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ABSTRACT Remote sensing image target object detection and recognition are widely used both in military
and civil fields. There are many models proposed for this purpose, but their effectiveness on target object
detection in remote sensing images is not ideal due to the influence of climate conditions, obstacles
and confusing objects presented in images, image clarity, and associated problems with small-target and
multi-target detection and recognition. Therefore, how to accurately detect target objects in images is an
urgent problem to be solved. To this end, a novel model, called YOLOv4_CE, is proposed in this paper, based
on the classical YOLOv4 model with added improvements, resulting from replacing the backbone feature-
extraction CSPDarknet53 network with a ConvNeXt-S network, replacing the Complete Intersection over
Union (CIoU) loss with the Efficient Intersection over Union (EIoU) loss, and adding a coordinate attention
mechanism to YOLOv4, as to improve its remote sensing image detection capabilities. The results, obtained
through experiments conducted on two open data sets, demonstrate that the proposed YOLOv4_CE model
outperforms, in this regard, both the original YOLOv4 model and four other state-of-the-art models, namely
Faster R-CNN, Gliding Vertex, Oriented R-CNN, and EfficientDet, in terms of the mean average precision
(mAP) and F1 score, by achieving respective values of 95.03% and 0.933 on the NWPU VHR-10 data set,
and 95.89% and 0.937 on the RSOD data set.

16 INDEX TERMS Remote sensing, target object detection, ConvNeXt, EIoU loss, coordinate attention.

I. INTRODUCTION17

Remote sensing image target detection aims to judge the18

content of remote sensing images according to the indi-19

vidual features of the images, identify their attributes, and20

then locate and classify the target objects. This task has21

found wide application in multiple fields for civil use. For22

instance, it can be used for investigation and monitoring of23

natural resources, such as land-, mineral-, forest-, wetland,24

and water resources. In the field of environmental con-25

trol and protection, remote sensing image detection can be26

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

used for monitoring and evaluating atmospheric-, water-, 27

ecological-, soil environments, etc. In the field of disaster 28

emergency, its main applications include monitoring of dis- 29

aster elements and evaluating the risk of their appearance, 30

with subsequent recovery and reconstruction. In the field 31

of agriculture in rural areas, its applications mainly include 32

stabilization of food production, prevention and control of 33

major disease outbursts and epidemics, development and 34

expansion of rural industries, monitoring of rural habitat 35

environment, and performing agricultural statistics. Remote 36

sensing image target detection is used also in many other 37

fields, such as autonomous driving cars, unmanned aerial 38

vehicles (UAVs), intelligent robotics, etc. In the military 39
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field, remote sensing image target detection based on high-40

definition satellite images is used for military survey, defense,41

action prevention, etc.42

Prior to 2012, the traditional feature-based object detec-43

tion models were mainly based on manual feature extraction44

performed by experts. Since 2012, the rise of the convolu-45

tional neural networks (CNNs) has been a major step forward46

in this area, especially with the emergence of the Visual47

Geometry Group Network (VGGNet) [1], GoogleNet [2],48

ResNet [3], and Region-based CNN (R-CNN) [4]. Conse-49

quently researchers began to optimize and improve R-CNN50

and, as a result of these efforts, the Scale Pyramidal Pool-51

ing Network (SPPNet) [5], Fast R-CNN [6], and Faster52

R-CNN [7] emerged one after another. All these models53

are representatives of the two-stage target object detection54

models which first generate a series of sparse candidate55

frames, followed by candidate frames verification, classifi-56

cation, and regression to improve the scores and locations57

[8]. At present, the horizontal bounding box representation is58

widely used in the area of target object detection. However,59

with this method, a confusion of horizontal objects may60

occur when trying to detect dense small objects. A model61

of sliding vertices of the horizontal bounding box to detect62

multi-oriented objects, called Gliding Vertex, is proposed in63

[9]. A Rotation-equivariant Detector (ReDet) is proposed in64

[10] to encode rotation equivariance and rotation invariance.65

On the basis of rotation equivariance features, a Rotation-66

invariant Region of Interest (RiRoI) Align is also presented67

there to extract rotation-invariant features from equivariant68

features according to the orientation of the Region of Inter-69

est (RoI). Based on Faster R-CNN, a context-aware detec-70

tion network (CAD-Net) is proposed in [11] to integrate71

global context information into target detection. In addition, a72

spatial-and-scale-aware attentionmodule is designedwith the73

focus on more informative regions and features. The Oriented74

R-CNN model, proposed in [12], utilizes an oriented Region75

Proposal Network (RPN) to directly generate high-quality76

oriented proposals at almost no cost. Even though high accu-77

racy and localization can be achievedwith the two-stagemod-78

els, their more complex training and low operational speed79

limit their application for real-time target object detection.80

But the pursuit of accuracy needs to be supported by speed81

as well. So, one-stage target object detection models, such as82

You Only Look Once (YOLO) [13] and Single Shot Multibox83

Detector (SSD) [14], have appeared with the aim of losing84

an acceptable range of accuracy in order to maximize the85

speed of detection to the extent of approaching a real-time86

detection. Both YOLO and SSD, however, cannot perfectly87

handle the graphic area, resulting in high detection error-88

and missing rates. In addition, SSD does not consider the89

relationship between different scales, so it has limitations in90

detecting small objects, whereas for YOLO it is easier to91

learn general features, and its operational speed is higher [15].92

Among different YOLO versions, YOLOv4 [16] is the most93

outstanding one with respect to both the performance and94

operational speed achieved.95

The objective of this paper is to come up with a novel 96

model, called YOLOv4_CE, based on YOLOv4 improve- 97

ments, as to achieve better remote sensing image detection 98

performance. The main contributions of the paper are the 99

following: 100

1) Replacing the feature extraction backbone (CSP 101

Darknet53) of YOLOv4 with ConvNeXt-S [17] in 102

order to make the model extract features more effec- 103

tively and by this to lessen the computation of redun- 104

dant information at the feature layer and reduce the 105

model size; 106

2) Integrating the coordinate attention (CA) mechanism 107

[18] into YOLOv4, so as to increase the receptive field 108

and allow the model to pay more attention to important 109

parts of the processed images; 110

3) Replacing the Complete Intersection over Union 111

(CIoU) loss [19] with the Efficient Intersection over 112

Union (EIoU) loss [20] in the loss function of YOLOv4 113

as to achieve faster convergence and improve the 114

regression precision; 115

4) Verifying (by comparison to five state-of-the-art mod- 116

els based on experiments conducted on two open data 117

sets – NWPU VHR-10 and RSOD) that these new 118

elements, introduced into YOLOv4, do indeed improve 119

its remote sensing image detection performance. 120

II. BACKGROUND 121

A. ATTEONTION MECHANISMS 122

Attention mechanisms were first proposed and used for 123

natural language processing (NLP) and text alignment in 124

machine translation. In the field of computer vision, attention 125

mechanisms are used to improve the performance of the 126

utilized neural networks. The existing attention mechanisms 127

include Squeeze-and-Excitation (SE) [21], Convolutional 128

Block Attention Module (CBAM) [22], Coordinate Attention 129

(CA) [18], etc. SE is used to solve the loss problem caused 130

by the diverse importance of different channels of the fea- 131

ture map during the convolution pooling but it ignores the 132

importance of positional information. Considering the short- 133

comings of SE, CBAM integrates two attention mechanisms, 134

namely channel attention and spatial attention. By reducing 135

the number of channels and using a large-scale convolution 136

for the utilization of location information, CBAM can not 137

only reduce the number of parameters and save comput- 138

ing power, but also can be integrated seamlessly into any 139

CNN architecture. However, convolutions can only capture 140

local relations and fail in modeling long-range dependen- 141

cies which are essential for computer vision tasks, [18]. 142

CA effectively integrates spatial coordinate information into 143

the generated attention graph by embedding positional infor- 144

mation into the channel attention in order to reduce the 145

loss caused by the 2D global pooling and decomposes 146

the channel attention into two parallel 1D feature encod- 147

ings, resulting in a significant gain for intensive prediction 148

tasks. 149
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B. MULTI-SCALE FEATURE INTEGRATION150

In the field of target object detection, integrating the features151

of different scales is a vital task to improve the performance152

of target objects distinguishing from the image background.153

The resolution of high-level features is low, and the percep-154

tion of details is poor, but the semantic information is rich.155

On the contrary, the resolution of low-level features is high,156

and the details and location information are rich, but the157

semantic information is poor. The integration of features at158

different levels allows to improve the target object detection159

performance. The existing feature integration techniques can160

be divided into early integration and late integration ones,161

depending on whether the prediction takes place before or162

after the feature integration. Early integration includes classic163

methods such as concatenation, addition, etc. Concatenation164

directly connects two features, and the final output feature165

dimension is the sum of the two feature dimensions. Addition166

adopts a parallel strategy to combine two feature vectors into167

a complex vector. Late integration combines the detection168

results of different levels. For instance, the feature pyra-169

mid network (FPN) [23], [24] first performs pyramid fusion170

followed by detection performed separately on each fused171

feature level. FPN conveys strong semantic features from172

top to bottom and combines upper-level feature information173

through upsampling to obtain the prediction map. In gen-174

eral, FPN can reduce the extra consumption of computation175

power and memory. The FPN structure, utilized by YOLOv4,176

is shown in Figure 1, where Ci(i = 2, 3, 4, 5) represents the177

ith ResNet convolution groups andPi represents the ith feature178

map. P5 is obtained by a 1× 1 convolution of C5. Integration179

with the upsampled feature maps is used to obtain the new180

feature map Pj(j = 4, 3, 2) from the corresponding features181

of Cj. As shown in Figure 2, a 1× 1 convolution operation is182

performed first on each feature map Cj and the result is then183

integrated with the upsampled feature map Pj+1 to obtain the184

new feature map Pj, which has the same size as the lower-185

layer feature map. The final feature maps are generated by a186

3× 3 convolution.187

III. RELATED WORK188

As mentioned in the Introduction, the target object detection189

models, adopting CNNs, are divided into two main groups:190

1) Two-stagemodels, which first generate regional recom-191

mendations and then perform classification and regres-192

sion (Figure 3).193

2) One-stage models, which skip the process of generat-194

ing the selected area through the candidate framework195

and directly generate the category probability and196

location coordinate value of the object to be detected,197

identified, and classified, which increases their opera-198

tional speed despite the slight flaw in accuracy. In addi-199

tion, these models are smaller in size and easier to200

optimize [8].201

The main (anchor-based) representatives of these two202

groups are briefly described in the subsections below.203

FIGURE 1. The FPN structure, utilized by YOLOv4.

FIGURE 2. The side connection schema of the FPN, utilized by YOLOv4.

FIGURE 3. Two-stage target object detection.

A. TWO-STAGE TARGET OBJECT DETECTION MODELS 204

The two-stage target object detection models are mostly rep- 205

resented by the R-CNN series, which achieve excellent target 206

object detection accuracy by using deep CNNs to classify 207

object locations, a.k.a. ‘‘object proposals’’ [7]. From the 208

emerged incarnations of R-CNN (i.e., Fast R-CNN [6], Faster 209

R-CNN [7], Mask R-CNN [25], and Mesh R-CNN [26]), 210

Faster R-CNN is the current leading model used in several 211

benchmarks [25]. Thus, it was selected as the main represen- 212

tative of the R-CNN group for performance comparison with 213

the proposed YOLOv4_CE model. 214
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FIGURE 4. The Faster R-CNN model.

Faster R-CNN was proposed by Ren et al. [7]. The neu-215

ral network used is VGG16, and the dimensions of the216

input image are 224 × 224. As shown in Figure 4, Faster217

R-CNN first extracts the feature maps of the image from218

the convolutional layers, and the maps are shared to a RPN219

layer to generate region proposals. The RPN layer judges220

whether anchors are positive or negative by SoftMax, and221

then corrects anchors by bounding box regression to obtain222

accurate proposals. The RoI pooling layer combines feature223

maps and proposals, which are sent to the fully connected224

layer to judge the category of the target object and obtain its225

exact location.226

Overall, Faster R-CNN is not only a cost-efficient model,227

but also presents an effective way for improving the accuracy228

of target object detection [7]. It integrates feature extraction,229

proposal extraction, bounding box regression and classifica-230

tion into a network, which is really an end-to-end framework.231

The model performs well when trained and tested using232

single-scale images, which also improves its operational233

speed, but it still cannot meet the requirements for real-time234

target object detection.235

B. ONE-STAGE TARGET OBJECT DETECTION MODELS236

The existing versions of YOLO are the most balanced one-237

stage target object detectors in terms of accuracy and oper-238

ational speed achieved [8]. However, a new set of object239

detection models, called EfficientDet [27], has been recently240

proposed, utilizing a weighted bi-directional FPN (BiFPN)241

in trying to achieve better accuracy and efficiency [8]. These242

models are presented in the following subsections.243

1) YOLO244

You Only Look Once (YOLO) is a family of models started245

out in 2016 by Redmon et al. [13]. With its different versions,246

YOLO presents a new approach to target object detection as247

it only needs to ‘‘look’’ once at an image to detect the objects248

and their locations on it. For this, instead of repurposing 249

classifiers to perform detection, it frames object detection as 250

a single regression problem to spatially separated bounding 251

boxes and associated class probabilities, which are predicted 252

by a single CNN directly from the entire image in one step. 253

YOLO trains on full images and directly optimizes its perfor- 254

mance for object detection. 255

Among the different YOLO versions, the Darknet-based 256

version 4 (YOLOv4) is the most accurate YOLO version, 257

especially if a computer-vision engineer is in pursuit of state- 258

of-the-art results and can perform additional customization 259

on the model [28]. That is why YOLOv4 was selected as 260

a basis for the elaborated model, proposed in this paper, 261

and as the main YOLO representative for the performance 262

comparison of models performed. 263

The YOLOv4 structure is shown in Figure 5. The model 264

uses many optimization strategies based on maintaining the 265

original YOLO target object detection structure. The back- 266

bone network, utilized for extracting the features of the target 267

objects, is CSPDarknet53 [29]. In the feature integration 268

stage, a Spatial Pyramid Pooling (SPP) module [5] and a 269

Path Aggregation Network (PAN) [30] are used to further 270

improve the ability of feature integration, and the CIoU loss 271

[19] is used by the loss function to further consider the 272

aspect ratio, overlapping area, and center distance between 273

the prediction frame and target frame. The CBM module 274

is composed of convolution (Conv), Batch normalization 275

(BN) [31], and Mish activation function, whereas the CBL 276

module is composed of Conv, BN, and Leaky_ReLU [32] 277

activation function. The dimensions of convolution cores in 278

front of the Cross-Stage Partial connections (CSP)module are 279

3 × 3, which is equivalent to downsampling [33]. SPP uses 280

fixed-block pooling operation, with themaximum pooling for 281

the blocks with a kernel size of 1 × 1, 5 × 5, 9 × 9, and 282

13×13, which refers to tensor splicing, dimension expansion, 283

and outputting, after a series of concatenations. 284

2) EFFICIENTDET 285

EfficientDet [27] uses as a backbone the EfficientNet [34] – a 286

pre-trained network based on ImageNet data set. The 3-7 level 287

feature maps (i.e., P3, P4, P5, P6, and P7) are extracted from 288

the backbone, fed into the BiFPN layer, then integrated (from 289

top to bottom), and finally sent to the prediction network and 290

category prediction network, as shown in Figure 6. 291

EfficientDet proposes a new compound scale method 292

for target object detection by using a larger backbone and 293

changing all aspects of the backbone, BiFPN, classification 294

network, bounding box prediction network, and resolution 295

through a recombination coefficient ϕ, as follows: 296

1) Backbone: The recombination coefficient ϕ corre- 297

sponds to EfficientNet_B +ϕ in EfficientNet. 298

2) BiFPN: Wbifpn is the width of BiFPN and Dbifpn is the 299

depth of BiFPN, as shown below: 300

Wbifpn = 64×
(
1.35ϕ

)
;Dbifpn = 2+ ϕ. (1) 301
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FIGURE 5. The YOLOv4 structure.

FIGURE 6. The EfficientDet-d0 structure.

3) Classification and bounding box prediction networks:302

The width is the same as that of BiFPN, Wclass and303

Dclass are the width and depth of the classification304

network, respectively, and Wpredict and Dpredict are the305

width and depth of the prediction network, respectively,306

as shown in (2) and (3):307

Wclass = Wpredict = Wbifpn; (2)308

Dclass = Dpredict = 3+
[
ϕ
/
3
]
. (3)309

4) Resolution of input images: As the feature map input310

to the BiFPN layer is done at levels 3 to 7, the input311

resolution must be divisible by 27. When increasing312

the resolution, the following linear relation shall be313

satisfied:314

Input = 512+ 128× ϕ. (4)315

IV. PROPOSED MODEL—YOLOv4_CE316

This section proposes various improvements to the classi-317

cal YOLOv4 model, namely replacing the CSPDarknet53318

backbone with ConvNeXt-S [17], integrating the coordinate 319

attention (CA) mechanism [18], and replacing the CIoU loss 320

[19] with the EIoU loss [20] in the loss function. The resul- 321

tant model, whose structure is shown in Figure 11, is called 322

YOLOv4_CE. 323

A. ConvNeXt-S 324

ConvNeXt [17] refers to the structural design idea of Swin 325

Transformer [35] to improve the CNN, based on ResNeXt 326

[36], Figure 7. Macroscopically, ConvNeXt has four stages 327

stacked by several blocks. The number of blocks in each stage 328

is different and the stacking times are adjusted from (3, 4, 6, 329

and 3) to (3, 3, 9, and 3). The stem cell of ResNet50 contains a 330

7× 7 convolution layer with a step size of 2 and a maximum 331

pooling layer. The stem cell is replaced with a convolution 332

layer with a convolution core size of 4 and a step size of 4. 333

By using the idea of ResNet, the block convolution is used 334

for the 3 × 3 convolution layer in the bottleneck block to 335

increase the network width to the same number of channels as 336

Swin Transformer (i.e., from 64 to 96). ResNeXt first reduces 337
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FIGURE 7. (a) The ResNeXt block structure; (b) The ConvNeXt block
structure.

FIGURE 8. The ResNeXt, ConvNeXt, and downsampling structure.

FIGURE 9. The ConvNeXt-S block structure, utilized by the proposed
YOLOv4_CE model.

the dimension by 1 × 1 convolution, then applies depthwise338

convolution, and finally increases the dimension by 1×1 con-339

volution to form a bottleneck (Figure 7a). ConvNeXt lifts340

the depthwise convolution up and increases the convolution341

kernel to 7 × 7. So, first it applies depthwise convolution,342

then 1× 1 convolution to increase the dimension, and finally343

1×1 convolution to reduce the dimension to form an inverted344

bottleneck (Figure 7b).345

Compared to ResNeXt, in the detailed ConvNeXt design346

(Figure 8), ReLU [37] is replaced with GELU [38], the347

FIGURE 10. The coordinate attention (CA) mechanism.

activation function is reduced, two standardized BatchNorm 348

(BN) [31] layers are removed, BN is replaced with Layer 349

Normalization (LN) [39], and a 2× 2 convolution layer with 350

a step size of 2 for spatial downsampling is used. 351

ConvNeXt has different architectures depending on dif- 352

ferent stacks of blocks used. In the proposed YOLOv4_CE 353

model, the ConvNeXt-S architecture is utilized with (3, 3, 27, 354

3) stacking, as shown in Figure 9. 355

B. COORDINATE ATTENTION (CA) 356

The Coordinate Attention (CA) mechanism [15] encodes the 357

channel relationship and long-term dependences by accurate 358

positional information with a simple overall structure flow, 359

as shown in Figure 10. 360

Firstly, the input feature graph is divided into two direc- 361

tions of width and height for global average pooling. The 362

output at height h and width w of channel C can be expressed 363

as follows: 364

zhc (h) =
1
W

∑
0≤i<W

xc (h, i); (5) 365

zwc (w) =
1
H

∑
0≤j<H

xc (j,w). (6) 366

Then, CA stitches the generated aggregation feature map, 367

performs 1 × 1 convolution, and obtains function f after 368

applying normalization and activation function, as shown 369

below: 370

f = δ
(
F1
([
zh, zw

]))
. (7) 371

This is followed by two convolutions and sigmoid activa- 372

tion function for f h and f w, respectively, and transforming 373

these to tensors with the same channel, as follows: 374

gh = σ
(
Fh
(
f h
))
; (8) 375

gw = σ
(
Fw
(
f w
))
. (9) 376
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FIGURE 11. The structure of the proposed YOLOv4_CE model.

Finally, CA extends gh and gw outputs as to use these as377

attention weights. The final output is:378

yc (i, j) = xc (i, j)× ghc (i)× g
w
c (j) . (10)379

C. LOSS FUNCTION380

The task of the target object detection is to recognize and381

locate target objects, for which a loss function is utilized382

to make the recognition and localization more accurate.383

In YOLOv4, the Complete Intersection over Union (CIoU)384

loss is used as a loss function, which is formulated in [19] as:385

LCIoU = 1− IoU +
ρ2
(
b, bgt

)
c2

+ αv, (11)386

where b and bgt denote the central points of the predication387

box set A and the ground truth box set B, respectively,388

ρ2
(
b, bgt

)
denotes the Euclidean distance between these389

central points, α denotes the weighting factor, ν is used to390

measure the consistency of the relative proportions of the two391

rectangular boxes, and IoU is calculated as follows:392

IoU =
|A ∩ B|
|A ∪ B|

(12)393

Although the CIoU loss simultaneously considers the over-394

lap area, the distance between central points, and the aspect395

ratio of the bounding box, the difference in the aspect ratio is396

measured only by ν, ignoring the real difference between the397

width and height, and their confidence levels.398

The Efficient IoU (EIoU) loss allows to achieve faster399

convergence by calculating the height and width of the target400

and predicted frames separately, as shown below:401

LEIoU = 1− IoU +
ρ2
(
b, bgt

)
c2

+
ρ2
(
w,wgt

)
C2
w

402

+
ρ2
(
h, hgt

)
C2
h

, (13)403

FIGURE 12. Sample images of the NWPU VHR-10 data set, containing
objects of a given class: (a) airplane; (b) baseball diamond; (c) bridge;
(d) ground track field; (e) basketball court; (f) harbor; (g) storage tank;
(h) tennis court; (i) vehicle; (j) ship.

where h andw denote the height andwidth of the target frame, 404

hgt and wgt denote the height and width of the predicated 405

frame, andCh andCw denote the height and width of the min- 406

imum bounding rectangle covering the target and predicted 407

frames. 408

As the EIoU loss splits the loss item of the aspect ratio into 409

the difference between the width and height of the predicted 410

frame and the width and height of the minimum bounding 411

box, respectively, it allows to accelerate the convergence 412

and improve the regression precision. These were the main 413

reasons for adopting the EIoU loss for use as a loss function 414

by the proposed YOLOv4_CE model. 415

V. EXPERIMENTS 416

A. DATA SETS 417

Experiments were conducted on two open data sets, which are 418

used for object detection in remote sensing images, namely 419

the Northwestern Polytechnical University Very High Reso- 420

lution 10 (NWPUVHR-10)1 data set and the Remote Sensing 421

Object Detection (RSOD)2 data set. 422

1http://pan.baidu.com/s/1hqwzXeG
2https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
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FIGURE 13. Sample images of the RSOD data set, containing objects of a
given class: (a) aircraft; (b) oil tank; (c) overpass; (d) playground.

TABLE 1. Splitting of data sets into training, validation, and test subsets.

The NWPU VHR-10 data set includes 650 very high res-423

olution (VHR) optical remote sensing images, containing424

3775 total object instances covered by 10 object classes,425

including 757 airplanes, 390 baseball diamonds, 124 bridges,426

163 ground track fields, 159 basketball courts, 224 harbors,427

655 storage tanks, 524 tennis courts, 477 vehicles, and428

302 ships, examples of which are shown in Figure 12. In addi-429

tion, this data set includes 150 images that do not contain any430

target objects, which are used for semi-supervised learning-431

based object detection and weakly supervised learning-based432

object detection [40], and thus these images were not used in433

the conducted experiments.434

The RSOD data set includes 976 images containing435

6950 total object instances covered by four object classes,436

including 4993 aircrafts, 1586 oil tanks, 180 overpasses,437

and 191 playgrounds [41], examples of which are shown438

in Figure 13.439

In the experiments, the utilized images of the data sets were440

randomly split into three different subsets, used respectively441

formodels’ training (64%of the total images utilized), valida-442

tion (16%), and testing (20%), as shown in Table 1. By using443

these percentages, the utilized images in each dataset were444

split five times in different subset conglomerations as to445

eliminate the test contingency, and the obtained results446

are shown under the corresponding experiment number in447

Tables 2-7 & 9-14 below.448

B. EVALUATION METRICS449

In the conducted experiments, the target object detection450

performance of the proposed YOLOv4_CE model was451

compared to that of five state-of-the-art models, namely452

Faster R-CNN (backbone: ResNet50), Gliding Vertex (back-453

bone: ResNet50), Oriented R-CNN (backbone: ResNet50),454

EfficientDet, and YOLOv4, based on precision and recall.455

TABLE 2. Average precision results (%) of Faster R-CNN on NWPU VHR-10
data set.

Precision indicates the proportion of true positive (TP) sam- 456

ples in the prediction results, whereas recall indicates the 457

proportion of correct predictions in all positive samples, 458

as follows: 459

precision =
TP

TP+ FP
; (14) 460

recall =
TP

TP+ FN
, (15) 461

where TP represents the number of samples that are actually 462

positive and are classified as positive, false positive (FP) 463

represents the number of samples that are incorrectly clas- 464

sified as positive, i.e., the number of samples that are actually 465

negative but are classified as positive, and false negative (FN) 466

represents the number of samples that are actually positive but 467

are classified as negative. 468

Based on precision and recall, the F1 score and mean 469

average precision (mAP) were used as the main evaluation 470

metrics in the experiments. These metrics are defined as 471

follows: 472

F1 =
2× precision× recall
precision+ recall

; (16) 473

mAP =

∑N
i=1 APi
N

, (17) 474

where APi denotes the average precision of class i and 475

N denotes the total number of classes. The average preci- 476

sion (AP) corresponds to the area under the precision-recall 477

curve, i.e.: 478

AP =
∫ 1

0
p(r)dr (18) 479

where p (r) denotes the precision function of recall (r). 480

In the conducted experiments, the precision-recall curves 481

were first created for each of the compared models, for each 482

class of objects in the corresponding data set used, based on 483

the obtained values of recall and precision. Then, these curves 484

were used to calculate the AP of each model for each class 485

of objects, separately for each experiment, based on (18). 486

Finally, in order to compare the overall target object detection 487
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TABLE 3. Average precision results (%) of Gliding Vertex on NWPU
VHR-10 data set.

TABLE 4. Average precision results (%) of Oriented R-CNN on NWPU
VHR-10 data set.

TABLE 5. Average precision results (%) of EfficientDet on NWPU VHR-10
data set.

performance of the models across all classes of objects, the488

mAP values were calculated, based on (17), separately for489

each experiment, and then averaged to obtain the final mAP490

result for the particular model, shown in Tables 8 and 15491

TABLE 6. Average precision results (%) of YOLOv4 on NWPU VHR-10
data set.

TABLE 7. Average precision results (%) of YOLOv4_CE on NWPU VHR-10
data set.

TABLE 8. mAP and F1 score results of compared models on NWPU
VHR-10 data set.

below. Then the other metric, F1 score, was used, separately 492

for each model in each of the five experiments, and the cor- 493

responding values were averaged to obtain the final F1 score 494

result for each model, as summarized in Tables 8 and 15. 495

C. RESULTS 496

1) NWPU VHR-10 DATA SET 497

The calculated AP and mAP values of each model for each 498

class of objects in each of the five experiments, conducted on 499

this data set, are presented in Tables 2-7. Based on these, the 500
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TABLE 9. Average precision results (%) of Faster R-CNN on RSOD data set.

TABLE 10. Average precision results (%) of Gliding Vertex on RSOD
data set.

TABLE 11. Average precision results (%) of Oriented R-CNN on RSOD
data set.

TABLE 12. Average precision results (%) of EfficientDet on RSOD data set.

averagedmAP value was calculated for each model, as shown501

in Table 8. The obtained results confirm that the proposed502

YOLOv4_CE model outperforms, in terms of mAP, all five503

state-of-the-art models on this data set. More specifically,504

Faster R-CNN, Gliding Vertex, Oriented R-CNN, Efficient-505

Det, and YOLOv4 are outperformed by 11.85, 8.22, 7.42,506

6.34, and 2.95 points, respectively.507

Then, the F1 score values were calculated in each exper-508

iment for each model and then averaged to produce the509

final results presented in Table 8. These results confirm510

that the proposed YOLOv4_CE model outperforms all511

TABLE 13. Average precision results (%) of YOLOv4 on RSOD data set.

TABLE 14. Average precision results (%) of YOLOv4_CE on RSOD data set.

TABLE 15. mAP and F1 score results of compared models on RSOD
data set.

five state-of-the-art models on this evaluation metric too. 512

More specifically, Faster R-CNN, Gliding Vertex, Oriented 513

R-CNN, EfficientDet, and YOLOv4 are outperformed by 514

0.200, 0.060, 0.002, 0.089, and 0.041 points, respectively. 515

The most challenging for target object detection proved to 516

be the images with complex background (bridge and basket- 517

ball court classes) and the images containing intensive small 518

targets (vehicle and harbor classes). 519

2) RSOD DATA SET 520

The calculated AP and mAP values of each model for each 521

class of objects in each of the five experiments, conducted on 522

this data set, are presented in Tables 8-14. Based on these, the 523

averaged mAP values were calculated, as shown in Table 15. 524

The obtained results confirm that the proposed YOLOv4_CE 525

model outperforms, in terms of mAP, all five state-of-the- 526

art models on this data set too. More specifically, Faster 527

R-CNN, Gliding Vertex, Oriented R-CNN, EfficientDet, and 528

YOLOv4 are outperformed by a similar degree as on the other 529

data set, namely by 10.39, 7.28, 4.51, 6.59, and 3.81 points, 530

respectively. 531

Then, the F1 score values were calculated in each experi- 532

ment for each model and then averaged to produce the final 533
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results presented in Table 15. These results also confirm that534

the proposed YOLOv4_CE model outperforms all five state-535

of-the-art models, based on this evaluationmetric, on this data536

set too. More specifically, Faster R-CNN, Gliding Vertex,537

Oriented R-CNN, EfficientDet, and YOLOv4 are outper-538

formed by a similar degree as on the other data set, namely539

by 0.170, 0.044, 0.033, 0.054, and 0.028 points, respectively.540

The most challenging for target object detection again541

proved to be the images with complex background (over-542

pass class) and the images containing intensive small targets543

(aircraft class).544

VI. CONCLUSION545

This paper has proposed a more accurate target object detec-546

tion model, called YOLOv4_CE, based on the classical547

YOLOv4 model with additional improvements. One of the548

ideas, utilized by YOLOv4_CE, was to make the model549

extract features more effectively and by this to lessen the550

computation of redundant information at the feature layer551

and reduce the size of the model itself. This was achieved552

by replacing the original feature extraction backbone (i.e.,553

CSPDarknet53) of YOLOv4 with ConvNeXt-S [17]. In addi-554

tion, in order to increase the receptive field and allow the555

proposed model to pay more attention to important parts of556

the processed images, the coordinate attention (CA) mecha-557

nism [18] was integrated into YOLOv4.Moreover, in the pro-558

posed model, the original loss function of YOLOv4, namely559

the CIoU loss [19], was replaced with the EIoU loss [20]560

in order to achieve faster convergence of the model and561

improve its regression precision. The incorporation of these562

improvements into YOLOv4 resulted in overall better target563

object detection. This was confirmed by a series of exper-564

iments conducted for evaluating and comparing the target565

object detection performance of the proposed model to that566

of the original YOLOv4 model and four other state-of-the-567

art models, namely Faster R-CNN, Gliding Vertex, Oriented568

R-CNN, and EfficientDet, based on two open data sets –569

NWPU VHR-10 and RSOD. The obtained results clearly570

demonstrated that the proposed YOLOv4_CE model out-571

performs these five models, in terms of the mean average572

precision (mAP) and F1 score, on both data sets.573

The proposed YOLOv4_CE model is very suitable for574

detecting target objects in remote sensing images. Due to the575

replacement of the feature extraction module with a more576

complex module for the network, in the future we plan to577

introduce some specially designed lightweight modules into578

the model in order to increase its operational speed.579
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