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A B S T R A C T   

Reference evapotranspiration (ETo) is an essential variable in agricultural water resources management and 
irrigation scheduling. An accurate and reliable forecast of ETo facilitates effective decision-making in agriculture. 
Although numerous studies assessed various methodologies for ETo forecasting, an in-depth multi-dimensional 
analysis evaluating different aspects of these methodologies is missing. This study systematically evaluates the 
complexity, computational cost, data efficiency, and accuracy of ten models that have been used or could 
potentially be used for ETo forecasting. These models range from well-known statistical forecasting models like 
seasonal autoregressive integrated moving average (SARIMA) to state-of-the-art deep learning (DL) algorithms 
like temporal fusion transformer (TFT). This study categorizes monthly ETo time series from 107 weather sta-
tions across California according to their length to better understand the forecasting models’ data efficiency. 
Moreover, two forecasting strategies (i.e., recursive and multi-input multi-output) are employed for machine 
learning and DL models, and forecasts are assessed for different multi-step horizons. Our findings show that 
statistical forecasting models like Holt-Winters’ exponential smoothing perform almost as well as complex DL 
models. Unlike statistical models, DL models generally suffer from low data efficiency and perform well only 
when enough data is available. Importantly, although the computational costs of most DL models are higher than 
statistical methods, this is not the case for all. Considering computational cost, data efficiency, and forecasting 
accuracy, our findings point to the superiority of the neural basis expansion analysis for interpretable time series 
forecasting (N-BEATS) architecture for univariate ETo time series forecasting. Moreover, our results suggest Holt- 
Winters and Theta methods outperform SARIMA – the most employed statistical model for ETo forecasting in the 
literature – in accuracy and efficiency.   

1. Introduction 

Time series forecasting is crucial in several domains of modern 
agriculture, like irrigation scheduling, crop modeling, and agricultural 
water management (Richetti et al., 2023). In addition to a comprehen-
sive understanding of the present status of the system, making decisions 
usually require a reliable perception of the system’s future. In other 
words, accurate forecasts facilitate sustainable management strategies 
and decisions (Samaniego et al., 2019). Evapotranspiration (ET) is an 
essential variable for irrigation management and scheduling. ET is the 
sum of evaporation from the soil and wet vegetation surfaces and 
transpiration through plant leaves and plays a prominent role in the 

global hydrological cycle (Pereira et al., 1999). ET rate is controlled by 
physical and biological factors and is plant specific. However, reference 
evapotranspiration (ETo) is a pure meteorological variable that relaxes 
the plant surface’s controlling effects by assuming a hypothetical 
reference crop surface and standardized conditions (Allen et al., 1998; 
Diodato and Bellocchi, 2007), which is critical for agricultural water 
management. There are numerous studies in the literature focused on 
ETo forecasting. Examples are Gocić et al. (2015) study on soft 
computing methods for monthly ETo forecasting, Karbasi et al. (2022) 
weekly ETo forecasting using a hybrid deep learning model, Ferreira and 
da Cunha (2020) research on using deep learning models to forecast 
multi-step ahead daily ETo, and Chia et al. (2022) work on long-term 
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forecasting of monthly mean ETo using deep neural networks. Many 
recent research articles attest that ETo forecasting is a prominent case of 
agricultural time series forecasting (Ferreira and da Cunha, 2020). 
Moreover, a mature body of research is available in the literature on 
applying machine learning models for ETo estimation (Chia et al., 
2021a; Chia et al., 2021b). 

Natural systems are associated with internal randomness and 
inherent uncertainties that challenge forecasting their future states. 
From simpler linear models to cutting-edge deep learning (DL) models, 
numerous forecasting methodologies are available in the literature 
(Hyndman and Athanasopoulos, 2018), and they address modeling un-
certainties differently. Although most of these models have been 
employed to forecast agricultural and meteorological time series (Ni 
et al., 2020; Hunt et al., 2022), their performance has rarely been sys-
tematically compared. This study aims to fill this research gap by 
analyzing ten forecasting models’ complexity, data efficiency, and ac-
curacy. To this end, we evaluate the models’ performance in the case of 
monthly ETo forecasting in California. Having a significant seasonality 
and negligible trend in short periods, monthly ETo is a suitable arche-
type of agrometeorological time series. Moreover, with more than one 
hundred standardized weather stations, grave water availability, and 
quality challenges, California is a suitable case study for this research 

(Lund et al., 2018; Ahmadi et al., 2022). 
Forecasting models evaluated in this study are either ubiquitous 

statistical forecasting methods employed in numerous studies for agro-
meteorological time series forecasting or cutting-edge DL models with 
promising performances over benchmark data sets and in data science 
competitions. These models are divided into three classes: 1) statistical 
models consisting of autoregressive integrated moving average 
(ARIMA), seasonal ARIMA (SARIMA), Holt-Winters’ exponential 
smoothing, and Theta method; 2) machine learning (ML) models con-
sisting of the light gradient-boosting machine (LightGBM); and 3) state- 
of-the-art DL models including neural basis expansion analysis for 
interpretable time series forecasting (N-BEATS), long short-term mem-
ory (LSTM), temporal convolutional network (TCN), Transformer 
model, and temporal fusion transformer (TFT). The models’ perfor-
mance is evaluated in a multi-dimensional framework for more in-depth 
investigation. For this purpose, weather stations are categorized based 
on their historical data availability, two multi-step ahead forecasting 
strategies are employed for ML and DL models, and forecasts are made 
for different forecasting horizons. Forecasting strategies used in this 
study are recursive and multi-input multi-output (MIMO) strategies. 
Contrary to the recursive strategy that forecasts one time step at each 
iteration, the MIMO strategy forecasts the entire forecasting horizon at 

Fig. 1. Location map of CIMIS stations used in this study. Green circles, red squares, and blue triangles show stations with more than 25 years of data, stations with 
15 to 25 years of data, and stations with 5 to 15 years of data, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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once. 
The multi-dimensional analysis of this study goes beyond the typical 

comparison of performance measures in the literature and casts light on 
various aspects of agrometeorological time series forecasting, informing 
future applications. It is also worth mentioning that although some of 
the more well-known and older DL models, like LSTM, have been 
applied in agricultural and hydrological studies (Hunt et al., 2022), most 
of the more recent model structures, like N-BEATS and TFT, have had 
limited or no records of application in the hydrological and agricultural 
research. Implementing the state-of-the-art DL forecasting models, this 
study goes beyond analyzing the current trend in agricultural fore-
casting. It aims to introduce the advances of time series forecasting to 
the field of agrometeorology and to promote the current research trend 
in the field. 

Here, we hypothesize that more complex DL models (i.e., deeper and 
wider architectures) generally outperform statistical methods (Makri-
dakis et al., 2022). We also hypothesize that DL models encounter 
challenges in accurately forecasting future time steps for more recently 
established weather stations (e.g., stations with less than 15 years of 
data records), as more complex data-driven models tend to require more 
input data and be less data-efficient (Hassani et al., 2021). Additionally, 
we hypothesize that more complex DL models are computationally 
expensive and take longer to train. Furthermore, we hypothesize that ML 
and DL models trained with the MIMO strategy outperform models 
trained with the recursive strategy (Taieb et al., 2012). We test these 
hypotheses consistently across models. In doing so, we keep all the 
effective parameters (e.g., input data length) similar for all the models. 
Moreover, we analyze the potential effects of background factors (e.g., 
geographical characteristics and climatic conditions) to ensure the 
reliability of our findings. 

2. Study area and dataset 

In our case study of California, meteorological drivers of ETo (i.e., 
inputs of the Penman-Monteith equation, which are net radiation, soil 
heat flux, air temperature, vapor pressure, and wind speed) are 
measured in standardized weather stations throughout the state. These 
stations are managed under the California irrigation management infor-
mation system (CIMIS), which consists of over 145 automated weather 
stations to assist irrigators and water managers with planning and 
decision-making. CIMIS uses the Penman-Monteith equation and a 
modified version of Penman’s equation to calculate ETo. Hourly weather 

data is used to calculate hourly ETo, which is subsequently added up 
over 24 h (midnight to midnight local time) to estimate daily ETo. 
Monthly ETo values reported by the CIMIS portal are the aggregation of 
daily values in metric units (mm). More information about CIMIS data 
and the Penman-Monteith equation can be found in Ahmadi et al. 
(2022). 

For this study, monthly ETo data from 107 active CIMIS stations are 
acquired (https://cimis.water.ca.gov/). Stations are chosen according to 
their maintenance and condition records. Stations with unreliable or 
inconsistent data (e.g., stations with poor maintenance, non-grass 
reference surface, or inadequate irrigation) are eliminated from this 
analysis. All 107 stations used in this study have data available until the 
end of June 2022 without any missing values for monthly ETo. However, 
the stations have been established at different times; therefore, their 
data’s start dates vary. To have a better understanding of the effect of 
historical data availability on the performance of the forecasting models, 
stations are categorized into three categories: 1) long records: stations 
with more than 25 years of data, 2) medium-length records: stations 
with 15 to 25 years of data, and 3) short records: stations with 5 to 15 
years of data. There are 34, 38, and 35 stations in the first, second, and 
third categories, respectively. The oldest stations have data available 
from 1986. No further data preprocessing has been conducted on the 
raw ETo data. 

Fig. 1 shows the distribution of the stations for each category. The 
zoning scheme in Fig. 1 refers to homogeneous zones with respect to the 
reference evapotranspiration. CIMIS divides California into 18 homo-
geneous zones with similar meteorological and evapotranspiration 
characteristics. More information about these zones’ climatic charac-
teristics and locations can be found in Table S1 and Figure S9 in the 
supplementary material. Readers are referred to Ahmadi et al. (2022) for 
more in-depth information about how ETo and its meteorological 
driving factors compare between these zones. 

3. Methodology 

3.1. Time series decomposition 

An essential step in analyzing time series characteristics is decom-
position. This technique splits the time series into three main compo-
nents: trend, seasonality, and residual error (a.k.a. noise components). 
In this study, we used the Statsmodels library in Python to perform an 
additive time series decomposition (Equation (1): 

Fig. 2. Data splitting and forecasting time steps.  
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Yt = Tt + St + rt (1)  

Where Yt is the observed value at time t, and Tt, St, and rt are the trend, 
seasonality, and residual components, respectively. 

3.2. Forecasting strategy and horizon 

This research focuses on univariate time series forecasting without 
using exogenous variables to forecast monthly ETo. Hence, the only 
input to forecasting models is monthly ETo in previous time steps. To 
perform one-step and multi-step ahead forecasting, we employed three 
forecasting horizons: one month ahead, three months ahead, and six 
months ahead. The last two years of data, July 2020 to June 2022, are 
used as the test set. For each station, all the forecasting models are 
trained with the data before July 2020, and after training, their per-
formances are evaluated according to their forecasts for the test set. 
Having the same time frame as the test set for all the stations and models 
minimizes the seasonal and climatological biases in measuring fore-
casting accuracy. 

Fig. 2 shows how the models are trained and used to forecast. The 
model is trained with the original training data to forecast the first ho-
rizon. The training data is expanded in the next step, and the stride is 
added. The model is now retrained with this expanded training set and 
forecasts the next horizon. This procedure continues until the model 
forecasts the last time step (i.e., June 2022). For all horizons, the stride is 
set to one time step (one month). Notably, we conducted retraining only 
for statistical and machine learning models. Since DL models require a 
long time to train, these models are trained only on the original training 
set and are not retrained at each step. However, the DL models use 
extended data at each step as input. 

We employed two well-known strategies for multi-step ahead time 
series forecasting: recursive strategy and multi-input multi-output 
(MIMO) strategy. Recursive strategy, also called iterated or multi-stage, is 
the oldest and most intuitive forecasting strategy (Taieb et al., 2012). In 
this strategy, forecasting model f is trained to perform a one-step-ahead 
forecast: 

yt+1 = f (yt,⋯, yt− k+1) (2)  

Equation (2) represents a univariate recursive strategy that forecasts the 
variable of interest (y) at time step t + 1 using the same variable at k 
previous time steps. A recursive strategy can also be used for multi-step 
ahead forecasting. To do so, the model first forecasts the first step. 
Subsequently, the forecasted value is added to the input variables to 
forecast the next step, using the same one-step ahead model f. This 
procedure is continued until the whole horizon is forecasted. 

Contrary to the recursive strategy, in the MIMO strategy, the fore-
casting function F is a multiple-output function that forecasts the entire 
horizon simultaneously: 

[yt+H ,⋯, yt+1] = F(yt,⋯, yt− k+1) (3)  

As shown in equation (3), in the MIMO strategy, the whole forecasting 
horizon, which consists of H time steps, is forecasted by one iteration of 
the F function. It is worth noting that there is no difference between 
recursive and MIMO strategies for one-step ahead forecasting. It should 
be noted that the MIMO strategy can be implemented for machine 
learning and DL models only. In other words, the statistical forecasting 
models of this study are all restricted to recursive strategy. 

3.3. Time series forecasting models 

We use Darts, a Python library for time series manipulation and 
forecasting (Herzen et al., 2022). Darts contains a variety of forecasting 
models, from statistical such as ARIMA to cutting-edge deep neural 
networks. Readers are referred to Herzen et al. (2022) for more infor-
mation about this library. 

3.4. Statistical forecasting models 

3.4.1. (Seasonal) autoregressive integrated moving average (ARIMA and 
SARIMA) 

The ARIMA model is one of the most popular linear models in time 
series forecasting (Contreras et al., 2003). ARIMA combines autore-
gressive (AR), differencing (I), and moving average (MA) features 
(Hyndman and Athanasopoulos, 2018). Differencing refers to 
computing the difference between consecutive observations to remove 
non-stationarity from time series. The autoregressive component is a 
linear model that forecasts the variable of interest using a linear com-
bination of past values of the same variable. In other words, the AR 
model is a linear univariate forecasting model. The MA model, on the 
other hand, uses past forecast errors instead of past values of the variable 
of interest in a regression-like model. An ARIMA model has three 
hyperparameters, which are non-negative integers and need to be 
determined by the user: p, which is the order (number of time lags) of the 
AR model, d which is the order of differencing (i.e., the number of times 
the data have had past values subtracted), and q which is the order of the 
MA model (i.e., the size of the moving average window). ARIMA model 
is a non-seasonal forecasting model. 

The seasonal ARIMA (SARIMA) model includes additional seasonal 
terms in the original ARIMA model. SARIMA has four additional 
hyperparameters, P, D, and Q (order of the seasonal component for the 
AR, difference, and MA models, respectively). The fourth hyper-
parameter of the SARIMA model is m, which is the periodicity or the 
number of time steps in a whole seasonal period. For monthly data, m =
12. More detailed information about the ARIMA and SARIMA models 
can be found in Hyndman and Athanasopoulos (2018). 

This study used the pmdarima statistical library in Python to optimize 
ARIMA and SARIMA hyperparameters. We optimized hyperparameters 
for each station and used those station-specific parameters to train 
ARIMA and SARIMA models. From the pmdarima library, we used the 
AutoARIMA model, which identifies the optimal set of parameters for 
ARIMA and SARIMA models, settling on a single-fitted model. In cali-
bration, we set the maximum p, q, P, and Q values to 5. As we work with 
monthly data, m was set to 12. The information criterion used to select 
the best model was the Akaike information criterion (AIC). We used 
alpha = 0.05 as the test level for statistical significance, the Kwiatkow-
ski–Phillips–Schmidt–Shin (KPSS) unit root test to detect stationarity, and 
Osborn-Chui-Smith-Birchenhall (OCSB) as the seasonal unit root test. A 
stepwise algorithm outlined by Hyndman and Khandakar (2008) is used 
to optimize the model parameters. The limited-memory Broyden–-
Fletcher–Goldfarb–Shanno (BFGS) algorithm with optional box con-
straints (L-BFGS) is employed as the optimization algorithm. Figures S1 
and S2 in the supplementary material illustrate the distribution of 
optimized hyperparameters for different stations, categorized by their 
historical data availability. ARIMA and SARIMA models of the Darts li-
brary are wrapped around the Statsmodels Python module. 

3.4.2. Holt-Winters’ exponential smoothing 
Exponential smoothing is a statistical forecasting method proposed 

in the late 1950s (Holt, 1957 (re-printed in 2004); Winters, 1960). 
Exponential smoothing is a univariate method that uses weighted av-
erages of past observations to forecast future steps. These weights decay 
exponentially as the observations get older. In other words, the more 
recent the observation, the higher the associated weight (Hyndman and 
Athanasopoulos, 2018). More information about this method is avail-
able in Kalekar (2004) and Hyndman and Athanasopoulos (2018). The 
model used in this study is wrapped around Statsmodels Holt-Winters’ 
exponential smoothing. We used an additive model for both trend and 
seasonality components. The seasonal period is set to 12, and the trend 
component is damped. 

3.4.3. Theta method 
The Theta model proposed by Assimakopoulos and Nikolopoulos 
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(2000) is a univariate forecasting method based on modifying the local 
curvature of the time series using a coefficient “Theta” (a real number) 
applied to the second differences of the data. Theta method decomposes 
the original data into two or more lines, extrapolates them using 
appropriate forecasting models, and then combines their predictions to 
obtain the final forecast. This study uses the 4Theta model, a modified 
version of the original Theta method (Spiliotis et al., 2020). Through a 
manual search, we chose Theta = 2 for this model. The seasonality 
period is set to 12, and the type of seasonality is multiplicative. The 
Theta lines are combined with an additive model, and the trend mode is 
linear. For more information about the Theta and 4Theta models, 
readers are referred to Assimakopoulos and Nikolopoulos (2000) and 
Spiliotis et al. (2020), respectively. 

3.5. Machine learning model (LightGBM) 

This study employs the LightGBM as a machine learning forecasting 
tool. LightGBM, initially proposed by Ke et al. (2017) and developed by 
Microsoft as a free and open-source framework, provides an efficient 
implementation of the gradient boosting algorithm and reduces memory 
usage. Gradient boosting is an ensemble method where ensembles are 
constructed from decision tree models. Models are fit through a gradient 
descent optimization algorithm, where the loss gradient is minimized as 
the model is tuned. In the machine learning literature and competitions, 
gradient boosting and decision tree-based models outperform other 
regression algorithms when applied to tabular data (Shwartz-Ziv and 
Armon, 2022). Moreover, it is shown in the literature that gradient 
boosting algorithms work similarly in terms of accuracy and runtime, 
while some studies point to the superiority of LightGBM (Al Daoud, 
2019). Therefore, this study employs LightGBM as its machine learning 
model. We feed 12 previous time steps as the input of the LightGBM 
model. More information about the LightGBM method can be found in 
Ke et al. (2017) and Al Daoud (2019). 

3.6. Deep learning models 

We conducted a manual hyperparameter tuning for all deep learning 
models. We objectively searched different values for hyperparameters 
and chose a subset that resulted in the best-performing model. We also 
conducted a grid search for the dropout rate. Data from the Davis CIMIS 
station, one of the best-maintained CIMIS stations with data from 1986, 
is used for hyperparameter tuning. When two sets of hyperparameters 
had similar performances, we chose the simpler model (i.e., the model 
with fewer trainable parameters). To facilitate the comparison between 
different models, the input of all DL models is ETo in the past 12 months. 

3.6.1. N-BEATS 
N-BEATS is a deep neural architecture based on backward and for-

ward residual links and a very deep stack of fully connected layers 
(Oreshkin et al., 2019). N-BEATS was originally developed in 2019 to 
solve the univariate time series forecasting problem. N-BEATS archi-
tecture is fast to train and demonstrates state-of-the-art performance for 
different datasets. For more information about N-BEATS architecture, 
readers are referred to Oreshkin et al. (2019). 

In this study, we employed the generic architecture outlined in 
Oreshkin et al. (2019). In this architecture, we used four stacks, with 
four blocks in each stack. We used four fully connected layers preceding 
the final backcast-forecast forking layer in each block, with 16 neurons 
in each layer. The expansion coefficient dimension is set to five, and the 
rectified linear unit (ReLU) is used as the activation function of the 
encoder/decoder intermediate layer. The grid search showed that N- 
BEATS works best without dropout; therefore, the dropout probability 
was set to zero. We trained the model over 100 epochs with a batch size 
of 32. 

3.6.2. Long short-term memory (LSTM) 
LSTM, proposed by Hochreiter and Schmidhuber (1997), is a recur-

rent neural network (RNN). Numerous studies in agriculture and hy-
drology have employed LSTM for forecasting purposes (Ni et al., 2020; 
Ghasemlounia et al., 2021; Hunt et al., 2022). RNN models are generally 
suitable for solving problems with sequential input data like time series. 
However, vanilla RNN models struggle with remembering information 
for an extended period, which is called a long-term dependency prob-
lem. LSTM architecture is designed exclusively to avoid this problem, 
which is the main advantage of this model. More information about 
LSTM can be found in Hochreiter and Schmidhuber (1997) and Van 
Houdt et al. (2020). Our LSTM model consists of one recurrent layer 
with 12 features in the hidden state. The dropout is set to zero for this 
model. The LSTM model is trained over 1,000 epochs with a batch size of 
8. 

3.6.3. Temporal convolutional network (TCN) 
Although convolutional neural networks (CNNs) are commonly 

associated with raster data, they can also be used for sequential data 
with the proper modifications. The TCN, presented by Bai et al. (2018), 
is a generic convolutional architecture designed for sequence modeling. 
In this study, we use dilated TCN for forecasting. Readers are referred to 
Bai et al. (2018) for more information about this model. Our model has a 
kernel size of 6 and 18 filters. The base of the exponent determining the 
dilation on every level is set to two. We used weight normalization of the 
model and a dropout rate of 0.1. With a batch size of 32, we trained the 
model for 1,000 epochs. 

3.6.4. Transformer model 
Transformer is a state-of-the-art DL model introduced by Vaswani 

et al. (2017). Following an encoder-decoder structure, the transformer 
architecture does not rely on recurrence and convolutions to generate an 
output. The core feature of its architecture is the multi-head attention 
mechanism. In the case of sequential data, a multi-head attention 
mechanism can jointly attend to information at different positions in the 
sequence, making Transformer an appealing architecture for time series 
forecasting. The mechanism is also highly parallelizable, which makes 
the Transformer architecture suitable to be trained with GPUs. More 
information about the Transformer model can be found in Vaswani et al. 
(2017). In our model, we set the number of features in the transformer 
encoder/decoder inputs to 16, with one encoder layer and one decoder 
layer. We used four heads in the multi-head attention mechanism. The 
dimension of the feedforward network model is set to 128. We used 
ReLU as the activation function of the encoder/decoder intermediate 
layer. According to the grid search results, the dropout rate is set to 0.1. 
The model is trained with a batch size of 32 and over 1,200 epochs. 

3.6.5. Temporal fusion Transformer (TFT) 
TFT is a cutting-edge DL architecture introduced by Lim et al. (2021) 

for interpretable multi-horizon time series forecasting. TFT is a novel 
attention-based architecture that uses recurrent layers for local pro-
cessing and a self-attention layer for long-term dependencies. TFT can 
learn temporal relationships at different scales and utilizes specialized 
components to select relevant features. Readers are referred to Lim et al. 
(2021) for detailed information about this architecture. In this study, we 
set the hidden state size of the TFT architecture to 16 and the hidden size 
for processing continuous variables to 8. We used one layer for the LSTM 
encoder/decoder. We used four attention heads, where a multi-head 
attention query is applied to the future (decoder) part only. A gated 
residual network is used as the feedforward network. PyTorch mean 
squared error (MSE) is employed as the loss function for training. We 
trained the model over 700 epochs with a batch size of 32. 

3.7. Performance measures 

In this study, three deterministic performance measures are used to 
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evaluate the accuracy of forecasting models: root mean square error 
(RMSE), mean absolute error (MAE), and coefficient of determination 
(R2): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Oi − Pi)

2

√
√
√
√ (4)  

MAE =
1
N

∑N

i=1
(|Oi − Pi| ) (5)  

R2 =

⎡

⎢
⎣

∑N
i=1(Oi − O)(Pi − P)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Oi − O)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Pi − P)2
√

⎤

⎥
⎦

2

(6)  

Where N is the number of time steps; Oi and Pi are observed and pre-
dicted monthly ETo values at ith time step, respectively; O and P are the 
mean values of observations and predictions, respectively. Lower RMSE 
and MAE values and higher R2 values indicate higher accuracies and 
better performances. 

4. Results and discussion 

4.1. Stations and time series characteristics 

Stations from different categories are almost uniformly distributed 
over the study area (Fig. 1). Therefore, we hypothesize that no sys-
tematic bias is introduced to the results and the categorization caused by 
the stations’ location. However, as Fig. 1 shows, there are no stations 
with 15 to 25 years of data in northern California. It should be noted that 
since the primary goal of the CIMIS program is to assist farmers with 
irrigation management, most of the CIMIS stations are located in 
farming/irrigation-oriented regions of California. Therefore, there are 
more stations in central and southern California and fewer in northern 
California. To test our hypothesis and confirm that the results are not 
affected by the geographical and climatic differences among categories, 
we analyzed the long-term monthly ETo records of the stations. As can 
be inferred from Fig. 3, no significant difference exists between the 
distribution of records from different categories. It should be noted that 
box plots in Fig. 3 represent all the observations from all the stations 
used in this study. 

Fig. 4 depicts the results of time series decomposition for the Davis 
CIMIS station. It should be noted that decomposition is time series- 
specific, meaning only one time series can be decomposed at a time. 
Here we show decomposition of ETo time series for a well-maintained 
CIMIS station with adequately long historical data (Davis station). 

Fig. 3. Box plots of monthly reference evapotranspiration records of all the 
stations categorized by their data length. 

Fig. 4. Results of time series decomposition for Davis CIMIS station.  

Table 1 
Runtime and number of trainable parameters of the forecasting models used in 
this study.  

Model Runtime 
(seconds) 

Number of trainable parameters of deep 
learning models 

ARIMA 168 (152 + 16) – 
SARIMA 266 (152 + 114) – 
Holt- 

Winters 
4 – 

Theta 1 – 
LightGBM 2 – 
N-BEATS 59 ~ 20,700 
LSTM 645 733 
TCN 253 ~ 4,300 
Transformer 367 ~ 12,100 
TFT 473 ~ 15,400  

A. Ahmadi et al.                                                                                                                                                                                                                                



Computers and Electronics in Agriculture 215 (2023) 108424

7

This station is located in the Central Valley, where many other CIMIS 
stations are placed. Expectedly, considerable seasonality is present in 
the time series (Fig. 4). Although Fig. 4 suggests an increasing trend in 
the minimum monthly ETo values for the Davis CIMIS station, the trend 
component does not control the observed time series. More information 
about California, the trends of ETo, and its meteorological driving fac-
tors can be found in Ahmadi et al. (2022). 

4.2. Model complexity 

To have a more in-depth comparison of forecasting models, in 
addition to their accuracy, we analyzed their complexity and compu-
tational cost. Table 1 presents the complexity of DL models by providing 
the number of their trainable parameters. Also, this table shows the 
runtime of all forecasting models as a measure of their computational 
cost. The runtime is based on the Google Colab platform without any 
hardware accelerator (e.g., GPU) and represents the time required for 
training the model on the Davis CIMIS station and making one-step 
ahead forecasts on the test set. In the case of ARIMA and SARIMA 
models, runtime consists of two parts: 1) optimizing the hyper-
parameters for Davis station using the pmdarima library (152 s); 2) 
training the model with optimized hyperparameters and making fore-
casts on the test set. 

As expected, given their higher complexity, DL models generally 
have a higher runtime than statistical and machine learning models. 
However, Table 1 shows that N-BEATS has a significantly lower runtime 
than other DL and even ARIMA and SARIMA models. The main reason is 
that N-BEATS architecture is very fast to converge. As mentioned in the 

methodology section, we used only 100 epochs to train the N-BEATS 
model, whereas other DL models required a much higher number of 
epochs to reach minimum loss values. Notably, the number of trainable 
parameters in the N-BEATS model is not lower than in other DL models. 
Quite the contrary, Table 1 reveals that the N-BEATS architecture used 
in this study has the highest number of trainable parameters among all 
DL models. Our findings align with Oreshkin et al. (2019), demon-
strating the computational efficiency of the N-BEATS model. 

Unlike the N-BEATS model, LSTM architecture is proven very slow to 
train. Although LSTM has the lowest number of trainable parameters 
among the DL models, it has the most extended runtime (Table 1). Ac-
cording to Yu et al. (2019), the slow training of LSTM can be attributed 
to its backward propagation through time. The literature suggested 
some methods to speed up the convergence of LSTM training (e.g., a 
convex-based LSTM network introduced by Wang, 2017). Our study’s 
findings also suggest no direct relationship between the number of 
trainable parameters of a DL model and its runtime. Based on these 
findings, we hypothesize that the overall architecture of a DL model is 
more important than merely the number of trainable parameters in the 
model’s computational cost. 

4.3. Forecasting accuracy 

We used three measures of performance to evaluate the accuracy of 
forecasting models: RMSE, MAE, and R2. We show R2 results in the main 
text and other measures in the supplementary material. Since we have 
multiple time series with different scales in each category, and there is a 
meaningful effect of seasonality in the magnitude of monthly ETo at 

Fig. 5. R2 results of forecasting models in the case of one month ahead reference evapotranspiration forecasting.  
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various timesteps, a scale-free accuracy measure like R2 is preferred. 
According to Fildes et al. (2022), results of non-scale-free measures (e.g., 
RMSE) should be handled cautiously in the case of time series 
forecasting. 

Figs. 5, 6, and 7 illustrate the models’ accuracy for one month, three 
months, and six months lead time ETo forecasting, respectively. As 
mentioned earlier, there is no difference between recursive and MIMO 
strategies in one-step-ahead forecasting. Therefore, Fig. 5 shows a single 
box for each ML and DL model. The ARIMA model forecasts ETo less 
accurately than the other models, as its performance falls considerably 
short compared to other models (Figs. 5-7). This is mainly due to the lack 
of seasonality features in the ARIMA model. As Fig. 4 illustrates, there is 
a significant seasonality in our data, and it is no surprise that a model 
that does not consider seasonality is not a good choice for ETo data. On 
the other hand, the seasonal ARIMA (SARIMA) model results in accurate 
monthly ETo forecasts for various forecasting horizons and with 
different amounts of available historical data (Figs. 5-7). This finding 
aligns with Aghelpour et al. (2022) and Ashrafzadeh et al. (2020), who 
report on the goodness of the SARIMA model for monthly ETo 
forecasting. 

As Figs. 5-7 show, LSTM, Transformer, and TFT models have diffi-
culty working with smaller training sets (i.e., short data). In other words, 
these models are data-hungry and require larger training sets to work 
optimally. Transformer and TFT models are even more sensitive to the 
input data length, as their performance drops more severely than LSTM 
in the case of smaller training sets. Therefore, these models are suitable 
for forecasting agrometeorological variables only when enough input 
data is available. Recent literature offers techniques to make these 

models more data-efficient (e.g., Hassani et al. (2021)). 
Contrary to the data-hungry models, N-BEATS and TCN show low 

sensitivity to the input data length. The most data-efficient DL model is 
N-BEATS, as its performance is least affected by the length of the 
training set. LightGBM model is also sensitive to the length of the data, 
but much less than more complex DL models. Statistical forecasting 
models do not show profound sensitivity to the training data length. 
Therefore, our results point to the overall data efficiency of statistical 
models. 

Expectedly, all models perform better when forecasting the near 
future (e.g., one step ahead). In other words, the forecasting accuracy of 
the models drops when the forecasting horizons increase. Fig. 7 and 
figure S8 in the supplementary material suggest that N-BEATS is the best 
model for longer forecasting horizons, followed by Theta and Holt- 
Winters models. Our findings do not suggest a significant difference 
between the ML and DL models’ accuracy under recursive and MIMO 
strategies. It can be inferred that neither of these strategies has a sys-
tematic advantage, at least in our case study. 

Our findings generally point to the superior performances of simpler 
forecasting models compared to more complex DL models. Results 
illustrate that Theta and Holt-Winters methods work almost as well as 
the most accurate DL models while having much lower run time and 
complexity. We hypothesize that these models are more suitable for less 
complex time series, like ETo data. Another important note is that 
although numerous hydrological and agricultural studies employ the 
SARIMA model (Ashrafzadeh et al., 2020; Aghelpour et al., 2022), our 
study reveals that other statistical models outperform this model. This is 
even more important as we compare the higher computational costs of 

Fig. 6. R2 results of forecasting models in the case of three months ahead reference evapotranspiration forecasting.  
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LSTM with other statistical models (i.e., Theta and Holt-Winters; see 
Table 1). 

Considering the computational cost and the forecasting accuracy, N- 
BEATS is the best model among the models evaluated in this study. N- 
BEATS is very fast to train (Table 1), data-efficient, and can accurately 
forecast long horizons (Figs. 5-7). One reason for the superior perfor-
mance of N-BEATS might be that this DL model was initially developed 
for univariate time series forecasting. In other words, this model works 
better than other DL models for our case because, inherently, it is the 
most appropriate architecture. 

4.4. Observed vs. Forecasted time series 

Fig. 8 depicts the forecasted time series of the N-BEATS (i.e., the best 
DL model) and Holt-Winters (i.e., the best statistical model) models 
against the observed values for different forecasting horizons. Davis, 
Auburn, and Woodland stations are chosen to represent stations with 
various data lengths (available data from 1986, 2005, and 2011, 
respectively). All these stations are placed in ETo zone 14 (Mid-central 
Valley) and close to each other. This proximity minimizes the effects of 
climate and geographic characteristics on the models’ performance. 
Fig. 8 confirms the previous findings on the similarity of performances 
between the best DL model (i.e., N-BEATS) and the statistical model (i.e., 
Holt-Winters). This figure indicates that when monthly ETo values are 
increasing (when it is getting warmer), the forecasted values of both 
models tend to underestimate observed values. 

On the other hand, when monthly ETo values are decreasing (i.e., 
when it is getting cooler), forecasted values tend to overpredict observed 

values. Again, this pattern happens for both N-BEATS and Holt-Winters 
models. This behavior can be attributed to DL and statistical models 
using past time series values to forecast and tend toward the averaged 
values. In the case of the Holt-Winters method, this is more evident, as 
this method uses weighted averages of past observations to forecast new 
values, while the exponential smoothing technique gives more impor-
tance (i.e., larger weights) to more recent observations. Given the sim-
ilarity between the forecasted values of Holt-Winters and the DL model 
(Fig. 8), we speculate that a DL method might learn the same pattern in 
input data. Due to this tendency toward predicting average values of 
past observations, a postprocessing model that adds/subtracts residuals 
to the predicted ETo data based on the slope of predictions can be 
explored as an alternative to improve forecasts. 

5. Summary and conclusion 

This study evaluated the performance, computational cost, and 
complexity of well-known statistical and state-of-the-art machine 
learning and deep learning models for forecasting reference evapo-
transpiration (ETo). Monthly ETo in 107 standardized stations in Cali-
fornia was used for this analysis. Stations were categorized according to 
historical data availability, and models were tested for various fore-
casting horizons. Recursive and MIMO forecasting strategies were 
evaluated for machine learning (ML) and deep learning (DL) models. 
Significant findings of this study and insights for future research include:  

1. Complex deep learning models (e.g., LSTM and Transformer) are not 
data-efficient enough for agrometeorological forecasting. Given the 

Fig. 7. R2 results of forecasting models in the case of six months ahead reference evapotranspiration forecasting.  

A. Ahmadi et al.                                                                                                                                                                                                                                



Computers and Electronics in Agriculture 215 (2023) 108424

10

scarcity of agrometeorological data and the unavoidable data gaps in 
time series measured by micrometeorological sensors, more research 
is needed on the data efficiency of DL forecasting models. One po-
tential solution for this issue is developing pre-trained DL models 
that can be retrained for short-range agrometeorological data (aka, 
transfer learning; e.g., Raei et al., 2022). Furthermore, generative 
adversarial networks can potentially help alleviate this problem.  

2. Simpler statistical forecasting models work as well or even better 
than state-of-the-art deep learning models. This might be due to the 
inherent simplicity of monthly reference evapotranspiration. Further 
studies are required to analyze the performance of these models for 
more complex agrometeorological time series.  

3. N-BEATS was the best overall deep learning forecasting model. N- 
BEATS is very fast to cooverge, requiring only 100 epochs to train, 
while other DL models need a much higher number of training 
epochs (e.g., 1,000 in the case of LSTM and 1,200 for Transformer). 
N-BEATS is also very data-efficient; this model can forecast monthly 
ETo accurately even when less than fifteen years of historical data is 
available.  

4. Although the most popular statistical method for agrometeorological 
time series forecasting is SARIMA, our findings reveal that Holt- 
Winters and Theta methods are more data-efficient, less computa-
tionally expensive, and generally more accurate than SARIMA. 
Future studies can evaluate their performance in other cases, for 
example yield forecasting.  

5. Our findings reveal no significant difference between recursive and 
MIMO strategies. A more in-depth study is needed to analyze the 
effects of forecasting strategy on the performance of ML and DL 
models, primarily when covariates (e.g., from numerical weather 
predictions or other sensors) are used to inform ETo forecasting. 

Some of the limitations of the current research that introduce op-
portunities for future studies include the following:  

1. This research focused on monthly data with a clear seasonality 
component. More studies are needed to evaluate the performance of 
forecasting models for higher-frequency input data (e.g., daily data). 

2. This study focused on univariate time series, while several agro-
meteorological cases can benefit from covariates and exogenous 
variables. According to the findings of the M5 competition, multi-
variate models with informative exogenous variables are expected to 
outperform univariate models (Makridakis et al., 2022). We hy-
pothesize that introducing exogenous variables to deep learning 
models will boost their performance. However, it should be noted 
that statistical models are generally restrained to one variable. When 
exogenous variables are available, multivariate deep learning 
models are expected to outperform simpler statistical models. Future 
studies can test these hypotheses.  

3. This study trains models for each station. However, deep learning 
models can benefit from cross-learning. Cross- or global-learning re-
fers to learning from multiple series to extract information from the 
global data set (Makridakis et al., 2022). This is especially advan-
tageous in agrometeorological forecasting, as the time series from 
various stations and sensors may share common characteristics (e.g., 
seasonality). For instance, ungauged regions with poor data history 
can benefit from neighboring stations and cross-learning strategies 
for accurate forecasting. Future studies can cast light on the advan-
tages of cross-learning in agrometeorological forecasting.  

4. This research focused on California as the case study. Although 
California is a climatically diverse case study with various ecosys-
tems, more studies are required to evaluate the findings of this 
research in other climate conditions. However, as the agro-
meteorological time series are often similar to the time series used in 
this study in terms of a dominant seasonal component, we hypoth-
esize that the findings of this research are relevant to other regions 
and climates. 

Fig. 8. Time series of observed and forecasted monthly reference evapotranspiration for three CIMIS stations. Dashed black lines, solid red lines, and solid blue lines 
depict observed values, Holt-Winters model forecasted values, and N-BEATS model forecasted values, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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