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ABSTRACT Remote sensing image target object detection and recognition are widely used both in military
and civil fields. There are many models proposed for this purpose, but their effectiveness on target object
detection in remote sensing images is not ideal due to the influence of climate conditions, obstacles
and confusing objects presented in images, image clarity, and associated problems with small-target and
multi-target detection and recognition. Therefore, how to accurately detect target objects in images is an
urgent problem to be solved. To this end, a novel model, called YOLOv4_CE, is proposed in this paper, based
on the classical YOLOv4 model with added improvements, resulting from replacing the backbone feature-
extraction CSPDarknet53 network with a ConvNeXt-S network, replacing the Complete Intersection over
Union (CloU) loss with the Efficient Intersection over Union (EIoU) loss, and adding a coordinate attention
mechanism to YOLOv4, as to improve its remote sensing image detection capabilities. The results, obtained
through experiments conducted on two open data sets, demonstrate that the proposed YOLOv4_CE model
outperforms, in this regard, both the original YOLOv4 model and four other state-of-the-art models, namely
Faster R-CNN, Gliding Vertex, Oriented R-CNN, and EfficientDet, in terms of the mean average precision
(mAP) and F1 score, by achieving respective values of 95.03% and 0.933 on the NWPU VHR-10 data set,
and 95.89% and 0.937 on the RSOD data set.

INDEX TERMS Remote sensing, target object detection, ConvNeXt, EIoU loss, coordinate attention.

I. INTRODUCTION used for monitoring and evaluating atmospheric-, water-,

Remote sensing image target detection aims to judge the
content of remote sensing images according to the indi-
vidual features of the images, identify their attributes, and
then locate and classify the target objects. This task has
found wide application in multiple fields for civil use. For
instance, it can be used for investigation and monitoring of
natural resources, such as land-, mineral-, forest-, wetland,
and water resources. In the field of environmental con-
trol and protection, remote sensing image detection can be
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ecological-, soil environments, etc. In the field of disaster
emergency, its main applications include monitoring of dis-
aster elements and evaluating the risk of their appearance,
with subsequent recovery and reconstruction. In the field
of agriculture in rural areas, its applications mainly include
stabilization of food production, prevention and control of
major disease outbursts and epidemics, development and
expansion of rural industries, monitoring of rural habitat
environment, and performing agricultural statistics. Remote
sensing image target detection is used also in many other
fields, such as autonomous driving cars, unmanned aerial
vehicles (UAVs), intelligent robotics, etc. In the military
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field, remote sensing image target detection based on high-
definition satellite images is used for military survey, defense,
action prevention, etc.

Prior to 2012, the traditional feature-based object detec-
tion models were mainly based on manual feature extraction
performed by experts. Since 2012, the rise of the convolu-
tional neural networks (CNNs) has been a major step forward
in this area, especially with the emergence of the Visual
Geometry Group Network (VGGNet) [1], GoogleNet [2],
ResNet [3], and Region-based CNN (R-CNN) [4]. Conse-
quently researchers began to optimize and improve R-CNN
and, as a result of these efforts, the Scale Pyramidal Pool-
ing Network (SPPNet) [5], Fast R-CNN [6], and Faster
R-CNN [7] emerged one after another. All these models
are representatives of the two-stage target object detection
models which first generate a series of sparse candidate
frames, followed by candidate frames verification, classifi-
cation, and regression to improve the scores and locations
[8]. At present, the horizontal bounding box representation is
widely used in the area of target object detection. However,
with this method, a confusion of horizontal objects may
occur when trying to detect dense small objects. A model
of sliding vertices of the horizontal bounding box to detect
multi-oriented objects, called Gliding Vertex, is proposed in
[9]. A Rotation-equivariant Detector (ReDet) is proposed in
[10] to encode rotation equivariance and rotation invariance.
On the basis of rotation equivariance features, a Rotation-
invariant Region of Interest (RiRol) Align is also presented
there to extract rotation-invariant features from equivariant
features according to the orientation of the Region of Inter-
est (Rol). Based on Faster R-CNN, a context-aware detec-
tion network (CAD-Net) is proposed in [11] to integrate
global context information into target detection. In addition, a
spatial-and-scale-aware attention module is designed with the
focus on more informative regions and features. The Oriented
R-CNN model, proposed in [12], utilizes an oriented Region
Proposal Network (RPN) to directly generate high-quality
oriented proposals at almost no cost. Even though high accu-
racy and localization can be achieved with the two-stage mod-
els, their more complex training and low operational speed
limit their application for real-time target object detection.
But the pursuit of accuracy needs to be supported by speed
as well. So, one-stage target object detection models, such as
You Only Look Once (YOLO) [13] and Single Shot Multibox
Detector (SSD) [14], have appeared with the aim of losing
an acceptable range of accuracy in order to maximize the
speed of detection to the extent of approaching a real-time
detection. Both YOLO and SSD, however, cannot perfectly
handle the graphic area, resulting in high detection error-
and missing rates. In addition, SSD does not consider the
relationship between different scales, so it has limitations in
detecting small objects, whereas for YOLO it is easier to
learn general features, and its operational speed is higher [15].
Among different YOLO versions, YOLOv4 [16] is the most
outstanding one with respect to both the performance and
operational speed achieved.
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The objective of this paper is to come up with a novel
model, called YOLOv4_CE, based on YOLOv4 improve-
ments, as to achieve better remote sensing image detection
performance. The main contributions of the paper are the
following:

1) Replacing the feature extraction backbone (CSP
Darknet53) of YOLOv4 with ConvNeXt-S [17] in
order to make the model extract features more effec-
tively and by this to lessen the computation of redun-
dant information at the feature layer and reduce the
model size;

2) Integrating the coordinate attention (CA) mechanism
[18] into YOLOWV4, so as to increase the receptive field
and allow the model to pay more attention to important
parts of the processed images;

3) Replacing the Complete Intersection over Union
(CIoU) loss [19] with the Efficient Intersection over
Union (EIoU) loss [20] in the loss function of YOLOv4
as to achieve faster convergence and improve the
regression precision;

4) Veritying (by comparison to five state-of-the-art mod-
els based on experiments conducted on two open data
sets — NWPU VHR-10 and RSOD) that these new
elements, introduced into YOLOV4, do indeed improve
its remote sensing image detection performance.

Il. BACKGROUND

A. ATTEONTION MECHANISMS

Attention mechanisms were first proposed and used for
natural language processing (NLP) and text alignment in
machine translation. In the field of computer vision, attention
mechanisms are used to improve the performance of the
utilized neural networks. The existing attention mechanisms
include Squeeze-and-Excitation (SE) [21], Convolutional
Block Attention Module (CBAM) [22], Coordinate Attention
(CA) [18], etc. SE is used to solve the loss problem caused
by the diverse importance of different channels of the fea-
ture map during the convolution pooling but it ignores the
importance of positional information. Considering the short-
comings of SE, CBAM integrates two attention mechanisms,
namely channel attention and spatial attention. By reducing
the number of channels and using a large-scale convolution
for the utilization of location information, CBAM can not
only reduce the number of parameters and save comput-
ing power, but also can be integrated seamlessly into any
CNN architecture. However, convolutions can only capture
local relations and fail in modeling long-range dependen-
cies which are essential for computer vision tasks, [18].
CA effectively integrates spatial coordinate information into
the generated attention graph by embedding positional infor-
mation into the channel attention in order to reduce the
loss caused by the 2D global pooling and decomposes
the channel attention into two parallel 1D feature encod-
ings, resulting in a significant gain for intensive prediction
tasks.
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B. MULTI-SCALE FEATURE INTEGRATION

In the field of target object detection, integrating the features
of different scales is a vital task to improve the performance
of target objects distinguishing from the image background.
The resolution of high-level features is low, and the percep-
tion of details is poor, but the semantic information is rich.
On the contrary, the resolution of low-level features is high,
and the details and location information are rich, but the
semantic information is poor. The integration of features at
different levels allows to improve the target object detection
performance. The existing feature integration techniques can
be divided into early integration and late integration ones,
depending on whether the prediction takes place before or
after the feature integration. Early integration includes classic
methods such as concatenation, addition, etc. Concatenation
directly connects two features, and the final output feature
dimension is the sum of the two feature dimensions. Addition
adopts a parallel strategy to combine two feature vectors into
a complex vector. Late integration combines the detection
results of different levels. For instance, the feature pyra-
mid network (FPN) [23], [24] first performs pyramid fusion
followed by detection performed separately on each fused
feature level. FPN conveys strong semantic features from
top to bottom and combines upper-level feature information
through upsampling to obtain the prediction map. In gen-
eral, FPN can reduce the extra consumption of computation
power and memory. The FPN structure, utilized by YOLOV4,
is shown in Figure 1, where C;(i = 2, 3, 4, 5) represents the
i" ResNet convolution groups and P; represents the i feature
map. Ps is obtained by a 1 x 1 convolution of Cs. Integration
with the upsampled feature maps is used to obtain the new
feature map P;(j = 4, 3, 2) from the corresponding features
of C;. As shown in Figure 2, a 1 x 1 convolution operation is
performed first on each feature map C; and the result is then
integrated with the upsampled feature map Pj; to obtain the
new feature map P;, which has the same size as the lower-
layer feature map. The final feature maps are generated by a
3 x 3 convolution.

Ill. RELATED WORK
As mentioned in the Introduction, the target object detection
models, adopting CNNss, are divided into two main groups:

1) Two-stage models, which first generate regional recom-
mendations and then perform classification and regres-
sion (Figure 3).

2) One-stage models, which skip the process of generat-
ing the selected area through the candidate framework
and directly generate the category probability and
location coordinate value of the object to be detected,
identified, and classified, which increases their opera-
tional speed despite the slight flaw in accuracy. In addi-
tion, these models are smaller in size and easier to
optimize [8].

The main (anchor-based) representatives of these two
groups are briefly described in the subsections below.
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FIGURE 1. The FPN structure, utilized by YOLOv4.

2xup

1x1 conv

FIGURE 2. The side connection schema of the FPN, utilized by YOLOv4.

First stage: Generate regional recommendations

] Classification
S —

Regression CNN

Second stage: Classification and regression

FIGURE 3. Two-stage target object detection.

A. TWO-STAGE TARGET OBJECT DETECTION MODELS

The two-stage target object detection models are mostly rep-
resented by the R-CNN series, which achieve excellent target
object detection accuracy by using deep CNNs to classify
object locations, a.k.a. ‘““object proposals” [7]. From the
emerged incarnations of R-CNN (i.e., Fast R-CNN [6], Faster
R-CNN [7], Mask R-CNN [25], and Mesh R-CNN [26]),
Faster R-CNN is the current leading model used in several
benchmarks [25]. Thus, it was selected as the main represen-
tative of the R-CNN group for performance comparison with
the proposed YOLOv4_CE model.
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FIGURE 4. The Faster R-CNN model.

Faster R-CNN was proposed by Ren et al. [7]. The neu-
ral network used is VGGI16, and the dimensions of the
input image are 224 x 224. As shown in Figure 4, Faster
R-CNN first extracts the feature maps of the image from
the convolutional layers, and the maps are shared to a RPN
layer to generate region proposals. The RPN layer judges
whether anchors are positive or negative by SoftMax, and
then corrects anchors by bounding box regression to obtain
accurate proposals. The Rol pooling layer combines feature
maps and proposals, which are sent to the fully connected
layer to judge the category of the target object and obtain its
exact location.

Overall, Faster R-CNN is not only a cost-efficient model,
but also presents an effective way for improving the accuracy
of target object detection [7]. It integrates feature extraction,
proposal extraction, bounding box regression and classifica-
tion into a network, which is really an end-to-end framework.
The model performs well when trained and tested using
single-scale images, which also improves its operational
speed, but it still cannot meet the requirements for real-time
target object detection.

B. ONE-STAGE TARGET OBJECT DETECTION MODELS

The existing versions of YOLO are the most balanced one-
stage target object detectors in terms of accuracy and oper-
ational speed achieved [8]. However, a new set of object
detection models, called EfficientDet [27], has been recently
proposed, utilizing a weighted bi-directional FPN (BiFPN)
in trying to achieve better accuracy and efficiency [8]. These
models are presented in the following subsections.

1) YOLO

You Only Look Once (YOLO) is a family of models started
out in 2016 by Redmon et al. [13]. With its different versions,
YOLO presents a new approach to target object detection as
it only needs to “look” once at an image to detect the objects
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and their locations on it. For this, instead of repurposing
classifiers to perform detection, it frames object detection as
a single regression problem to spatially separated bounding
boxes and associated class probabilities, which are predicted
by a single CNN directly from the entire image in one step.
YOLO trains on full images and directly optimizes its perfor-
mance for object detection.

Among the different YOLO versions, the Darknet-based
version 4 (YOLOv4) is the most accurate YOLO version,
especially if a computer-vision engineer is in pursuit of state-
of-the-art results and can perform additional customization
on the model [28]. That is why YOLOv4 was selected as
a basis for the elaborated model, proposed in this paper,
and as the main YOLO representative for the performance
comparison of models performed.

The YOLOvV4 structure is shown in Figure 5. The model
uses many optimization strategies based on maintaining the
original YOLO target object detection structure. The back-
bone network, utilized for extracting the features of the target
objects, is CSPDarknet53 [29]. In the feature integration
stage, a Spatial Pyramid Pooling (SPP) module [5] and a
Path Aggregation Network (PAN) [30] are used to further
improve the ability of feature integration, and the CloU loss
[19] is used by the loss function to further consider the
aspect ratio, overlapping area, and center distance between
the prediction frame and target frame. The CBM module
is composed of convolution (Conv), Batch normalization
(BN) [31], and Mish activation function, whereas the CBL
module is composed of Conv, BN, and Leaky_ReLU [32]
activation function. The dimensions of convolution cores in
front of the Cross-Stage Partial connections (CSP) module are
3 x 3, which is equivalent to downsampling [33]. SPP uses
fixed-block pooling operation, with the maximum pooling for
the blocks with a kernel size of 1 x 1,5 x 5,9 x 9, and
13 x 13, which refers to tensor splicing, dimension expansion,
and outputting, after a series of concatenations.

2) EFFICIENTDET
EfficientDet [27] uses as a backbone the EfficientNet [34] —a
pre-trained network based on ImageNet data set. The 3-7 level
feature maps (i.e., P3, P4, PS5, P6, and P7) are extracted from
the backbone, fed into the BiFPN layer, then integrated (from
top to bottom), and finally sent to the prediction network and
category prediction network, as shown in Figure 6.
EfficientDet proposes a new compound scale method
for target object detection by using a larger backbone and
changing all aspects of the backbone, BiFPN, classification
network, bounding box prediction network, and resolution
through a recombination coefficient ¢, as follows:

1) Backbone: The recombination coefficient ¢ corre-
sponds to EfficientNet_B +¢ in EfficientNet.

2) BiFPN: Wy, is the width of BiFPN and Dy, is the
depth of BiFPN, as shown below:

Wiigm = 64 x (1.35%); Dpypn =2+ 9. (1)
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Input
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FIGURE 6. The EfficientDet-d0 structure.

3) Classification and bounding box prediction networks:
The width is the same as that of BiFPN, W, and
D,juss are the width and depth of the classification
network, respectively, and Wyegic; and Dpyegicr are the
width and depth of the prediction network, respectively,
as shown in (2) and (3):

Welass = Wpredict = Whifpn; )
Dclasx = Upredict = 3+ [fﬂ/?’] . (3)

4) Resolution of input images: As the feature map input
to the BiFPN layer is done at levels 3 to 7, the input
resolution must be divisible by 2. When increasing

the resolution, the following linear relation shall be
satisfied:

Input =512 + 128 x ¢. 4

IV. PROPOSED MIODEL-YOLOv4_CE
This section proposes various improvements to the classi-

cal YOLOv4 model, namely replacing the CSPDarknet53

VOLUME 10, 2022

Box prediction net

backbone with ConvNeXt-S [17], integrating the coordinate
attention (CA) mechanism [18], and replacing the CIoU loss
[19] with the EloU loss [20] in the loss function. The resul-
tant model, whose structure is shown in Figure 11, is called
YOLOv4_CE.

A. ConvNeXt-S

ConvNeXt [17] refers to the structural design idea of Swin
Transformer [35] to improve the CNN, based on ResNeXt
[36], Figure 7. Macroscopically, ConvNeXt has four stages
stacked by several blocks. The number of blocks in each stage
is different and the stacking times are adjusted from (3, 4, 6,
and 3) to (3, 3, 9, and 3). The stem cell of ResNet50 contains a
7 x 7 convolution layer with a step size of 2 and a maximum
pooling layer. The stem cell is replaced with a convolution
layer with a convolution core size of 4 and a step size of 4.
By using the idea of ResNet, the block convolution is used
for the 3 x 3 convolution layer in the bottleneck block to
increase the network width to the same number of channels as
Swin Transformer (i.e., from 64 to 96). ResNeXt first reduces
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FIGURE 7. (a) The ResNeXt block structure; (b) The ConvNeXt block
structure.
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FIGURE 8. The ResNeXt, ConvNeXt, and downsampling structure.
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[ A
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FIGURE 9. The ConvNeXt-S block structure, utilized by the proposed
YOLOv4_CE model.

the dimension by 1 x 1 convolution, then applies depthwise
convolution, and finally increases the dimension by 1 x 1 con-
volution to form a bottleneck (Figure 7a). ConvNeXt lifts
the depthwise convolution up and increases the convolution
kernel to 7 x 7. So, first it applies depthwise convolution,
then 1 x 1 convolution to increase the dimension, and finally
1 x 1 convolution to reduce the dimension to form an inverted
bottleneck (Figure 7b).

Compared to ResNeXt, in the detailed ConvNeXt design
(Figure 8), ReLU [37] is replaced with GELU [38], the
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FIGURE 10. The coordinate attention (CA) mechanism.

activation function is reduced, two standardized BatchNorm
(BN) [31] layers are removed, BN is replaced with Layer
Normalization (LN) [39], and a 2 x 2 convolution layer with
a step size of 2 for spatial downsampling is used.

ConvNeXt has different architectures depending on dif-
ferent stacks of blocks used. In the proposed YOLOv4_CE
model, the ConvNeXt-S architecture is utilized with (3, 3, 27,
3) stacking, as shown in Figure 9.

B. COORDINATE ATTENTION (CA)

The Coordinate Attention (CA) mechanism [15] encodes the
channel relationship and long-term dependences by accurate
positional information with a simple overall structure flow,
as shown in Figure 10.

Firstly, the input feature graph is divided into two direc-
tions of width and height for global average pooling. The
output at height 4 and width w of channel C can be expressed
as follows:

2 = % Z X (, i); )
0<i<W

Z?/ (W) = % Z Xe (j, W). (6)
0<j<H

Then, CA stitches the generated aggregation feature map,
performs 1 x 1 convolution, and obtains function f after
applying normalization and activation function, as shown

CsaEe) o

This is followed by two convolutions and sigmoid activa-
tion function for £ and f", respectively, and transforming
these to tensors with the same channel, as follows:

"= (Fu(r")): ®)
g" = o (Fu (/™). ©)
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Finally, CA extends g" and g" outputs as to use these as
attention weights. The final output is:

e (i) = xc (i) x " (1) x g () - (10)

C. LOSS FUNCTION
The task of the target object detection is to recognize and
locate target objects, for which a loss function is utilized
to make the recognition and localization more accurate.
In YOLOV4, the Complete Intersection over Union (CIoU)
loss is used as a loss function, which is formulated in [19] as:
p* (b, b%)

Loy = 1= IoU + é + av, (11)

where b and b8 denote the central points of the predication
box set A and the ground truth box set B, respectively,
p* (b, b%) denotes the Euclidean distance between these
central points, o denotes the weighting factor, v is used to
measure the consistency of the relative proportions of the two
rectangular boxes, and loU is calculated as follows:

|ANB|

" JAUB|
Although the CIoU loss simultaneously considers the over-
lap area, the distance between central points, and the aspect
ratio of the bounding box, the difference in the aspect ratio is
measured only by v, ignoring the real difference between the

width and height, and their confidence levels.
The Efficient IoU (EloU) loss allows to achieve faster
convergence by calculating the height and width of the target

and predicted frames separately, as shown below:

12)

2 t 2 t
p? (b, bE)  p* (w, w)
Lgoy =1 — 10U + 2 e
2 h, hgt
Gy
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FIGURE 12. Sample images of the NWPU VHR-10 data set, containing
objects of a given class: (a) airplane; (b) baseball diamond; (c) bridge;
(d) ground track field; (e) basketball court; (f) harbor; (g) storage tank;
(h) tennis court; (i) vehicle; (j) ship.

where 4 and w denote the height and width of the target frame,
h8" and w$' denote the height and width of the predicated
frame, and Cj, and C,, denote the height and width of the min-
imum bounding rectangle covering the target and predicted
frames.

As the EloU loss splits the loss item of the aspect ratio into
the difference between the width and height of the predicted
frame and the width and height of the minimum bounding
box, respectively, it allows to accelerate the convergence
and improve the regression precision. These were the main
reasons for adopting the EloU loss for use as a loss function
by the proposed YOLOv4_CE model.

V. EXPERIMENTS

A. DATA SETS

Experiments were conducted on two open data sets, which are
used for object detection in remote sensing images, namely
the Northwestern Polytechnical University Very High Reso-
lution 10 (NWPU VHR-10)! data set and the Remote Sensing
Object Detection (RSOD)? data set.

1 http://pan.baidu.com/s/lhqwzXeG
2https:// github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
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FIGURE 13. Sample images of the RSOD data set, containing objects of a
given class: (a) aircraft; (b) oil tank; (c) overpass; (d) playground.

TABLE 1. Splitting of data sets into training, validation, and test subsets.

NWPU VHR-10 RSOD
Training subset 416 images 625 images
Validation subset 104 images 156 images
Test subset 130 images 195 images

The NWPU VHR-10 data set includes 650 very high res-
olution (VHR) optical remote sensing images, containing
3775 total object instances covered by 10 object classes,
including 757 airplanes, 390 baseball diamonds, 124 bridges,
163 ground track fields, 159 basketball courts, 224 harbors,
655 storage tanks, 524 tennis courts, 477 vehicles, and
302 ships, examples of which are shown in Figure 12. In addi-
tion, this data set includes 150 images that do not contain any
target objects, which are used for semi-supervised learning-
based object detection and weakly supervised learning-based
object detection [40], and thus these images were not used in
the conducted experiments.

The RSOD data set includes 976 images containing
6950 total object instances covered by four object classes,
including 4993 aircrafts, 1586 oil tanks, 180 overpasses,
and 191 playgrounds [41], examples of which are shown
in Figure 13.

In the experiments, the utilized images of the data sets were
randomly split into three different subsets, used respectively
for models’ training (64% of the total images utilized), valida-
tion (16%), and testing (20%), as shown in Table 1. By using
these percentages, the utilized images in each dataset were
split five times in different subset conglomerations as to
eliminate the test contingency, and the obtained results
are shown under the corresponding experiment number in
Tables 2-7 & 9-14 below.

B. EVALUATION METRICS

In the conducted experiments, the target object detection
performance of the proposed YOLOv4_CE model was
compared to that of five state-of-the-art models, namely
Faster R-CNN (backbone: ResNet50), Gliding Vertex (back-
bone: ResNet50), Oriented R-CNN (backbone: ResNet50),
EfficientDet, and YOLOv4, based on precision and recall.
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TABLE 2. Average precision results (%) of Faster R-CNN on NWPU VHR-10
data set.

Object Experi Experi Experi Experi Experi
ment ment ment ment ment
class 1 2 3 4 5
Airplane 95.36 98.84 96.39 99.84 94.80

Baseball diamond 95.27 96.02 96.64 95.29 93.62
Basketball court 85.49 89.29 85.16 92.20 84.99

Bridge 69.95 75.30 70.49 74.06 69.37
Ground track field 99.24 99.49 99.70 99.28 99.20
Harbor 90.48 93.07 89.65 91.26 93.07

Ship 82.85 79.57 84.93 80.87 79.56
Storage tank 65.30 68.71 68.77 67.64 62.77
Tennis court 88.79 87.04 90.74 93.43 83.02
Vehicle 57.10 51.15 56.62 52.62 44.87
mAP 82.98 83.85 83.91 84.65 80.53

Precision indicates the proportion of true positive (TP) sam-
ples in the prediction results, whereas recall indicates the
proportion of correct predictions in all positive samples,
as follows:

.. TP (14)
recision = ————;
prects TP + FP
TP
recall = ———, (15)
TP + FN

where TP represents the number of samples that are actually
positive and are classified as positive, false positive (FP)
represents the number of samples that are incorrectly clas-
sified as positive, i.e., the number of samples that are actually
negative but are classified as positive, and false negative (FN)
represents the number of samples that are actually positive but
are classified as negative.

Based on precision and recall, the FI score and mean
average precision (mAP) were used as the main evaluation
metrics in the experiments. These metrics are defined as
follows:

2 X precision x recall

Fl = — ; (16)
precision + recall
N
1 AP;
mAP = % (17)

where AP; denotes the average precision of class i and
N denotes the total number of classes. The average preci-
sion (AP) corresponds to the area under the precision-recall
curve, i.e.:

1
AP:[ p(r)dr (18)
0

where p (r) denotes the precision function of recall (r).

In the conducted experiments, the precision-recall curves
were first created for each of the compared models, for each
class of objects in the corresponding data set used, based on
the obtained values of recall and precision. Then, these curves
were used to calculate the AP of each model for each class
of objects, separately for each experiment, based on (18).
Finally, in order to compare the overall target object detection
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TABLE 3. Average precision results (%) of Gliding Vertex on NWPU

TABLE 6. Average precision results (%) of YOLOv4 on NWPU VHR-10

VHR-10 data set. data set.
oveer Fager el Epe el Epe ovier Taper el B el Epe
class 1 2 3 4 5 class 1 2 3 4 5

Airplane 99.39 100.00 97.96 99.50 100.00 Airplane 99.40 99.70 99.30 99.12 99.58
Baseball diamond 94.82 93.73 91.80 94.55 97.78 Baseball diamond 95.27 97.50 95.85 98.07 97.73
Basketball court 78.95 81.85 86.38 83.21 64.28 Basketball court 75.22 78.51 89.65 88.52 81.22
Bridge 66.49 75.30 60.63 64.96 62.24 Bridge 71.95 69.12 72.71 61.44 78.37
Ground track field 95.59 99.89 96.86 99.09 100.00 Ground track field 94.17 98.86 99.41 99.49 98.49
Harbor 86.36 88.39 83.10 95.70 83.96 Harbor 93.12 97.37 96.44 95.05 90.99

Ship 95.07 83.22 88.41 91.33 93.39 Ship 92.63 90.61 91.79 91.69 94.12
Storage tank 89.86 68.28 92.48 95.85 97.94 Storage tank 99.81 99.15 99.85 98.93 99.30
Tennis court 75.77 82.46 72.94 79.13 79.29 Tennis court 98.30 99.48 98.02 99.84 100.00
Vehicle 81.41 86.44 81.67 88.76 94.03 Vehicle 87.80 85.19 89.03 86.73 90.09
mAP 86.37 85.96 85.22 89.21 87.29 mAP 90.77 91.55 93.21 91.89 92.99

TABLE 4. Average precision results (%) of Oriented R-CNN on NWPU

VHR-10 data set.

T
class 1 2 3 4 5
Airplane 99.87 10000 9993  100.00  100.00
Baseball diamond ~ 89.96  90.52  89.13  89.86  98.93
Basketball court 7273 8145 8047  81.82  71.94
Bridge 7083 7042 7200 7164  67.08
Ground track field ~ 99.72 9972 9945 9972 99.15
Harbor 81.82 8182 8182  90.66  81.55
Ship 8934 8978 8972 8993  90.32
Storage tank 9047 9034 9900 9055  98.93
Tennis court 8150  90.12 8182  81.67  81.82
Vehicle 7967 8783 8754 8848 8770
mAP 8559  $820  88.09 8843  87.74

TABLE 5. Average precision results (%) of EfficientDet on NWPU VHR-10

data set.

Oveer et T el Dl e
class 1 2 3 4 5
Airplane 99.74 99.75 99.56 99.09 98.90
Baseball diamond 97.30 97.18 97.29 97.15 98.21
Basketball court 95.20 93.69 90.80 92.34 94.49
Bridge 77.54 82.54 82.01 80.38 81.33
Ground track field 99.24 95.22 99.60 97.72 98.30
Harbor 86.08 83.74 94.35 94.32 88.76
Ship 88.58 83.75 86.97 85.93 87.92
Storage tank 70.78 81.78 77.48 79.08 72.79
Tennis court 95.54 95.59 95.59 96.08 93.42
Vehicle 73.56 67.17 70.81 68.01 71.86
mAP 88.36 88.04 89.45 89.01 88.60

performance of the models across all classes of objects, the
mAP values were calculated, based on (17), separately for
each experiment, and then averaged to obtain the final mAP
result for the particular model, shown in Tables 8 and 15
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TABLE 7. Average precision results (%) of YOLOv4_CE on NWPU VHR-10

data set.
v e Dl Bl et e
class 1 2 3 4 5
Airplane 100.00 9998 9998  100.00  99.99
Baseball diamond ~ 96.63 9420 9656 9584  96.92
Basketball court 9464 9565  95.01 9746  96.05
Bridge 87.69 8326  79.56  86.11 84.14
Ground track field ~ 99.50  99.40  99.80 9950  99.80
Harbor 9734 9629 9380  90.16 9725
Ship 9148  90.68  91.02 9089 9139
Storage tank 9453 99.01 9879  99.11  99.09
Tennis court 99.19 9850  98.76 9941 9825
Vehicle 9183 9433 9148 9255  88.68
mAP 9528 9513 9448 9510  95.16

TABLE 8. mAP and F1 score results of compared models on NWPU

VHR-10 data set.

Model F1 score mAP (%)
Faster R-CNN 0.733 83.18
Gliding Vertex 0.873 86.81

Oriented R-CNN 0.931 87.61
EfficientDet 0.844 88.69
YOLOv4 0.892 92.08
YOLOv4_CE 0.933 95.03

below. Then the other metric, FI score, was used, separately
for each model in each of the five experiments, and the cor-
responding values were averaged to obtain the final 1 score
result for each model, as summarized in Tables 8 and 15.

C. RESULTS

1) NWPU VHR-10 DATA SET
The calculated AP and mAP values of each model for each
class of objects in each of the five experiments, conducted on
this data set, are presented in Tables 2-7. Based on these, the
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TABLE 9. Average precision results (%) of Faster R-CNN on RSOD data set.

TABLE 13. Average precision results (%) of YOLOv4 on RSOD data set.

Object Experi Experi Experi Experi Experi Object Experi Experi Experi Experi Experi
class ment ment ment ment ment class ment ment ment ment ment
1 2 3 4 5 1 2 3 4 5

Aircraft 63.60 58.89 58.94 60.22 59.23 Aircraft 91.79 92.03 91.60 91.65 92.35
Oil tank 95.91 94.63 94.85 95.03 96.01 Oil tank 97.26 98.70 98.35 97.87 97.54
Overpass 82.46 88.12 85.83 86.78 93.12 Overpass 78.76 75.14 82.12 74.28 82.74
Playground 98.83 100.00 98.83 99.00 99.68 Playground 100.00 100.00 99.68 99.68 100.00
mAP 85.20 85.41 84.61 85.26 87.01 mAP 91.95 91.47 92.94 90.87 93.16

TABLE 10. Average precision results (%) of Gliding Vertex on RSOD
data set.

Object Experi Experi Experi Experi Experi
class ment ment ment ment ment
1 2 3 4 5

Aircraft 93.30 83.74 91.51 91.77 87.95
Oil tank 95.52 94.24 96.54 94.46 97.87
Overpass 60.06 66.86 73.42 68.24 92.41
Playground 100.00 95.45 92.59 100.00 96.23
mAP 87.22 85.07 88.52 88.62 93.62

TABLE 11. Average precision results (%) of Oriented R-CNN on RSOD
data set.

Object Experi  Experi Experi Experi Experi

class ment ment ment ment ment
1 2 3 4 5

Aircraft 90.32 90.12 90.19 90.06 89.95
Oil tank 90.89 90.86 90.89 90.86 90.86
Overpass 80.74 90.04 90.69 90.05 80.85
Playground 100.00 99.64 90.91 100.00 99.64
mAP 90.49 92.67 90.67 92.74 90.33

TABLE 12. Average precision results (%) of EfficientDet on RSOD data set.

Object Experi Experi Experi Experi Experi
class ment ment ment ment ment
1 2 3 4 5
Aircraft 70.32 70.22 69.44 69.72 70.45
Oil tank 97.51 97.99 98.06 97.81 98.26
Overpass 90.17 88.59 90.44 86.11 90.87
Playground 100.00 100.00 100.00 100.00  100.00
mAP 89.50 89.20 89.49 88.41 89.90

averaged mAP value was calculated for each model, as shown
in Table 8. The obtained results confirm that the proposed
YOLOvV4_CE model outperforms, in terms of mAP, all five
state-of-the-art models on this data set. More specifically,
Faster R-CNN, Gliding Vertex, Oriented R-CNN, Efficient-
Det, and YOLOv4 are outperformed by 11.85, 8.22, 7.42,
6.34, and 2.95 points, respectively.

Then, the F1 score values were calculated in each exper-
iment for each model and then averaged to produce the
final results presented in Table 8. These results confirm
that the proposed YOLOv4_CE model outperforms all
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TABLE 14. Average precision results (%) of YOLOv4_CE on RSOD data set.

Object Experi Experi Experi Experi Experi
class ment ment ment ment ment
1 2 3 4 5
Aircraft 94.52 92.87 94.08 93.47 93.60
Oil tank 98.29 97.90 98.02 97.71 98.03
Overpass 94.40 94.90 95.75 83.92 94.45
Playground 100.00 100.00 95.83 100.00 100.00
mAP 96.80 96.42 95.92 93.78 96.52

TABLE 15. mAP and F1 score results of compared models on RSOD
data set.

Model F1 score mAP (%)
Faster R-CNN 0.767 85.50
Gliding Vertex 0.893 88.61

Oriented R-CNN 0.904 91.38
EfficientDet 0.883 89.30
YOLOv4 0.909 92.08
YOLOv4_CE 0.937 95.89

five state-of-the-art models on this evaluation metric too.
More specifically, Faster R-CNN, Gliding Vertex, Oriented
R-CNN, EfficientDet, and YOLOv4 are outperformed by
0.200, 0.060, 0.002, 0.089, and 0.041 points, respectively.

The most challenging for target object detection proved to
be the images with complex background (bridge and basket-
ball court classes) and the images containing intensive small
targets (vehicle and harbor classes).

2) RSOD DATA SET
The calculated AP and mAP values of each model for each
class of objects in each of the five experiments, conducted on
this data set, are presented in Tables 8-14. Based on these, the
averaged mAP values were calculated, as shown in Table 15.
The obtained results confirm that the proposed YOLOv4_CE
model outperforms, in terms of mAP, all five state-of-the-
art models on this data set too. More specifically, Faster
R-CNN, Gliding Vertex, Oriented R-CNN, EfficientDet, and
YOLOV4 are outperformed by a similar degree as on the other
data set, namely by 10.39, 7.28, 4.51, 6.59, and 3.81 points,
respectively.

Then, the F1 score values were calculated in each experi-
ment for each model and then averaged to produce the final

VOLUME 10, 2022



X. Yang et al.: Remote Sensing Image Detection Based on YOLOv4 Improvements

IEEE Access

results presented in Table 15. These results also confirm that
the proposed YOLOv4_CE model outperforms all five state-
of-the-art models, based on this evaluation metric, on this data
set too. More specifically, Faster R-CNN, Gliding Vertex,
Oriented R-CNN, EfficientDet, and YOLOv4 are outper-
formed by a similar degree as on the other data set, namely
by 0.170, 0.044, 0.033, 0.054, and 0.028 points, respectively.

The most challenging for target object detection again
proved to be the images with complex background (over-
pass class) and the images containing intensive small targets
(aircraft class).

VI. CONCLUSION

This paper has proposed a more accurate target object detec-
tion model, called YOLOv4_CE, based on the classical
YOLOvV4 model with additional improvements. One of the
ideas, utilized by YOLOv4_CE, was to make the model
extract features more effectively and by this to lessen the
computation of redundant information at the feature layer
and reduce the size of the model itself. This was achieved
by replacing the original feature extraction backbone (i.e.,
CSPDarknet53) of YOLOv4 with ConvNeXt-S [17]. In addi-
tion, in order to increase the receptive field and allow the
proposed model to pay more attention to important parts of
the processed images, the coordinate attention (CA) mecha-
nism [18] was integrated into YOLOv4. Moreover, in the pro-
posed model, the original loss function of YOLOv4, namely
the ClIoU loss [19], was replaced with the EloU loss [20]
in order to achieve faster convergence of the model and
improve its regression precision. The incorporation of these
improvements into YOLOv4 resulted in overall better target
object detection. This was confirmed by a series of exper-
iments conducted for evaluating and comparing the target
object detection performance of the proposed model to that
of the original YOLOv4 model and four other state-of-the-
art models, namely Faster R-CNN, Gliding Vertex, Oriented
R-CNN, and EfficientDet, based on two open data sets —
NWPU VHR-10 and RSOD. The obtained results clearly
demonstrated that the proposed YOLOv4_CE model out-
performs these five models, in terms of the mean average
precision (mAP) and F1 score, on both data sets.

The proposed YOLOv4_CE model is very suitable for
detecting target objects in remote sensing images. Due to the
replacement of the feature extraction module with a more
complex module for the network, in the future we plan to
introduce some specially designed lightweight modules into
the model in order to increase its operational speed.
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