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Abstract: Electricity storage systems, whether electric vehicles or stationary battery storage systems,
stabilize the electricity supply grid with their flexibility and thus drive the energy transition forward.
Grid peak power demand has a high impact on the energy bill for commercial electricity consumers.
Using battery storage capacities (EVs or stationary battery systems) can help to reduce these peaks,
applying peak shaving. This study aims to address the potential of peak shaving using a PV plant
and smart unidirectional and bidirectional charging technology for two fleets of electric vehicles and
two comparable configurations of stationary battery storage systems on the university campus of
Saarland University in Saarbrücken as a case study. Based on an annual measurement of the grid
demand power of all consumers on the campus, a simulation study was carried out to compare the
peak shaving potential of seven scenarios. For the sake of simplicity, it was assumed that the vehicles
are connected to the charging station during working hours and can be charged and discharged
within a user-defined range of state of charge. Furthermore, only the electricity costs were included
in the profitability analysis; investment and operating costs were not taken into account. Compared
to a reference system without battery storage capacities and a PV plant, the overall result is that
the peak-shaving potential and the associated reduction in total electricity costs increases with the
exclusive use of a PV system (3.2%) via the inclusion of the EV fleet (up to 3.0% for unidirectional
smart charging and 8.1% for bidirectional charging) up to a stationary battery storage system (13.3%).

Keywords: bidirectional charging; electric vehicle; smart charging; peak-shaving

1. Introduction

The amended Federal Climate Protection Act (KSG) passed by the German Bundestag
in 2021 raises Germany’s greenhouse gas reduction target from 55% to 65% compared to
1990. A reduction rate of 88% is to be achieved by 2040 and greenhouse gas neutrality
by 2045. These climate protection targets will set in motion an extensive and far-reaching
transformation process in Germany that will affect all sectors. With the increased use of
decentralized, fluctuating generation systems (e.g., PV systems) and the penetration of
e-mobility and other controllable loads such as heat pumps, the demands on the public and
non-public grids (local area grids (LAG)) and their operators are growing. Cost-efficient
measures and concepts for grid operation are becoming a key factor for an economical
energy supply that meets the requirements of the customer and the regulatory framework.
The backbone of future smart-grids is the infrastructure of information and communication
technology (ICT) and automation technology (AT). Without communication connections,
the use of information and the resulting targeted control of actuators in the network will not
be possible. Wired (e.g., fiber optics) or wireless communication technologies (e.g., GSM,
LTE, and LoRaWAN) can be used as transmission media. The distribution grid operator
(DGO) or LAG operator (LAGO) can access measuring devices (MD) and controllable loads
(CL) in their network structure with their own communication infrastructure.

The EU also classifies battery technology as an Important Project of Common European
Interest (IPCEI) across the entire value chain from raw material extraction to recycling in
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a circular economy. The EU’s efforts in this context also involve developing innovative
battery systems including battery management systems. Over the next few years, the EU
will invest 2.9 billion euros in research and development projects for renewable energies
and energy storage [1]. As efficiency increases and supply expands, demand will rise
rapidly and the price of energy storage systems will fall as a result. According to their data
for the years 2010 to 2019 and a forecast up to 2025, the Statista Research Department sees a
downward trend in the global price trend for lithium-ion batteries [2].

In 2022, the Renewable Energy Research Association (FVEE) formulated recommen-
dations for the implementation of system integration that are aimed at industry, society,
research, and politics. This refers to the technical and digital linking of energy system com-
ponents and the development of various flexibility options for the use of high proportions
of volatile renewable energies [3]. One requirement here is the rapid implementation of the
anchoring of energy storage as an independent pillar of the energy system, as stipulated in
the coalition agreement of the current federal government. In the area of digitization of
an integrated energy system, the intensification of the standardization of digital interfaces
and data formats is called for as well as the implementation of grid-supportive behavior of
energy market participants. In particular, it highlights the need for research into system
integration with joint research and development work between research institutes, energy
suppliers, and municipal players.

The provision of flexibility is therefore indispensable in the future electricity grid,
which will be characterized by a high proportion of fluctuating electricity generation from
wind power and photovoltaic systems, and battery storage systems are absolutely essential.
As a rule, the installation of battery storage systems is initially dependent on economic
considerations. The revenue opportunities, and thus, the question of whether the storage
system is worthwhile, are heavily dependent on the local conditions (renewable generation
and consumption capacity). With this knowledge, it is then necessary to investigate
combinations of several applications, so-called Multi-Use approaches, which, by providing
flexibility, enable both profit maximization for the operators and economic optimization of
grid expansion via their system-beneficial behavior.

The transmission system operators’ 2022 draft of the grid development plan up to
2037 [4] lists forecasts in which battery storage in particular will become significantly
more relevant in the future. This applies to both large-scale battery storage systems and
decentralized PV home storage systems. The increase in PV home storage systems is
based on the expansion of building PV systems. While around half of all new rooftop
PV systems with storage systems have been installed in recent years, forecasts assume
that the proportion will increase to 100% by 2035. The expansion of stationary large-scale
battery storage systems is based on the expansion of ground-mounted PV systems, which
is assumed to increase linearly. The forecast expansion rate is 30% by 2030, up to 70% in
2035, and up to 100% in 2040.

In the Ariadne Report [5], the authors also assume a necessary expansion of electrical
storage capacities—stationary battery storage, but also mobile batteries in the Vehicle-2-
Grid (V2G) network. Suitable market integration must be created for these storage systems
in order to reduce any disadvantage compared to grid expansion and communication
technologies must be established to ensure meaningful operation in the entire electricity
system. The study recommends a review of the extent to which battery storage systems can
contribute even more flexibility to the electricity grid. Flexibility is defined by the Federal
Network Agency as a change in feed-in or withdrawal in response to an external signal
(price signal or activation) with the aim of providing a service in the energy system [6].

In the Prognos study [7], the authors also assume a future electricity grid with a high
degree of flexibility by 2045. This will be characterized by the rapid expansion of battery
storage, load management, and intensive electricity trading with other countries.

Due to the immense ramp-up of battery storage technologies, the aspect of sustainabil-
ity must also be given greater consideration in future product development [8]. Also, the
European Parliament and the Council accounts for that in the new Batteries Regulation,
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adopted in 2023, which should minimize the environmental impact and strengthen the
circular economy concerning battery storage appliances.

Grid peak power demand has a high impact on the energy bill for commercial elec-
tricity consumers. Using battery storage capacities (EVs or stationary battery systems) can
help to reduce these peaks, applying peak shavings.

This study aims to address the potential of peak shaving using smart unidirectional
and bidirectional charging technology for an EV fleet and a stationary battery storage sys-
tem (BSS) in combination with a PV plant on the university campus of Saarland University
(UdS) in Saarbrücken as a case study.

The major contribution of this paper is to answer the following questions:

• How much peak load and electricity cost can be reduced with peak shaving using an
EV fleet with bi-directional charging technology?

• What is the impact on different sizes of the EV fleet?
• What is the impact of bi-directional charging technology compared to smart unidirec-

tional charging?
• Is there more of less potential on using a stationary BSS of the same performance?

Based on an annual measurement of the grid demand power of all consumers on the
campus, a simulation study was carried out to compare the peak shaving potential of a fleet
of EVs (30 EVs/50 EVs) with, on the one hand both, smart unidirectional and bidirectional
charging and, on the other hand, a stationary BSS (due to the comparability with the same
capacity and performance as EV fleets).

For the sake of simplicity, it was assumed that the vehicles are connected to the
charging station during working hours and can be charged and discharged within the
user-defined charging limits.

In addition, we assume that the smart EV charging technology uses perfect prediction
on the future grid power demand to control the EV charging process in an optimal way to
minimize the grid demand power peaks for the whole day.

Furthermore, only the annual costs of electricity (per kWh and kW) that the end
consumer has to pay were included in the profitability analysis; investment and operating
costs were not taken into account. The scenarios with EV fleets and a stationary BSS were
also combined with a PV system with a peak power of 1 MW. Additionally, the case with a
1 MW PV system without storage capacity (EV fleets/stationary BSS) was also considered.

The structure of this contribution is as follows: After describing the importance of the
flexibility of battery storage capacities in the context of the German energy transition in this
section, the next section presents marketing options for the flexibility of battery storage,
in particular the peak-shaving functionality. Furthermore, the next section analyzes the
measured consumption data and presents the basis for calculating the electricity procure-
ment costs for the evaluation of the simulation studies based on the price sheet of the local
distribution grid operator. The vehicle-to-everything (V2X) concepts are presented and the
scenarios under consideration are assigned to them. In addition, the models for the PV
system and the electric vehicles are presented and the optimization problem is formulated.
Section 3 presents and discusses the results of the simulation study for the seven use cases
considered. Section 4 concludes this article with a summary and an outlook.

2. Materials and Methods
2.1. Review Marketing of Battery Storage Flexibility

In order to operate battery storage systems (BSS) for both stationary and EV in an
economically viable manner and to develop business models, a regulatory framework is
required. In many cases, the flexibility provided is currently only used for a single applica-
tion (SINGLE-USE). However, there is additional potential in using several applications
at the same time and thus utilizing different sources of income. This is referred to as a
MULTI-USE approach. However, the application service does not necessarily have to be
provided simultaneously (in parallel). For example, it can also be provided sequentially at
fixed times or dynamized [9].
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In the following, a distinction is made between four options for marketing the flexibil-
ity provided by storage capacities such as EVs or BSS [10,11]:

• System owner-friendly operation
End consumer-related applications lie in the self-consumption optimization of the
emergency power supply and are used in conjunction with e-mobility or the local
Virtual-Power-Line (VPL). In the VPL concept, battery storage serves as a buffer
after energy sources and before energy sinks in order to limit power peaks on the
intermediate supply line and guarantee a constant energy flow.

• Market-serving operation
This includes participation in arbitrage trading on the electricity markets and the day-
ahead and intraday markets. The storage capacities charges at times when prices are
low and discharges when electricity is scarce and prices are therefore high. Power-to-X
models should also be mentioned.

• System-serving operation
The storage capacities participate in the balancing power market and maintains capac-
ity to stabilize the electricity grid. Depending on the dimensions and response time of
the system and within the European Network of Transmission System Operators for
Electricity (ENTSO-E) grid, three frequency regulation products are offered: Frequency
Containment Reserve (FCR), Frequency Restoration Reserve (FRR), and Replacement
Reserve (RR), whereas, depending on the duration of the imbalance in the grid, FRR
replaces FCR and RR replaces FRR after a fixed time period. Battery storage systems
are particularly suitable for participation in the FCR market due to their short response
time. Other applications include black start capability and voltage stabilization of the
power grid by providing reactive power.

• Grid-serving operation
While the system-serving operation is aimed at stabilizing the electricity grid at the
national and European level, the grid-serving operation of the battery has a different
focus: The focus here is on the local grid and local congestion management. As the
expansion of decentralized renewable energy production plants progresses and the
number of electric cars increases, this is becoming increasingly important, as line
bottlenecks will occur more frequently due to a delay in the expansion of electricity
grid capacities. The provision of battery flexibility represents an alternative to the
expensive grid expansion.

However, the terms system-serving operation and grid-serving operation are not
used consistently.

Furthermore, battery storage applications can be divided into Front-of-The-Meter
(FTM) and Behind-The-Meter (BTM) applications. FTM applications take place on the
side of the public grid and BTM applications take place on the side of the end consumer.
Figure 1 summarizes the described flexibility options once again.

The electrification of the transport sector is a key pillar of the German energy transition.
The German government’s goal is to have six million electric vehicles on German roads
by 2030. The resulting ramp-up of electric vehicles and their charging facilities and, in
the future, battery storage systems, will pose major challenges for public distribution
grids and non-public LAG, such as the campus of Saarland University as a result of
the university’s own vehicle fleet and of the EVs of university staff due to considerably
higher low-voltage power consumption and significantly higher simultaneity. In most
cases, however, the EVs’ charging and, in case of bidirectional charging, discharging
behavior can be controlled. However, there are limits to the extent to which this leads
to a noticeable loss of comfort for consumers or the aging of battery cells due to cyclic
stress. Fraine et al. [12] interviewed 89 persons from groups of young people (18–25 years),
parents, and non-parents (29–56 years), among others, concerning their driving behavior.
The average driving time was between 9.3 and 10.6 h per week, which means 1.4 h in
average per day. This means that the car stands around unused for an average of 22.6 h
(94%) a day and therefore EVs, in conjunction with the currently developed technology
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of bidirectional charging to control the power flow in the connected public or non-public
electricity grid, offer great potential for flexibility in the electricity grid, which will give
e-mobility a new boost in the future. By using the storage capacity of EVs to support the
grid, grid expansion costs can be reduced, e.g., by reducing grid bottlenecks or applying
peak shaving.

Figure 1. Behind-The-Meter and Front-of-The-Meter applications for battery storage systems.

A lot of effort has already been invested in scientific research into the potential of
applications that consider EV and/or BSS capacities in the energy system.

In some studies, only smart unidirectional charging was examined [13]; in others, the
bidirectional charging of EVs [14–19]. Some focused on a building energy system ([18]),
while others examined the impact on local grids (commercial, industrial, and parking
lots) [20,21].

Either renewable energy sources (e.g., PV systems) are considered in the system [17]
or not [13,14,16,22]. Other studies look at stationary battery storage for peak shaving
during the charging process of electric vehicles [22]. And still, other researchers are
investigating the positive effect of exclusively stationary battery storage systems on local
power grids [23,24].

Ioakimidis et al. [20] examined the Vehicle-to-Building (V2B) functionality on a parking
lot for a maximum of 65 vehicles. The real parking lot occupancy was measured and
used as the basis for the simulation-based investigation of three scenarios with 8, 35, and
65 randomly selected parking spaces. The results show that the power peaks could be
reduced to between 3% and 20% depending on the scenario.

Minhas et al. [19] presented a multi-timescale, cost-effective scheduling and control
strategy of energy distribution in a model predictive intelligent home energy management
system comprising EVs and PV. In their study, the authors found that electricity energy
costs from the grid supply could be reduced by 13%.

Mahmud et al. [21] have investigated the peak shaving of a commercial building
using six EVs with bidirectional charging functionality in a parking lot. In their results, the
industrial peak loads can be reduced by 50% and the energy cost can be reduced by 27.3%.

In their study, Fenner et al. [25] investigated the potential of peak shaving in
parking areas in the Helsinki region. Based on real measurement data on the charging
behavior of 25,000 charging cycles, a peak load reduction of 55% was achieved using
optimization algorithms.

Van Kriekinge et al. [26] investigated the effect of smart unidirectional and bidirec-
tional EV charging on electricity costs and peak load reduction for a commercial building
with a connected PV system near Brussels based on measured energy consumption and
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production data. According to their results, all MPC-based charging strategies were able to
achieve a peak load reduction between 14.6% and 33.7% and total electricity cost reduc-
tions between 6.71% and 7.67% compared to uncoordinated charging, with bi-directional
charging delivering the best results.

Peak shaving serves to stabilize the electricity grid, which is heavily stressed by short-
term, heavy loads and must also be permanently available for these load cases. Short-term,
particularly high electricity loads from large industrial or commercial consumers, drive
up their electricity prices enormously; as such, electricity customers not only have to pay
the energy price, but also a demand power charge. With peak shaving, the costs for high
electricity loads can be reduced by means of Demand Response (DR) measures or BSS.

BSS are ideal for smoothing out dynamic load peaks within the scope of their perfor-
mance characteristics. Assuming an appropriate charging/discharging strategy, battery
storage capacities in EVs and a stationary BSS connected to the power grid are capable of
realizing fast and reliable load peak compensation.

DR is understood as a short-term, deliberate change in consumer load in response to
price signals in the market. DR is achieved either via load shifting or flexibilization of the
load profile or a load reduction. Electricity consumption is brought forward, delayed, or
avoided altogether. Therefore, peak shaving can be performed in three ways:

• On the consumer side
A consumer reduces its electricity consumption quickly and at short notice (load shed-
ding), so as not to cause a peak load. This can be achieved by throttling production.

• On the self-generation system side
By switching on self-generation plants based on renewable energy sources (e.g., PV
or wind power plants) or conventional energy sources (e.g., diesel generators), the
electricity demand from the supply grid is reduced on balance depending on the ratio
of generation and consumer output. In this way, self-generated electricity is used to
balance out the impending peak load.

• On the electricity storage side
Similar to the generation systems, battery storage systems can also smooth out the
grid demand peak power by discharging. Due to their technology, battery storage
systems and electrical storage systems can quickly provide high current densities and
are therefore particularly suitable for compensating for short-term load peaks.

2.2. Load Demand Analysis

The measured data on the electricity demand of all consumers on the university
campus is available with a time resolution of 15 min. The meter readings were recorded
at these intervals. These values were then converted into average power values in an
initial processing step. According to this dataset, the annual consumption for 2022 is
25,003.810 MWh. Analysis of the available electrical consumption power for the year
2022 shows a maximum peak power of 4.38 MW (30 June 2022 11:45 a.m., day 181) and a
minimum power of 1.61 MW (4 June 2022 5:30 a.m., day 155) (Figure 2).

Including the information about the day type [27], Figure 3 shows that the daily
peak loads of consumers on weekdays are almost twice as high as on Sundays and public
holidays. On Saturdays, they are somewhere in between. A seasonal course of the daily
peak loads can also be seen. These are higher on summer and winter days than in spring
and fall. This is presumably caused by the cooling loads in summer and the heating
demand in winter. Figures 2 and 3 clearly show the reduced demand on weekends. It can
also be seen that consumer demand is lower between June 4 and 6 (days 155 to 157) and
November 12 and 13 (days 316 and 317) than on weekdays and weekends. Both periods
are weekends.
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Figure 2. Electrical load profile for the UdS campus in 2022.

Figure 3. Daily consumption peaks, differentiated by type of day (Working Day/Sunday and Public
Holiday/Saturday).

2.3. Peak Loads and Grid Usage Fees

Grid operators do not like load peaks as the electricity grid is planned and designed
on the basis of the maximum power in the grid.

Nevertheless, many industrial companies that are connected to the different grid levels
(high-, medium-, or low-voltage grid) cause fluctuating loads in everyday operation; for
example, when starting up production facilities, heating up, or pumping processes. The
source of the sudden increase in load, i.e., the commercial or industrial electricity customer,
is reliably detected via consumption metering.

In Germany, electricity consumers are divided into two groups according to the type
of consumption metering [28]:

• Customers with Recording Power Metering (RPM customers);
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• Customers without recording power metering (SLP customers). Their consumption
will be estimated based on Standard Load Profiles (SLP).

In the energy industry, peak shaving refers to the smoothing of load peaks and the
associated grid consumption peaks for industrial and commercial electricity consumers
(RPM customers). These peaks in electricity consumption are not only relevant for grid
stability, but also, as explained above, for electricity costs. As the grid usage fees, which
make up a large proportion of the total costs, are based on the highest power consumption
in the billing period.

RPM customers are large commercial and industrial consumers whose annual electric-
ity consumption exceeds 100,000 kWh and whose power requirement is at least 30 kW (see
Section 12 of the Electricity Grid Access Ordinance (StromNZV)).

In Germany, distribution grids are managed with two voltage levels: Medium voltage
and low voltage. Medium-voltage distribution grids generally have a voltage of 10 kV or
30 kV. In the medium-voltage grid, electricity is distributed between grid stations within
the individual urban or rural districts. The low-voltage grid is the grid that transports
electricity to the end consumer. The low-voltage grid is operated at a voltage of 0.4 kV and
is connected to the medium-voltage grid via grid stations.

The total annual electricity costs for an industrial or commercial consumer (RPM
customer) are made up of three components:

• the energy costs;
• the capacity costs;
• the basic annual costs for the metering equipment.

The costs for power measurement in the medium-voltage grid are slightly higher than
measurement in the low-voltage grid due to higher technical requirements in terms of
dielectric strength.

The total annual charge Ctotal,a is the sum of three price components:

• fixed basic annual charge for the metering equipment Cbc,a;
• costs for grid capacity, that is, the product of the grid demand power peak price CkW

and the maximum annual grid power consumption Pmax,a;
• costs for energy from the grid, that is, the product of the electricity energy price CkWh

in EUR per kWh and the annual energy demand from the grid Ea in kWh

Therefore, the following equation generally applies to the calculation of grid usage
fees for RPM customers:

Ctotal,a = Cbc,a + CkW Pmax,a + CkWhEa (1)

The annual usage period is an important key figure in the energy industry. It is the
quotient of the annual energy and the maximum output of a system. It indicates how
many hours of electricity would have been drawn in a year if the maximum output had
been constantly drawn. In the ideal case, with absolutely constant consumption without
interruption, the annual usage period is 365 × 24 h = 8760 h. The annual usage period
also has an impact on the costs for grid usage. The higher the annual usage period, the
higher the capacity price for grid usage, but conversely, the lower the energy price for
grid usage. Therefore, constant consumption, which results in a low maximum output
and a high annual usage period, is economically advantageous. When pricing the use of
electricity grid infrastructure, a distinction is often made between two or three ranges of
annual usage periods. In this case, the local DGO distinguishes between two ranges: less
than or equal to 2500 h and greater than 2500 h.

The annual usage period ta is calculated from the annual energy Ea and the annual
maximum grid demand power Pmax,a according to the following equation:

ta =
Ea

Pmax,a
(2)



Energies 2024, 17, 47 9 of 25

According to the fee table of the local DGO for 2023 [29], Stadtwerke Saarbrücken
GmbH charges the annual basic fee for metering point operation with consumer/feed-in
power metering from a medium voltage of 485.01 EUR for power metering, a capacity price
of 26.07 EUR/kW, and a energy price of 0.0649 EUR/kWh for an annual usage period of up
to 2500 h. For an annual usage period of more than 2500 h, the price is 159.28 EUR/kW
and 0.0116 EUR/kWh (Table 1).

Table 1. Charges of the local DGO for consumption from medium voltage and annual power system.

Charges Value

Annual Usage Period ta ≤ 2500
Capacity Price CkW 26.07 EUR/kW
Energy Price CkWh 0.0649 EUR/kWh

Annual Usage Period ta > 2500
Capacity Price CkW 159.28 EUR/kW
Energy Price CkWh 0.0116 EUR/kWh

Basic Fee for Metering per Year Cbc,a 485.01 EUR

According to the measured load profile for 2022, the annual maximum consumer capac-
ity as a 15 min average is 4.38239 MW. With an annual electricity demand of 25,003.810 MWh,
this results in an annual utilization period according to Equation (2) of 5705 h, and thus,
more than 2500 h. A peak load of 4.38239 MW in the corresponding tariff at a capacity
price of 159.28 EUR/kW leads to an annual capacity price of 698,027 EUR per year. The
energy price of 0.0116 EUR/kWh results in annual costs of around 290,044 EUR and, with
the basic price of 485.01 EUR, results in total electricity costs of around 988,556 EUR in 2022
according to Equation (1). This value serves as a reference for the simulation studies with a
PV system and storage capacities of EVs or a stationary BSS.

2.4. Smart Unidirectional Charging and Bidirectional Charging for Electric Vehicles

In addition to uncoordinated unidirectional charging, where the battery will be
charged with maximum power given by the charging characteristics, unidirectional smart
charging (V1G, smart charging) for electric vehicles offers the possibility of using dynamic
charging tariffs and times via adapted charging in order to save costs or to make optimum
use of a supply of renewable energy. According to Hildermeier et al. [30], charging technol-
ogy can be considered smart or intelligent if it meets the following minimum requirements:

• It can measure consumer energy consumption in real-time or near real-time;
• It can transmit this data to the consumer and to other authorized parties;
• It has the ability to automatically control consumption and is also below the maximum

charging power.

Therefore, smart charging technology enables customers to apply DR, due to reacting
on control signals (e.g., price signals) quickly with the help of ICT.

With smart charging, the charging infrastructure can be optimized by distributing
the available power efficiently and flexibly. This means that even charging stations with
limited power capacity can be used optimally at all times.

The technology of bidirectional charging comprises several applications that are
generally referred to as V2X (“Vehicle-to-Everything”) and, as explained briefly below, can
be divided into several categories (see Figure 4):

• Vehicle-to-Load (V2L)
V2L is a bidirectional function that enables an electric vehicle to use its built-in high-
voltage battery to charge or supply low-voltage devices. It is sometimes also referred to
as vehicle-to-device (V2D). Depending on the type of device to be charged or powered,
V2L can be used while the electric vehicle is driving or parked. This conversion from
a direct current to an alternating current is integrated into the vehicle. Electric vehicles
usually offer one or both of two options for V2L charging: an AC socket (in the vehicle)
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and a V2L adapter (vehicle-to-charging plug) that is used with the electric vehicle’s
charging port.

• Vehicle-to-Home (V2H)
With V2H, the battery is used as a power backup to feed a local building or local grid
downstream of the grid connection point. The electricity temporarily stored in the
battery, for example, from renewable energy sources, can be used to optimize your
own electricity requirements. However, no electricity is fed back into the public grid.
With V2H, it is important that not all of the battery capacity is available as electricity
storage, so that you always have sufficient range when you set off.

• Vehicle-to-Building (V2B)
V2B works in a similar way to V2H, but on a larger scale. By bundling several electric
vehicles or entire fleets, the energy requirements of buildings in an area network are
optimized. Typical areas of application are properties or industrial plants. With your
significantly larger battery capacity and total output, line losses and imbalances can
be corrected, particularly in industrial plants with high inductive loads, and effective
measures can be taken to smooth out grid power peaks.

• Vehicle-to-Vehicle (V2V)
This concept provides for the connection of two electric vehicles via a cable; for
example, to charge a broken-down vehicle or to use parked, provided vehicles as
charging stations.

• Vehicle-to-Grid (V2G)

– Self-Consumption Optimization
Electricity from the vehicle battery is provided for direct consumption on site be-
hind the grid connection point in the respective property as part of comprehensive
in-house optimization via a (local) energy management system;

– Grid-serving Charging
This means that the grid operator influences the charging behavior of the EV
against the background of its load monitoring in order to reduce/avoid the grid
consumption of the existing consumption devices for a limited period of time;

– Electricity Trading
Electricity is fed into the distribution grid on the basis of a contract with a sup-
plier/dealer or made available to them. The supply/feed-in takes place in accor-
dance with the specifications or a control signal from the supplier/dealer and in
coordination with the local grid operator;

– System-serving Charging
Electricity is fed into or supplied to the grid on the basis of a contract with the
transmission system operator (TSO). The supply/feed-in takes place according to
the specifications or via a control signal from the TSO and in coordination with
the local grid operator.

V2G technology is covered by the international ISO 15118 [31] standard. ISO 15118
defines the basic standards that apply to bidirectional communication between vehicles and
charging stations and also regulates plug-and-charge and payment at charging stations.

The scenario considered here of integrating electric vehicles into the Saarbrücken
campus grid is assigned to the V2B topology.

The technical requirements for bidirectional charging must be taken into account in
all components involved and the communication between them. The charging process is
controlled either by the EVs’ integrated Battery Management System (BMS) in AC charging
mode (On-board-charger) or via communication to the DC charging station (Off-board
charger) that controls the power flows via given control signals from the EVs’ BMS [32].
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Figure 4. V2X Topology: V2G = Vehicle-to-Grid; V2L = Vehicle-to-Load; V2H = Vehicle-to-Home;
V2B = Vehicle-to-Building; DGO = Distributed Grid Operator; PP = Power Plant.

In order to benefit from the advantages of bidirectional charging, three key conditions
must be met:

• The wallbox must support bidirectional charging
• The vehicle must support bidirectional charging
• The vehicle and wallbox must have compatible DC connections (e.g., CCS, CHAdeMO)

When it comes to charging infrastructure, a distinction must be made between alternat-
ing current (AC) charging stations and direct current (DC) charging stations. Bidirectional
charging makes sense where vehicles are parked for long periods and remain connected
to a charging station, i.e., particularly at home or at work. AC charging stations with
outputs of up to 22 kW are currently mainly used there. DC charging stations in this
power range are currently only available from individual providers. On the vehicle side,
there are also two approaches to implementing bidirectionality, which differ according
to where the electricity is converted from DC to AC voltage. This can take place either
in the vehicle or in the charging station. This means that, depending on the charging
technology, modifications to the vehicle or the charging station are necessary in order to
use bidirectionality. These changes are associated with additional costs for the charging
infrastructure or the vehicle side.

The ISO 15118-20 [33] communication standard, which will be used by European and
American vehicle manufacturers together with the Combined Charging System (CCS),
enables bidirectional charging via both three-phase AC (maximum 44 kW) and DC fast
charging (maximum 50 kW). Depending on the car manufacturer, both directions are
currently being pursued.

Vehicles that use the CHAdeMO standard (DC) have already supported bidirectional
charging for several years. CHAdeMO is an acronym for “CHArge de MOve” (charging
to move). The first regenerative vehicle models (AC and DC) based on the Chinese GBT
standard also already exist. The implementation of ISO 15118-20 together with CCS as the
predominant standard for communication between the vehicle and the charging station
will enable intelligent and grid-friendly charging in the future and create a basis for V2X as
a way of integrating e-mobility.

The availability of the EEBUS communication standards will also support its use.
EEBUS is a communication interface to support interoperability and data exchange between
the components of an energy management system (e.g., PV, storage, and e-mobility).
The OCPP protocol (Open Charge Point Protocol), which has been transferred to the
international standard IEC 63110 [34], has become established for controlling the charging
infrastructure (communication between charging station and charging station management
system) in public charging. Communication between electric vehicles and charging stations,
on the other hand, is described in the international standard ISO 15118. As things stand at
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present, the application of bidirectional charging is still in the early stages. Although there
are already vehicle manufacturers offering this technology (see Table 2), the appropriate
infrastructure does not yet exist. Suitable wallboxes are not expected until the second
half of 2023. In addition, various manufacturers are still limiting the use of the function.
This is due to the warranty conditions regarding the service life or mileage of the battery.
Volkswagen limits the discharge energy of the ID models to 10,000 kWh and 4000 h [35].

Table 2. Overview of some electric vehicles that support bidirectional charging [36].

Model Plug Type AC/DC V2X Functionality

Hyundai Ioniq 6 Schuko plug AC (single-phase) V2L
Ford F-150 Lightning CCS DC V2H/V2G

Honda CCS DC V2H/V2G
Nissan eNV200 CHAdeMO DC V2H/V2G

Nissan Leaf CHAdeMO DC V2H/V2G
VW ID.3,4,5 CCS DC V2H/V2G
Volvo EX90 Schuko plug/Typ 2/CCS AC (single phase)/DC V2H/V2G

At present, the range of bidirectional charging stations is still limited. Some of them
have been listed in Table 3 and the price for a bidirectional charging station is significantly
higher than for a normal unidirectional wallbox. Depending on the model, the cost of a
bidirectional wallbox can amount to several thousand euros. As the supply of V2H, V2B,
and V2G charging stations is likely to increase in the future, lower prices can be expected.
The manufacturer data in Table 3 shows that the current maximum output of bidirectional
wallboxes is 22 kW.

Table 3. Overview of some wallboxes that support bidirectional charging [37].

Manufacturer Model Plug Type Max Power [kW]

Wallbox Chargers Quasar 1 ChAdeMO 7.4
Wallbox Chargers Quasar 2 CCS 12.8

Kostal BDL Wallbox CCS 11
Eaton BDL Wallbox CCS 22

Ambibox ambiCHARGE CCS 22
Silla Duke 44 CCS 22 (2x)

On the basis of the market situation described above, a VW ID.4 with a battery capacity
of 77 kWh was selected for the electric vehicle fleet in this case study. The charging curve
can be seen in Figure 5, but this is limited in both the charging and discharging directions
by the wallbox’s maximum output of 22 kW, which, according to the charging curve,
corresponds to the charging power at full charge (SOC = 100%). The charging curve was
linearly interpolated using the five interpolation points from the data collection provided
in [38]. The maximum charging power of the EV is 125 kW at a SOC between 0% and 30%,
has a constant power of 65 kW between 70 and 80%, and decreases linearly to 22 kW at 0%.

The basic behavior in the use case with bidirectional charging follows the sequence
shown in Figure 6. The figure shows the time of day of the charging process and the
resulting potential for flexibility services (e.g., peak shaving). The electric vehicle arrives
at the charging point on the campus at the arrival time ta,w at 8:00 a.m., with a certain
state of charge (SOC) which is assumed to be 50% (SOCEV,a) for all scenarios and for the
entire EV fleet. During the idle time up to the departure time td,w at 18:00, the battery
capacity can be used freely within the lower discharge limit SOCEV,min, which is 30%, and
the upper discharge limit SOCEV,max. However, the state of charge at departure (SOCEV,d)
is chosen to be 90% and must be reached again at the departure time td,w. The lower state
of discharge is defined as a buffer for spontaneous mobility. The upper discharge limit
SOCEV,max corresponds to the desired state of charge SOCEV,d for all vehicles at the time of
departure. As hard boundary conditions in the optimization algorithm, these limit values
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cannot be exceeded or undercut. The flexibility range is limited by the maximum charging
capacity towards the departure time.

SOC [%]

Figure 5. Charging Curve of Volkswagen ID.4 with 77 kWh.

Figure 6. Schematic representation of the flexibility potential of an EV within the arrival and departure
time at the workplace.

An entity EEV was created for the simulation, which has the properties described
above and listed in the following Table 4. At the current state and in this use case, a fleet of
a single entity is considered. In future model development, several entities with different
properties will be considered.

A constant power conversion efficiency of 90% was assumed for charging (ηbatt,ch)
and discharging (ηbatt,disch) for both the EV fleet and the stationary BSS [39,40]. Round trip
efficiency has not been considered as well as temperature-depending efficiency or depen-
dencies on the SOC. The stationary BSS was modeled with the same capacity, performance,
and SOC limits as the EV fleet.
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Table 4. EV entity properties considered in this use case.

EV Property Value

State of charge on arrival at the charging station on campus SOCEV,a 50%
Total battery capacity of the EV (WEV) 77 kWh

Nominal charging and discharging power of the wallbox (Pnom,wallbox) 22 kWh
Daily arrival time ta,w 8:00 a.m.

Daily departure time td,w 18:00 a.m.
Destination SOC at departure time SOCEV,d 90%

Minimum discharge depth during charging time SOCEV,min 30%
Maximum discharge depth during charging time SOCEV,max 90%

2.5. PV System

The MATLAB library PVlib [41] was used to model the PV system. The data for the
solar irradiation of a Typical Meteorological Year (TMY) was retrieved from the PVGIS
platform [42] for the Saarbrücken location. In addition, the NREL (National Renewable
Energy Laboratory) sun position algorithm (SPA) [43] was used to calculate the position of
the sun as this provides very accurate sun positions.

The individual steps and parameters are listed below in Table 5.

Table 5. Steps and parameters of the PV system model.

Step Description PVlib Function/Parameter

1 Set location (Saarbrücken) latitude = 49.233°; longitude = 7°; elevation = 193 m

2 Retrieve the solar radiation data
for a TMY from PVGIS

https://re.jrc.ec.europa.eu/api/v5_2/tmy?lat=49.2
33&lon=7&outputformat=json (accessed on
2 November 2023)

3 Set PV array parameters Tilt Angle = 30°; Azimut Angle = 180° (South); 12 PV
modules in series; 12 parallel strings

4 Calculate the sun position with
SPA algorithm

location (step 1); time; air pressure/dry bulb
temperature (step 2)

5 Define the PV module pvl_sapmmoduledb(); BP Solar SX150 (No. 100)

6 Define the PV Inverter SNLInverterDB(); Agepower AP 20000 TL3-US 277V
20.4 kW (No. 80)

7 Calculate Relative Air Mass pvl_relativeairmass(); sun elevation position (step 4)

8 Calculate Absolute Air Mass pvl_absoluteairmass(); relative air mass (step 7); air
pressure (step 2)

9 Determine Angle of Incidence pvl_getaoi(); PV array orientation (step 1); sun
position (step 4)

10 Calculate Beam Radiation
Component on Array

Direct Normal Irradiance (step 2); Angle of
Incidence (step 9)

11 Determine extraterrestrial
radiation from day of year pvl_extraradiation(); Day of the Year

12
Calculate Sky Diffuse Radiation
Component on Array using Perez
model and france1988 coefficients

pvl_perez(); PV array orientation (step 3); sun
position (step 4); Horizontal, Direct Beam (step 2)
and Horizontal Extraterrestrial Irradiation (step 11)

13 Determine Ground Reflected
Radiation Component on Array

pvl_grounddiffuse(); PV array orientation (step 3);
Global Horizontal Irradiation (step 2), albedo = 0.2

14 Calculate Total Diffuse Radiation
Component on Array

Sky Diffuse Radiation (step 12) + Ground Reflected
Radiation (step 3)

15 Calculate Total Radiation
Component on Array

Sky Diffuse Radiation (step 12) + Ground Reflected
Radiation (step 3) + Beam Radiation (step 10)

16 Determine PV Module Cell
Temperature

pvl_sapmcelltemp(); total incident irradiance (step 15);
wind speed/dry bulb temperature (step 2);
reference irradiance = 1000 W/m²; PV module
parameters (step 5)

https://re.jrc.ec.europa.eu/api/v5_2/tmy?lat=49.233&lon=7&outputformat=json
https://re.jrc.ec.europa.eu/api/v5_2/tmy?lat=49.233&lon=7&outputformat=json
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Table 5. Cont.

Step Description PVlib Function/Parameter

17

Calculates the SAPM effective
irradiance using the SAPM
spectral loss and SAPM angle of
incidence loss functions

PV module parameters (step 5); absolute air mass
(step 8); angle of incidence (step 9); beam radiation
component on array (step 10); diffuse radiation on
array (step 14); soiling factor = 0.98

18

Determine Module/Array I-V
Performance (DC power, voltage,
current output) using Sandia PV
Array Performance Model (SAPM)

pvl_sapm(); PV module parameters (step 5); cell
temperature (step 16); SAPM effective irradiance
(step 17)

19 DC Power to AC Power
Conversion

pvl_snlinverter(); Inverter parameters (step 6); PV
array I-V performance parameters (step 18)

20 Scaling PV array to 1 MWp
PV plant

Applying the PV system model described in Table 5 results in the electricity production
of the PV system shown in Figure 7 over the course of a year.

Figure 7. AC power production of the modeled PV plant using solar irradiance data from PVGIS for
a TMY and PVlib.

2.6. Optimization Problem Formulation

The optimization problem was formulated as a mixed integer problem in MATLAB
R2021b [44] using the YALMIP toolbox, R20210331 [45] and Gurobi 9.5 [46] as a solver.
The simulation was carried out in 15 min steps. All results are based on the 15-min
based average time base. The optimization cycle takes place once to create an optimized
schedule for the entire next day. This assumes a perfect forecast of consumption and PV
production. The behavior of the EV fleet can also be seen as a perfect prediction as there is
no spontaneous mobility and the assumed availability of the vehicles with the assumed
parameters is fixed (see Table 4).

The energy balance equation is:

Ppv(t) + Pgrid,dem(t) = Pgrid, f eedIn(t) + Pbatt(t) + Ppv,loss(t) + Pload(t) (3)

where Ppv is the PV production, Pgrid,dem is the energy demand from the grid, Pgrid, f eedIn
is the energy that is fed into the grid, Ppv,loss is the loss of unused PV power, and Pload is
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the load power consumption. Due to the design of the PV system, there is effectively no
feed-in of PV electricity; the minimum consumption power of 1.61 MW exceeds the peak
power of the PV system (see Figure 2). Nevertheless, Ppv,loss can also be considered as a
slack variable to ensure a solution to the optimization problem.

The PV production Ppv and the consumer power demand Pload serve as input and the
other power values in Equation (3) are optimization variables.

When formulating the optimization problem, several binary variables were introduced
to cover all use cases. These can be divided into switches, parameters, and optimization
variables. A description of the state values is given in Table 6. The switches are essentially
used to set user-defined properties of the system configuration and are selected before the
simulation. They include the variables sEV , sstat and sbidi. Parameters, on the other hand,
change their values at the simulation runtime. They include the variables swork and sEV,avail .
The values of the optimization variables are determined by the solver at the simulation
runtime in order to minimize the objective function. They include sbatt,ch and sbatt,disch.

Table 6. Binary variables in the Optimization Problem.

Type Description

sbidi switch to choose whether EV fleet has bidirectional charging capability (1: yes, 0: no)

sbatt
switch to choose whether there is battery capacity in the model (scenarios 2–7) or not
(scenario 1) (1: yes, 0: no)

sstat switch to choose whether battery is EV or stationary BSS (1: BSS, 0: EV)
swork parameter showing if current day is working day (1: yes, 0: no)

sEV,avail
parameter showing if EV is available, i.e., day time is between ta,w and td,w (1: yes,
0: no)

sbatt,disch optimization variable indicating battery storage is in discharge state (1: yes, 0: no)
sbatt,ch optimization variable indicating battery storage is in discharge state (1: yes, 0: no)

The state of charge of the battery (EV fleet or BSS) at time t (SOC(t)) results from the
state of charge at time t − 1 and the relative amount of energy supplied or dissipated in the
time step ∆t (15 min), which results from the battery power Pbatt(t) and the nominal total
battery capacity. This is the product of the number of EVs (nEV) and the storage capacity of
the individual EV (Wbatt).

SOC(t) = SOC(t − 1) +
Pbatt(t)∆t
WbattnEV

(4)

The battery power Pbatt(t) is the sum of the discharging power Pbatt,disch(t) and the
charging power Pbatt,ch(t), taking into account the corresponding efficiencies ηbatt,disch
and ηbatt,disch. This should only be the case at times when the battery is available, i.e.,
sEV,avail = 1.

Pbatt(t) = (− 1
ηbatt,disch

Pbatt,disch(t) + ηbatt,chPbatt,ch(t))sEV,avail (5)

A distinction must be made between two cases of availability. If the EV fleet is
considered, this depends on the time of day and the type of day (working day or no
working day). If, on the other hand, a stationary BSS is considered sstat, the day type and
time of day are irrelevant as the following equation shows.

sEV,avail =

{
1 : (ta,w ≤ t ≤ td,w and swork = 1) or sstat = 1
0 : else

(6)

where swork is a binary parameter that is 1 if the current day is a working day, otherwise it
is 0.
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The maximum charging power of the battery Pbatt,ch,max is controlled by the EVs’
BMS. In case of charging, the upper power limit is given by the charging curve (Figure 5),
where the minimum value is 22 kW at 100% SOC. Therefore, in both cases, charging and
discharging, the power is limited by the nominal power of the wallbox Pnom,wallbox that is
22 kW. For the maximum power of the fleet, the number of EVs in the fleet nEV (30 or 50)
must be taken into account. In addition, the presence of storage capacities is realized with
sbatt as a switch in order to be able to select the corresponding scenarios.

Pbatt,ch,max = Pnom,wallboxnEVsbatt (7)

Two additional conditions must be taken into account, that of the bidirectional charging
function and the presence of battery capacities as given in Equation (8).

Pbatt,disch,max = Pnom,wallboxnEVsbidisbatt (8)

where sbidi is the binary switch indicating that the EV fleet has a bidirectional charging
capability or not and sbatt is a user-defined binary switch to choose whether the model has
a battery capacity (scenarios 2–7) or not (scenario 1).

The charging and discharging power of the battery is limited in each case by the
maximum values Pbatt,ch,max and Pbatt,disch,max explained above and the respective binary
optimization variables sbatt,ch and sbatt,disch as formulated in Equations (9) and (10).

0 ≤ Pbatt,ch(t) ≤ Pbatt,ch,maxsbatt,ch (9)

0 ≤ Pbatt,disch(t) ≤ Pbatt,disch,maxsbatt,disch (10)

As already explained, the state of charge SOC(t) for both the EV fleet and the stationary
BSS is limited by the two limits SOCEV,min and SOCEV,max.

SOCEV,min ≤ SOC(t) ≤ SOCEV,max (11)

In the use cases with the EV fleet, the initial SOC on each day is the defined starting
value SOCEV,a (50%), while in the scenarios with a stationary BSS, this only applies at the
start of the simulation on the first day.

The grid reference power is limited upwards by the maximum value Pgrid,dem,max.

0 ≤ Pgrid,dem(t) ≤ Pgrid,dem,max (12)

where Pgrid,dem,max has been chosen as 20 MW, which is high enough to give no constraint
on the grid demand power.

The grid feed-in power, on the other hand, is limited upwards by Ppv,nom, that is, the
peak power of the PV plant.

0 ≤ Pgrid, f eedIn(t) ≤ Ppv,nom (13)

The binary variables sbatt,ch and sbatt,disch were introduced, turning the optimization
problem into a mixed integer problem. They indicate whether the battery storage is in a
discharge or charge state, but not both at the same time.

sbatt,ch(t) + sbatt,disch(t) ≤ 1 (14)

The objective function is a weighted sum of three terms for the EV fleet (JEV ,
Equation (15)) and two terms for the use cases with stationary battery storage (JBSS,
Equation (16)). Weighting factor w is chosen be 0.9. For both cases, the maximum grid
consumption (peak) (Equation (18)) and the power loss of PV production (Equation (19))
should be minimized. In the cases with an EV fleet, the state of charge at the end of the



Energies 2024, 17, 47 18 of 25

working time td,w should correspond to the target value SOCEV,d, so the difference between
these two values must be minimized (Equation (17)).

JEV = min(w(J0 + J2) + (1 − w)J1) (15)

JBSS = min(wJ2 + (1 − w)J1) (16)

J0 =
∥∥SOCEV(t)− SOCEV,d

∥∥
2 (17)

J1 = max(Pgrid,dem) (18)

J2 =
∥∥∥Ppv,loss

∥∥∥
2

(19)

During optimization, a schedule for the next day is generated using a perfect prediction
of the consumption profile and PV production.

3. Results and Discussion

As aforementioned, to increase comparability, the stationary BSS was modeled with
the same capacity and performance as the EV fleet. The same limits were also assumed
for the SOC (SOCEV,min, SOCEV,max). In contrast to the use of electric vehicles, however,
restrictions such as the target SOC at departure time (SOCEV,d) or of time-limited charging
and discharging (availability only on working days and between arrival and departure)
were omitted for the scenarios with a stationary BSS.

The following scenarios in Table 7 are considered as use cases.

Table 7. Considered scenarios.

Scenario PV EV/BSS uni/bi 1 Number of
EVs

Accumulated Storage Capacity [MWh]/
Maximum Peak Power [MW]

1 yes - -
2 yes EV uni 30 2.31/0.66
3 yes EV uni 50 3.85/1.1
4 yes EV bi 30 2.31/0.66
5 yes EV bi 50 3.85/1.1
6 yes BSS - - 2.31/0.66
7 yes BSS - - 3.85/1.1

1 uni = uni-directional smart charging; bi = bi-directional charging.

The current system state without a PV system and storage capacities (EV fleet/stationary
BSS) serves as the reference scenario.

This study assumes that the charging of EVs is free of charge for the participants. In
the case of bidirectional charging, this is understood as an incentive and compensation for
providing the battery storage capacity of the electric vehicle.

The results of a 1-year simulation of all the scenarios and the reference system are
shown in Figures 8–10.

In the following figure, Figure 8, energy flows and the SOC of the reference scenario
(Figure 8a) and scenarios 1, 4, 5, and 7 are shown (Figure 8b–e). When looking at the
system with a PV plant (scenario 1; without storage capacities), in Figure 8b, in comparison
to the reference case (Figure 8a), it is noticeable that there is a good overlap between PV
production and the consumption profile on the campus. The consumption peaks are also at
midday. With a suitable design of the PV system, there could be a high potential for peak
shaving here alone, at least in the summer months.
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Figure 8. Energy flows and battery SOC shown as an example for one week (Monday to Sunday,
4–11 July 2023) for the reference case without storage capacities and PV plant in (a) and scenarios 1,
4, 5, and 7 (b–e).

Figure 9. Comparison of costs and maximum annual peak power for the scenarios under consideration.
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Figure 10. Cost savings and peak power reduction compared to the scenarios under consideration.

Figure 8c shows use case 4. The behavior of the EV before arrival at the workplace
(t < ta,w) and after the end of working hours (t > td,w) was not modeled, whereby the
SOC on each working day corresponds to the start value SOC(EV,a) = 50% for t < ta,w and
the target value SOC(EV,d) = 90% for t > td,w. It can be seen that the smart charging opti-
mization algorithm charges the EV fleet particularly during periods of high PV production
and on days with low PV production (see July 7 and 8), where charging takes place in the
afternoon, i.e., after the midday consumption peaks.

Use case 5 (Figure 8d) shows the EV fleet feeding back into the local area grid. As
expected, this occurs at midday, when the load is at its highest. Furthermore, it can be seen
that the EVs are already pre-charged in the morning in order to be able to reduce the power
peaks at midday by discharging.

If a stationary BSS is used instead of the EV fleet (Figure 8e, scenario 7), the time
restrictions on storage use no longer apply. As the PV system is not sufficient to cover
consumption, the stationary storage system is also pre-charged from the electricity grid
like the EV fleet in use case 5 in order to achieve peak shaving. This already takes place
at night.

The annual electricity costs of grid supply energy and the maximum grid supply
power peaks that occurred during the year (c.f. Section 2.3, Equation (1)) and the sav-
ings and reductions of the same via utilization of storage capacities (EVs and BSS) are
discussed below.

For the reference system, the total annual costs amount to 988,556 EUR, with energy
costs of 290,044 EUR and capacity costs of 698,027 EUR.

With a 1 MWp PV system (scenario 1), the total costs can be reduced by 31,874 EUR,
of which 14,259 EUR is attributable to energy costs and 17,615 EUR to capacity costs. The
maximum annual grid power consumption was reduced by 110.59 kW.

As expected, the additional use of 30 electric vehicles in scenario 2 with a maximum
charging capacity of 22 kW and the given boundary conditions (Table 4) reduces the savings
again. The total savings compared to the reference case then only amount to 29,184 EUR,
whereby the grid capacity costs do not increase due to the use of Smart Charging technology
in this case. For the energy costs, the savings amount to only 11,569 EUR. Smart Charging
optimization can effectively reduce an increase in the peak grid consumption and distribute
the grid consumption together with the additional PV power more evenly.
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The same applies to the scenario with a PV system and 50 vehicles in unidirectional
charging mode (scenario 3). The total savings are further reduced to 27,390 EUR, which is
also only due to the reduced savings in energy costs of 9775 EUR.

In contrast, the use of electric vehicles with bidirectional charging technology and V2B
integration by means of optimization-based charging and discharging management can
increase the savings in electricity costs to a far greater extent. In scenario 4, the total savings
amount to 80,705 EUR, which corresponds to a share of 8.1%. The energy costs account for
11,715 EUR and increase by 2544 EUR due to the additional energy required for charging
compared to the scenario with a PV system but without EVs (scenario 1). Consequently,
the high savings are due to a reduction in capacity costs of 68,989 EUR. The maximum grid
power peak was reduced by 433 kW (9.9%) compared to the reference scenario.

However, a savings in capacity costs does not follow an increase in the number of
electric vehicles with bidirectional charging technology—on the contrary, as the scenario
with 50 EVs in scenario 5 shows. The savings per year then only amount to 69,039 EUR (7%),
with a capacity cost reduction of 59,177 EUR and an energy cost reduction of 9862 EUR
compared to the reference scenario. In this scenario, the maximum grid power peak con-
sumption can only be reduced by 371 kW. This is due to the increased energy requirement
in order to achieve the charging target of a 90% state of charge at departure time.

It can be concluded from this that even in the bidirectional case, there is a certain
optimum number of EVs participating in the campus area network on a case-specific basis.

The evaluation of the additional energy for charging the EVs in unidirectional smart
charging mode results in a demand of 257,693 kWh (30 EVs) or 429,488 kWh (50 EVs). At
the stated energy price of 0.0116 EUR/kWh (Table 1), this results in additional energy costs
of 2989 EUR (30 EVs) or 4982 EUR (50 EVs). In this tariff, the additional costs of charging
the electric vehicles are therefore marginal compared to the previous costs.

In addition to the scenarios with electric vehicles and a PV system, two scenarios with
a stationary battery storage system with comparable values for storage capacity (2310 kWh
corresponds to 30 EVs/3850 kWh corresponds to 50 EVs) and nominal power were selected
for comparison with the two cases with 30 and 50 vehicles and bidirectional charging
technology.

The savings could be further increased in both cases. In scenario 6 with a 2310 kWh bat-
tery capacity, 112,035 EUR were saved, which corresponds to 11.3% of the total annual costs
of the reference scenario. The savings were made both in terms of energy costs (14,284 EUR)
and capacity costs (97,751 EUR). In scenario 7 with a storage capacity of 3850 kWh, the sav-
ings even increased to a total of 131,864 EUR (energy cost savings of 14,270 EUR, capacity
cost savings of 117,593 EUR). At the same time, it was possible to reduce the grid power
demand peak by 613 kW (scenario 6) and 738 kW (scenario 7), respectively.

Contrary to the results from the scenarios with EVs, the electricity costs can be further
reduced with the increasing storage capacity and performance of the stationary BSS. This
can be explained by the elimination of the boundary conditions regarding availability
(presence on campus due to working hours) and driver comfort (reaching a target SOC at
departure time).

Given the summarized results in Table 8, one can answer the research question from
the introduction chapter:

• Peak load can be reduced with peak shaving technology between 8.5% and 9.9% and
the total electricity cost between 7% and 8.1% for an EV fleet with a size of 30 or 50,
respectively, with bi-directional charging technology.

• Peak load reduction and cost savings do not increase with growing size of the EV
fleet. There exists an optimal number of EVs that is beneficial for the operator of the
local grid.

• Bi-directional charging has a significant positive impact on peak load and electricity
cost reduction. Peak loads can be reduced up to 7.4% and the total electricity costs can
be further reduced by 5.1% compared to smart uni-directional charging.
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• Using a stationary BSS of the same storage capacity and performance as the two
considered EV fleets has a further significant positive impact. Peak load can be
reduced by 6.9% and total electricity costs by 5.2% compared to the EV fleet with
bidirectional charging.

Table 8. Summarized results.

Scenario Peak Reduction
[kW]

Peak Reduction
[%]

Total Cost Savings
[EUR]

Total Cost Savings
[%]

1 110.59 2.5 31,874 3.2
2 110.59 2.5 29,184 3.0
3 110.59 2.5 27,390 2.8
4 433.13 9.9 80,705 8.1
5 371.53 8.5 69,039 7.0
6 613.7 14 112,035 11.3
7 738.28 16.8 131,864 13.3

4. Conclusions

Electricity storage systems, whether electric vehicles or stationary battery storage
systems, stabilize the electricity supply grid with their flexibility and thus drive the energy
transition forward. This study aims to address the potential of peak shaving using a PV
plant and smart unidirectional and bidirectional charging technology for two fleets of
electric vehicles and two comparable configurations of stationary battery storage systems
on the university campus of Saarland University in Saarbrücken as a case study. Based
on an annual measurement of the grid demand power of all consumers on the campus, a
simulation study was carried out to compare the peak shaving potential of seven scenarios
with a fleet of electric vehicles with, on the one hand, both smart unidirectional and
bidirectional charging, and on the other hand, stationary battery storage systems. For the
sake of simplicity, it was assumed that the vehicles are connected to the charging station
during working hours and can be charged and discharged within a user-defined charging
status. Furthermore, only the electricity costs were included in the profitability analysis;
investment and operating costs were not taken into account.

Overall, the simulation results show that

1. An optimization-based unidirectional charging technology (Smart Charging) in combi-
nation with a PV system increases the potential for peak load smoothing. The scenarios
with the PV system and electric vehicle in unidirectional charging mode show that
the grid capacity peak is at the same level as the scenario with a PV system only.

2. The bidirectional charging technology enables a further reduction in the maximum
grid supply power, but there is an optimum in the number of participating EVs.

3. The limiting boundary conditions of bidirectional charging (time-limited storage use,
target charging status at departure time) are circumvented by using a comparable
stationary BSS, thus enabling a further significant reduction in total grid supply costs.
In addition, this solution offers a controlled risk reduction in power shaving, as the
number of EVs effectively connected to the grid cannot be predicted with certainty
and, therefore, the decisive load peak cannot be covered with certainty.

Therefore, the peak-shaving potential and the associated reduction in capacity costs
from the grid increases with the exclusive use of a PV system via the inclusion of the EV
fleet up to a stationary battery storage system when considering only the capacity costs
from the grid.

The model described here was created with some simplifying assumptions. For
example, an ideal prediction for the load profile and the PV power generation is used in
the optimization process. Furthermore, no investment costs either for the installation of
the charging infrastructure and the ICT required for the optimization algorithm used here
nor investment or operating cost of the stationary BSS were taken into account. In the
market model applied here, which provides for the free provision of EV storage capacity in
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exchange for free charging, these investment costs are eliminated. When using a stationary
BSS, these not inconsiderable costs are incurred in addition to other operating costs. It
remains to be examined whether the degree of increased flexibility takes account of the
higher procurement costs. Future work will also focus on the resulting cost for the EV
owner due to battery aging and further financial compensation models for the provision of
the EV’s battery capacity. Furthermore, the real availability of EVs (arrival and departure
times and number of vehicles, initial state of charge, and the charging preferences of car
owners) and their performance spectrum in terms of battery capacity and power must be
measured and statistically evaluated in order to create a behavior model. In addition, more
realistic forecasts of the load profile (based on historical time series) and PV production
(e.g., with the help of weather forecasts) must be created. As already mentioned, some
vehicle manufacturers have limited the possibilities of using bidirectional charging in order
to avoid premature aging of the battery, among other things. It is therefore important to
add an aging model to the battery model for a complete evaluation.
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