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A B S T R A C T   

Mesic ecosystems are fundamental to conservation efforts in semi-arid systems, but are threatened by climate 
change and development. Newer earth observation datasets, including Sentinel-1 and − 2, provide opportunities 
to monitor mesic ecosystems at meaningful spatial scales, but are insufficient for measuring decadal-scale 
changes. Conversely, the Landsat time series has decades of data, but images are spatially coarse relative to 
many of the mesic ecosystem areas that sustain dryland systems, resulting in classifications with mixed pixels 
inadequate for effective monitoring. We developed a workflow that uses 10-m classifications produced from 
fusion of the Sentinel-1 and − 2 time series (2017–2020) to estimate sub-pixel proportions of Landsat time series 
observations (2004–2020). Using random forest regression models, we quantified water resource proportions 
(WRP) of surface water, mesic vegetation, and upland land covers within each 30-m Landsat pixel. We incor-
porated ancillary covariates to account for varying topographic conditions, land cover, and climate. Results 
indicate that our approach consistently estimates sub-pixel proportions of Landsat pixels more accurately 
compared to spectral mixture analysis (SMA). The WRP product for surface water had up to 8% less error than 
SMA as measured by Mean Absolute Error (MAE) and up to 17% less error as measured by Root Mean Squared 
Error (RMSE). For mesic vegetation, the WRP product outperformed SMA by up to 4% (MAE) and 7% (RMSE). 
Finally, we demonstrated the ability of our time series to characterize historical water resource availability at a 
case study site with a well documented restoration history by qualitatively examining the mesic vegetation 
dynamics time series to identify system responses to restoration efforts. Our approach allows us to hindcast 
observations of Sentinel products and measure water resource dynamics with greater precision over larger 
temporal scales. We envision these WRP data to be useful for measuring the impacts of conservation in-
terventions, disturbance recovery, or land use changes that pre-date the Sentinel time series.   

1. Introduction 

Water is essential to life and increasingly becoming more limited in 
dryland systems (Wang et al., 2023). Climatic uncertainty (Abatzoglou 
et al., 2017), population increases (Jones et al., 2019), land use change 
(Ahmed and Jackson-Smith, 2019), and irrigation strategies (Van Kirk 
et al., 2019) all contribute to reduced surface water, wetlands, and mesic 
meadows (hereafter water resources) across an already water limited 
landscape. The implications of uncertainty surrounding water resources 
for direct consumption and agriculture are of great concern to liveli-
hoods in these systems globally. Ecosystem functions are also at risk as 
human development continues to encroach on relatively intact systems 
(Requena-Mullor et al., 2023). A spatially explicit understanding of the 

current extents and historical changes in water resources can help pro-
vide insight into sustainable paths of development and water resource 
allocation that minimize negative environmental impacts (Fig. 1). 

Earth Observation (EO) data have been used extensively for mapping 
historical surface water dynamics via classification, particularly with the 
Landsat time series due to its open access and lengthy collection period 
(Feyisa et al., 2014; Gao, 1996; Pekel et al., 2016; Xu, 2006). However, 
dryland systems rely on relatively small surface water resource areas, 
such as small perennial and seasonal streams. In these systems, areas of 
mesic vegetation such as riparian zones, wetlands, and wet meadows 
indicate the presence of water but are spectrally quite different from 
surface water. Both surface water and mesic vegetation areas in semi- 
arid systems can remain undetected at the 30-m scale due to their 

* Corresponding author. 
E-mail address: nicholaskolarik@u.boisestate.edu (N.E. Kolarik).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2023.111445 
Received 25 September 2023; Received in revised form 10 December 2023; Accepted 14 December 2023   

mailto:nicholaskolarik@u.boisestate.edu
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2023.111445
https://doi.org/10.1016/j.ecolind.2023.111445
https://doi.org/10.1016/j.ecolind.2023.111445
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 158 (2024) 111445

2

small area relative to the pixels of the images used to measure them, 
resulting in mixed pixels. While the era of big data and cloud computing 
has ushered in efficient techniques for water resources monitoring 
(Donnelly et al., 2016; Pekel et al., 2016; Pickens et al., 2020), mixed 
pixels lead to incomplete inventories due to omission of smaller features. 
These omissions greatly limit our ability to monitor available water in 
systems where small water resource areas are integral to landscape 
functions. 

Mesic vegetation and riparian vigor have received some attention 
from the EO community in recent years due to its importance as a 
resource area (Donnelly et al., 2016), for determining habitat quality 
(Hausner et al., 2018; Pilliod et al., 2021), and as an indicator of 
ecosystem resilience and function (Fairfax and Whittle, 2020). These 
studies typically rely on the normalized difference vegetation index 
(NDVI), which is a proven and easily calculable method for describing 
photosynthetic activity, and thus, overall vegetation and riparian health. 
However, using NDVI as an indicator of water availability in dryland 
systems has several limitations. First, NDVI can only describe vegetation 
vigor in a region of interest (Fairfax and Whittle, 2020; Pilliod et al., 
2021; Silverman et al., 2019) and is not translatable to an area calcu-
lation without the use of a threshold or other classification technique. 
Second, when thresholding, using only NDVI typically requires the 
masking of large areas of forest vegetation (Donnelly et al., 2016), as 

dense conifer stands can have high photosynthetic activity, but lack 
mesic vegetation. In some forested settings, however, mesic vegetation 
resources are present (although to a lesser degree) and their dynamics 
have implications for landscape level functions (Barker et al., 2019). 
Lastly, in a mixed pixel containing both mesic vegetation and surface 
water, NDVI is reduced, therefore leading to conflicting signals as it 
relates to water availability (i.e. less surface water leads to higher NDVI 
values and vice versa). 

To improve our ability to monitor water resources in dryland sys-
tems, there is a great need to quantify sub-pixel fractional coverage of 
both surface water and mesic vegetation among other land covers. 
Statistical spectral mixture analysis (SMA) (Bullock et al., 2020; Meyer 
and Okin, 2015) is historically the most common unmixing approach. In 
SMA, a model based on spectral properties of endmembers (pixels 
composed entirely of a single land cover class) estimates what propor-
tion of each pixel is composed of each endmember. SMA has been 
effectively used in dryland systems to produce surface water estimates 
throughout the Landsat time series where each pixel in the modeled 
layer represents a fraction of water ranging from 0 to 100 % (Donnelly 
et al., 2019; Halabisky et al., 2016). A main advantage of SMA is that it 
requires only endmember spectral properties for parameterization. 
Furthermore, because SMA has been in use for a long time, built-in 
functions are easily accessible via image processing software. SMA 

Fig. 1. Location of the High Divide, Landsat image footprints used, and the Yankee Fork case study site.  
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methods have shortcomings, however, as accessible methods depend 
heavily on the assumption that a linear relationship exists, where 
within-pixel reflectance values of other land cover categories may affect 
this assumption (Ray and Murray, 1996). Further, SMA accuracy and 
applicability is sensitive to the percent land cover present in any given 
pixel (Meyer and Okin, 2015), and the purity of endmembers selected 
(Deng and Wu, 2013). 

Recently, nonparametric machine learning techniques have been 
increasingly employed for unmixing tasks (Okujeni et al., 2013; Rigge 
et al., 2020; Senf et al., 2020). Nonparametric machine learning ap-
proaches are data-driven rather than theory driven, and have shown to 
increase accuracy over statistical and probability based methods largely 
because they can account for the multiple scattering phenomenon 
known to affect the theoretical linear relationship (Yu et al., 2017). 
Machine learning methods not only show better prediction accuracy 
than traditional linear spectral unmixing methods, but are also capable 
of incorporating information beyond spectral reflectance to aid in pre-
diction (Breiman, 2001; Huang et al., 2016). For example, ancillary 
covariates such as topography are key in distinguishing between spec-
trally similar, but ecologically important categories, like vegetation 
proportions in dryland systems (Rigge et al., 2020). We are unaware of 
any studies that have explored the utility of machine learning re-
gressions for mapping water resources other than determining wetland 
likelihood (Reschke and Hüttich, 2014) and biomass estimation in 
wetlands (Mutanga et al., 2012), much less applying the models to a 
significant time-series. 

One frequent barrier to the implementation of machine learning 
regression is that it requires a lot of training data that adequately cover 
the full possible outcome domain (Senf et al., 2020). Studies that have 
implemented machine learning approaches successfully have collected 
reference datasets in a variety of ways, including on the ground sam-
pling, high resolution imagery, and hybrid methods (Rigge et al., 2020). 
However, the collection of adequate reference data is time consuming 
and expensive, and the most recent efforts use synthetically generated 
spectral mixtures to represent all possible land cover combinations 
(Okujeni et al., 2013; Senf et al., 2020; Stanimirova et al., 2022). Using 
synthetic spectral properties only, however, still results in errors among 
spectrally similar categories with important ecological and functional 
differences (Okujeni et al., 2013). 

The Sentinel time series offers an alternative potential source for 
both land cover classification and training data, due to increased spatial 
and temporal resolution compared to Landsat (Du et al., 2016), but the 
time series is limited. The Sentinel constellation not only has optical 
sensors with bands comparable to Landsat (Sentinel 2a, 2b), but also a 
synthetic aperture radar (SAR) which can penetrate clouds and shown to 
be helpful for mapping water resources (Li and Niu, 2022; Mahdianpari 
et al., 2019; Slagter et al., 2020). With the first optical satellite (Sentinel- 
2A) launched in June 2015 and the second (Sentinel-2B) launched in 
March 2017, this limited time series alone is often insufficient for 
measuring longitudinal changes in water resource availability at 10 m 
spatial resolution. Sentinel classifications often fall short for measuring 
the influence of conservation initiatives and restoration projects due to 
their inability to capture before and after conditions necessary in 
observational studies in ecology (Seger et al., 2021). However, due to 
the amount of data available, Sentinel classifications could prove useful 
for estimating proportional coverage of Landsat scenes using machine 
learning regressions. While we are aware of studies that have hindcasted 
algal blooms (Ho et al., 2017), water quality (Deutsch and Alameddine, 
2018) and crop yields (Evans and Shen, 2021) using in situ and climate 
data along with the Landsat time series, we are unaware of any hind-
casting efforts using Landsat data trained with relatively high resolution 
classifications. Finding ways to incorporate Landsat images to hindcast 
products developed using the Sentinel time series is a possible solution 
to the tradeoff between spatial resolution and length of the collection 
period observed among these data sources. 

The goal of this study is to better understand spatial and temporal 

dynamics of water resources in semi-arid landscapes affected by a 
changing climate and development. We focused our study in the semi- 
arid Intermountain Western US. Similar to many other regions across 
the globe, our study area is experiencing increased intensity and dura-
tion of drought, catastrophic wildfires, and population growth (Abat-
zoglou and Williams, 2016; Jones et al., 2019). Specifically, we used 
classifications developed in a previous study at the Sentinel spatial scale 
(10 m) (Kolarik et al., 2023) and ancillary covariates to estimate water 
resources proportions (WRP) within mixed pixels at the Landsat scale 
(30 m) in the overlapping temporal period (2017–2020) using scalable 
random forest regressions (Objective 1). We then applied these re-
gressions to monthly Landsat composites from 2004 to 2016, with the 
aim of hindcasting water resources within mixed Landsat pixels as 
proportions throughout the time series and extending our classification 
time series backward to test whether our model performance holds 
outside of the temporal training domain (Objective 2). Using very high 
resolution images from the National Agricultural Imagery Program 
(NAIP), we assessed accuracy across heterogeneous landscape condi-
tions, the training period, and hindcasted period to test whether the 
model appropriately captures system variability (Estes et al., 2018) 
(Objective 3). Using these WRP maps, we demonstrated the utility of our 
approach for describing water resource dynamics at a case study site 
with a documented restoration history (Objective 4). 

2. Materials and methods 

2.1. Study area 

The High Divide, an area of Idaho and Montana that stretches be-
tween the Greater 

Yellowstone Ecoregion and the Crown of the Continent is experi-
encing similar climatic challenges faced in drylands across the globe and 
much of the American West. These challenges contribute to reduced 
water availability across an already water limited landscape. The im-
plications of uncertainty surrounding water resources for direct con-
sumption and agriculture are of great concern to both agricultural and 
amenity based livelihoods (Dunham et al., 2018; Winkler et al., 2007). 
Further, ecosystem functions are at risk as human development con-
tinues to encroach on relatively intact ecosystems and the space between 
them. 

2.2. Data inputs 

2.2.1. Earth observation data 
We accessed Landsat 8 Operational Land Imager (OLI) level two, 

collection two, tier one scenes across the study area in Google Earth 
Engine (GEE) from June to September for all years that overlap with the 
reliable Sentinel-2 time series (2017–2020) (Fig 2). We filtered the time 
series for images with less than 50 % cloud cover as indicated in the 
metadata, and applied the Fmask algorithm (Zhu et al., 2015) to remove 
remaining clouds and shadows and produce high-quality mosaics for 
each month. We then resampled these mosaics to align Landsat pixels to 
the Sentinel grid using a bilinear interpolation so that each Landsat pixel 
corresponds to nine Sentinel pixels. We conducted a sensitivity check for 
possible error introduced due to misregistration errors among Sentinel-2 
and Landsat images. We added random noise with a standard deviation 
of 0.1 Landsat pixels following Skakun et al., (2017) to training and 
validation points and found little disagreement as demonstrated in 
Table S1, suggesting that these minor, sub-pixel level misregistrations 
contribute very little to error when these two rigorously orthorectified 
products in our study region. Beyond atmospherically corrected surface 
reflectance values, we also calculated normalized difference indices 
associated with water and greenness (NDWI, MNDWI, NDVI) (DeFries 
and Townshend, 1994; Gao, 1996; Xu, 2006). 

To train the model to estimate proportions of water resources within 
each pixel of these monthly Landsat mosaics, we used 10 m monthly 
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classifications of water resources we produced in previous work (Kolarik 
et al., 2023). We produced these 10 m monthly water resource maps 
using a random forest classifier in a data fusion approach that in-
corporates optical and SAR Sentinel time series as well topographic 
variables. To do so, we leveraged the computing and storage resources of 
the GEE cloud environment to use all available SAR images, as well as all 
optical images with < 50 % cloud cover. We masked any remaining 
clouds in the optical images using the s2cloudless dataset. The maps we 
produced represent categories of open water, mesic vegetation, and 
other land covers (upland, shadow, and snow). We used every image 
available that met the quality criteria and used the monthly modes of the 
predominant land cover to label each pixel. Each Landsat pixel can be 
described as ninths of these three respective categories. 

After training, we extended the model to level two, collection two, 
tier one images from Landsat 5, 7, and 8 and made monthly composites 
for the months of June-September from 2004 to 2016. Again, we masked 
clouds and applied transformations to Landsat 5 and 7 images following 
Roy et al. (2016) to account for spectral differences between Landsat 
missions. 

2.2.2. Ancillary data 
Rather than relying on spectral reflectance values alone for propor-

tional estimates, we used topographic (hereafter time invariant), cli-
matic, and land cover (hereafter time varying) variables to further 
constrain plausible quantities of water resources within each Landsat 

pixel (Table 1). Time invariant covariates included relatively simple 
topographic variables such as aspect, slope, and the topographic wetness 
index (TWI) shown to be helpful for identifying wetlands (Hird et al., 
2017). We also use a wetland probability layer produced from SRTM and 
radar images (Hansen et al., 2021), which was helpful in our previous 
work for distinguishing shadows from water relative to the position on 
the landscape (Kolarik et al., 2023). Time varying covariates included 
climate variables such as temperature and precipitation values from 
PRISM (PRISM, n.d), as well as snow water equivalent data from the 
SNODAS archive (SNODAS, n.d). Further, we used MODIS evapotrans-
piration estimates to account for vegetation heterogeneity throughout 
the study area. We obtained land cover estimates for the contributing 
area using the National Land Cover Dataset (NLCD) (Homer and Fry, 
2020). We focused on forest, wetland, and surface water as these are 
land covers shown to affect downstream water availability (Jaeger et al., 
2019). Lastly, we estimated irrigated agriculture across the study area 
using the IrrMapper dataset (Ketchum et al., 2020), as we expect areas 
where upstream water resources are diverted to agriculture to realize 
lower wetness than a similar pixel with no withdrawals upstream. We 
incorporated time varying covariates using a flow conditioned param-
eter grid (FCPG) approach (Barnhart, 2020). This technique considers 
values of covariates for all contributing cells (utilizing a flow direction 
grid) and summarizes them as means. In doing so, the values in any 
given cell of the FCPG also reflect the contributing landscape rather than 
only local conditions. These considerations are logical, given that 

Fig. 2. Workflow diagram for generating water resources proportions (WRP) estimates, evaluating their accuracy, and a subsequent case study analysis.  
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precipitation in our study system falls predominantly as snow in the 
winter months and is released as the snow melts in spring and summer. 
To produce these FPCGs, we used the FCPGtools python package using 
TauDEM flow direction grids as documented by Barnhart (2020) on a 
high performance computing cluster. 

2.3. Technical approach 

2.3.1. Estimating proportions 

2.3.1.1. Random forest regression. We use a random forest regression 
(RFR) approach to estimating proportions, where n decision trees are 
grown and data are split at nodes based on a random subset of covariates 
in each tree (Breiman, 2001). To perform these regressions, we use the 
built in random forest classifier function in GEE, with regression mode 
specified. We set the number of trees in the forest to 50, as increasing the 
size of the forest did not result in clearly stronger results, but came at a 
significant computational cost. We used the square root of the total 
number of covariates as the number of variables per split, a commonly 
used approach that reduces overfitting while providing strong results 
(Belgiu and Drăguţ, 2016). 

We used the overlapping period of the Sentinel and Landsat time 
series (2017–2020) to train the RFR. We used six Landsat mosaics, three 
each from two different tiles (040029, 040028) in August 2017, July 
2018, and September 2018, as these were the months where there were 
two Landsat images with less than 5 % cloud cover, resulting in nearly 
complete images with very few pixels contaminated by possible unde-
tected clouds or cloud shadows. For each training image, we include the 
ancillary covariates for topographic variables using Terrain functions in 
GEE and the SRTM 30-m DEM and resampled the 10-m TWI layer used in 
Kolarik et al. (2023) to 30-m using the bilinear transformation method. 
We imported the FCPGs we produced for climate and land cover and 
included them in image stacks for each year (Table 1). Since land cover 
variables from the NLCD are not produced annually, we used the most 
recent year in each stack. We trained two models; one including the time 
varying covariates and the other without to test whether climatic and 
land cover/land use variation was adequately captured in spectral 
response or whether including these was absolutely necessary. 

Due to the relatively small proportion of the landscape that contain 
water resources in our study system, we employed a stratified random 

sampling design to collect training samples for the RFR. For each cate-
gory, we resampled binary outputs of the SF classification to 30-m 
resulting in fractional maps of a given land cover, with fractions 
ranging from zero to one in ninths. We then sampled 2,000 points from 
each of the ten possible values (0/9, 1/9, 2/9, etc.) from each image, 
resulting in 120,000 points for each class, 60,000 training points from 
each tile. 

RFR and other machine learning regressions are constrained by their 
training data and will not predict a value outside of that domain. As a 
result, this approach is known to be biased high on the low end, and low 
on the high end (Belitz and Stackelberg, 2021). To resolve this bias, 
researchers have used several approaches, with the most common being 
a simple linear rotation (Huang et al., 2016; Stanimirova et al., 2022). 
However, we chose to use another RFR to estimate how the bias occurs 
relative to the covariates we used (Belitz and Stackelberg, 2021; Song, 
2015), since this approach reduced bias more effectively in our 
application. 

2.3.1.2. Spectral mixture analysis. For comparison with the RFR esti-
mates, we conducted a more traditional linear spectral mixture analysis 
(SMA) previously used for monitoring water resources in the Western 
USA (Donnelly et al., 2019; Halabisky et al., 2016). We used the same 
training mosaics as outlined in the previous section. As endmembers, we 
used training points used for the RFR where all nine SF pixels were 
classified as either surface water, mesic vegetation, or other. Any dif-
ferences in the outputs we then are able to attribute to the method used 
and covariates included for estimating proportions rather than the 
source of training. We used the unmix() function, the GEE version of a 
traditional linear spectral mixture analysis, where we also constrained 
the values to be non-negative and sum to one, with the goal of returning 
only realistic values. 

2.3.2. Assessment 
We conducted two accuracy assessments. First, we compared surface 

water and mesic vegetation estimates from both the WRP (RFR) and 
SMA to the Sentinel-based classifications. This assessment was con-
ducted for the time period in which the WRP and Sentinel classifications 
overlapped (2017–2020). Second, we conducted a separate accuracy 
assessment using reference data derived from high resolution NAIP 
aerial photography. We define the resulting accuracies as the “absolute” 
accuracy. NAIP imagery is of high enough spatial resolution to represent 
on-the-ground conditions because even small water features are recog-
nizable. Therefore, the “absolute” accuracy assessment enabled us to 
measure a) how well the WRP captures ground conditions of water 
availability, b) if there were differences in accuracy based on differences 
in environmental conditions (i.e. wetness of the landscape), and c) if the 
RFR was able to accurately “hindcast” water availability, i.e predict 
WRP in Landsat images that preceded the temporal domain of the input 
Sentinel classification training data. 

2.3.2.1. Agreement with 10-m SF classifications. To assess the agreement 
between the WRP and the 10-m SF classifications from 2017 to 2020, we 
used monthly mosaics of the Landsat tile that overlaid our study area 
(040029) where there were two images in a month with less than 50 % 
cloud cover to reduce the likelihood of masked pixels. These months 
were August 2019, August 2020, and September 2020. For each model 
output, we stratified the validation sample in increments of 0.1, 
resulting in ten strata for each image. We sampled 100 points from each 
stratum, resulting in 1,000 validation points for each model output. We 
then calculated the mean absolute error (MAE) and root mean square 
error (RMSE) for each relative to the monthly maps we created at the 10- 
m scale using the SF classifier (Senf et al., 2020; Stanimirova et al., 
2022). We calculated these for both the WRP and SMA estimates pro-
duced from Landsat images during the training period (2017–2020). We 
conducted these comparisons across the landscape as well as constrained 

Table 1 
Covariates used in the random forest regression. Italicized text in-
dicates FCPG covariates (time varying).  

Covariate Source 

Blue Landsat 
Green Landsat 
Red Landsat 
NIR Landsat 
SWIR1 Landsat 
SWIR2 Landsat 
NDVI Landsat 
NDWI Landsat 
MNDWI Landsat 
Slope SRTM 
Aspect SRTM 
Elevation SRTM 
TWI SRTM 
Wetland Probability Hansen et al., 2021 
Irrigated Ag IrrMapper 
ET MODIS 
Precipitation PRISM 
March 1 SWE SNODAS 
May 1 SWE SNODAS 
Max temperature PRISM 
Min temperature PRISM 
Forest NLCD 
Surface Water NLCD 
Wetland NLCD  
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to low-lying locations where water resources are likely to occur, valley 
bottoms and flat slopes, as defined by the USGS Landforms dataset 
(Theobald et al., 2015). 

2.3.2.2. Agreement with high resolution aerial images. For an absolute 
accuracy assessment of unmixed images, we randomly sampled images 
from the National Agricultural Imagery Program (NAIP). We stratified 
our study area using the National Wetlands Inventory (NWI) (NWI, 
2023) as a guide to ensure the samples were representative of the range 
of possible mesic ecosystem conditions we seek to monitor (Pickens 
et al., 2020). The NWI represents a highly detailed inventory of surface 
water, riparian zones, and wetlands in the United States and is derived 
from highly detailed aerial photographs and field data. We laid a 20 km 
grid over the study area and created four (nearly) equal strata based on 
the area covered by all NWI categorized wetland types. The driest 
stratum (n = 73) ranged from blocks with < 1 % to 1.19 %, the dry 
stratum (n = 74) from 1.19 % to 1.91 %, the wet stratum (n = 74) from 
1.91 % to 3.1 %, and the wettest stratum (n = 73) from 3.1 % to 32.6 % 
NWI wetland area. From each of these strata, we randomly selected ten 
blocks, and randomly selected a NAIP image from that block during the 
months of June through September from 2009 to 2020. We omitted 
images that did not fall completely within the image footprints that we 
regressed and/or have a corresponding monthly regression estimate due 
to our image selection criterion of < 50 % cloud cover. This resulted in 
only four images from the wettest stratum, and five images from each 
the wet and dry strata (Table S1). We chose not to include images from 
the driest stratum in our analysis due to the lack of water resources 
present. 

Since false color images are only available from 2009 to present, we 
could not include all of the years we mapped into the sample pool. 
However, this period includes years that pre-date the Landsat 8 launch 
(2012), providing us the opportunity to assess maps we produced with 
images from Landsat 5 and 7 only. Since images in the wettest stratum 
were only sampled prior to the training period (Table S2), we omitted 
these from the analysis seeking to quantify differences in accuracy 
before and after the training period. 

We then classified these high resolution NAIP images into classes of 
surface water, mesic vegetation, upland, shadow, and snow. For each 
image, we trained a random forest classification model by identifying 
training areas for each class in each image and continued to add more 
training data until the classifications appeared to be as high quality as 
possible (Pickens et al., 2020). The higher spatial resolution of these 
maps make them an ideal reference dataset for our coarser product 
(Olofsson et al., 2014). We resampled these classifications to 3-m and 
created binary maps of surface water/other and mesic vegetation/other, 
from which each Landsat pixel proportional estimate could be 
compared. From these, we created continuous cover maps at 30-m res-
olution for both surface water and mesic vegetation, where each pixel 
was described as a proportion of the given cover of interest. We then 
stacked these with the regressed outputs and produced 100 stratified 
random samples for each stratum in increments of 0.1 from each image, 
where available. 

2.3.3. Case study analysis 
To demonstrate the utility of the datasets we generated in this study, 

we applied our WRP times series to a restoration site with a detailed 
restoration history, the Yankee Fork of the Salmon River in Custer 
County, Idaho, USA. We worked with a stakeholder partner involved in 
the restoration at this site to reconstruct the restoration activities and 
water resource dynamics at the site. We delineated the site based on 
stakeholder knowledge and the historical floodplain, based on the USGS 
Landforms dataset (Theobald et al., 2015) areas described as either 
‘valley’ or ‘flat slope’, as described in section 2.3.2.1. Within the case 
study site boundary, we calculated the proportion of the valley bottom 
occupied by mesic vegetation. The Yankee fork is an example of a main 

tributary where the stream channel of open water is narrow and/or 
covered by mesic vegetation, and thus we used mesic vegetation as the 
indicator of water availability. For reference, we also qualitatively 
analyzed the mesic vegetation dynamics in the context of the one year 
Standardized Precipitation Evapotranspiration Index (SPEI) (Abatzo-
glou, 2013) to assess whether changes were attributable to climatic 
fluctuation or restoration activities. For both, we used the loess function 
in base R (Shyu et al., 1992) to produce smoothed regressions of mesic 
vegetation and drought, respectively. We further calculated the area of 
mesic vegetation available before and after restoration. Since there is no 
consensus on how to estimate uncertainty in proportional coverage land 
change analyses (Stanimirova et al., 2022), we chose to follow the 
guidance of Stehman and Foody (2019) and use the mapped proportions 
of each fraction to produce weights for each fraction. We used the 
weights of each sampled fraction in NAIP classifications as outlined in 
section 2.3.2 (restricted to valley bottoms) to calculate a weighted 
standard deviation and construct 95 % confidence intervals (z = 1.96). 

3. Results 

3.1. Do water resources proportions (WRP) estimates in 30-m Landsat 
pixels from random forest regression accurately capture water resources 
compared to 10-m Sentinel classifications? 

We found that the WRP compared well with surface water and mesic 
vegetation proportions characterized by Sentinel classifications. 
Further, we found no meaningful differences in the performance of the 
WRP model when we restrict the analyses to valley bottoms only. At the 
landscape scale, the MAE of proportions for surface water ranged from 
0.19 to 0.20, and RMSE from 0.25 to 0.26 (Table 2). When restricted to 
valley bottoms only, the MAE range for surface water was identical (0.19 
to 0.20), as was RMSE (0.25 to 0.26). The results for mesic vegetation 
were similarly consistent. The landscape scale MAE was 0.25 for all 
three images and the RMSE was 0.30. In valley bottoms only, MAE for 
mesic vegetation estimates ranged from 0.24 to 0.25 and RMSE ranged 
from 0.29 to 0.30. 

3.2. Do random forest regressions capture water resource fractional 
coverage more accurately than spectral mixture analysis? 

The SMA models based on the same training data were far less 
consistent than the WRP approach, particularly for surface water esti-
mates (Table 2). In terms of MAE, we found the estimates to have 
consistently stronger agreement with the SF classifications when 
restricted to valley bottoms only. In fact, for the surface water class, the 
results show SMA has stronger or equal agreement with the reference 
classifications as the WRP model in terms of MAE, but always weaker 
agreement as measured by RMSE. With both metrics, mesic vegetation 
estimates were not as strong using the SMA approach as with the WRP. 
For surface water estimates, MAE ranged from 0.19 to 0.28 at the 
landscape level and RMSE from 0.31 to 0.43. However, when restricted 
to valley bottoms, MAE of surface water ranged only from 0.17 to 0.21, 
but RMSE from 0.28 to 0.33. MAE for mesic vegetation ranged from 0.29 
to 0.30 and RMSE from 0.36 to 0.37 at the landscape level. When 
restricted to valley bottoms, mesic vegetation MAE ranged from 0.26 to 
0.27 and RMSE from 0.34 to 0.35. 

In Figs. 3 and 4, we show scatterplots that enable us to visualize 
errors across the entire range of the 0 to 100 % predictions in August 
2019. In all plots, we see a much greater spread of values among SMA 
estimates when compared to WRP estimates (Figs. 3-4, Figs. S1-S4). For 
mesic vegetation specifically, densities are centered towards the middle 
of these distributions, regardless of the reference proportion. The SMA 
model routinely moderated the estimates further towards the middle 
range of possible proportions, resulting in less accurate estimates than 
with the WRP model. 

In Figs. 5 and 6, we compare spatial differences between RFR and 
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SMA predictions, and include the National Wetlands Inventory (NWI) 
polygons as a reference of where likely wetland areas are located. We 
find that the SMA commits many more errors of commission in areas 
where surface water is not present (north facing slopes and densely 
forested areas), where the WRP estimates align more closely with the 
NWI polygons. The same is true for mesic vegetation estimates relative 
to the NWI areas. 

For both surface water and mesic vegetation, we see a pattern of bias 
in the WRP estimates, despite applying a correction, where low values 
are estimated high, and high values estimated low, as seen in the scatter 
densities (Figs. 3 and 4; Figs. S1-S4). This pattern is apparent in the lake 
example of Fig. 6, where the WRP predicts that dense forests contain a 
non-zero proportion of mesic vegetation regardless of topographic po-
sition. Conversely, obvious lakes are predicted to have a non-zero frac-
tion of mesic vegetation due to their topographic position. We see 
similar errors in SMA estimates, but with notably higher variance 
throughout, particularly in the middling ranges. While the SMA predicts 
an even higher fraction of mesic vegetation in dense forests due to 
reliance on spectral properties, it does not erroneously predict non-zero 
proportions of mesic vegetation in areas of open surface water within 

NWI polygons as does the RFR (Figs. 5-6). 
Including time varying covariates did improve model performance 

consistently, but only by 0.01–0.02 for both MAE and RMSE in surface 
water and mesic vegetation proportional estimates (Table S3). The 
model without time varying covariates consistently outperformed the 
SMA models (Table S4), showing 0.04–0.12 proportional accuracy im-
provements for surface water at the landscape scale as measured by 
RMSE, and 0.02–0.05 in valley bottoms. Improvements in mesic vege-
tation proportions were less dependent on position relative to the valley 
bottom, with increases in proportional accuracy from 0.02 to 0.04 in 
MAE, and 0.04–0.07 in RMSE. 

3.3. How accurate are fractional coverage estimates compared to 
“absolute” water resource conditions as measured from high resolution 
aerial photography? 

Using the very high resolution NAIP classifications as reference 
revealed higher errors than when using the 10-m SF classifications, as is 
to be expected (Figs. S5-S7). We did find that agreement metrics were 
always stronger for surface water estimates than for mesic vegetation, 

Table 2 
A comparison of accuracy metrics for SMA and RF regression (WRP) surface water and mesic vegetation proportional estimates. Negative differences for MAE and 
RMSE indicate stronger agreement with the reference among WRP estimates than SMA.    

WRP SMA Difference (WRP - SMA)   

Water Mesic Water Mesic Water Mesic   

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

August 2019 Landscape  0.19  0.25  0.25  0.3  0.19  0.31  0.29  0.36 0  − 0.06  − 0.04  − 0.06 
Valley Bottoms  0.19  0.25  0.24  0.3  0.17  0.28  0.26  0.34 0.02  − 0.03  − 0.02  − 0.04 

August 2020 Landscape  0.2  0.25  0.25  0.3  0.21  0.32  0.29  0.36 − 0.01  − 0.07  − 0.04  − 0.06 
Valley Bottoms  0.2  0.25  0.24  0.29  0.18  0.28  0.26  0.34 0.02  − 0.03  − 0.02  − 0.05 

September 2020 Landscape  0.2  0.26  0.25  0.3  0.28  0.43  0.3  0.37 − 0.08  − 0.17  − 0.05  − 0.07 
Valley Bottoms  0.2  0.26  0.25  0.29  0.2  0.33  0.27  0.35 0  − 0.07  − 0.02  − 0.06  

Fig. 3. August 2019 differences in agreement with the SF classifications of RF (A,C) and SMA (B,D) for surface water (A,B) and mesic vegetation (C,D). The red 
dashed lines represent 1:1 agreement. 
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consistent with the previous analysis using 10-m classifications as 
reference. MAE for surface water ranged from 0.15 to 0.21 and RMSE 
from 0.19 to 0.26. For Mesic vegetation, MAE ranged from 0.30 to 0.36 
and RMSE from 0.36 to 0.43 (Figs. S5-S7). Stratifying the study area 
using NWI area did not reveal any major differences relating to model 
performance, with variability relatively consistent regardless of the 
stratum analyzed. 

When we aggregate the NAIP reference classifications based on their 
collection date relative to the training period (2017–2020), we do not 
see any meaningful differences. Error metrics indicate the WRP 
approach is robust, with MAE = 0.18 and RMSE = 0.22 before the 
training period (Fig. 7) and MAE = 0.18 and RMSE = 0.23 in the 
overlapping timeframe (Fig. 8). Agreement was slightly higher for the 
error metrics for mesic vegetation prior to the training period, with MAE 
= 0.32 and RMSE = 0.38 and MAE = 0.33 and RMSE = 0.40 during the 
training period. These results indicate that the WRP model is consistent, 
and the accuracy of estimates are not driven by image date relative to 
the training period. 

3.4. Case study - change point detection at Yankee Fork of the Salmon 
River, Idaho, USA 

Our historical reconstruction via stakeholder engagement illumi-
nated a complex system with climatic variability and multiple in-
terventions, which resulted in dramatic changes in water availability at 
the site. Like many riverscapes across the Western United States, the 
Yankee Fork was a highly degraded system and had lost many of its 
ecological functions due to alterations from the mining history in the 
area. From 1940 to 1952, 5.5 miles of this riverscape was dredged for 
gold extraction, pushing the river away from its functional state, into a 
degraded alternate stable state (Prettyman, 2020). Fluvial condition was 
highly altered, leaving little to no habitat for native salmonids, the 
channel was disconnected from its historic floodplain, and riparian 

vegetation almost absent (Colyer, 2021). Trout Unlimited (TU) part-
nered with government and tribal agencies to begin riverscape resto-
ration in 2012. They removed dredge tailings, filled the ponds in the 
historical floodplain, converted them to side channels, installed an inlet 
control structure, and began planting riparian vegetation in the newly 
re-constructed floodplain. Riparian planting continued in 2013. In 2015, 
restoration interventions included the addition of unanchored trees to 
increase channel complexity, and large wood in the river to create 
micro-habitats for native salmonids (Casselle Wood; personal commu-
nication). These additions improved conditions enough that beavers 
returned to the area. In 2017, the reach experienced a 100 year flood 
event, which, along with the beaver activity and restoration in-
terventions, spread water across the valley bottom during the early 
growing season, enhancing the growth of mesic vegetation at the site. As 
of 2023, beavers still inhabit the reach, and the hope of TU is that the 
project has created the conditions for them to remain there and maintain 
the ecosystem processes necessary for maintaining a healthy riverscape 
(Pollock et al., 2014). 

When we plotted our WRP time series with major events from the 
historical reconstruction, we saw a response that fits well with the 
documented restoration history (Fig. 9). Vegetation extent dipped when 
the channel reconstruction occurred in 2012 at the beginning of resto-
ration. In 2013, we observed a small rebound in mesic vegetation which 
coincided with riparian plantings. Mesic vegetation steadily increased 
from 2013 to 2020, a period in which the riparian plantings spread in the 
floodplain as a result of restoration interventions, beaver activity, and a 
major flood event. Specifically, floodplain vegetation continued to in-
crease following the plantings and additions of woody debris in the 
channel, which was enough to attract beavers in 2015. Mesic vegetation 
in the floodplain continues to increase after the beavers established, an 
indication that the restoration successfully created enough deep pools 
and woody browse to maintain a beaver colony (Pollock et al., 2014). 
We also observe an increase in mesic vegetation that aligns with the 

Fig. 4. August 2019 differences in agreement with the SF classifications of RF (A,C) and SMA (B,D) for surface water (A,B) and mesic vegetation (C,D) in valley 
bottoms only. The red dashed lines represent 1:1 agreement. 
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2017 flood event. By the end of the time-series in 2020, the case study 
site established a new baseline mesic vegetation extent, near 46 % (+/- 
29 %) of the valley bottom area, compared to 29 % (+/- 29 %) prior to 
the restoration. As converted to area, we estimate that mesic vegetation 
at this site has shifted from around 16,500 to 27,000 m2 (+/- 17,246). 

We also plotted the standardized precipitation evapotranspiration 
index (SPEI) values to qualitatively determine whether our mesic 
vegetation measures correspond to macro-level climate patterns. The 
SPEI indicates that there was a somewhat regular cycle/pattern of dry 
and wet years. Prior to restoration activity, mesic vegetation extent 
stayed relatively constant, despite climate variability, indicating that 
pre-restoration, the system seems to be in a stable state. However, since 
the start of restoration activities, we observe an increase in mesic 
vegetation, and the increases generally do not coincide with SPEI pat-
terns, but the vegetation response is minimal in both of the potential 
alternate stable states we observe. 

4. Discussion 

Our results show that random forest regressions are a better choice 
for the mixed pixel problem regarding water resources in dryland sys-
tems than spectral mixture analysis. Our WRP product showed better 
agreement with the 10 m SF classifications than the SMA for both sur-
face water and mesic vegetation for every validation image, and at both 
landscape and valley bottom scales as measured by RMSE. SMA can 
provide acceptable results where water resources are easily visible from 
above, and are in known locations, as has been shown to be effective in 
previous studies for monitoring surface water (Donnelly et al., 2019; 

Halabisky et al., 2016). However, the SMA routinely produced high 
outlying values. These outliers observed with the SMA approach could 
lead to unreliably high estimates of surface water, particularly in topo-
graphically complex environments where shadows are prevalent. In 
terms of mesic vegetation, estimates with the WRP approach are more 
reliable compared to than with SMA, regardless of spatial scale or 
location, leading to better resource inventories. This is important 
because mesic vegetation is a necessary indicator of landscape level 
water availability and key resources for terrestrial wildlife (Arkle and 
Pilliod, 2015; Barker et al., 2019; Donnelly et al., 2016; Kolarik et al., 
2023). 

We consider the observed increases in agreement to be attributable 
largely to the inclusion of time invariant topographic covariates found to 
be helpful in producing accurate classifications (Hird et al., 2017; 
Kolarik et al., 2023). These high level improvements, however, come at 
a cost as we allude to in the lake example. Including time invariant 
topographic covariates reduces errors in many cases, for instance for 
surface water in topographic shadows with a steep slope, or mesic 
vegetation in steep, densely forested areas. However, we suspect that 
these variables likely lead to smaller, but persistent commission errors in 
flat, low lying areas where both surface water and mesic vegetation are 
likely to occur, even if the spectral properties have conflicting infor-
mation. In dryland systems, these errors are likely acceptable, given that 
areas where water resources could occur in these systems are so rare 
(Donnelly et al., 2016) and the trade-off of commission errors in rela-
tively constrained valley bottoms versus vast upland areas is less 
consequential in the overall interpretation of the error and the maps. 

An exciting finding of our study is that our model trained on 

Fig. 5. A spatial comparison of the WRP estimates vs. SMA estimates in a riparian system.  

N.E. Kolarik et al.                                                                                                                                                                                                                              



Ecological Indicators 158 (2024) 111445

10

relatively recent classifications can be used to accurately estimate pro-
portions in pixels from past and future images, thus “extending” the 
temporal domains of higher resolution products. Thus, our approach 
captured enough variability in the observed ecological processes to 
produce reliable estimates beyond the temporal domain of the training 
data (Estes et al., 2018). The validation of hindcasted estimates is rare, 
as many hindcasting efforts only have data within the observation 
period (Deutsch and Alameddine, 2018; Evans and Shen, 2021; Ho et al., 

2017), or use moderate to coarse remotely sensed data to validate their 
models (Chang et al., 2020; Ho et al., 2017). 

We also show that higher resolution classifications can provide 
enough training data to train a random forest regression, in lieu of either 
costly reference data or synthetically generated training data. This 
approach is particularly effective when utilizing ancillary covariates 
such as climate and topography that can aid in differentiating spectrally 
similar, but ecologically important land covers. With the ubiquity of 

Fig. 6. A spatial comparison of the WRP estimates vs. SMA estimates in an alpine lake system. We include the National Wetlands Inventory (NWI) polygons 
for reference. 

Fig. 7. Agreement with the NAIP classifications prior to the training period (2009–2016) for surface water (blue; A) and mesic vegetation (green; B). The red dashed 
lines represent 1:1 agreement. 
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high-fidelity global datasets like the Dynamic World produced from 
Sentinel-2 images (Brown et al., 2022), to site specific unoccupied aerial 
systems applications (Carbonneau et al., 2020; Jochems et al., 2021; 
Linchant et al., 2015), the opportunity to extend the temporal record of 
classifications with very specific thematic resolutions could provide new 
opportunities to monitor habitat, invasive species, and natural 
resources. 

We did not observe pronounced differences in WRP model perfor-
mance based on strata. Surprisingly, the model performed similarly in 
the wettest and dry strata, but not as well in the wet stratum. This is 
counterintuitive given the results of recent work to update Canadian 
wetland inventories where the authors improved map accuracies by 
stratifying by ecoregion (Mahdianpari et al., 2020). We interpret our 
results as more of an indication of the quality of the image being un-
mixed (i.e. cloud cover, aerosols, or other contaminants) (Ho et al., 
2017) rather than the amount of water resources found in a given 
location. It is likely that our study area, while heterogeneous in terms of 
vegetation cover, does not contain as starkly contrasting ecoregions as 
found in larger geographic areas. 

Our hindcasted Landsat WRP time-series is capable of detecting 
meaningful changes in ecosystem conditions, as evidenced by our case 
study site analysis at a stream restoration site with a documented 
restoration history. The time series we examined matches well with in 
situ observations at the restoration site. One benefit of the WRP product 

is that we can estimate area of change, which is not possible with the 
more common approaches, like the normalized difference vegetation 
index (Fairfax and Small, 2018; Hausner et al., 2018). Our time series 
was able to detect changes in water availability that corresponded with 
management interventions (e.g. restoration activities), climatic events 
(e.g. a major flooding event), and ecological changes (e.g. the estab-
lishment of beaver). This analysis provides proof of concept of the 
applicability for land managers to incorporate scientific outputs into 
their monitoring routine, an often difficult, but important task for 
monitoring ecosystem recovery and developing sound management 
plans (Koontz, 2019). Important next steps include analyzing more case 
study sites in varying settings and locations, as well as using more 
rigorous statistical time-series techniques such as breakpoint and 
counterfactual analyses (Erdman and Emerson, 2008; Roopsind et al., 
2019) to further identify the appropriate applications and limitations of 
our time series. 

5. Caveats and limitations 

We demonstrated that random forest regression outperforms spectral 
mixture analysis, but these improvements come at a computational cost, 
as incorporating ancillary covariates, particularly through the FCPG 
approach, requires more work on the front end and creates a more 
complex workflow than simply considering spectral and topographic 

Fig. 8. Agreement with the NAIP classifications during the training period (2017–2020) for surface water (blue; A) and mesic vegetation (green; B). The red dashed 
lines represent 1:1 agreement. 

Fig. 9. Monthly time series of the proportion of mesic vegetation extent at the case study site. Key events are included for reference, as well as the one year SPEI 
values, where negative values indicate drier than normal conditions, and positive values indicate wetter than normal. 
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properties. We compared our WRP estimates with and without incor-
porating time varying climate and land cover FCPGs and found that WRP 
estimates with time varying covariates are more accurate than without 
but only minimally (1–2 %, Table S2). It is reasonable to expect that 
these covariates are captured in the spectral response, and incorporating 
time invariant topographic covariates along with spectral reflectance is 
enough to produce measurable improvements compared to SMA. While 
random forest regressions require more computing resources, generally, 
computing power has never been more accessible, particularly with 
cloud computing platforms like GEE that are easily accessible with a 
robust internet connection. Machine learning approaches and ancillary 
covariates should be routinely considered for unmixing tasks. Further 
accuracy improvements are likely if deep learning approaches would be 
considered (Shen et al., 2020), but these would require even more 
computational resources and are not freely available on the GEE 
platform. 

We found the WRP estimates to be rather consistent across the 
validation images. A main concern here is the remaining biases of the 
model where low predictions are always biased high, and high pre-
dictions biased low resulting in a ‘false moderation’ effect among the 
estimates (Applestein and Germino, 2022; Belitz and Stackelberg, 
2021). Despite the bias correction effort, the bias was not fully removed 
as also found in similar studies that utilize machine learning regression 
approaches (Stanimirova et al., 2022). This false moderation phenom-
enon is also observable in the SMA analyses, however, particularly for 
mesic vegetation. Though the false moderation effect results in samples 
that are biased towards the extremes of the value domain when using a 
stratified random sample, a simple random sample would have resulted 
in an extreme bias towards the low end of this domain given the relative 
scarcity of both surface water and mesic vegetation in the study area. 

Our stratified sampling design for the assessment of the RFR model 
performance based on wetness as determined by the National Wetlands 
Inventory area revealed another issue. Images where errors were prev-
alent also had high forest cover, which complicates our analyses for 
several reasons. Shadows are more prevalent in NAIP images due to 
irregular acquisition times. There were many instances where shadows 
in the riparian zone made it impossible for us to label those areas 
otherwise. The RFR model will predict at least some proportion of water 
and mesic vegetation in these areas due to their topographic position. In 
these instances, there will always be disagreement, because we took a 
conservative approach when labeling these validation NAIP images that 
sometimes had longer light than would be desirable. Further, the RFR in 
these forested environments will predict at least some fraction of mesic 
vegetation due to the spectral response of the conifers (Breiman, 2001; 
Prasad et al., 2006). 

A similar phenomenon arose in all images where there were very 
small creeks and streams. Even at 60 cm resolution, mixed pixels in these 
locations led to a classified value as either upland or shadow, and ulti-
mately mislabeled pixels in the validation dataset. Without a suite of 
covariates beyond spectral properties, we cannot expect our approach of 
training a random forest classifier to produce a validation dataset to be 
exact in these areas. However, approaches where a grid of a given size is 
overlaid and an analyst describes each grid cell based on dominant cover 
(Stanimirova et al., 2022) also have disadvantages, as these provide less 
precision when trying to estimate proportions of ecologically mean-
ingful, but often rare, categories like mesic vegetation. 

Lastly, we should acknowledge that using discrete samples from a 
classification for training and validation is likely to propagate errors 
associated with creating discrete maps and products of continuous 
phenomena. For example, at the 10 m scale, mixed pixels remain 
prominent across the landscape particularly when dealing with small 
resource areas like surface water and mesic vegetation in dryland sys-
tems. Caution should always be used when interpreting maps or prod-
ucts that rely on discrete labels for mixed pixels. Further, despite using 
rigorously orthorectified images from popular and trustworthy data 
sources, misregistration of images can propagate errors into data 

products that also should be considered and evaluated (Barazzetti et al., 
2016). 

6. Conclusion 

We demonstrate that using a machine learning approach, we can 
retrieve better estimates of surface water and mesic vegetation fractions 
in a mountainous semi-arid system than by using SMA. In doing so, we 
build on existing work for quantifying these relatively small resource 
areas that sustain semi-arid systems and their land functions. The maps 
we produce are useful for quantifying surface water and mesic vegeta-
tion changes as a result of restoration activities, disturbance events, or 
climate change. We consider this approach appropriate for extending 
the temporal record of high resolution classifications back in time, by 
using random forest regressions and the stalwart Landsat time series to 
estimate fractional coverage of ecologically important land covers. We 
posit that considering ancillary covariates such as topographic features, 
climatic and land cover conditions, along with spectral reflectance aids 
in estimating fractions of surface water and mesic vegetation in a given 
study area, and could be applicable to other resources and problems as 
well. 
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