

Film Tec, Dow 10.6 97 200 – 0.34 63.2 Lin et al. (2019) 
6.4 – – – 0.34 42.5 Nghiem et al. (2005) 
10.6 – 200 −24.9 0.68 63.2 Lin et al. (2014) 
17.8 85–95 200 −27 0.34 – Lin et al. (2018) 
2.23 – 200 −32 0.34 – Yangali-Quintanilla 

et al. (2010) 
6.4 – – −27.3 0.68 – Nghiem and Hawkes 

(2007) 
6.6 – 150 – 0.34 – Azais et al. (2016) 
– 97 – – 0.34 – Shah et al. (2012) 
– 98 102 −59.3 0.128 58.1 Azaïs et al. (2014) 

SR2 Polyamide Koch Membrane 
Systems (San 
Diego, CA) 

15.4 – – −10.4 1.28 – Nghiem and Hawkes 
(2007) 

VNF1 Polyamide Vontron 
Technology Co., 
Ltd. 

– 96 – −44.0 0.52 36.4 Xu et al. (2020) 

VNF2 Polyamide Vontron 
Technology Co., 
Ltd. 

– 96 – −52.0 0.48 79.4 Xu et al. (2020) 

DF30 Polyamide Beijing Origin 
Water 
Technology Co., 
Ltd. 

7.56 – 400 −75.1 0.43 15.2 Xu et al. (2019)  
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The setting of the crossflow rate summarized in this study was 
relatively high, primarily at 0.08, 0.1, 0.304, and 0.5 m s−1 (Fig. S1). The 
sheer force of the water flow rate showed a positive correlation with the 
crossflow rate. On the one hand, a higher crossflow rate could exert a 
stronger stripping effect on the pollutants attached to the membrane 
surface; thus, leading to a better removal of pollutants from the mem-
brane surface to reduce membrane pollution. On the other hand, it could 
lead to an increase in the degree of turbulence of the water, reduce the 
concentration polarization phenomenon near the membrane surface, 
and reduce the deposition of a high concentration pollutant layer on the 
NF membranes. 

A change in solution pH will bring about a change in the surface 
charge of NF membranes and also induce the dissociation of the target 
MPs, possibly leading to a change in the electrostatic interaction be-
tween the membrane and the target MPs, thereby affecting MP rejection 
(Luo and Wan, 2013). It has been suggested that the charge density on 
the inner surface of the membrane pore increases with increasing pH or 
inorganic ion concentration so as to ensure the attraction of more 
counter ions. The results in stronger electrostatic repulsion, which 
brings about an increase in membrane pore size (Bouchoux et al., 2005; 
Mänttäri et al., 2006). The effect of pH on MP rejection was studied 
under pH conditions in the range 3–10 (Fig. S2). Thus, it was observed 
that for pH to affect MP rejection, the pH condition should be selected 
taking into account the electrical properties of the membrane surface 
charge as well as the nature of the MPs in aqueous solution (Hidalgo 
et al., 2014; Huang et al., 2019; Shah et al., 2012). 

3.3. Effect of MP properties on their rejection 

Previous studies have demonstrated that size exclusion is most often 
considered as the predominant mechanism for MP rejection, especially 
for NF membranes with small pore sizes (Fujioka et al., 2014). The 
properties of MPs, including molecular radius, molecular weight, hy-
drophilicity, hydrophobicity, ionization state, and molecular structure, 
could affect their rejection by NF membranes. Among these parameters, 
the molecular weight of MPs has been widely used to explain the size 
exclusion mechanism. In particular, the molecular radius of each MP 
plays an important role in its rejection efficiency when it is being 
transported across a given target NF membrane (Min et al., 2022). 
Several studies have shown positively correlations between MP rejection 
and the molecular radii of MPs (D’Haese et al., 2013). In this study, we 
investigated the relationship between MP rejection rate and molecular 
weight as well as that between MP rejection and molecular radius 
(Fig. 3). The results obtained showed scattered trends between MP 
rejection and molecular weight (Fig. 3a), which were consistent with 
previously reported results (Min et al., 2022). Further, given that the 
weight-related parameter does not include molecular structure and ge-
ometry, it implies that molecular weight might not be a reliable pre-
dictor for explaining the size exclusion mechanism (Agenson et al., 
2003; Yang et al., 2017). 

The relationship between the calculated MP radius and rejection 
rates was investigated to determine the effect of molecular radius on MP 
rejection. Compared with molecular weight, the relationship between 
the molecular radius and MP rejection showed a relatively strong cor-
relation (Fig. 3b). However, previous studies have revealed a weak 
relationship between the Stokes diameter of MPs and their rejection 
rates (Min et al., 2022). This could be possibly attributed to the hy-
pothesis on the basis of which the Stokes diameter is calculated; that the 
molecule exhibits a rigid and spherical structure, with a homogeneous 
surface without taking into consideration the actual molecular structure 
(Min et al., 2022). It has also been demonstrated that the ratio of MP 
radius (rs) to membrane pore size (rp), normalized molecular size (λ =
rs/rp), plays an ultimately predominant role in size exclusion (Yang 
et al., 2017). 

The relationship between λ and MP rejection is present in Fig. 3c. In 
previous studies, reliable equations indicating the influence of the size 

Fig. 1. Variation of micropollutant rejection rate with (a) Membrane pore size 
and (b) Membrane zeta potential. Statistically significant differences were 
assessed using SPASS version 19.0 (p < 0.05). 

Fig. 2. Variation of micropollutant rejection rates with operation pressure.  
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exclusion mechanism on MP rejection, such as the Ferry’s equation (Eq. 
3), proposed by Ferry or its modified version (Eq. (4)), proposed by 
Werber, have been employed (Ferry and Douglass, 1935; Werber et al., 
2016). Given that Ferry’s model is derived depending on continuum 
fluid mechanics, empirical Eq. (5) was fitted, showing good correlation 
with the statistical data from published references (Fig. 3c). Further, 
Yang (Yang et al., 2017) optimized such a model for rejection prediction 
for nine haloacetic acids and seven surrogates by four RO/NF mem-
branes (i.e., NF90, NF270, XLE, and SB50). Thus, a simple and rational 
strategy for treating the combined effects of size exclusion and electro-
static interaction was derived (Eq. (6)). 

Ferry’s

model : R =

{
[λ(2 − λ)]

2 λ ≤ 1

1 λ > 1

(3)  

Modified Ferry’s

model : R =

{ 1 −
{

1 − [λ(2 − λ)]
2}

exp
(
−0.7146λ2)

λ ≤ 1

1 λ > 1

(4)  

This study : R =

{ 1 −
{

1 − [λ(2 − λ)]
2}

exp
(
−0.648λ1.175)

λ ≤ 1

1 λ > 1
(5)  

Previous study : R =

{ λ0.3 exp
[

− 36(1 − λ)
4.3]

λ ≤ 1

1 λ > 1
(6)  

3.4. Relative contribution rate of each impact factor to MP rejection 

Since λ was calculated by rs/rp, the aforementioned ten parameters 
except λ were used in LMG analysis in order to avoid mutual influence. 
Among these properties, membrane pore size and zeta potential showed 
the first and third highest relative contribution rates to MP rejection 
with values of 32.11% and 10.15%, respectively (Fig. 4), suggesting that 
the property of membrane plays the maximum contributions to MP 
rejection. With respect to operation conditions, operation pressure and 
solution pH showed the second and fourth highest contribution rates to 
MP rejection, with relative contribution rates of 25.57% and 8.17%, 
respectively (Fig. 4). While for MP properties, the molecular radius 
showed a relative contribution rate of 7.83%, which was higher than 
those of MP charge, molecular weight, logKow, pKa and crossflow rate 
(5.36%, 5.13%, 2.15%, 2.05%, and 1.50%, respectively) (Fig. 4). The 
results showed that membrane pore size and operation pressure played 
the two highest relative contribution rates to MP rejection with a value 
of 32.11% and 25.57%, respectively, possibly suggesting that the 

Fig. 3. Variation of Micropollutant rejection rate with (a) Molecular weight, 
(b) Molecular radius, and (c) Normalized molecular size. 

Fig. 4. The relative contribution rates of different impact factors on 
MP rejection. 
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predominant mechanism of size exclusion for MP rejection (Fujioka 
et al., 2014). 

Based on the LMG analysis, the total relative contribution of mem-
brane pore size, operation pressure, membrane zeta potential, solution 
pH, and molecular radius was 83.82% (Fig. 4), making the primary 
relative contribution to MP rejection. In order to simplify the modeling 
prediction process, the top five influencing factors for MP rejection were 
selected for prediction by the RFR model (Fig. 5). The results showed 
that the r2 with a value of 0.73 indicates the degree of the model’s 
interpretation of the data, showing a good prediction process. The value 
of RMSE was 12.22% in model prediction, which measures the magni-
tude of the error in the model prediction. And the value of MAE was only 
6.92%, indicating a good average degree of model’s prediction error. 

3.5. Implications 

In recent years, NF technology has been widely used in water and 
wastewater treatment, including advanced sewage treatment and reuse 
(Kang et al., 2020), seawater/brackish water desalination (Jrd et al., 
2020; Sun et al., 2020), landfill leachate treatment (Almeida et al., 
2020), industrial wastewater treatment (Garcia-Ivars et al., 2017), and 
drinking water treatment (Shen et al., 2020). This study demonstrated 
that membrane pore size, membrane zeta potential, and the normalized 
molecular size (λ = rs/rp) showed better individual relationships with 
MP rejection during NF membrane treatment. This individual relation-
ship function in this study might contribute to MP rejection prediction 
under different experiment conditions. As membrane pore size plays a 
primary role in MP rejection, this observation might guide future NF 
membrane preparation and synthesis. Thus, further studies should focus 
on the preparation of NF membranes with different properties for 
different water treatment applications. Additionally, this study demon-
strated that operation conditions, such as pressure, could considerably 
influence MP rejection, implying that it would be necessary to optimize 
the operational parameters in engineering applications. The machine 
learning-based model is a promising approach for understanding the 
membrane separation process, showing excellent prediction ability for 
MP rejection by NF membrane. Moreover, more research should be 
conducted to explore the impact of organic compounds on the rejection 
of MPs by NF membranes. For more complex situations, it will be better 
to explore new valuable models to adapt to more complicated data types 
for MP rejection. 

4. Conclusions 

This study summarized the data on the rejection/removal of 30 
species of MPs by six types of NF membranes to investigate the impacts 
of different factors on MP rejection. Membrane pore size and membrane 
zeta potential showed relatively strong correlations with MP rejection, 
with r2 values of 0.21 and 0.74, respectively. Quantitative assessment 
based on the LMG model revealed that membrane pore size and the 
operation pressure showed the highest relative contribution rates to MP 
rejection (32.11% and 25.57%, respectively), possibly suggesting that 
the predominant mechanism of size exclusion for MP rejection. The 
rejection prediction model of RFR with parameters of membrane pore 
size, operation pressure, membrane zeta potential, solution pH, and 
molecular radius showed high accurate with r2, RMSE and MAE 0.73, 
12.22% and 6.92%, respectively. These findings provide effective and 
efficient value for MP rejection prediction and future NF membrane 
design and operation. 
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