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A B S T R A C T   

High-speed rail (HSR) has emerged as a significant mode for intercity transport in several countries, particularly 
China, setting an environment that may promote integration between air and HSR networks. To better measure 
the current level of integration of China's air-HSR intermodal network and identify implementation issues, this 
paper establishes a novel assessment framework that considers three primary areas: service capability, network 
connectivity and transfer potential. The framework is based on a comprehensive literature review of network 
measurement and assessment methodologies. Then, fractal theory is used to establish an assessment model that 
associates the fractal dimension to the level of intermodal integration, which can serve as an important com-
plement to traditional weighting methods. The model and framework are applied to the 10 cities in China with 
the potential for air-HSR integration. The results show that international hub airports, together with their closest 
HSR station, do not necessarily perform at a higher integration level than regional hubs. The paper also proposes 
policy and practical recommendations to enhance air-HSR network integration levels from service supply, 
network coordination and transfer design perspectives.   

1. Introduction 

Since 2008, high-speed rail (HSR) has emerged as a significant 
transport mode in China after its success in Japan and European coun-
tries for several decades (Nunno, 2018). In 2021, China became the 
country with the highest mileage of HSR track with 40,000 km (ECNS, 
2021). At the same time, the growth of HSR in China has forced domestic 
airlines to cut airfares and cancel regional flights, especially for flights 
under 500 km. Some of the shorter inter-city routes have been 
completely terminated (Xu et al., 2016). 

Besides the substitution of air by rail (Zhu et al., 2018, 2019), there is 
also cooperation between the two modes (Albalate et al., 2015; Xia and 
Zhang, 2016), since the coverage of air routes is broader, especially in mid- 
western (remote) and international regions of China (Wang et al., 2020). In 
recent years, some Chinese cities have begun to implement air-HSR 
intermodal transport initiatives. Hub airports are actively promoting air- 
HSR intermodal transport to improve their handling capability, expand 
their radius, relieve capacity pressure and enhance their hub functions. In 
2010, Chongqing Airport Group cooperated with Chengdu Railway Bureau 
to launch the first air-HSR intermodal transport service in China (CNN, 
2010). In 2012, China Eastern Airlines and the former Shanghai Railway 
Bureau launched air-HSR intermodal transport in the Yangtze River Delta, 

with Shanghai Hongqiao and Pudong airports as the base points of the air 
hubs and the Yangtze River Delta high-speed rail as the feeder lines, 
providing intermodal transport services to passengers (CNN, 2012). Since 
its inauguration in 2012, Shijiazhuang Airport has persistently enhanced 
its air-HSR connectivity services, providing complimentary and conve-
nient passenger transfer amenities, such as overnight accommodations, 
luggage storage, and downtown shuttle services (CNN, 2019). However, 
due to the simplicity of intermodal cooperation, mainly ticketing, and not, 
for example, scheduling, air-HSR intermodal transport has not been real-
ised at a sizeable scale yet. Even in other countries where air-HSR services 
are more established, such as the Lufthansa-DB cooperation in Germany 
(Global Railway Review, 2021), their application remains limited to very 
few nodes in the combined networks. 

To measure and evaluate the extent of intermodal network synergy 
and identify existing problems, this paper proposes a comprehensive 
assessment framework of the degree of air-HSR intermodal opportu-
nities that considers three key aspects: service capability, network 
connectivity and transfer potential. Such framework would lay the 
foundation for subsequent endeavours in network and infrastructure 
optimisation. The analysis of the results, along with their implications 
for policy design, will promote a more efficient and healthy develop-
ment of air-HSR intermodal transport. 
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Based on the assessment framework, this paper adopts fractal theory 
to evaluate the integration of the air-HSR network. The concept of 
fractal dimension (explained in detail in Section 3.1.1) captures the 
degree of irregularity in multidimensional metrics, such as those nor-
mally used to assess the integration of air-HSR networks, which requires 
multiple criteria. The fractal analysis methodology avoids some short-
comings of the commonly used assessment methodologies (He and Ge, 
2020), such as Analytic Hierarchy Process (AHP), Fuzzy Comprehensive 
Evaluation (FCE), or Principal Component Analysis (PCA). By focusing 
on the spatial distribution of indicators without explicit weighting, 
fractal analysis provides a holistic view of the intermodal network. This 
is particularly valuable in cases where the relative importance of in-
dicators may vary across different locations or contexts. 

2. Literature review 

At present, most scholars analyse multimodality involving air 
transport and HSR from the following perspectives: feasibility of 
network integration (Okumura and Tsukai, 2007; Yu and Jiang, 2021); 
the competitive and cooperative relationship (Albalate et al., 2015; Li 
et al., 2018; Sato and Chen, 2018; Xia and Zhang, 2016); the overall 
network and sub-network complexity (Allard and Moura, 2014); social 
and economical benefits of integration (Huang et al., 2018); assessment 
of centrality (Wang et al., 2020); and transfer solution (Feng et al., 
2021). To the best of the authors' knowledge, no studies have assessed 
the potential integration of both networks including temporal and 
spatial considerations, or created an assessment framework to rank and 
evaluate the combination of air-HSR hubs. 

2.1. Measuring the connectivity of air transport networks 

Studies on air network connectivity are commonly conducted by 
academics and industry organisations. In general, the research 
perspective on air connectivity can be divided into airline network 
connectivity and airport connectivity. The dimensions studied can be 
classified as extent, density, time dimension or transfer connectivity. 
The main indicators measured are accessibility versus centrality, tem-
poral coordination, routing factor, connection quality, the maximum 
number of steps allowed, local versus global models (Burghouwt and 
Redondi, 2013), as well as passenger utility (Zhu et al., 2019). 

However, most of these measures only consider one aspect of the 
connection quality such as travel time. More importantly, except for a 
small number of studies such as Matisziw and Grubesic (2010) and Meire 
et al. (2019), many of the existing connectivity measures are only con-
structed for the network of a single transport mode. 

2.1.1. Industry perspective 
The air-connectivity indicator developed by the International Air 

Transport Association (IATA) is used to measure the extent to which a 
country is integrated into the global air transport network. The indicator 
reflects the number and economic importance of destinations served by 
a country/region's major airports and the number of onward connec-
tions available from each destination. The connectivity indicator is 
based on the number of available seats per destination (IATA, 2019). 
The number of available seats for each destination is then weighted 
according to the size of the destination airport (in terms of the number of 
passengers handled at that airport each year). 

The NetScan airline connectivity model (developed by SEO Aviation 
Economics and used by ACI Europe) reports airline connectivity scores 
for individual airports including direct, indirect and total connectivity 
(ACI, 2018). Direct connectivity is based on the number of destinations 
served directly and takes into account the frequency of flights. Indirect 
connectivity measures the number of destinations available via a con-
necting airport, considering connecting time and detours involved in the 
indirect routes. NetScan connectivity scores are reported at the airport 
level and mainly applied in competitive analysis of air networks and the 

corresponding airports they serve. However this model does not weigh 
the value of different destinations and some airlines argue this approach 
is not appropriate for them (Mason et al., 2015). 

The World Bank's air-connectivity index shows a country's ability to 
connect to other countries in a given network. The World Bank devel-
oped the Air Connectivity Framework to take into account the hub-and- 
spoke nature of the global air transport network, with air connectivity 
scores reported at the country level considering two factors: the strength 
of the overall ‘pull’ it exerts on the rest of the network, and the cost of 
travelling to other countries by air. The measure of connectivity is 
closely correlated with important economic variables, such as the degree 
of liberalisation of air transport markets, and the extent of participation 
in international production networks (Arvis and Shepherd, 2011). 

2.1.2. Connectivity at hub airports 
From the perspective of an airport, the core function of a hub is not 

only reflected in the number of directly connected destinations, but also 
in its ability to provide transit connections as a central node. Thus, the 
level and quality of hub connectivity has long been a focus of research. 
Models developed in the literature include the consideration of degree 
centrality to measure the connectivity of U.S. hub airports (Shaw, 1993), 
the clustering coefficient to reflect the spatial location of hub airports in 
the network (Bagler, 2008), the shortest path length accessibility model 
(Malighetti et al., 2008), or the quickest path length accessibility model 
(Paleari et al., 2010). 

However, measuring airport connectivity solely in terms of the 
number of connections between network nodes (or destinations w.r.t. air 
travel) does not take into account the differences in connection quality 
due to factors such as the degree of the detour, transit time, flight de-
parture and arrival times, aircraft type, etc. Hence, further studies have 
begun to consider the quality of individual connections specifically from 
the perspective of passenger utility. For example, the NetScan connec-
tion unit approach and the Weighted Number of Connections (WNX) 
index construct connectivity indicators with factors of detour and transit 
time (Burghouwt and Wit, 2005; Burghouwt and Redondi, 2013). The 
Weighted Number of Feasible Connections (WNR) model determines the 
minimum connectivity index by the type of connecting flight based on 
the WNX approach (Zhang et al., 2019). The Hub Connectivity Index 
(HCI) was developed to measure the connectivity of hub airports from a 
temporal perspective, incorporating detour and transit time thresholds 
(Li et al., 2012). And the Airport Connectivity Quality Index (ACQI) was 
developed to represent the connectivity of direct and indirect connec-
tions based on the size of the destination airport (Wittman and Swelbar, 
2013). 

There is also literature that specifically examines the service capacity 
of hub airports from an international connectivity perspective. Danesi 
(2006) have analysed the transit connectivity of major European inter-
national airports using a continuous hub connectivity index. Huang and 
Wang (2017) found that Beijing Capital, Shanghai Pudong, Guangzhou 
Baiyun and Kunming Changshui airports have a more pronounced flight 
wave system based on a technical process of flight wave identification 
and a feeder route study methodology, which means more possible in-
direct connections. Zhu et al. (2018) measured the overall connectivity 
of 69 airports in China and major airports in Australia and concluded 
that the connectivity of Australian airports was higher than that of most 
airports in China. 

2.1.3. Multi-modal connectivity 
Zhu et al. (2019) proposed the Connectivity Utility Model which can 

be used to assess the connectivity of an airport, a train station, a city or a 
region in multi-modal transport networks. This model is built based on 
the Dynamic Weighted Model (Zhu et al., 2018) and the NetScan model 
(Burghouwt and Veldhuis, 2006). The dynamic weighted model pro-
posed by Zhu et al. (2018) applied the Connectivity Utility Model to 
assess the terminal connectivity scores of airports and train stations 
within their selected urban areas, subsequently establishing rankings. 
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Notably, Nanjing Railway Station achieved the highest connectivity 
score among all railway stations, with a score of 61,501.4. However, this 
score is relatively low when compared to prominent airports such as 
Beijing Capital Airport (92,453.06), Pudong Airport (82,677.32), and 
Hong Kong Airport (75,951.37). This questions the appropriateness of 
such a direct comparative ranking. 

In conclusion, firstly, early studies looked more at spatial connectivity 
and although later on the quality of connectivity was considered more, 
quality attributes were still discussed at a more superficial level, essen-
tially focusing on destination importance or scale, flight frequency or seat 
capacity, transit connection times and quality of connections. Little 
literature explores deeper into more indicators to measure quality, such as 
on-time performance, international market proportion, or the distribution 
of departures and arrivals throughout the day. Secondly, except for a 
small number of studies exemplified by Matisziw and Grubesic (2010) 
and Meire et al. (2019), most of the existing connectivity measures are 
only constructed for the network of a single transport mode. Matisziw and 
Grubesic (2010) conducted an assessment of locational accessibility 
within the US air transportation system, which integrated ground access 
considerations to catchment airports and accessibility within the air 
network. Similarly, Meire et al. (2019) calculated bimodal accessibility in 
the context of Australia, factoring in both land- and airside accessibility 
components. However, many attributes of multi-modal transport have not 
been taken into consideration, such as the overlap of destinations, 
connection opportunities given the characteristics of the modal inter-
change, multi-modal transfer efficiency and ground access options. 
Thirdly, the categorization of factors for measuring connectivity lacks a 
universal standard approach. For instance, the airport's size is frequently 
utilized as a weight factor in indexed metrics, although it is also an in-
dicator of capacity and can be classified as such. In addition, certain 
passenger utility indicators, such as connecting time and quality, should 
be considered in the context of a convenience indicator. This article ar-
gues that the breadth and depth of definition and measurement of con-
nectivity research has much scope for expansion at both research and 
practical levels, and that indicators can be more rationally categorised 
according to their different characteristics. 

3. Methodology and data 

3.1. Assessment methodology 

Previous studies on the assessment of multi-modal transport have 
generally used methods such as Data Envelopment Analysis (DEA) 
(Koohathongsumrit and Meethom, 2021; Swami and Parida, 2015), 
Analytic Hierarchy Process (AHP) (Ho, 2008; Lin et al., 2021), Fuzzy 
Comprehensive Evaluation (FCE) (Han et al., 2020), Principal Compo-
nent Analysis (PCA), grey system evaluation (Kumar and Anbanandam, 
2020; Wang, 2014) and factor analysis (Jiang and Shao, 2014). How-
ever, these methods have some extent of uncertainty in obtaining 
weights, and there are also certain difficulties in data processing due to 
the differing nature of the data for a large number of air-HSR assessment 
indicators. Fractal analysis is data-driven and relies on the inherent 
characteristics of the data points themselves to uncover patterns and 
behaviours without imposing subjective weightings, making it suitable 
for evaluating complex systems where the importance of indicators may 
dynamically vary based on their context and relationships. Fractal 
analysis operates on the principle of capturing the spatial distribution 
and relationships among indicators. Instead of assigning predetermined 
weights, it considers the self-similarity and interconnectivity of in-
dicators in the assessment of the overall system (Benguigui, 2016; Nardo 
et al., 2018). By refraining from imposing predetermined weights, 
fractal analysis accommodates the adaptability required to evaluate 
systems with intricate interdependencies (Kim et al., 2007). A higher 
fractal dimension suggests greater complexity and variation, which 
could be interpreted as certain indicators playing a more influential role 
in shaping the system's spatial structure. 

3.1.1. Fractal theory 
The fractal theory is derived from fractal geometry, first introduced 

by French-American mathematician B.B. Mandelbrot in 1967 in his 
paper ‘How Long Is the Coast of Britain?’ A fractal is the shape of a 
complex system whose local structure is enlarged to resemble the whole 
in some way. The fractal theory assumes that everything that exists in 
nature has a diverse hierarchy of scales and that there is self-similarity 
between parts and the whole. Fractal geometry uses simple mathemat-
ical concepts as a starting point to express the complex and irregular 
forms of nature in a mathematical language, exploring the generative 
logic behind complex forms compared to Euclidean geometry (Nardo 
et al., 2018; Sreelekha et al., 2017). 

Traditionally the dimensions of objects in Euclidean geometry are 
integer dimensions. Dimensionality can be used to characterise geo-
metric objects. A point corresponds to zero dimension, a line corre-
sponds to one dimension, a plane corresponds to two dimensions, and a 
cube corresponds to three dimensions. From the point of view of 
mathematics, if a D-dimensional geometric figure is expanded by a 
factor of r in all independent coordinates, N figures similar to the orig-
inal result. By comparing the figures before and after the expansion, it 
can be concluded that the relationship between the number of similar 
figures produced and the multiplier of expansion follows the eq. N = rD 

(Wen and Cheong, 2021; Zhang et al., 2014). A larger fractal dimension 
(D) indicates that the figure fills more space. The formula in integer 
dimensions can be extended to non-integer dimensions. The new for-
mula is obtained by performing logarithmic operations on each side of 
the above formula, i.e., D = logN/logr (Fractals and the Fractal 
Dimension, 2022). 

Fractal analysis is a nonlinear method that focuses on the relation-
ships between the variables and how they contribute to the overall 
structure (He and Ge, 2020). It has been widely applied in mathematics, 
physics, biology, medicine, economics, management and other fields for 
the study of irregular and complex structures. Wen and Cheong (2021) 
found that most real-world networks exhibit self-similarity and have 
fractal dimensions. Gneiting et al. (2012) assessed the roughness of time 
series and spatial data with estimators of fractal dimension. Nardo et al. 
(2018) applied complex network and fractal theory to the assessment of 
water distribution network resilience to pipe failures. Zhao et al. (2021) 
used a hybrid approach of fractal theory, information value, and random 
forest models to assess the landslide susceptibility of a transmission line 
in Gansu Province, China. Fractal analysis has been conducted as an 
effective tool for quantitative assessment and representation of complex 
systems. 

Air-HSR intermodal networks are inherently complex and inter-
connected systems. Fractal analysis excels in evaluating such systems 
where the relationships between indicators are intricate and may not 
follow a linear weighting scheme. The absence of explicit weights allows 
for a more adaptive approach, considering the interdependencies among 
indicators (Sreelekha et al., 2017). 

3.2. Design of the assessment framework 

System integration refers to a virtuous cycle in which sub-systems 
adapt to each other, collaborate and promote each other to achieve 
the overall optimum (Yu and Jiang, 2021). Drawing on the theory of the 
synergistic effect (Pezzani et al., 2019) and the connotation of integra-
tion, this paper considers that ‘air-HSR network integration’ refers to the 
collaborative development of air and HSR transport networks in the 
same region, according to their characteristics and strengths, in a way 
that ensures convenient transfer opportunities between both services, so 
that they constitute a whole integrated network with increased acces-
sibility. A deliberate decision was made to adopt an airport-centric 
approach in the evaluation and analysis of air-HSR intermodal trans-
port, with a specific focus on enhancing intermodal networks from the 
perspective of air transport stakeholders. This comes from the realisa-
tion that competitive forces normally favour HSR for shorter travel 
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times, and thus airlines and airports tend to take the lead in offering 
passengers air-HSR services. Moreover, the global nature of air transport 
networks makes them more prone to consider connectivity beyond sin-
gle providers, whereas train operators are normally concerned with 
networks that exhibit clearer geographical boundaries. 

The appraisal of the degree of air-HSR network integration is 
essentially an assessment of the synergy and differentiation of air and 
HSR network connectivity and service capabilities. Due to the 
complexity of the air-HSR intermodal network, the indicators are 
interrelated and interact with each other, so the assessment framework 
should follow a hierarchical structure to capture such interaction. In this 
paper, the primary set of indicators focus on three aspects: service 
capability, network connectivity and transfer potential. 

Service capability means the infrastructure provision and the ability 
to provide the integrated service, which is measured by indicators such 
as scale, daily delivery capacity, speed of HSR station, airport on-time 
performance as well as hub status in the network. We selected 
different indicators for airports and HSR stations based on their opera-
tional characteristics and data availability. During the data collection 
process, it transpired that the majority of the top 50 largest airports in 
China has reached their declared capacity in 2019, meaning the actual 
number of passengers was over the capacity, therefore the number of 
passengers can better represent the service capability and the size for 
airports. In contrast, there is no official public data on the annual pas-
senger volume of each HSR station in China, thus other metrics that best 
represent the capacity of the HSR station are needed. Available tracks in 
HSR stations often limit the volume of trains that can be safely provided. 
Maximum daily passenger accounts for the passenger handling capa-
bility of a station. These two indicators together determine the service 
capacity and operational ceiling of the HSR station. The difference in 
metrics for each mode also reflects their operational characteristics. 
Owing to the security protocols enforced at airports, air travellers 
commonly experience prolonged wait times at the terminal. Conversely, 
HSR passengers can normally arrive at the station and board a train with 
minimal dwell time. Consequently, the actual passenger count at the 
airport serves as a tangible metric for assessing its service capacity, 
whereas it is difficult to reflect the essence of the situation by relying 
solely on the indicator of the actual number of HSR passengers. 

Network connectivity means the ability to provide access to the 
destinations in each network and the degree of complementarity be-
tween the networks, which is measured by indicators such as the number 
of destinations, frequency, the coverage of catchments and the level of 
overlap in the sub-networks. Similarly, the choice of metrics aligns with 
the unique characteristics and passenger expectations of each mode of 
transportation. Under the context of air-HSR intermodal travel, air 
passengers would be more concerned with the variety of flights avail-
able, while rail passengers often prioritise service frequency for seamless 
connections. Correspondingly, the number of flights at airports em-
phases global connectivity and hub functionality, while the headway of 
trains at HSR stations highlights the importance of frequency and 
operational efficiency in rail travel. 

Transfer potential reflects the ease and value of transfer between the 
HSR station and the airport (and vice versa), which is measured by in-
dicators such as connection opportunities, ground transportation modes 
and transfer efficiency. According to the connotation of air-HSR network 
integration and the characteristics of the primary indicators, 16 sec-
ondary indicators have been set up to form a Network Integration 
Assessment Framework. Description of the indicators, calculation 
methods and data are shown in Table 1. 

3.3. Model design 

Drawing on the idea of network-covering algorithms and fuzzy sets 
fractal dimensional models(Zhang et al., 2014), the model proposed in 
this paper to assess intermodal integration is processed in three steps: 
Data standardisation, de-correlation and fractal assessment. 

3.3.1. Standardisation 
Due to the inherent complexity of the air-HSR network integration 

assessment framework, coupled with the different units of each indica-
tor, it is not straightforward to compare each of them directly. In this 
case, the data can be pre-processed to obtain comparable scales and 
normalised values using the minimum or maximum value for each in-
dicator in each air-HSR combination. The model denotes the j-th sec-
ondary indicator of the i-th air-HSR combination as Aij. 

A =

⎡

⎣
A1
⋮

Am

⎤

⎦ =

⎡

⎣
a11 … a1n
⋮ ⋱ ⋮

am1 … amn

⎤

⎦ (3.1) 

The indicators in the matrix A are normalised with formula 3.2. 
When aij is positive, áij =

aij
amaxj

× 100; when aij is negative, 

áij =
aij

aminj
× 100 (3.2) 

Where amaxj，aminj are the maximum and minimum values of 
different air-HSR combinations at the j-th indicator attribute, 
respectively. 

The pre-processed data are then standardized with formula 3.3. 

bij = áij −
áj

sj
(3.3) 

bij is the standardized data of ́aij, ́aj is the mean of the unstandardised 
j-th indicator, and sj is the standard deviation of the unstandardised j-th 
indicator. 

áj =
1
k
∑k

i=1
áij， (3.4)  

sj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k − 1

∑k

i=1

(
áij − áj

)2

√
√
√
√ (3.5)  

3.3.2. De-correlation 
B is a matrix of normalised secondary indicators bij. There is still 

correlation between the various indicators. In order to eliminate this 
relationship, it is necessary to find an n × n dimensional matrix P to 
transform B such that the indicators are de-correlated and transformed 
into Cij: 

Cij =
(

Ci1 ,Ci2 ,…,Cini

)T
= BP (3.6) 

Using multivariate statistics, we could calculate the covariance 
matrix Mij of matrix B. 

Mni×ni =

⎡

⎣
cov(B1,B1) … cov(B1,Bni )

⋮ ⋱ ⋮
cov(Bni ,B1) … cov(Bni ,Bni )

⎤

⎦ (3.7)  

cov
(
Bni ,Bnj

)
=

∑m
k=1(Bik − Bi)

(
Bjk − Bj

)

n − 1
(3.8) 

In Cij, the secondary indicators are uncorrelated to each other and 
contain all the information of the original secondary indicators. At this 
point, the transformed new secondary indicators are uncorrelated. 

3.3.3. Fractal assessment 
Consider a sphere of radius r with the origin in the centre of the N- 

dimensional space. All the indicators Cij can be contained within the 
sphere when r = R = max(Cij). The distance from each point to the 
origin is given as dij. To make sure all distance values are positive, if 
Cij < 0, a value of δ = max

{⃒
⃒Cij
⃒
⃒，Cij < 0

}
, is used to convert to Cij⟹ 

Cij + δ, such that the N values of Cij ≥ 0. 
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Table 1 
Air-HSR Network Integration Assessment Framework: Definition of primary and secondary indicators.  

Primary 
indicators 

Secondary indicators Definition Observations 

Service 
capability 

Airport size The annual number of passengers departing and arriving at the airport by air. Reflects the capacity of the airport to provide air services. Source: IATA (2019) 
Airport OTP The percentage of flights that arrive and depart from an airport within a specified time frame, typically within 

15 min of their scheduled arrival or departure time. 
On-time performance, reflecting airport and airline operating efficiency and 
quality. Source: OAG (2022) 

HSR station size The number of tracks available at the HSR station is used a proxy for its capacity as it relates to the number of 
trains it can receive in a given period of time. 

The corresponding closest pair of HSR station-airport is chosen according to the 
distance by the fastest mode of surface transport. Source: China Statistical 
Yearbook (2021) 

HSR daily delivery 
capacity 

Maximum number of passengers transported by high-speed rail in a single day. Reflects the capacity of the train station to provide HSR services. Source: China 
Academy of Railway Sciences (2022) 

HSR Maximum speed The upper limit of operating speed for the lines using the HSR station (km/h). Reflects the expected quality of HSR services. Source: China Statistical 
Yearbook (2021) 

Proportion of transfer 
passengers at the airport 

Transfer passengers as a percentage of total passengers. Reflects airport transfer capacity and hub status. Source: IATA (2019) 

Proportion of 
international passengers 
at the airport 

The proportion of international passengers to total passengers. Reflects the structure of international and domestic routes and the level of 
international connections at the airport. Source: IATA (2019) 

Network 
connectivity 

Destinations available at 
the airport 

Number of total different destination (cities). Reflects the connectivity of domestic and international air networks. Source:  
IATA (2019) 

Number of flights per day 
at the airport 

Total number of flights in 2019/365 days. Reflects the service quality of the air network in terms of opportunities to travel 
by air. Source: IATA (2019) 

Distribution of flights (at 
the airport) throughout 
the day 

Average time distribution (B) of flights to each destination in a day, seven days a week: 

B =
1
n
∑n

c=1

(
1
7
∑7

j=1
μλ

)

Where n is the total number of destinations (c); j is the day of the week; μ denotes the availability of flights to 
the same destination in 4 segments of the day (00:00–05:59,06:00–11:59,12:00–17:59,18:00–23:59), i.e., if 
flights to a city c appear in 3 segments of the day, then μ = 3/4; λ is the flight distribution considering 30 mins 
interval time segments (i.e., if the flights to a city c appear in 3 intervals, then λ = 3/48). 

Reflects the distribution of flights to a particular destination throughout 
different time periods of the day. Source: OAG (2019) 

Number of stops on the 
HSR routes 

The number of stations reachable within 800 km (about 3 h) of the HSR station. Reflect the catchment opportunities for the HSR station. Source: 12306 China 
Railway (2019) 

Headway between HSR 
services 

Average time duration (in minutes) between high-speed train arrivals at the HSR station during the day, by 
dividing the number of minutes in a day by the average number of trains arriving at the HSR station each day. 

Reflects the availability of train connections throughout the day. 2019 data is 
used as some trains suspended operation due to the response to the Covid-19 
pandemic. Source: 12306 China Railway (2019) 

Network overlapping Coincidence coefficient between subnetworks: 
D = 2*|AA∩BB|/(|A| + |B|) 

0 ≤ D ≤ 1. D = 0 means that the markets accessible by air and rail are 
completely differentiated. D = 1 means both networks provide access to the 
same markets. The larger the value of D, the higher the degree of overlapping. 
Sources: 12306 China Railway (2019); IATA (2019) 

Transfer 
potential 

Transfer opportunities H * F 
Number of trains (H) arriving within a 2–4 h time window, times the number of flights (F) departing within 
the same time window. 

Reflects the connection opportunities between flights and HSR trains 2019 data. 
Source: OAG (2019); 12,306 China Railway (2019) 

Transfer modal choice Number of ground transportation options between the airport and HSR station. Reflects the selection available between subway, airport shuttle, car, bus and 
other ground transportation options. Source: Gaode Map (2023) 

Transfer efficiency The reciprocal of the average travel time from the HSR station to the airport using the fastest mode available. 
I.e., the average number of transfers that passengers could complete per hour. 

Reflects the quality of the transfer alternatives between the airport and HSR 
station. Source: Gaode Map (2023)  
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Only when r = R = max
(
Cij
)
， the sphere contains exactly all the 

points N in it, then the number of points C(r) inside the sphere of radius r 
is denoted by: 

C(r) =
∑

i,j
H
(
r− dij

)
(3.9) 

Where H(x) is the Heaviside function: 

H(x) =
{

1, x > 0
0, x ≤ 0 (3.10) 

C(r) is a cumulative distribution function that reflects the distribu-
tion of indicator points in space. lnC(r)and lnr are linearly related, and 
the fractal dimension D is the slope of lnC(r)-lnr curve: 

D =
d(lnC(r) )

d(lnr)
(3.11) 

The actual scatter plot of lnC(r) -lnr is fitted to a straight line and the 
slope of the fitted line is used to replace the fractal dimension approx-
imately. The fractal dimension (D) reflects the distribution of the indi-
cator points in the space. Specifically, it measures how the number of 
indicator points changes as the distance between them changes. A larger 
fractal dimension indicates that the distribution of the indicator points is 
further away from the center of the sphere, implying that the points are 
more spread out and the space is more effective in accommodating 
complex forms. Thus, a higher value of the fractal dimension indicates a 
more effective use of space by the air-HSR complex network. From a 
geometric perspective, a higher value of the fractal dimension corre-
sponds to a higher overall score of the indicators, highlighting the net-
work's ability to occupy and utilise space in a complex and efficient 
manner. Therefore, by measuring the fractal dimension, we can assess 
the effectiveness of the air-HSR complex network in utilising space and 
accommodating complex forms. 

3.4. Implementation in MATLAB 

The model proposed for the fractal analysis was solved using MAT-
LAB. More specifically, the Z-score function was used to standardise and 
normalise the original values for each indicator, the Cov and Eig func-
tions to eliminate correlation, the Find and Index functions to solve for 
the maximum radius, and the For and Sum functions are used to 
determine the covariance matrix M(r). Then the value of r, lnr and lnM 
(r) can be calculated. Then, the integrated service level of the air-HSR 

combinations are assessed by calculating the fractal dimension of each 
of the three primary indicators. 

3.4.1. Application to the Chinese multimodal network 
The assessment framework defined previously can be used to eval-

uate the degree of the air-HSR network integration in different contexts. 
This paper focuses on cities as the geographical unit of analysis for an 
empirical application. The study starts with the selection of a sample of 
ten airport, comprising the six highest-ranking international hubs in 
terms of passenger numbers for the year 2019, as well as four airports 
positioned within the national ranking range of 10th to 20th for regional 
hubs in the same year, following the local definition of Civil Aviation 
Administration of China (CAAC, 2018), each with their corresponding 
nearest HSR stations, as shown in Table 2. This selection serves the 
purpose of facilitating meaningful comparisons. The largest HSR station 
in each city was not selected because, upon comparison, it was found 
that the closest HSR station to the airport in each city was an average 
distance of 18.3 km, while the largest HSR station was an average dis-
tance of 38.9 km from the airport (shown in Table 2). Long distances like 
these would hardly lead to seamless air-HSR intermodal opportunities. 
For the cities with multiple airports (Beijing, Shanghai and Chengdu), 
Capital Int'l Airport, Pudong Int'l Airport and Shuangliu Airport are 
selected, because the new airports in Beijing and Chengdu started 
operation in late 2019 and 2021 respectively, and Pudong airport is the 
primary international airport in Shanghai and ranked higher. 

4. Results and analysis 

Based on the algorithm described in Section 3.3, the fractal dimen-
sion associated with the primary indicators were calculated based on the 
corresponding secondary indicators, and the overall dimension for each 
city was derived from all the secondary indicators. Logarithmic scales 
are used to plot the data because the fractal dimension is a non-integer 
value, and this type of plot indirectly determines the fractal dimension 
by finding the slope of the line of best fit (for each city) in the log-log 
plot. The fractal dimension associated with the primary indicators 
were calculated based on the corresponding secondary indicators, and 
the overall dimension for each city was derived from all the secondary 
indicators. In Fig. 1 and Fig. 2, lnM(r) represents the logarithm of the 
number of spheres required to cover the fractal object for a given scale 
factor (r). It indicates the complexity of the fractal object at different 
scales. Whereas lnr represents the logarithm of the scale factor (r). It 

Table 2 
Airports and corresponding HSR stations selected for analysis.  

City Airport IATA 
Code 

Airport Type Nearest HSR Station Distance between the airport 
and the nearest HSR station 
(km) 

Largest HSR Station Distance between the airport 
and the largest HSR station 
(km) 

Beijing Capital Int'l 
Airport 

PEK International 
hub 

Beijing North Railway 
Station 

35 Beijing South 
Railway Station 

47 

Shanghai Pudong Int'l 
Airport 

PVG International 
hub 

Shanghai Railway 
Station 

45 Shanghai Hongqiao 
Station 

58 

Guangzhou Baiyun Int'l 
Airport 

CAN International 
hub 

Guangzhou North 
Railway Station 

15 Guangzhou South 
Railway Station 

50 

Shenzhen Baoan Int'l 
Airport 

SZX International 
hub 

Shenzhen Airport North 
Station 

0 Shenzhen North 
Station 

33 

Kunming Changshui 
Airport 

KMG International 
hub 

Kunming South Railway 
Station 

33 Kunming South 
Railway Station 

33 

Chengdu Shuangliu 
Airport 

CTU International 
hub 

Shuangliu Airport 
Station 

0 Chengdu East 
Station 

23 

Zhengzhou Xinzheng 
Airport 

CGO Regional hub Xinzheng Airport High- 
Speed Railway Station 

0 Zhengzhou East 
Station 

51 

Changsha Huanghua 
Airport 

CSX Regional hub Changsha South Railway 
Station 

34 Changsha South 
Railway Station 

34 

Wuhan Tianhe 
Airport 

WUH Regional hub Hankou Station 21 Wuhan Station 41 

Haikou Meilan 
Airport 

HAK Regional hub Meilan Station 0.2 Haikou East Station 19  
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indicates the size of the spheres used to cover the fractal object at 
different scales. A steeper slope, corresponding to a higher fractal 
dimension, reflects the fact that the scores for the indicators are more 
widely dispersed throughout the space. From a geometric perspective, a 
higher fractal dimension translates to a superior overall score for the 
network's performance indicators. This underscores the network's ca-
pacity to occupy space in an optimised and efficient manner, accom-
modating a range of complex configurations. A steeper slope and a 
higher fractal dimension indicate a network that excels in spatial inte-
gration and connectivity. Fig. 1 shows the results for cities with inter-
national hubs, Shanghai has the steepest slope, indicating the highest 
fractal dimension, while Guangzhou has the shallowest slope among the 
international hubs, indicating the lowest fractal dimension. Fig. 2 shows 
the results for cities with regional hubs, Wuhan has the steepest slope in 
the regional hubs but still much shallower than Shanghai and Beijing, 
meaning there is fairly large gap in overall integration level compared to 
the steepest international cities. 

Considering the overall results, the fractal dimension for the entire 
assessment framework could be used to produce a ranking of the cities in 
terms of the degree of integration between air and HSR networks, as 
shown in Table 3. Shanghai ranks first with an overall score of 2.163, 
whereas Zhengzhou ranks 10th with an overall score of 0.615 despite 
having a HSR station located at the regional hub airport, suggesting that 
the presence of a HSR station at an airport or a HSR stop connecting the 
main station is not a determining factor in the level of network inte-
gration, especially when ground transfers are highly efficient or there 
are more modes for transfer. Both Chengdu and Shenzhen have HSR 
stations or stops at the corresponding international hub airports too and 
rank third and fourth, attributed to network connectivity and service 
capacity respectively, rather than transfer potential. Meilan station is 
also located within the premises of Haikou Meilan Int'l Airport and the 
city of Haikou ranks 8th overall, however, being located in Hainan Is-
land, there are natural limitations to the coverage of the HSR 
connections. 

Fig. 1. Results for the assessment of secondary indicators in cities with international hub airports.  

Fig. 2. Results for the assessment of secondary indicators in cities with regional hub airports.  
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Overall, Shanghai, Beijing and Chengdu rank top three in compre-
hensive air-HSR network integration level. Shanghai ranking first 
overall is not a surprise, because it has the highest score in transfer 
potential (attributed to the wide range of transfer opportunities it offers, 
as well as the availability of multiple transfer mode options) and second 
highest score in network connectivity. But it only ranks fifth in service 
capability, mainly restricted by its lower airport on-time performance 
and lower HSR average speed. Beijing ranking second overall is mainly 
due to its good network connectivity in airport destinations, flight fre-
quency and HSR catchment. But its performance in service capability 
and transfer potential is mediocre, which is particularly evident in HSR 
daily delivery capacity, average speed and ground transfer efficiency. 
Chengdu ranks third overall due to its excellent network connectivity, 
which demonstrates the importance of the feeding role of the HSR 
catchment. But Chengdu still has ample room for improvement in 
attracting air transfer passengers and optimising air-HSR connection 
opportunities. 

From the perspective of the service capability indicators, Kunming, 
Shenzhen and Guangzhou rank top three. Kunming has the highest 
mainly because of its highest airport on-time performance, the largest 
scale of the HSR station and its fairly average high speed of HSR trains. 
Shenzhen ranks second mainly because it has the second highest airport 
on-time performance, the second highest airport international percent-
age and the second highest HSR daily delivery capacity. Guangzhou is 
also ranking high, which is because it has the highest percentage of 
transfer passengers at the airport, the second highest speed of HSR 
trains, the third highest airport on-time performance and third largest 
scale of HSR station. From these cases, it seems that the integrated 
service capability is not only closely related to the scale of the airport 
and HSR station, but also the service performance, including on-time 
performance and speed of trains, although the market distribution and 
hub status indicators like percentage of transfer and international pas-
sengers also play an important role. 

From the perspective of network connectivity indicators, Chengdu, 
Shanghai and Beijing rank in the top three. Chengdu ranks first primarily 
because the fairly large number of stops on the HSR routes, which im-
plies a large catchment of the hub, given that the station is located at the 
airport. Shanghai ranks second owing to having the highest distribution 
of flights throughout the day at the airport, as well as the second shortest 
average headway of HSR trains. Beijing ranks third due to the large 
number of destinations accessible from the airport with high flight fre-
quency, as well as the comparatively low overlap of airport and HSR 
destinations. Based on these results, there is an indication that the focus 
of air-HSR network connectivity is not the same as the application of the 
concept in air-only networks. Besides the number of destination and 
frequency, the catchment, flight/train time distribution and the differ-
entiation of destinations for each mode also play a critical role. 

From the perspective of transfer potential, Shanghai, Guangzhou and 
Changsha rank top three. Our analysis reveals that the intermodal 
transfers between Pudong Airport and Shanghai Station exhibit lower 
efficiency, indicative of extended duration, yet compensate with an 
extensive array of connection possibilities, allowing travellers to access 

a wide range of destinations within an acceptable timeframe. Further-
more, this intermodal pairing demonstrates good performance in terms 
of ground transfer model options. These dual aspects jointly contribute 
to Shanghai achieving the highest rating in transfer potential, a 
distinction shared with Guangzhou. Shanghai boasts the maximum 
number of connection opportunities within the designated time window, 
while Guangzhou excels in offering a multitude of ground transfer al-
ternatives. Changsha follows closely behind Shanghai and Guangzhou in 
overall rankings, with competitive strengths in connection opportu-
nities, ground transport choices, and ground transfer efficiency. 

5. Discussion and recommendation 

The application of the model developed in this research shows that 
excellence in air-HSR network integration requires improvements in all 
the three areas. Service capability corresponds mainly to infrastructure 
supply, network connectivity corresponds to the provision of destina-
tions and frequencies, and transfer potential corresponds to passenger 
transfer experience. If only service capability is available, the overall 
effect may be compromised by few intermodal connection opportu-
nities, limited catchment and low connectivity destinations and quality. 
If the focus is only on network connectivity, connection opportunities 
and passenger experience may be compromised by capacity constraints 
and transfer efficiency. The air network, flight frequency and punctu-
ality of the airport, the number of HSR lines passing through the city, the 
frequency and speed of HSR train operation, as well as the speed, variety 
and convenience of ground access, together determine the quality of 
integrated service and the range of passenger markets that an air-HSR 
hub can attract. 

5.1. Service capability perspective 

The analysis of results shown in the previous section establishes that 
two indicators, airport on-time performance and HSR maximum speed, 
play a more important role in the performance of the service capability 
indicators. Airport on-time performance is crucial for whether air-HSR 
passengers can connect to HSR trains at the expected time within the 
time window. Once a flight is delayed, passengers cannot complete their 
transfer within the planned time, thus affecting their later journeys and 
affecting other flights, which will greatly reduce the experience and 
choice of intermodal transport. In 2019, the average on-time rate of all 
airports in China was 81.65% (CAAC), and that of the airports in the 10 
cities under closer analysis was only 79.6% on average. Shenzhen and 
Guangzhou rank high in service capability scores, in part because 
Shenzhen and Guangzhou boast 87.8% and 85% on-time rates respec-
tively, which are much higher than other airports. China's HSR reports 
accurate on-time rates above 95% and even above 99% if a 10-min grace 
period is considered (China Academy of Railway Sciences, 2022). 
Therefore, the on-time performance of airports is the main issue that 
needs to be addressed when scheduling air-HSR connections. 

HSR maximum speed is another key factor affecting the ranking of 
service capability. The main difference between HSR and other ground 

Table 3 
Ranking of Chinese cities according to the fractal dimension for the overall assessment of HSR-air network integration and the primary indicators.  

Rank City (airport – HSR station) Service capability Network connectivity Transfer potential Overall 

1 Shanghai (PVG - Shanghai) 1.019 3.141 6.622 2.163 
2 Beijing (PEK - Beijing North) 0.699 3.071 0.743 1.521 
3 Chengdu (CTU - Shuangliu Airport) 0.885 3.320 0.891 1.463 
4 Shenzhen (SZX- Shenzhen Airport North) 3.492 0.963 0.891 1.076 
5 Wuhan (WUH – Hankou) 0.954 3.068 1.061 1.062 
6 Changsha (CSX - Changsha South) 1.088 0.991 6.514 0.992 
7 Kunming (KMG - Kunming South) 3.549 0.567 0.392 0.906 
8 Haikou (HAK – Meilan) 1.019 1.016 1.061 0.886 
9 Guangzhou (CAN - Guangzhou North) 1.145 0.673 6.622 0.668 
10 Zhengzhou (CGO - Xinzheng Airport) 0.574 0.580 0.392 0.615  
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transport modes is its high speed and convenience, which is the main 
reason why it can compete with air transport. The attraction for trav-
ellers to choose air-HSR transport comes from the fact that it connects 
the airport with the final destination or origin in the shortest possible 
time. In five of the ten cases studied, the maximum speed of the HSR 
reaches or exceeds 300 km/h. Kunming, ranked first in the service 
capability indicator, and Guangzhou, ranked third, both have a 
maximum speed of 300 km/h. 

5.2. Network connectivity perspective 

From the network connectivity results, it is clear that network 
overlap and the number of stops on HSR routes are key indicators, which 
implies that efforts should be made to promote network differentiation 
and expand the coverage of HSR to improve overall connectivity. To 
maximise connectivity creation by leveraging their respective strengths, 
the air network could enhance international and long-haul routes, while 
the HSR focuses on surrounding and short-haul markets. By analysing 
the characteristics of overlapping destinations, routes with high repeti-
tion and low market demand should be cut. Vacant slots saved could be 
used for international flights. For overlapping destinations with great 
demand that cannot be eliminated, there is a need to coordinate flight 
and HSR schedules. 

The number of stops on HSR routes is one of the necessary conditions 
for the success of air-HSR integration. The number of stops on HSR 
routes determines the accessibility and coverage of the network, and 
indirectly determines the market potential of the air-HSR option. If the 
coverage is limited, the HSR will only be able to bring a limited number 
of passengers to the airport, and the attractiveness of intermodal 
transport to passengers will be greatly reduced. In order to better con-
nect the airport and the HSR service, the airport needs to strengthen its 
communication with the railway authorities and seek to establish 
additional airport stations or stops for routes that do not stop at the 
airport. 

5.3. Transfer potential perspective 

The optimisation of transfer efficiency is undeniably influenced by 
the geographical proximity of the airport to the largest HSR station in 
the city. The largest HSR station, characterised by an extensive network 
of service lines, higher frequencies, and a substantial catchment area, 
inherently fosters comprehensive connectivity within defined time 
windows. This proximity facilitates a seamless transfer experience be-
tween the airport and the station. 

However, in the selected sample of 10 cities, the largest HSR station 
is situated at a considerable distance from the airport (38.9 km on 
average, as indicated in Table 2), posing challenges to the realisation of 
air-HSR intermodal opportunities. For instance, Guangzhou Baiyun 
Airport lies to the north of the city, while the largest station is positioned 
to the south. Similarly, Beijing Capital Airport is in the northeast, 
whereas the largest HSR station is in the south of the city. Chengdu 
Shuangliu Airport, located southwest of Chengdu, faces a similar situ-
ation, with the largest station situated to the east of the city. Only for 
Kunming and Changsha, the largest HSR stations are also the closest 
stations to the airport, albeit both being >30 km away. 

Moreover, the nearest station (on average 18.3 km away from the 
airport) usually exhibits diminished network connectivity and service 
scale in comparison to the largest stations. This observation prompts a 
critical consideration for decision-makers in urban transport planning 
and development. It emphasises the necessity of devising strategies to 
enhance air-HSR intermodal transport, as an extensive distance between 
the airport and the HSR station post-construction can substantially 
curtail intermodal potential. 

6. Conclusions 

This paper presents conceptual innovations for network connectivity 
and integration, extends the breadth and depth of connectivity mea-
surement research by creating new methods for calculating new in-
dicators that have not been considered before and proposing the 
classification of connectivity indicators according to a formalised 
framework of assessment. By studying the current situation and prob-
lems of the air-HSR intermodal transport network in China, this paper 
proposes that it is necessary to conduct a comprehensive assessment of 
the integration of the air-HSR intermodal network. Based on a 
comprehensive literature review on network measurement and assess-
ment methodology, an assessment framework comprising three primary 
indicators and 16 secondary indicators has been constructed – it is 
believed that this is the first attempt to achieve this in the transportation 
literature. Through analysing the advantages and disadvantages of 
various traditional assessment methods, the fractal theory was applied 
as a novel assessment method without the need for explicit weighting. 
The fractal dimension is used to describe the service capability, network 
connectivity, transfer potential and overall network integration level. 
This unique contribution assessment method can serve as an important 
complement to traditional methods and enrich the understanding of the 
complex spatial dynamics inherent in such networks. 

Ten air-HSR combinations in Chinese cities were selected for an 
empirical application of both the framework and the model. The results 
show that most cities have wide variation between service capability, 
network connectivity and transfer potential indicators. Shanghai has the 
highest network integration level among the ten. It is also found that 
international hub airports together with their closest HSR station not 
necessarily perform at higher integration levels than regional hubs. The 
study concludes that excellence in air-HSR integration requires 
improvement in three areas, namely infrastructure supply, connectivity 
service and passenger experience. Based on the findings of the appli-
cation case, the paper proposes reasonable policy and practical recom-
mendations to enhance air-HSR network integration level from service 
supply, network coordination and transfer design perspectives. 

Future research will continue to enrich and improve the assessment 
framework, and the study will be extended to all cities in China where 
both airports and HSR exist. With the aim of providing a more nuanced 
assessment of the unique attributes associated with each category, we 
intend to refine and analyse the assessment framework separately for 
international and regional airport hubs. Meanwhile, we will analyse the 
network topology of the selected cities, calculate macro-indicators such 
as complexity, connectivity and extensibility, and micro-indicators such 
as degree distribution and clustering coefficients, and compare their 
characteristics. As transport has not yet recovered under China's Covid- 
19 policy (as of 2022), the operational data in this paper uses observa-
tions from 2019, while the infrastructure data uses the latest 2022 data. 
The expectation is that consistent data will be used for further mea-
surement once transport production has fully recovered for all modes. 
Alternative methods such as PCA or DEA could be employed alongside 
fractal analysis to provide a more comprehensive assessment. Along 
with the application of the comprehensive assessment method to other 
regional markets to make a side-by-side comparisons and analyse the 
reasons and differences to learn from experiences and practices in 
different contexts. 
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