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A B S T R A C T   

Dryland ecosystems have complex vegetation communities, including subtle transitions between communities 
and heterogeneous coverage of key functional groups. This complexity challenges the capacity of remote sensing 
to represent land cover in a meaningful way. Many remote sensing methods to map vegetation in drylands 
simplify fractional cover into a small number of functional groups that may overlook key ecological commu-
nities. Here, we investigate a remote sensing process that further advances our understanding of the link between 
remote sensing and ecologic community types in drylands. We propose a method using k-means clustering to 
establish soft classes of vegetation cover communities from detailed field observations. A time-series of Sentinel-2 
satellite imagery and a random forest classification leverages the mixing of different phenologies over time to 
impute such soft community classes over the landscape. Next, we discuss the advantages of using a fuzzy 
confusion approach for soft classes in cases such as understanding subtle transitions in ecotones, identifying areas 
for targeted remediation or treatment, and in ascertaining the spatial distribution of non-dominant covers such as 
biological soil crusts and small native bunchgrasses which have typically been difficult to map with traditional 
remote sensing classifications. Our pixel-level analysis is relevant to the scale of management decisions and 
represents the complexity of the landscape. The combination of cloud computing with the spatial, temporal, and 
spectral observations from Sentinel-2 allow us to develop these ecologically-meaningful observations at large 
spatial extents, including complete coverage at landscape scales. Re-interpretation of large extent maps of soft 
classes may be helpful to land managers who need community-level information for fuel breaks, restoration, 
invasive plant suppression, or habitat identification.   

1. Introduction 

Dryland ecosystems, covering >45% of the terrestrial earth surface, 
are critically important for supporting ecosystem services. For example, 
they contribute to carbon cycling at global scales (e.g. Lal, 2019) and at 
the community-level, dryland ecosystems play an important role in 
nutrient cycling (e.g. Maestre et al., 2016). The number of dryland 
ecosystem studies in remote sensing have increased significantly in the 
past decade (e.g. Glenn et al., 2016; Guirado et al., 2019; Poitras et al., 
2018; Ganem et al., 2022). However, there is still a gap in providing 
community-level estimates of vegetation across large areas. Quantifying 
community-level vegetation patterns with remote sensing requires 

distinction between communities and complex combinations of vege-
tation species and other cover types (e.g. bare mineral soil, biological 
soil crusts, litter). Thus, the gap is primarily caused by the difficulty in 
capturing the heterogeneity of communities across fine spatial and 
temporal scales. Due to climate change and land use, dryland ecosystems 
are under threat and knowledge about the status of vegetation com-
munities is required for mitigation and restoration. 

Many contemporary studies in remote sensing of vegetation com-
munities across large areas of drylands use time-series satellite or 
uncrewed aerial systems (UAS) data. Recent studies demonstrate the 
ability to capture change in productivity (e.g. Abel et al., 2019, Wang 
et al., 2022) and shrub cover (Rigge et al., 2021) and the status of annual 
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invasive grass cover (Pastick et al., 2018; Weisberg et al., 2021). How-
ever, the spatial (e.g. 30 m to several kms) resolution in earth observing 
systems may be coarse relative to the heterogeneity and/or phenology of 
the vegetation across semi-arid landscapes, and the scales which are 
helpful for management (Gillan et al., 2020; Roser et al., 2022). Moni-
toring the change in position of an ecotone, for example, is difficult if the 
footprint of a pixel straddles the entire transition. There is additional 
difficulty including component species or cover types which may be of 
interest at small proportional cover such as encroaching invasive spe-
cies, or biological soil crust. 

Fuzzy classifications in dryland studies have been generally limited, 
even though it may be particularly suited and used successfully as in 
Cullum et al. (2016), Tong et al. (2017), and Bell et al. (2021). The merit 
of such fuzzy classifications is through embracing imprecision, and 
describing pixels or areas in a way so that proportional composition, 
similarity (or dissimilarity), potential, or likelihood of components can 
be interpreted after classification to suit the user's need or conform to a 
desired level of hierarchy (Cullum et al., 2016; Feilhauer et al., 2021; 
Hudon et al., 2021). Vegetation mapping at landscape scales must 
include some level of generalization or aggregation of natural shapes 
and morphologies, as only topiaries are found in rectilinear pixel shapes. 
When a landscape contains multiple combinations of species, imple-
menting partial membership at these pixel scales reverses some of the 
generalization, but is not without difficulties. The process of assigning 
partial membership can be complicated or highly tailored to the indi-
vidual study, and can still require finding spectral endmembers of ‘pure’ 

cover types at the pixel scale (e.g. Delalieux et al., 2012; Tong et al., 
2017). In the case of dryland ecosystems, many ‘dominant’ species are 
relatively sparse by percent cover (e.g. <50%) therefore precluding the 
ability to find endmembers at scales relevant to pixel resolutions of 
multispectral satellite imagery. Although percent cover observations of 
pixels with <100% homogenous single-species cover is possible, soft 
classes may have additional advantages. Background soil, biological soil 
crust, or invasive annual grass cover are often the largest percent cover 
(as viewed from above, especially if including underneath shrubs) in 
dryland ecosystems and thus, many soft classes may be difficult to 
differentiate after classification, and assessing classification errors may 
be unclear. Establishing soft classes prior to classification has the po-
tential to represent diverse landscapes with greater fidelity by way of 
incorporating heterogenaity, thereby unlocking other more straightfor-
ward methods of ‘fuzzy’ classification schemes and interpretations. 

To implement the soft classes concept, here we determine commu-
nity types through k-means clustering of field training data to utilize 
these clusters with time-series remote sensing observations. We employ 
a big-data approach with time-series Sentinel-2 data within the Google 
Earth Engine (GEE) platform to enable the use of an ensemble of all 
cover types present. This allows for the signal of background and/or 
non-dominant or periodically dominant signals to be used to discrimi-
nate between landscape community cover types. We discuss the use of a 
simple fuzzy confusion technique using constituent component distri-
butions in soft classes, both species-based and plant functional type- 
based. The approach is tested in a western U.S. dryland ecosystem in 

Fig. 1. Study area of the Morley Nelson Snake River Birds of Prey National Conservation Area located in southwest Idaho, USA.  
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the Great Basin covering nearly 4000 km2. We seek to prompt a recon-
sideration of some tenets of remote sensing and vegetation classifica-
tions, especially in light of rapidly advancing computational abilities 
and algorithms (such as artificial intelligence) and new remote sensing 
platforms. To investigate an alternative approach, we demonstrate and 
discuss the following for a quilted semi-arid ecosystem:  

1) Can the input “classes” of a vegetation classification be more 
ecologically-aligned (such as ‘soft’ classes)? 

2) What are the ecological and management implications for soft clas-
ses, and what are potential advantages of applying ‘fuzzy’ confusion? 

2. Methods 

2.1. Study area 

The study area includes the Morley Nelson Snake River Birds of Prey 
National Conservation Area (Fig. 1). This area is managed by the Bureau 
of Land Management and also includes the enclosed Orchard Combat 
Training Center (OCTC, managed by the Idaho Army National Guard), 
and the Mountain Home Air Force Base and Small Arms Range 
(MHAFB). The topography is relatively flat (excepting isolated buttes) 
with elevations near 900–1000 m. The area receives approximately 
110–320 mm of precipitation annually, with the majority falling be-
tween November and April. Loess soils dominate the study area. The 
vegetation of the area is broadly characterized as a semi-arid ecotype 
composed of communities of Wyoming big sagebrush (Artemisia tri-
dentata ssp. wyomingensis), salt-desert shrubs (primarily members of the 
Chenopodioideae subfamily), and bunchgrasses (Poa secunda, Pseudor-
oegneria spicata, and Agropyron cristatum). Land use within the study area 
over the last century has principally included livestock grazing, recre-
ation, and military training. Extensive ecosystem degradation has 
occurred in many regions of the study area, where invasive annuals 
(primarily Bromus tectorum, “cheatgrass”) and secondary invasive plants 

such as Russian thistle (Kali tragus) and annual mustards (Descurainia 
spp., Sisymbirum ssp.) are now the dominant land cover (US Department 
of Interior (USDI), 2008). 

As a result of the invasive species and a long history of changing land 
uses and practices, the area is a patchwork of many different vegetative 
communities. For land managers and stakeholders, balancing the cur-
rent uses of the study area requires information on yearly changes in 
vegetative cover, impacts of rangeland fires, and how restoration and 
remediation efforts are progressing. To this end, increasing the accuracy 
of vegetation cover data and frequency of its creation is propitious. The 
species and cover types used in this study (see Table 1) were determined 
based on land management needs and priorities. 

2.2. Field data 

Field data plots used in this study (n = 378) were collected during 
March–August 2016. Plots were selected in the field to capture example 
communities and be representative of different community combina-
tions and variations among spatial gradients. Surveyed species and 
cover types (such as bare ground, litter or non-photosynthetic vegeta-
tion, and biological soil crust), pre-classification amalgamation, and 
plant-functional-type groupings are listed in Table 1. 

A field survey was conducted for each plot, and five nadir-pointing 
images were taken in the center and cardinal directions (7 m from 
center), approximately 2 m above the ground surface using a ruggedized 
consumer-grade camera. A RTK GPS recorded the imager's location 
simultaneously. Vegetation and groundcover were quantified using 
SamplePoint software (v1.59, Booth et al., 2006) using 100 points per 
image for a total of 500 points characterizing each field plot (approxi-
mately 200m2). Fig. 2 illustrates that there are very few species that 
dominate the areal cover (i.e. >50%) of a plot. BRTE (cheatgrass) and 
BARE (bare, or incipient biocrust) have a large number of observations 
and wide range of percent cover. In comparison, ARTR (sagebrush, 
commonly described as a ‘dominant’ species) has a much smaller 
percent cover range. For this study, areas with no discernible biological 
soil crust from the photos were classified as bare soil; field observations 
noted if the ground surface was biological soil crust or exposed soil if it 
was ambiguous. In this study area, truly bare soil is only observed in 
areas of recent or frequent disturbance. Soil types and colors were not 
recorded. Non-photosynthetic vegetation (NPSV or litter) was recorded 
for points that fell on vegetative matter that was loose (i.e. not rooted to 
the ground, or attached to other plant parts) and unidentifiable; 
attached and identifiable senesced or woody matter was recorded as the 
species. Shadow/dark and unknown were recorded but not used in the 
subsequent steps. Transported tumbleweed and tumblemustard, while 
identifiable and non-photosynthetic, were treated as litter/NPSV. 

Two orders of community classes were developed from the field data. 
In order to create the most ecologically-descriptive classes, community 
clusters were created using as close-to species level where feasible for 
class size (Table 1, column 3). Several species of the same or similar 
genus and phenology were aggregated in order to avoid sample groups 
with proportionally few members. For example, several exotic annual 
forbs were grouped into [EXAN]. This level of community clustering also 
included non-photosynthetic vegetation [NPSV] as a class in order to 
acknowledge its areal coverage proportion in several community types. 
Similarly, biological soil crust [BSC] and bare ground/incipient bio-
logical soil crust [BARE] were included at this level of aggregation. The 
second level of community classes were created from aggregating the 
species at the plant functional type (PFT) level (Table 1, column 4) in 
order to evaluate the separability of classes created from fewer con-
stituent cover types and to demonstrate that our proposed method can 
produce output broadly comparable with other methods. 

Determining the species- and PFT-levels of community clusters was 
conducted using k-means clustering. K-means is a vector quantization 
method that is often used for clustering data in multi-dimensional space 
(Jain, 2010). We selected k-means due to its ease of interpretation, 

Table 1 
Vegetation and cover types present in this study. The symbol [] denotes when a 
species was assigned to a group for species-level clustering. Species abbrevia-
tions from USDA PLANTS database, or EXAN for exotic annuals, MSTD for 
mustards, RABB for rabbitbrush species, BSC for biological soil crust, and NPSV 
for non-photosythetic vegetation such as litter.  

Scientific Name(s) Common Name Species or 
[Grouped] 
Abbreviation 

Plant Functional 
Type (PFT) 

Agropyron cristatum crested wheatgrass AGCR Perennial 
Artemisia tridentata sagebrush ARTR Shrub 
Atriplex confertifolia shadscale saltbush ATCO Shrub 
Bassia prostrata forage kochia BAPR Perennial 
Bromus tectorum cheatgrass BRTE Annual 
Ceratocephala 

testiculata 
bur buttercup [EXAN] Annual 

Lepidium perfoliatum clasping 
pepperweed 

[EXAN] Annual 

Bassia scoparia weed kochia [EXAN] Annual 
Krascheninnikovia 

lanata 
winterfat KRLA Shrub 

Descurainia spp., 
Sisymbirum ssp. 

mustards [MSTD] Annual 

Poa secunda Sandberg's 
bluegrass 

POSE Perennial 

Pseudoroegneria 
spicata 

bluebunch 
wheatgrass 

PSSP Perennial 

Chrysothamnus 
nauseosus 

gray rabbitbrush [RABB] Shrub 

Chrysothamnus 
viscidiflorus 

green rabbitbrush [RABB] Shrub 

– bare ground [BARE] Bare 
– biological soil crusts [BSC] BSC 
– non-photosynthetic 

vegetation 
[NPSV] NPSV  
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efficiency and scalability, and wide acceptance as a clustering method 
(Ikotun et al., 2023). We implemented this method without selecting 
centers so as to separate the field data into ecological classes without 
bias. The number of k-means clusters was preliminarily constrained 
using diminishing reductions in within-cluster sum of squares, and 
further refined subjectively to the fewest k clusters that retained at least 
one cluster per broad cover type in the study area (e.g. a cluster repre-
senting winterfat (KRLA) communities). Multiple iterations and random 
starting sets of data ensured a convergence of cluster centers. Each 
clustering maintained a ratio of Between Sum-of-Squares to Total 
Sum-of-Squares of approximately 0.8 to ensure that points within each 
cluster were similar, and that such clusters were distinct. 

2.3. Sentinel-2 preprocessing 

Level-1C (top of atmosphere) Sentinel-2 imagery covering the study 
area from 01 January 2016 to 28 December 2016 were selected to span 
the growing season corresponding to the field data collection. Sentinel-2 
has some advantages for detecting vegetation and temporal changes, 
such as three narrow red-edge bands (at 20 m pixel resolution) and a 

5–6 day revisit time (Adam et al., 2014). These have been noted to be 
important in discriminating differences in semi-arid vegetation (e.g. 
Mitchell et al., 2016). Images were filtered for quality (e.g. failing 
quality control, >50% cloud cover), and masked for clouds and 
shadows. Pre-processed images (n = 117) were composited into monthly 
mosaics (February–December; January had insufficient coverage) in 
order to balance spatial coverage with temporal resolution, as well as 
softening differences in phenologies across the broad study area and 
possible influences from differing atmospheric conditions. Composited 
imagery was resampled to 10 m pixel sizes for all bands. 

Spectral indices were calculated for each image following cloud and 
shadow masking. Table 2 lists the spectral indices and their formulas, 
informed by previous scientific work for their predictive ability and that 
take advantage of Sentinel-2-specific bands (Frampton et al., 2013), or 
for their application of the red-edge bands (e.g. Band 8 A in CCCI and 
NDMI, Table 2). In addition to spectral indices, Sentinel-2 Bands 2–8, 8 
A, 11, and 12 were used as predictors for a total of 20 predictors per time 
interval (n = 220). 

Fig. 2. Distributions of cover types by species-level for field plots. Boxplot widths represent the number of field plots within a cover type. Bare ground (BARE) was 
found in most plots, whereas bluebunch wheatgrass (PSSP) was the least common. 
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2.4. Classification & random forest model 

A random forest classifier was used to predict the species- and PFT- 
level clusters presented in Table 1 based on the S2 spectra and calcu-
lated indices (Table 2). The central point for each field plot was buffered 
using a 10 m radius, and the mean value of the intersected pixels of each 
band and index were extracted as the predictor variables for the model. 
Random forest (RF) was chosen to evaluate the different predictor and 
response variable combinations due to the high dimensionality and 
multicollinearity of the predictor variables, and its insensitivity to 
overfitting (Breiman, 2001; Belgiu and Dragut, 2016). The RF classifier 
is generally less sensitive to training data imbalance (Pal, 2005) 
compared to many other mainstream classifiers, which is important for 
this study as some classes of interest are relatively under-represented in 
comparison with others (e.g. number of shadscale (ATCO) versus 
cheatgrass (BRTE) plots). Random forests are also able to handle missing 
values when imputing the classification, which is advantageous for 
portions of the predictor data that contain masked areas (e.g. clouds and 
shadows) after mosaicking. Several plots used in the community- 
clustering process were excluded from the training portion of the clas-
sification model due to insufficient spectral observations. The RF model 
was implemented in Google Earth Engine using 500 trees and out-of-bag 
internal sampling with a bag fraction of 0.5, and 30% of samples were 
reserved for validation after classification. 

2.5. Validation and accuracy assessment 

We analyzed the accuracy of our classifications with standard 
confusion matrices using omission/commission errors (“false alarms” or 
“misses”, Pontius and Millones, 2011), in order to inform our proposed 
fuzzy confusion assessments. By acknowledging gradual transitions be-
tween land cover components in the reference data, a user has the op-
portunity to apply a mechanistic approach to determine acceptable 
fuzzy confusion, dependent on the scientific question or management 
goal. Community classes with largely the same distribution of percent 
cover of a particular constituent species or PFT can be considered 
equivalently correct for classification error assessment, as pertaining to 
the question or management goal. For example, establishing that 
>11.4% biological soil crust (BSC) cover in any class as a management 
concern could be a threshold for acceptable fuzzy confusion. A confusion 
matrix can then be created treating such omission/commission errors as 
entirely correct (by combining rows and columns) for classes where the 
cover criteria is met. The resulting classification layer may then be 

displayed and interpreted in this context. Validation of the RF model for 
establishing soft classes for both species-level and PFT communities was 
assessed using the overall accuracy (OA) of the deterministic confusion 
matrix, as calculated using the RF internal out-of-bag validation. 

3. Results 

3.1. Community-level clustering for soft classes 

Fig. 3 represents the distribution of vegetation cover types contained 
in the species-level community class (from Table 1) determined from the 
k-means clustering scheme of the field data. Tables 3 lists cluster centers 
(means) of the cover type for each class and the number of field plots 
contained in each class (cluster). The bare cover type shows predomi-
nantly in many of the clusters (Fig. 3) and in fact only <10% cover in 
three clusters (2, 5, and 6) (Table 3). The cheatgrass cover type (BRTE) 
has the highest percent cover of all cover types and dominates (>25%) 
in clusters 2, 7, 8, and 11. Biological soil crusts (BSC) are present in 
many clusters, and in only one cluster with cheatgrass. While lower 
percent cover, non-photosynthetic vegetation (NPSV) appears 
throughout all the clusters. Several of the shrubs, including sagebrush 
(ARTR), shadscale saltbush (ATCO), rabbitbrush (RABB), winterfat 
(KRLA) have relatively high percent cover in unique clusters. Strikingly, 
the majority of the clusters (such as 4, 5, 6, and 14) demonstrate a 
membership of a community of species; no single species represents 
more than half of the cover, and many proportions are fairly similar. 

The PFT-level community classes are shown in Fig. 4, with the cor-
responding clusters in Table 4. The results of this clustering similarly 
results in dominance of the BARE class throughout, along with several 
clusters with high percent cover annual grasses and forbs (cheatgrass, 
bur buttercup, etc.). At the PFT-level, many of these clusters show 
communities of shrubs and biocrusts, though a healthy mix of bunch-
grasses are only present in two of these clusters (2 & 3). 

3.2. Classification accuracy metrics 

Overall classification accuracy in the RF model using 0.3 reserved 
samples with an out-of-bag fraction of 0.5 of was 0.52 for the species- 
level (species-level, with several species grouped more broadly) com-
munity (‘soft’) classes, and 0.54 for the PFT-level community (‘soft’) 
classes. The authors posit an alternative method of assessment, dis-
cussed further below. Subset of classification output is illustrated in 
Fig. 5a. 

3.3. Application-based resampling accuracy assesment for example usage 
scenario: biological soil crust 

A classification of soft classes can be re-interpreted as prompted by 
specific ecological or management questions, whether or not it is ‘fuzzy’. 
Such a question could be identifying areas that having a higher cover 
portion of biological soil crust (“biocrust” or BSC). For example, if a land 
manager or ecologist wishes to delineate areas with biocrust cover 
>10% (11.4% was the mean value of biological soil crust cover across all 
field samples in this study), then soft classes with mean centers of >10% 
BSC are considered as the same class. In this scenario, classes 1–3, 7–9, 
and 13 are treated as equivalent (<10% BSC), and the remaining as 
equivalent (>10%); the map becomes a binary classification. Fig. 5a 
shows a subset of the initial classification with all soft classes displayed. 
Fig. 5b shows a subset of the classification with the hypothetical bio-
logical soil crust map displayed. The confusion matrix (Table 5) can then 
be interpreted by collapsing the equivalent rows and columns so pre-
viously misattributed values between classes are considered as valid 
given the new criteria (demonstrated in Table 6). 

Table 2 
Spectral indices used with Sentinel-2 data in this study.  

Index or Ratio Abbreviation Formula 

Anthocyanin Reflectance 
Index1 

ARI ( 1
B3

)

−
( 1
B5

)

Canopy Chlorophyll Content 
Index2 

CCCI B8A − B7
B8A + B7
B8A − B4
B8A + B4 

Enhanced Vegetation Index3 EVI 
2.5*

( B8 − B4
B8 + (6*B4) − (7.5*B2) + 1

)

Inverted Red-Edge 
Chlorophyll Index4 

IRECI B7 − B4
B5/B6 

Normalized Difference Near 
Infrared Red-Edge5 

NDMI B8A − B11
B8A + B11 

Normalized Difference 
Vegetation Index6 

NDVI B8 − B4
B8 + B4 

Red-Edge Inflection Index 7 REIP 
0.705+ 0.035*

(B7 + B4)/2 − B5
B6 − B5 

Soil Composition Index8 SCI B11 − B8
B11 + B8  

1Gitelson et al., 2001, 2Barnes, et al., 2000, 3Peñuelas et al., 1993, 4Frampton 
et al., 2013, 5Hardisky et al., 1983, 6Rouse et al., 1974, 7Herrmann et al., 2011, 
8Al-Khaier, 2003. 
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Fig. 3. Soft Classes: K-Means Species-Level Cluster Community Distribution Histograms. Each cluster (1–15) represents a group of field plots sharing similar pro-
portions of cover types; cover types of <5% mean cover are omitted for clarity of display. The vertical axis of each cluster represents the density of cover type within 
the cluster. The horizontal axis represents percent cover of each type. 
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4. Discussion 

Determining ‘soft’ community-level classes prior to a multi-temporal 
classification better reflects the heterogeneous patchwork of patterned 
fabrics and gradients of vegetation communites and reserves interpre-
tation for the end user in two ways. First, the end user has additional 
freedom to choose what classes best answer their question after the 
classification. Second, the end user can assess the accuracy of the clas-
sification based on their question (‘fuzzy’ confusion or otherwise, as 
presented in our example). 

From a remote sensing perspective, we have proposed a method 
which leverages the entire optical signature and its change over time for 
each pixel. There are methods that can produce similar end products 
which impute several layers of percent cover of serveral or more cover 
types (Jones et al., 2018, Robinson et al., 2019, Rigge et al., 2021, Allred 
et al., 2021). Further investigation and comparison is needed, but we 
posit that our proposed method enables the end product to capture 
species or cover types that are difficult or impossible to create fractional 
cover layers using spectral end members or other methods. 

Where a singular optical signature on a particular date may be su-
perior for a binary or gradient classification, an ensemble of vegetation 
indices and spectral bands over a growing season enables sub-pixel 
mapping of component vegetation types without the need for spectral 
endmembers or hyperspectral data, and partially mitigates the mixed 
pixel problem by acknowledging that nearly all of the pixels are mixed. 
This reflects the ‘optical types’ concept discussed by Ustin and Gamon 
(2010), where the remote sensing observations drive what classes may 
be identifiable. For example, a ‘soft’ class describing a community with 
an observable spectral signature (at one time, or phenologically) due to 
proportions of bare ground, perennial grasses, and non-photosynthetic 
vegetation – might also be associated with a certain percentage of bio-
logical soil crust, or a particular amount of forbs which are important yet 
difficult to detect and map (Endress et al., 2022). 

Additionally, describing input classes as ‘soft’ may allow the classi-
fication model to discern between communities that are identical in 
most regards, but where two shrub communities share similar values of 
one spectral index over time, but dissimilar values of another spectral 
index at one or more seasonal observations like a different colored 
flower, or a different understory. 

Using fuzzy confusion – determined by the end user, based on a 
particular question or objective – as the classification accuracy metric 
we posit is the main benefit of our proposed method. In seeking to 
reserve interpretation for the end user, and to allow a more organic 
relationship between field observations and optical observations, some 

large degrees of confusion are inevitable. Or, perhaps, enlightening. 

4.1. Ecologic interpretation and management implications of soft classes 

The k-means clustering at both PFT and species levels are naive in the 
sense that they are not based on established descriptive types in the field 
of ecology, or informed by specific land management needs. However, 
depending on the question they may be interpreted in different ways. A 
land manager might rank the PFT-clusters ordinally, assigning value to 
preserving intact and biodiverse areas; Classes 8, 2, and 7 have higher 
biological soil crust cover, two are dominated by shrub cover, and they 
all have a variety of other types. Classes 6, 5, and 4 may rank lowest due 
to increasing homogeneity of the annual PFT. Land management may 
instead prefer binned percent cover of BRTE for fire risk assessment, and 
may treat the species-level clusters as a continuous dataset: class 2 is 
>75% BRTE; class 7 is ≈50%; classes 8, 11, and 4 are ≈25%, and 
remaining classes are <10%. An ecological use might consider the PFT- 
level clusters as nominal classes where 1 and 2 are “perennial grass 
dominated”, classes 7 and 8 are “shrub dominated”, class 3 is “bare or 
open space”, 5 is “mixed”, and 4 and 6 are “dense annuals” and “sparse 
annuals”, respectively. 

4.2. Soft landcover classes with K-means clustering preserve patterns in 
ecology 

The process of determining the number of clusters (k) and their 
centers is challenging as it can bias the resulting classes. While a larger k 
improves cluster distinction (within sum-of-squares), resulting clusters 
can be overly-specific by grouping a handful of plots with very similar 
cover distributions. Fewer clusters can result in poor distinction, where 
one or more clusters may have loose cohesion or represent large distri-
butions of one or more cover types (e.g. plots with ≈50% BRTE but 
otherwise plots have no other commonalities). The cluster centers for 
this study were not set with a priori information in order to avoid 
imposing preconceptions of community types, instead qualitatively 
assessed to ensure that vegetation or PFT communities of interest were 
represented by a cluster. 

However, the success of the cluster assignments is confounded by 
two cover types: BARE and BRTE (bare soil/incipient biological soil 
crust, and cheatgrass, respectively). These cover types have a relatively 
large range of fractional cover in the demonstration site (≈0–85%) and 
are represented in many plots. Fig. 4 illustrates the pervasive cover of 
BARE and BRTE; nearly all training plots have some proportion of one or 
the other. BARE has an interquartile range of 31% cover, and BRTE of 

Table 3 
K-Means Species-Level Cluster Mean Centers and Number of Plots per Class (n). Each cluster (‘soft class’) is comprised of plots sharing common proportions of one or 
more cover types, but are not required to have commonalities of all cover types. For example, field data comprising community cluster 10 have a 29.1% mean cover of 
ARTR, with possible small portions of other shrubs. The within sum-of-squares (WSS) is a unitless measure of how similar the constituent data points are with one 
another in the cluster (‘soft’ class), smaller being more similar.  

Cluster 
Number 

AGCR ARTR ATCO BAPR BARE BRTE BSC EXAN KRLA MSTD NPSV POSE PSSP RABB Cluster 
WSS 

Cluster 
Size 

1 0.4 0.6 0.9 0.4 37.4 0.6 9.5 31.3 0.3 0.5 5.8 5.7 0.0 0.3 14,451 32 
2 1.2 1.2 0.0 0.0 4.3 84.2 1.8 0.0 0.2 1.7 1.5 0.6 0.0 1.3 8138 49 
3 0.5 0.4 1.0 2.2 65.5 1.4 4.1 4.3 1.6 1.8 3.8 4.1 0.0 0.6 10,772 33 
4 1.6 0.1 2.4 0.5 10.9 19.0 12.6 0.7 0.4 1.6 8.9 6.9 3.5 4.2 10,626 17 
5 0.6 0.7 15.3 0.0 34.7 0.5 20.7 5.3 1.7 2.2 5.2 2.0 0.0 1.6 10,896 22 
6 0.1 3.9 1.7 0.0 8.2 0.4 30.9 0.6 13.3 2.0 7.8 17.2 2.1 0.1 13,441 18 
7 0.0 4.6 2.0 0.0 9.2 53.3 6.0 0.3 0.6 1.1 6.8 2.7 1.8 4.5 21,188 45 
8 1.1 0.8 1.9 0.0 34.8 38.7 4.1 0.2 2.8 0.4 3.9 1.5 0.0 3.1 6803 18 
9 1.8 0.0 0.0 0.0 23.0 1.5 6.2 0.6 0.0 49.7 6.7 8.6 0.0 0.0 9136 13 
10 0.0 29.1 0.2 0.0 23.6 4.0 11.7 5.5 0.4 0.2 16.4 4.5 0.0 0.2 18,361 25 
11 34.8 0.0 0.0 0.0 11.7 26.8 12.4 0.4 0.0 0.0 7.4 0.9 0.0 0.1 2920 6 
12 0.0 0.0 0.0 31.8 31.0 1.5 19.2 3.9 0.0 0.5 6.9 2.2 0.0 0.0 9697 19 
13 0.0 1.3 1.1 0.9 29.2 0.4 8.4 1.3 0.5 1.5 3.9 44.9 0.0 0.3 13,690 35 
14 0.0 0.4 0.0 0.0 18.1 0.4 17.4 2.2 0.0 0.6 11.0 17.8 0.2 28.6 7992 19 
15 0.0 0.0 0.0 0.0 44.8 0.3 16.6 6.2 21.4 0.9 4.6 1.8 0.0 0.0 7967 27  
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64%. As a result clusters with some portion of BARE or BRTE are often 
confused, which reflects the condition of much of the study area. In 
other words, a human field observation would describe an area as a 
“shadscale community” although it might be largely bare (or biological 
soil crust), or have its interspaces filled by an invasive annual grass. 

Our proposed method of determining soft classes is a naive means to 
describe and categorize the ecology of the area while being objective 
and considerate of optical remote sensing principles. While the soft 
classes created for this study are not directly transferrable to other areas 
or frameworks, there may be opportunities for them to be translated 
using ordinal, nominal, or other means as discussed and depending on 
the needs of the end user. 

Metrics such as the Within-Sum-of-Squares (WSS, a measure of 
cluster grouping), can show how distinct or loose clusters are. We found 
a high Pearson's' Correlation Coefficient (0.88) when comparing the 
WSS with commission errors (0.65 vs. omission errors). Or in other 
terms, certain soft classes are confused with others. However, the degree 
to which this source of confusion can or needs to be reduced is likely 
dependent on the ecology of the area in question; vegetation types that 
exist on a broad continuum and among a variety of other community 
types may require many classes to describe them, or are not separable 
into distinct groups. Using fuzzy confusion has potential to address these 
issues, where the degrees and methods are determed by the end user. In 
our study, classes with the highest mutual confusion errors have high 
proportions of cheatgrass (BRTE) among their constituents. The perva-
sive spatial distribution of BRTE is likely a significant source of confu-
sion in the spectral signatures over time of such classes. An end user may 
choose to treat confusion between soft classes with low proportions of 
BRTE as less acceptable than confusion between soft classes with higher 
BRTE, for instance. 

4.3. Remote sensing data, fuzzy confusion, and soft classes 

We used Sentinel-2 Level 1C (top-of-atmosphere) data because of its 
availability for 2016, the year of our field data collection; however Level 
2 A (bottom-of-atmosphere) data are now available for subsequent years 
which provide high quality atmospheric correction. Bottom-of- 
atmosphere reflectance would reduce noise in observed phenological 
signals over time and increase the stability of our proposed classification 
methods. Although paved and unpaved features were not considered as 
constituent components in the clustering and classification process, 
these features fell in the same predicted class, suggesting that compos-
ited top-of-atmosphere imagery may be adequate for conceptual 
exploration of our proposed classification schema. 

Including time as a predictor (e.g. offset of beginning of growing 
season), or other environmental variables (e.g. elevation) may enable 
larger study area extents by accounting for changes in seasonal growth 
due to elevation, but may also require finer temporal resolution or 
multiple years of remote sensing data. Multiple years of remote sensing 
observations may help in some circumstances where the ecology and 
growing seasons are stable or reduce advantages from leveraging unique 
spectral observations of unique classes such asan early spring rain event 
may enable an index to discern percent cover of biological soil crust. 

Fig. 4. Soft Classes: K-Means PFT-Level Cluster Community Distribution His-
tograms. Each cluster (1–8) represents a group of field plots sharing similar 
proportions of cover types; cover types of <5% mean cover are omitted for 
clarity of display. The vertical axis of each cluster represents the density of 
cover type within the cluster. The horizontal axis represents percent cover of 
each type. 

Table 4 
K-Means PFT-Level Cluster Mean Centers and Number of Plots per Class (n). Each cluster (‘soft’ class) is comprised of plots sharing common proportions of one or more 
cover types, but are not required to have commonalities of all cover types.  

Cluster Number SHRB PRNL ANNL BARE NPSV BSC Cluster WSS Cluster Size 

1 2.7 36.7 10.5 40.0 3.8 5.7 7497 30 
2 4.9 50.3 7.6 14.2 5.8 16.3 12,664 28 
3 5.2 3.6 12.0 70.5 3.8 4.4 8117 27 
4 2.9 2.3 84.9 5.5 2.0 1.7 9838 56 
5 12.7 10.8 50.5 9.8 6.3 8.4 29,170 52 
6 3.4 3.9 40.5 37.7 6.1 7.0 20,361 54 
7 22.4 2.8 10.1 42.0 4.8 16.4 25,836 73 
8 31.2 11.2 5.1 17.8 13.8 19.5 34,014 58  
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Fig. 5. a. Subset of species-level soft-class (descriptions illustrated in Fig. 3 and Table 3). The large block feature (soft class 2) is a former grazing enclosure and is 
largely cheatgrass, an exotic invasive annual grass. Also of note are the dirt roads which appear as class 3, which has a mean value of 65.5% BARE. b. Example of 
hypothetical applied fuzzy confusion, where a hypothetical land management criteria seeking to delineate areas with biological soil crust cover over a threshold. In 
this case, biological soil crust cover of >10% (blue) and < 10% (orange) is presented. Mean biological soil crust cover across all field samples was 11.4%. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Confusion Matrix of Species-Level Soft Classes. Overall accuracy is 0.52; omission errors (misses) and commission errors (false hits) are also calculated.  

Classified Reference   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 

1 18 0 6 0 0 0 0 0 0 2 0 1 4 1 0 32 
2 1 39 0 0 0 0 6 0 0 0 0 0 1 1 1 49 
3 3 0 23 0 0 0 0 2 0 0 0 1 0 0 4 33 
4 0 1 0 0 2 1 6 2 0 1 1 0 1 1 1 17 
5 0 0 3 0 8 2 0 0 0 0 0 1 3 2 3 22 
6 1 0 0 0 2 4 2 0 0 2 0 1 3 1 2 18 
7 2 7 0 1 0 0 29 1 0 2 0 1 2 0 0 45 
8 1 1 1 1 0 2 2 3 0 2 0 0 4 0 1 18 
9 5 2 2 0 0 0 0 0 2 0 0 0 2 0 0 13 
10 0 1 0 0 0 1 5 2 0 14 0 0 1 1 0 25 
11 0 0 0 0 0 1 2 0 0 2 0 0 0 0 1 6 
12 1 0 4 0 1 1 0 0 0 1 0 9 0 2 0 19 
13 1 1 5 0 2 2 4 0 0 0 0 0 17 2 1 35 
14 1 0 0 0 0 0 2 0 0 1 0 0 4 11 0 19 
15 2 0 3 0 0 3 1 0 0 0 0 0 0 0 18 27                  

Total 36 52 47 2 15 17 59 10 2 27 1 14 42 22 32 378 
Omission Error 18 13 24 2 7 13 30 7 0 13 1 5 25 11 14 183 
Comission Error 14 10 10 17 14 14 16 15 11 11 6 10 18 8 9 183 
Correct 18 39 23 0 8 4 29 3 2 14 0 9 17 11 18 195 

0.52 Overall accuracy. 
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Examining if there is a correlation between classification outputs as 
proposed in this paper and underlying soil patterns can give additional 
context to the overall accuracy and success of this approach. Addition-
ally, further investigation or comparison to other methods, especially 
regarding broadly distributed classes such as bare ground, would help 
understand costs and benefits of our proposed method. 

The soft classes and fuzzy confusion method presented here has 
potential to inform land management and scientific research differently 
than other methods. It reserves interpretation for the user by enabling 
post-hoc reinterpretation of confusion matrices, and encourages framing 
confusion matrices as a fuzzy classification schema tailored to the 
vegetation or land cover in question, without reprocessing. Our rein-
terpreted ‘hard’ classification example returns a single accuracy value 
(overall accuracy of 0.79 in detecting areas >10% biological soil crust 
cover) for the sake of clarity. A fuzzy confusion could consider the dis-
triubution of biological soil crust cover within each class and incorpo-
rate a level of uncertainty, or use a classification model such as Random 
Forests and use the weighted probability outputs. 

While other approaches using even higher spectral, spatial, or tem-
poral resolutions may not need or benefit from our presented methods, 
the Sentinel-2 platform offers a free and widely-available compromise of 
resolutions. This, combined with increased computational ability, raise 
a reminder to evaluate the paradigm of resolution and the scale of 
subjects. 

Input soft classes are potentially better constrained with membership 
distributions with coarser levels of aggregation (e.g. by PFT), but lose 
finer levels of ecological distinction. Management needs and research 
can be better served with more representative classes. For example, 
there is a key uncertainty in land surface models with the use of PFTs 
(Hartley et al., 2017). Since our proposed method requires some tech-
nical expertise to use (GIS skills, specifically raster reclassification when 
implementing various fuzzy confusion), we do not propose that it is a 
replacement for a static map. Novel and thoughtful methods of dis-
playing fuzzy confusion may assist in visual interpretation (as in 
Zlinszky and Kania, 2016). 

Regardless, our study seeks to address some classification paradigms, 
and not to speak to the advantages and drawbacks of PFTs compared to 
finer levels of land cover classes. There are many classification algo-
rithms for relating field observations with remote sensing data, but we 
posit that more effort should be paid to the methods by which we assign 
classes to the field data. These approaches should seek to balance the 
scale of the target subject (e.g. ‘drylands/forest/prairie’ vs. ‘sagebrush/ 
invasive annuals/bunchgrasses’) with the capabilities of the sensing 
platform. In such a fashion, veracity of what field data describes is 
preserved to its maximal extent, and assists the needs of land managers 
and ecologists. 

5. Conclusion 

The use of ecologically-meaningful classes instead of majority-cover 

classes may provide more value to land management needs, or for 
ecologic studies. This is exaggerated in semi-arid ecosystems, or in other 
landscapes where much of the vegetation or land cover types are found 
at their densest as <50% of the cover of a typical satellite pixel. We posit 
that our proposed method of determining classes preserves variability in 
land cover components at sub-pixel scales, and includes information 
about rarer species or cover types which may difficult to detect using 
percent cover or floristic gradient approaches, therefore enabling 
greater fluidity in interpretation by the user. 

Our proposed method for establishing soft classes prior to classifi-
cation makes minimal spectral or optical assumptions about the “sig-
natures” of constituent components (i.e. endmembers), and instead 
considers the entire optical signature to be a mixed pixel inherently. 
Thus, soft classes accept the inevitability and mitigate some difficulties 
of the mixed pixel effect and the interaction of light with canopy 
structure. 

Modern computational capabilities and new remote sensing plat-
forms and datasets have sparked a paradigm shift in remote sensing 
scales (spectral, temporal, spatial) and methods for vegetation classifi-
cation. The authors seek to encourage that this shift include consider-
ation for what classes are classified, how emerging computation 
methods and models may be applied to remote sensing data and novel 
input and output classes, and what metrics for measuring a successful 
vegetation/landcover classification could be. In this paper, we posit 
that: 1) ‘soft’ classes, using ecologically-meaningful vegetation com-
munities or cover composition can be used as input classes for a time- 
series remote sensing classification, and 2) that the output of 
ecologically-meaningful (‘soft’) classes through such a model may better 
reserve interpretation for the user of the end product, thorugh enabling 
post-classification reinterpretation, and using ‘fuzzy'confusion for 
applicability and accuracy assesment. 

Observations from sensors on the International Space Station such as 
ECOSTRESS or HISUI for spectral information and GEDI for structural 
information, along with increased spatial resolution data from drones 
may further such approaches for landscape-level assessments that 
managers can utilize. Other clasisification algorithms or techniques such 
as Neural Networks of various types (e.g. ANN, GNN, DNN) or AI could 
further develop means to create ecologically-meaningful soft classes, 
and better relate those to time-series remote sensing data. 
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