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Abstract

A potential application of emerging Noisy Intermediate-Scale Quantum (NISQ)
devices is that of approximately solving combinatorial optimization problems. This
thesis investigates a gate-based algorithm for this purpose, the Quantum Approxi-
mate Optimization Algorithm (QAOA), in two major themes.

First, we examine how the QAOA resolves the problems it is designed to solve.
We take a statistical view of the algorithm applied to ensembles of problems, first,
considering a highly symmetric version of the algorithm, using Grover drivers. In
this highly symmetric context, we find a simple dependence of the QAOA state’s
expected value on how values of the cost function are distributed. Furthering this
theme, we demonstrate that, generally, QAOA performance depends on problem
statistics with respect to a metric induced by a chosen driver Hamiltonian. We
obtain a method for evaluating QAOA performance on worst-case problems, those
of random costs, for differing driver choices.

Second, we investigate a QAOA context with device control occurring only via
single-qubit gates, rather than using individually programmable one- and two-qubit
gates. In this reduced control overhead scheme—the digital-analog scheme—the
complexity of devices running QAOA circuits is decreased at the cost of errors which
are shown to be non-harmful in certain regimes. We then explore hypothetical device
designs one could use for this purpose.
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Zusammenfassung

Eine mögliche Anwendung für “Noisy Intermediate-Scale Quantum devices”
(NISQ devices) ist die näherungsweise Lösung von kombinatorischen Opti-
mierungsproblemen. Die vorliegende Arbeit untersucht anhand zweier Hauptthemen
einen gatterbasierten Algorithmus, den sogenannten “Quantum Approximate Opti-
mization Algorithm” (QAOA).

Zuerst prüfen wir, wie der QAOA jene Probleme löst, für die er entwickelt wurde.
Wir betrachten den Algorithmus in einer Kombination mit hochsymmetrischen
Grover-Treibern für statistische Ensembles von Probleminstanzen. In diesem Kon-
text finden wir eine einfache Abhängigkeit von der Verteilung der Kostenfunktion-
swerte. Weiterführend zeigen wir, dass die QAOA-Leistung generell von der Prob-
lemstatistik in Bezug auf eine durch den gewählten Treiber-Hamiltonian induzierte
Metrik abhängt. Wir erhalten eine Methode zur Bewertung der QAOA-Leistung
bei schwersten Problemen (solche zufälliger Kosten) für unterschiedliche Treiber-
auswahlen.

Zweitens untersuchen wir eine QAOA-Variante, bei der sich die Hardware-
Kontrolle nur auf Ein-Qubit-Gatter anstatt individuell programmierbare Ein- und
Zwei-Qubit-Gatter erstreckt. In diesem reduzierten Kontrollaufwandsschema—dem
digital-analogen Schema—sinkt die Komplexität der Hardware, welche die QAOA-
Schaltungen ausführt, auf Kosten von Fehlern, die in bestimmten Bereichen als
ungefährlich nachgewiesen werden. Danach erkunden wir hypothetische Hardware-
Konzepte, die für diesen Zweck genutzt werden könnten.

v





Publications

Published

• D. Headley, T. Müller, A. Martin, E. Solano, M. Sanz, F. K. Wilhelm
Approximating the quantum approximate optimization algorithm with
digital-analog interactions
Phys. Rev. A 106, 042446 (2022) [1]

• D. Headley, F. K. Wilhelm
Problem-size independent angles for a Grover-driven quantum approximate
optimization algorithm
Phys. Rev. A 107, 012412 (2023) [2]

Preprint

• T. Müller, T. Stollenwerk, D. Headley, M. Epping, F. K. Wilhelm
Coherent and non-unitary errors in ZZ-generated gates
arXiv:2304.14212 (2023) [3]

Previous

• J. Roffe, D. Headley, N. Chancellor, D. Horsman, V. Kendon
Protecting quantum memories using coherent parity check codes
Quantum Sci. Technol. 3 035010 (2018) [4]

vii

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.042446
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.042446
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.012412
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.012412
https://arxiv.org/abs/2304.14212
https://iopscience.iop.org/article/10.1088/2058-9565/aac64e




Acknowledgements

This thesis would not have been possible without the support of several academic
supervisors throughout and prior to my PhD. I thank Viv Kendon for being a
generous Master’s advisor and providing a strong introduction to the field. Steve
Brierley and Riverlane Research who provided an opening for me to gain experience,
before taking on the daunting commitment of a PhD. Markus Leder and my former
Mercedes-Benz colleagues for providing many fantastic opportunities for a new PhD
student and also for his endless bureaucratic support. I thank Frank for supervising
my PhD, for his guidance and opportunities that came with this. Finally, I thank my
friends and family who made this time enjoyable and for their continued support.

ix





Contents

1 Introduction 1

1.1 Classical and Quantum Computers . . . . . . . . . . . . . . . . . . . 1

1.1.1 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A Brief History of Quantum Algorithms . . . . . . . . . . . . . . . . 4

1.3 Fault Tolerance and Near-Term Intermediate-Scale Quantum Com-
putation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Decision & Extremization problems . . . . . . . . . . . . . . . 7

1.4.2 Approximate Optimization . . . . . . . . . . . . . . . . . . . . 9

1.5 Problem Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Random Graph Types . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Classical Algorithms for Combinatorial Optimization . . . . . . . . . 12

1.6.1 Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.3 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Quantum Algorithms for Combinatorial Optimization and Search . . 13

1.7.1 Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.2 Adiabatic Quantum Computing . . . . . . . . . . . . . . . . . 15

1.7.3 Quantum Random Walks . . . . . . . . . . . . . . . . . . . . . 16

1.8 Realizing Qubits with Superconductors . . . . . . . . . . . . . . . . . 17

1.8.1 The Josephson Junction . . . . . . . . . . . . . . . . . . . . . 17

1.8.2 The SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8.3 Deriving Hamiltonians from Circuit Diagrams . . . . . . . . . 18

1.8.4 Superconducting Qubit Varieties . . . . . . . . . . . . . . . . 19

1.8.5 Restriction to Qubit Basis . . . . . . . . . . . . . . . . . . . . 22

1.8.6 Interactions Between Qubits . . . . . . . . . . . . . . . . . . . 22

2 The Quantum Approximate Optimization Algorithm 25

2.1 Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The Problem Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The Driver Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Strategies for Finding Optimal Parameters . . . . . . . . . . . . . . . 28

2.5.1 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Start Point Strategies . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Barren Plateaus . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



3 Problem-Size-Independent Angles for Grover-Driven QAOA 35
3.1 Attribution & Copyright . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Properties of Grover Drivers . . . . . . . . . . . . . . . . . . . 38
3.3.2 Problem Objective Functions as Random Variables . . . . . . 39

3.4 Depth 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Invariance Under Shifts . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Depth 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Arbitrary Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Problem Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.1 Gaussian Problems & The Random Cost Model . . . . . . . . 42
3.7.2 The Number Partitioning Problem . . . . . . . . . . . . . . . 44

3.8 Compiling the Grover Driver . . . . . . . . . . . . . . . . . . . . . . . 46
3.9 Connection to Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . 46
3.10 Performance And Distribution Properties . . . . . . . . . . . . . . . . 47
3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.A Permutation Symmetry of Problem Hamiltonians Under Grover-QAOA

States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.B Calculation of Depth-1 Expectation Value . . . . . . . . . . . . . . . 54
3.C Calculation of Depth-2 Expectation Value . . . . . . . . . . . . . . . 55
3.D Calculation of Arbitrary-Depth Expectation Value . . . . . . . . . . . 56

4 Driver-Problem Synergy and QAOA Performance 59
4.1 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Single-Qubit Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Depth 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Depth 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3 Arbitrary Depth . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Evaluating Problem Factors Analytically . . . . . . . . . . . . . . . . 67
4.6 Monte Carlo Estimation of Expected Solution Quality . . . . . . . . . 69
4.7 Applying the Method to Classes of Problem . . . . . . . . . . . . . . 70

4.7.1 The Random Cost Model . . . . . . . . . . . . . . . . . . . . . 70
4.7.2 Generalized Gaussian Correlation Models . . . . . . . . . . . . 76
4.7.3 Free Spins in a Random Magnetic Field . . . . . . . . . . . . . 79

4.8 Line Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8.1 Driver Factors in Line Mixers . . . . . . . . . . . . . . . . . . 84
4.8.2 Expected QAOA Solution Quality for Line Mixers . . . . . . . 85
4.8.3 Problems for Line Mixers . . . . . . . . . . . . . . . . . . . . . 86

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Approximating QAOA with Digital-Analog Interactions 89
5.1 Paradigms of Quantum Computing . . . . . . . . . . . . . . . . . . . 89
5.2 Spin Echo and Dynamical Decoupling . . . . . . . . . . . . . . . . . . 89
5.3 Attribution & Copyright . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 The Digital-Analog Quantum Computational Paradigm . . . . . . . . 91

xii



5.6 Negative Digital-Analog Block Times . . . . . . . . . . . . . . . . . . 95
5.7 Digital-analog QAOA . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.8 Compilation Costs of DA-QAOA . . . . . . . . . . . . . . . . . . . . 99
5.9 High-Connectivity Hardware Platforms . . . . . . . . . . . . . . . . . 102
5.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.10.1 Performance of bDA-QAOA . . . . . . . . . . . . . . . . . . . 103
5.10.2 Variational Resilience of DA-QAOA to DA Errors . . . . . . . 105

5.11 Analytical Fidelity Bounds for bDA-QAOA . . . . . . . . . . . . . . . 106
5.12 Sensitivity to Other Errors . . . . . . . . . . . . . . . . . . . . . . . . 109
5.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 High-Connectivity Devices for DA-QAOA 111
6.1 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 General Timescales and Design Parameters . . . . . . . . . . . . . . . 112
6.4 Device Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 A Flux-Qubit Device . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.2 Charge Qubits and Transverse Interactions . . . . . . . . . . . 117
6.4.3 Galvanic Coupling of Flux Qubits . . . . . . . . . . . . . . . . 118

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.A Weight-Dependent Potential to ZZ Interactions . . . . . . . . . . . . 123

Conclusion 125

A QAOA Simulation With Fast Walsh-Hadamard Transforms 127
A.1 Fast Walsh-Hadamard Transforms . . . . . . . . . . . . . . . . . . . . 128

xiii





List of Figures

1.1 A Bloch sphere representation of a single-qubit state . . . . . . . . . 5

1.2 A diagram showing the relationship between common complexity classes 8

1.3 Diagrams for a DC-SQUID and an LC circuit . . . . . . . . . . . . . 18

1.4 Circuit diagrams for different qubit types . . . . . . . . . . . . . . . . 21

2.1 A standard QAOA circuit . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 QAOA decision diagram . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Optimal angles for Grover QAOA acting on a random cost model at
differing depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Expected solution quality for Grover QAOA acting on a random cost
model at differing depth . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Convergence to depth 1 optimal parameters for a Grover-driven num-
ber partitioning problem . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Convergence to depth 2 optimal parameters for a Grover-driven num-
ber partitioning problem . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Optimal parameters by depth for number partitioning . . . . . . . . . 49

3.6 Optimal Grover driven number partitioning expected cost function
per depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Grover-driven number partitioning cost landscape converging to an-
alytical for increasing n . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Three probability density functions for comparison . . . . . . . . . . 52

3.9 Grover QAOA expected value and expected percentile for differing
problem pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Generated instances of unstructured Gaussian problems are used to
find optimal QAOA parameters at p = 1. The parameters concentrate
on the theoretically predicted values for increasing problem sizes. . . 74

4.2 Convergence to analytically calculated landscape for X-driven ran-
dom cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Gaussian correlation model mean and variance by normalized distance 80

4.4 Conditional pdfs for the Gaussian-Z model, analytical and numerical 82

4.5 Cost functions for individual instances, pdf derived, and verified an-
alytical result for Gaussian-Z problems . . . . . . . . . . . . . . . . . 83

5.1 Two schemes for digital-analog QAOA, switchable resource, and an
always-on resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 5-qubit general digital-analog circuit . . . . . . . . . . . . . . . . . . 93

5.3 Compilation of max-cut problem to a digital-analog circuit . . . . . 100

xv



5.4 Time taken by digital-analog scheme for increasing qubit numbers
and varying resource . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Difference in solution quality between digital-analog QAOA and a
standard digital implementation . . . . . . . . . . . . . . . . . . . . . 103

5.6 Increase in performance due to variational nature of QAOA . . . . . . 104

6.1 Flux qubit DA-QAOA device with inductive interactions . . . . . . . 113
6.2 A charge qubit, capacitively coupled device design for DA-QAOA . . 118
6.3 Flux qubit DA-QAOA device with galvanically induced interactions . 119

A.1 A comparison of performance for a NumPy simulator and a circ sim-
ulator on a QAOA task . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xvi



Chapter 1

Introduction

In the following chapter, the work of this thesis is motivated. Basic concepts and
mathematical language upon which the work is built are introduced alongside the
requisite theoretical background. We introduce some important results and concepts
in quantum computing alongside classical background on the problems for which we
aim to use them.

1.1 Classical and Quantum Computers

The development of classical computers in the previous century has ushered forth
a third industrial revolution of development. Following the significant reduction in
costs due to advancements in steam technology, standardization, and industrializa-
tion applied to consumer goods, artificial lighting, and cost of living, the develop-
ment of classical computers has led and continues to lead to dramatic reductions
in the cost of general computation, communication and the design and simulation
of physical structures. The fundamental limitations on the capabilities of classical
computation seem unbounded in many domains. For example, the past decade has
seen rapid progress in the development of deep learning systems; machine learning
algorithms that use many layers of simulated neurons to extract high-level features
from raw data. Such approaches have solved problems previously expected to be
decades away from solutions, from achieving superhuman performance in Go, and
Starcraft, to obviating a research field with the introduction of AlphaFold, predict-
ing 3-d structures of proteins with unprecedented accuracy. Deep learning methods
continue to break new ground, with generative models such as GPT-3 [5], a pre-
trained transformer model which, when given a prompt, can produce human-like
text responses, having been trained on half a trillion examples to optimize its 175
billion parameters.

Despite the countless examples of the tasks at which classical computers excel,
the logic on which they fundamentally operate is classical, that is, well described
by classical mechanics1. Ontologically, classical mechanics suggests the existence of
a well-defined state of reality, evolving in time deterministically via some equations
of motion. This view of reality, however, was demonstrated to be inconsistent with
experimental results. The Stern-Gerlach experiment [6] demonstrated that particles

1Modern transistors may be small enough to require the consideration of quantum mechanical
effects in their design, but the high-level logic that they implement is entirely classical.
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Chapter 1

with non-zero magnetic moments are observed to act as if they take discrete orien-
tations in space when passed through a magnetic field gradient—spin is quantized.
Quantization of the magnetic moment is inconsistent with classical theories which
predict a moment that can take values in a continuous range, with the discretization
of states in quantum mechanics providing a resolution to issues faced when explain-
ing natural phenomena with classical mechanics, such as the non-stability of atomic
models, in which atoms should emit electromagnetic radiation and collapse, and the
ultraviolet catastrophe, in which the energy emitted by black bodies is predicted to
become unbounded at low wavelengths. Such ideas of physical reality were tested
further with the EPR paradox [7] and Bell tests [8, 9], which, reject the possibility
that physical reality has the property of local realism—physical observables must
either have states that can signal superluminally, or yield measurement outcomes
that are not pre-determined and knowable, prior to measurement.

Since classical computers follow the rules of classical mechanics, which are found
to differ from those of quantum mechanics, the question of whether a computer
operating on the level of quantum mechanics is more powerful than that of a classical
device is raised. As such, quantum computing as a concept began to be considered
in the 1980s by authors such as Feynman, Deutsch, and Benioff [10, 11, 12]. In short,
quantum computers are compelling because they can produce states, which, when
measured, produce probability distributions that cannot, in general, be prepared
and sampled by classical computers. This is not to say that quantum computers
are automatically more powerful than classical computers, though it is currently
expected that for very specific tasks such as chemical simulations and factoring, a
difference in the resources required exists, which scales exponentially in the size of
these problems.

1.1.1 Bits and Qubits

Classical computers of today consist of, at their basic level, components inheriting
from the Von Neumann model of computation. A classical computer consists of
memory, both for immediate use, and mass storage, a Central Processing Unit in
which operations are carried out on stored information, and means of inputting and
outputting information to the computer. Almost all modern memory uses infor-
mation stored on binary registers, typically, the magnetization of small magnetic
domains on hard disk drives or the presence of stored charges in solid-state drives.
Such binary values may take the states labeled by 0 or 1. The knowledge one has
of such a binary system b state can be represented by a probability vector

ψ⃗ =

(
P(b = 0)
P(b = 1)

)
(1.1)

where, of course, P(b = 0) + P(b = 1) = 1 is the norm of the vector that should
be conserved. Operations that conserve such a norm are called right stochastic,
in which the elements represent transition probabilities, with rows summing to 1.
Therefore, the time evolution of a bit of classical knowledge over some interval can
be expressed as:

ψ⃗1 = Û ψ⃗0 (1.2)

where

Û =

(
P(b1 = 0|b0 = 0) P(b1 = 0|b0 = 1)
P(b1 = 1|b0 = 0) P(b1 = 1|b0 = 1)

)
(1.3)

2



Introduction

which, for non-time-varying Û is a single step of a Markov process.
Likewise, quantum computers have, as their basic constituent parts, similar two-

state systems. However, the rules for such systems—qubits—are different. The
Dirac notation |0⟩, |1⟩ denotes two possible states of a qubit—the computational
basis. States of a qubit, however, can also take that of linear combinations of the
above, a general state of a qubit can be written as:

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α
β

)
(1.4)

with α, β as complex numbers. This is similar to the classical bit case, with instead
of the sum of the elements being one, the sum in quadrature evaluating to 1, that
is,

|α|2 + |β|2 = 1. (1.5)

When measured, the probability of measuring the qubit to be in a given configuration
is given by the Born rule with

P(b = 0),P(b = 1) = |α|2, |β|2. (1.6)

Transformations of such pure states can then be expressed by unitary operations.
A unitary one-qubit transformation Û can be expressed as:

Û =

(
u00 u01
u10 u11

)
(1.7)

with
|ψ′⟩ = Û |ψ⟩ = u00α |0⟩+ u01β |1⟩+ u10α |0⟩+ u11β |1⟩ (1.8)

where Û is a 2× 2 unitary matrix satisfying Û †Û = Û Û † = I where I is the identity
matrix. As the stochastic matrix acting on probability vectors preserves the 1-norm,
a unitary operator acting on a pure state preserves the 2-norm, which, then preserves
the 1-norm of measurement outcome probabilities. Such unitary transformations on
the state of the qubit are generated by the time-dependent Schrödinger equation:

Ĥ |ψ⟩ = Ê |ψ⟩ (1.9)

which is obeyed for a given Hermitian Hamiltonian Ĥ and the energy operator
Ê = iℏ d

dt
. Solving the time-dependent Schrodinger equation for generic Ĥ and an

initial state ψ(0) gives:

|ψ(t)⟩ = Û(t, 0) |ψ(0)⟩ , Û(t, 0) = T exp

(
i

∫ t

t′=0

Ĥ(t′) dt′
)

(1.10)

which gives the state of a system at any time, given the initial state and time-
dependent Hamiltonian are known.

So far, we have that describing a pure state of a qubit requires similar mathemat-
ical machinery to that of a bit, for which knowledge only of the probabilities that
it takes given values. To introduce this epistemic uncertainty to the qubit state,
we may describe states with density matrices. Density matrices are defined as a
mixture of quantum states with associated probabilities pi summing to 1. A density
matrix is thus defined generically as

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| . (1.11)
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where the expectation value of a given observable Ô is produced via

Tr
(
Ôρ̂
)

(1.12)

This widens the scope of potential operations acting on a system to those of a
probabilistic mixture of unitary operations, described as quantum channels, where
for example ε, a channel acting on a density matrix ρ̂ can be described by:

ε(ρ̂) =
∑

piÛ
†
i ρ̂Ûi (1.13)

which is known as the Krauss decomposition of the channel ε.
The state of the qubit can alternatively be written as:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (1.14)

where the angles θ ∈ [0, π], ϕ ∈ [0, 2π] are polar coordinates and can be mapped to
coordinates on a sphere. This representation of a qubit is referred to as the Bloch
sphere, providing a helpful demonstration of single-qubit dynamics and the effects
of the single-qubit errors that can occur on qubits, with mixed states represented
by points within the Bloch sphere. Valid operations on single qubits then corre-
spond to rotations on the sphere, with error channels corresponding to squashing
operations of the sphere along one or more axes. Such a representation can be seen
in Figure 1.1. The state of two bits is separable, that is, the state of one bit of
information is necessarily independent of the physical state of another. Correlations
might exist between observables, but such correlations pertain to the knowledge of
such observables, rather than the physical state of the observable itself. The joint
state of two qubits is given by the tensor product of the two states. That is, for two
qubits described by |ϕ1⟩ = α1 |0⟩ + β1 |1⟩, |ϕ2⟩ = α2 |0⟩ + β2 |1⟩, their joint state is
described by:

|ϕ1⟩ ⊗ |ϕ2⟩ = α1α2 |0⟩ ⊗ |0⟩+ α1β2 |0⟩ ⊗ |1⟩+ β1α2 |1⟩ ⊗ |0⟩+ β1β2 |1⟩ ⊗ |1⟩ (1.15)

where the squared absolute value of pre-factor to a ket determines the probability of
measuring the two qubits in the corresponding configuration. Such states—product
states—do not, however, span the space of possible such vectors, thus giving rise to
non-classical states which cannot be understood in terms of single-qubit properties
alone. Such states are described as entangled, and strike a fine balance between al-
lowing the state of two qubits to seemingly depend on events outside their light cone
while forcing such events never to affect a qubits measurement outcome distribution.

But what can you do with quantum states and why should they be more useful
than classical bits? As it transpires, the additional correlations afforded to entangled
quantum systems, and richer state space, allow for a wider class of algorithms to
be performed efficiently than those of classical computers. The following section
presents an overview of such algorithms.

1.2 A Brief History of Quantum Algorithms

In the popular consciousness, and to the irritation of physicists attempting to main-
tain level expectations of the power of quantum computers, it is often believed
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Figure 1.1: Single-qubit states can be mapped to points on the surface of a sphere
allowing for an intuitive understanding of single-qubit rotations.

that the power of quantum computers lies in their ability to check every solution
to some problem in simultaneity. While partially true, in that for some efficiently
computable function f , one can prepare a state

∑
z
f(z)√
N
|z⟩ on a quantum computer

with the same amount2 of effort one would take to apply a function f to a single
input on an equivalent classical computer, this information is not accessible through
measurement. While most quantum algorithms do use such operations, obtaining
useful measurement outcomes from such states is far more nuanced.

Richard Feynman suggested in a seminal article, “There is plenty of room at
the bottom” [13] that the physics of quantum systems is not likely to be effi-
ciently simulable on a classical computer. The Deutsch-Jozsa algorithm [14] and
the Bernstein-Vazirani [15] Algorithms provided the first proof that the physics of
quantum mechanics allowed for the solution of problems with fewer resources than
classically required. It was discovered in 1994 that computing the Fourier transform
of a quantum state requires exponentially fewer resources than would be required
to compute the Fourier transform of similar classical data [16], with the caveat that
such a state must be prepared and read out from the quantum computer constrained
by the Holevo bound [17]. Knowing that one can efficiently apply Fourier Trans-

2Asymptotically. Operations on classical computers will likely always be less costly in time
than those of quantum computers. Classical computers are faster than contemporary quantum
computers by a factor of around 1000 without error correction, and perhaps two to three times as
many orders of magnitude faster once the overhead of quantum error correction is accounted for.
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forms to quantum data introduces the possibility that if one has some efficiently
preparable function, it will be efficient to sample from the frequency decomposition
of that function applied to a superposition of inputs. From this insight, Shor’s al-
gorithm [18] derives, taking advantage of the periodicity in Fermat’s little theorem
of number theory to efficiently determine prime factors of large numbers. It is be-
lieved, but not yet proven, that no classical algorithm will achieve the polynomial-
time scaling in factoring provided by Shor’s algorithm. Consequently, public key
encryption schemes based on the difficulty of factoring may be vulnerable to attacks
from quantum computers. In a related development, the quantum phase estimation
algorithm [19] was found by Kitaev to be capable of calculating the eigenvalues of
an eigenstate for a quantum Hamiltonian.

Soon after the discovery of Shor’s factoring algorithm, Grover’s algorithm [20]—
later generalized to the Amplitude Amplification Algorithm [21]—was discovered.
Quantum computers are able to search for marked configurations of their state space
in time scaling as the square root of the number of possible configurations, whereas
classical computers will always need to check half the configurations in the average
case and all but one in the worst case.

In the following years, quantum error correction was discovered [22], alongside the
surface and topological codes which proved that fault-tolerant quantum computing
is a technologically realizable goal.

At the turn of the century, adiabatic quantum computation was discovered [23],
alongside quantum computation via quantum random walks [24]. Such algorithms
opened up the possibility of solving combinatorial optimization problems on a quan-
tum computer in such a way that is not entirely a Grover-like speedup. Finally, in the
past decade, perhaps inspired by a renaissance of the application of neural networks
in classical computation, variational quantum algorithms have seen great interest,
with algorithms such as the variational quantum eigensolver for finding ground state
energies on quantum computers, the quantum approximate optimization algorithm
for finding approximate solutions to combinatorial optimization problems, and more
general quantum neural networks, aiming to learn high-level features by tuning the
angles of quantum gates for classical or quantum learning tasks.

1.3 Fault Tolerance and Near-Term Intermediate-

Scale Quantum Computation

For a long time, it was uncertain whether quantum computers could perform use-
ful calculations due to the presence of noise and unwanted interactions with their
environment. Error correction in classical computing has been well-established and
widely used in applications ranging from error-corrected random access memory to
noisy communication with spacecraft. However, the requirements for quantum error
correction are more stringent, which has made achieving fault quantum computa-
tion more challenging. On quantum information, not only can bit flip-type errors
act on the qubits, but also phase flip errors, alongside a continuum of continuous
errors in-between. Without quantum error correction, the gate counts required for
useful quantum computations without appreciable chance of an error occurring, re-
quire gate operation error rates that are likely unreachably low, necessitating the
use of quantum error-correcting codes. Such quantum error-correcting codes, do,
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fortunately, exist and can be likely realized in practice. The first code, the Shor
code [22] encoded one logical qubit onto a subspace of 9 physical qubit, with the
surface code [25] later developed, allowing for quantum error correction with local
stabilizers.

A headline result from the field of quantum error correction is that of the thresh-
old theorem. For a quantum circuit of n qubits and p gates, there exists an error-
correcting code or concatenation thereof using

O(log(p/ϵ)cp) (1.16)

gates, assuming that p is below the threshold of a given code. That is, if the error
rate of the physical qubits on a device is sufficiently low, by applying subsequent
layers of error correction, errors can be corrected faster than they are introduced,
with the logical error suppressed exponentially in the number of layers of concate-
nation. Thus, error-corrected quantum computers that take advantage of both the
square root speed-up in Grover’s algorithm and the exponential speedup of Shor’s
are physically realizable, though perhaps at an unreasonable scale for the former
to come to fruition on the scale of human civilization. Current estimates are that
a fault-tolerant quantum computer will require 106 physical qubits for each logical
qubit encoded therein [26], which accounts for the difficulty of not only applying the
error-correcting codes but also that of applying magic state distillation 3.

1.4 Combinatorial Optimization

Combinatorial optimization problems are those of finding the best object from a
finite set of discrete objects. The goodness of an object is determined by an objective
function allocating a value to each element of the set of possible objects. In the
notation of this thesis, the discrete objects are labeled by the binary strings z ∈
{0, 1}n with the associated objective function, or solution quality C(z), with

C : {0, 1}n → R. (1.17)

Combinatorial optimization problems are ubiquitous in the world from the problem
of nurse scheduling, optimizing logistics networks, or finding configurations of inputs
in software that lead to bugs.

1.4.1 Decision & Extremization problems

Decision problems are problems with yes or no answers. That is, for a decision
problem taking input z, one can imagine the objective function C(z) to return binary
values 0 or 1, with 0 corresponding to a non-satisfying string and 1 corresponding to
a satisfying string. For example, such a problem might be that of primality testing,
in which one determines whether an integer is divisible by a number that is not
itself or 1. In such a case, one considers an objective function C(z) to return 0
if a number a has nontrivial factors and 1 otherwise. Other examples of decision

3Quantum error-correcting codes such as the surface code can typically apply a restricted set
of gates [27]—Clifford gates in the case of the surface code—to which a non-Clifford gate must be
added in order to attain universality. Magic state distillation is the process of injecting T -gates
into the computation in a fault-tolerant manner.
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Figure 1.2: Problems can be grouped by their complexity class. Problems in P can
be solved efficiently on a Turing machine. Problems in NP can be solved efficiently
by a nondeterministic Turing machine. The complexity class BQP is the class of
problems that can be solved efficiently with bounded error on a quantum computer,
which, importantly, is larger than P. NP-Complete problems are those to which
any other problem in NP can be reduced, with NP-Hard problems being those
that are at least as hard as any problem in NP.

problems include those of determining whether a formula is satisfiable or whether a
graph has certain properties, for example, whether a Hamiltonian cycle is possible
in a given graph.

Decision problems have historically been important to computer scientists be-
cause they provide a precise and simple definition of certain problems, with definite
true or false answers. The framing of problems as decision problems allows for sets
of problems to be collected in complexity classes according to how difficult they are
to solve and the resources in time and space one needs to do so. Some examples of
these classes are:

P: The class of decision problems that can be solved in time scaling at most poly-
nomially with the size of the problem to be solved. For example, finding the
shortest path between two nodes in a graph is in P, as Dijkstra’s algorithm
can provide a path in time scaling at most as the square of the number of
nodes, which is polynomial in the size of the problem.

NP: The class of problems that can be solved by a non-deterministic Turing ma-
chine4 in polynomial time. Given a solution, a deterministic Turing machine5

can verify that this solution does or does not satisfy the problem in time

4A nondeterministic Turing machine is a model for a theoretical computer allowing for unlimited
parallelization, as is often the mental model for the mechanism by which quantum computers
outperform classical computers in popular understanding.

5A theoretical model of what constitutes a computer that is sufficiently general in its pro-
grammability.
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scaling at most polynomially. For example, factoring is in NP, since a nonde-
terministic Turing machine can simultaneously check all factors, with a Turing
machine able to check that a given individual number is a factor in polynomial
time.

NP-Hard: These are problems that are at least as hard as any problem in NP.
These include totally intractable problems such as the halting problem6.

NP-Complete: Problems that are bothNP andNP-Hard. These are the hardest
problems solvable by nondeterministic Turing machines and exist on the inter-
face betweenNP andNP-Hard. NP-Complete problems have the property
of being reducible to other NP complete problems, that is, by increasing the
size of the problem by an amount scaling only polynomially in the size of the
problem to be solved, one can reduce it to another NP-Complete problem.
The archetypal example of an NP-Complete problem is 3-sat, proven by
Cook [28], to which Karp then famously reduced 21 problems [29].

Typically more difficult than decision problems, minimization or maximization
problems are those of finding a string that extremizes an objective function C, given
that it takes real values on some range. Such problems can readily be converted to
decision problems, by asking the question:

Does there exist a string with a value greater/less than x?

and asking such a question for a number of different values. Therefore, the same
complexity classes can be applied to extremization versions of problems, with some
popular examples of extremization problems being the knapsack problem, the trav-
eling salesperson problem, and the number partitioning problem, all of which are
examples of NP complete problems.

1.4.2 Approximate Optimization

While NP-Complete problems necessarily require exponentially growing resources
on a classical computer7—to determine whether they are satisfiable or not, in the
case of decision problems, or to find the extremizing input in the case of extremiza-
tion problems—the time required to find an approximate solution is not so severely
constrained. For example, the Knapsack problem—that of maximizing the total
value of a selected set of items of given value and weight, given that their individual
weights do not exceed some maximum capacity—can be approximated to multi-
plicative error ϵ time scaling as polynomially in ϵ, and, therefore, one can produce
an answer arbitrarily close to the optimal in polynomial time [30]. Typically, in
approximate optimization one aims to maximize the approximation ratio, that is,
the expected attained solution value divided by the expected optimum value of the
cost function.

6The halting problem is that of determining whether an algorithm will terminate or not. It was
notably proven undecidable by Turing, and therefore, cannot be solved on a deterministic, nor a
non-deterministic, Turing machine.

7Assuming P ̸= NP, which is a typical and generally uncontroversial assumption in the field of
computer science.
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1.5 Problem Types

Problem types in combinatorial optimization will typically fall into two categories,
constrained and unconstrained problems. Constrained problems consist of two sets
of states, a feasible subspace, and a non-feasible subspace. Where the fact that there
is a non-feasible subspace for a problem is usually the consequence of ensuring that
the can be expressed conveniently at the cost of not all states being feasible. Con-
straints can be considered in two main ways, firstly, by ensuring that an algorithm
exploring the space of possible solutions only makes moves between feasible states,
or, more crudely, by allocating large penalties to states that do not satisfy con-
straints. In this thesis, we consider unconstrained problems, though, some results
could be generalized to the constrained setting.

Maximum cut max-cut problems are defined by a graph G with vertices and
edges, V,E. The decision version of the problem is to determine whether there exists
a bisection of the graph splitting the vertices into two sets with a given number l of
edges between two sets. This can be shown to be an NP-Complete problem.

For the maximization version of the problem, the objective function takes the
form

C(z) =
∑

(i,j)∈E(G)

zi ⊕ zj (1.18)

where zi is the ith bit in z, which describes a state, or partition, of the graph.
One can complicate this problem further by applying it to a weighted graph, with
each term acquiring a multiplicative factor wij. Notably, the Goemans-Williamson
algorithm [31] approximately solves max-cut instances, attaining an approximation
ratio of at least 0.878 times the optimal value.

k-Exclusive-OR k-xor problems generalize max-cut problems to hyper-graphs.
To do so, clauses cover k variables and evaluate the parity of the sum of such
variables. Therefore, the objective function can be written as:

C(z) =
∑

edge∈E(G)

⊕
i∈edge

zi (1.19)

in which the clauses are local to a greater number of variables and the notation
⊕

refers to the modulo 2 sum. In this case, the edges are taken from a hyper-graph G
with hyper-edges containing k variables.

k-Satisfiability sat problems are typically those formed with Boolean formulas
involving variables and their negations. k-sat problems consist of or clauses be-
tween k different variables. So, a clause may take the form:

Ca(z) = ¬zi1 ∨ zi2 ∨ . . . ∨ zik−1
∨ ¬zik (1.20)

Where ¬ applies a not gate to the binary variable zi. In the case of the xor version,
the or is replaced by the exclusive or. For the decision version of the problem,
asking whether every clause is satisfiable, k-sat problems are NP-Complete for
k > 2, with the k = 2 case being efficiently decided in polynomial time. For the xor
version, the decision problem is in P. When considering the maximization version,
the k = 2 version alongside the xor version becomes NP-Hard.
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Sherrington-Kirkpatrick & Mixed-Spin Glasses While the aforementioned
problems gain their complexity from the presence or non-presence of possible clauses,
Sherrington-Kirkpatrick mixed-spin problems have every possible clause present,
with, however, instance-to-instance variation entering in the form of Gaussian dis-
tributed weights. In lay terms, the Sherrington-Kirkpatrick problem is that of split-
ting a group of n people into two groups which maximize the preferences of all n
people, given each pair, or k-sized group of people has a given allocated preference
value, which could be any real number. The question of whether all clauses can be
satisfiable is, given the number of clauses, for modest problem sizes, certain to be
negative. That is, if the locality of the clauses, k, is greater than the trivial case of
k = 1. The clauses are of the xor, parity type, without the possibility for negated
variables. As such, clauses take the form:

Ca(z) = ga
⊕
i∈Sa

zi (1.21)

with ga ∼ N (µ, σ2), being typically Gaussian distributed with given parameters.
This would, in a physics context, usually be re-centered and rescaled with no funda-
mental change to the important properties of the problem, to correspond with the
energies of fully connected spin glasses.

1.5.1 Random Graph Types

When sampling from randomly generated problem types, one has options as to
how such graphs are generated. Problems such as max-cut have simple graph
interpretations, with edges directly associating with clauses in the problem. sat
problems, on the other hand, have more complexity in that there are 2k clause types
for each possible hyperedge, due to the possibility for negated variables.

Erdős Rényi Each possibly occurring clause is selected with a filling factor, or
probability, f . For a problem-size-independent phenomenon, often such a filling
factor is selected such that the ratio of clauses to variables remains constant.

Regular Graphs Ideally, each possible k-regular graph—graphs where each ver-
tex is connected to exactly k neighbors—is selected with equal probability. Such
unbiased selection is nontrivial for large graph sizes.

Computational complexity classes typically refer to worst-case complexity, so not
all random graphs for a specific problem type will yield computationally hard in-
stances. For many problems, such as k-sat and others, there exists a deep connection
to the thermodynamic concept of a phase transition. When considering random sat
instances, there exists a critical ratio of clauses to variables at which the probabil-
ity that a sat instance is satisfiable rapidly drops from unity to zero. Such phase
transitions have the quality of becoming sharper with increasing problem size, and
discontinuous in the limit of large problem sizes, as one finds in the thermodynamic
theory of phase transitions. Knowledge of where such transitions lie for a given
class of problems is instructive as it allows for a method to generate ensembles of
problems that are not decidable in polynomial time, with the implication that such
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parameters also result in hard maximization variants. Such hard problems are good
targets for the use of heuristic algorithms.

1.6 Classical Algorithms for Combinatorial Opti-

mization

Combinatorial optimization as previously introduced is an area of study within the
field of optimization that deals with problems involving discrete choices. These prob-
lems often arise in a variety of practical contexts, such as scheduling, routing, and
resource allocation. In this section, we will briefly introduce some of the common
methods used by classical computers to solve such problems, including exact algo-
rithms, approximation algorithms, and heuristics. We will also discuss the strengths
and limitations of these approaches, and, later, explore the potential for quantum
computers to improve upon these methods. By understanding the various ways in
which classical computers can solve combinatorial optimization problems, we can
gain insight into the potential benefits and challenges of using quantum computers
for optimization in the future.

1.6.1 Hill Climbing

Hill climbing is the simplest heuristic method one could employ to find a solution
to a combinatorial optimization problem. Such an algorithm on starts at a string
z0 and evaluates the objective function for neighboring states. Selecting the highest
value neighbor, one repeats this process until a maximum is found (No neighbors
are better than the currently occupied state). This strategy fails for problems in
which local maxima are present, with there being no mechanism by which one may
avoid such features.

1.6.2 Simulated Annealing

Simulated Annealing is a stochastic metaheuristic algorithm inspired by the behavior
of physical systems undergoing cooling. Namely, crystal structures such as glasses
and metals, or even chocolate, when cooled, find different crystalline structures
depending on the rate of cooling. Fast rates of cooling result in coarse-grained
crystalline structure without long-range order, with slow annealed crystals exhibiting
long-range order and a more global minimum of free energy.

To simulate this process, and to find a good solution to an extremization problem,
one takes a problem characterized by an objective function C(z) and a start point
z0, alongside an acceptance probability, normally taken to be:

P(acceptance) = 1− e
C(znew)−C(z)

T . (1.22)

The algorithm takes its active position z, initially chosen to be z0, and randomly
chooses a neighbor (typically flipping one bit in z at random). The value of the
objective function is then evaluated for this new value. If the new objective function
value is lower than that of the active position, the new position is taken as the
active position and the process repeats. If the new position is worse than the active
position, the new position is taken only with probability P(acceptance). The key
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idea here is that the temperature T should be started high and gradually reduced.
As such, early in the annealing process, more global exploration of the landscape
takes place as transitions increasing the objective function are allowed to occur.
As the temperature decreases to near zero, the algorithm transitions to local hill
climbing.

1.6.3 Backtracking

Backtracking is a popular algorithm that offers a more effective approach than the
brute-force method of exhaustively checking every solution to a problem until a sat-
isfactory answer is found. This technique is particularly useful in decision problems
that consist of a series of clauses that must all be satisfied. The algorithm begins by
randomly assigning a value to the first variable, and then checks if all clauses are still
feasible. If they are, it assigns a value to the next variable and repeats the process.
This leads to a depth-first exploration of the tree of potential allocations. This is
more efficient than brute-force search because when a partial allocation of values to
variables is determined to be infeasible, multiple potential solutions are automati-
cally eliminated from the space of possible solutions. Backtracking algorithms are
the foundation of most modern sat solvers, such as DPLL [32] and conflict-driven
clause learning [33].

1.7 Quantum Algorithms for Combinatorial

Optimization and Search

In 2014, it was proposed that discrete, gate-based quantum computers might be good
at solving combinatorial optimization problems, with the help of classical optimiz-
ers [34]. At this time, it was already known that quantum annealers might provide
efficient solutions for optimization problems, by encoding problems into the system
Hamiltonian, but, demonstrating that this technique can provide significant speed-
ups over classical techniques has proven difficult. Gate-based quantum computers
are expected to have the advantage of quantum error correction allowing levels of
noise to be reduced arbitrarily in future machines, whereas it is likely that creating
fault-tolerant annealing machines is much more difficult. Thus, one might expect
that gate-based algorithms might provide a clearer path to usefulness as quantum
systems scale to large sizes and with the assistance of error correction, detection, or
mitigation techniques.

1.7.1 Grover’s Algorithm

Grover’s algorithm [20] is an algorithm for searching an unstructured database on
a quantum computer for a marked element denoted z∗. In its original formulation,
the algorithm takes access to an oracle to whom the question may be asked,

Is element x a marked element?

To which the oracle responds with a yes or no answer. Assuming that there are N
possible elements of which one may be marked, a classical computer operating on
classical information must query the oracle N/2 times in the average case before they
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receive an affirmative answer. This increases to N − 1 times in the worst possible
case, in which every element with the exception of the marked element is verified
not to be so.

Quantum computers dealing in quantum information leverage the possibility of
querying the oracle with a quantum superposition state of possible elements. That
is, the oracle is represented by a procedure that applies an operator UG = |z⟩ →
(−1)f(z) |z⟩ to an array of qubits in a state describing the selected element. Where,
the function f is determined by:

f(z) =

{
1, if z = z∗

0, otherwise.
(1.23)

and so

ÛOracle = I− 2 |z∗⟩ ⟨z∗| (1.24)

which is a reflection about the marked state |z∗⟩. Grover’s algorithm also makes
use of the Grover diffusion operator. This operator, reflecting the state about the
initial, superposition state over all possible computational basis states,

|Initial⟩ =
∑
z

1√
N

|z⟩ = |+⟩⊗n , (1.25)

is given by:

ÛD = I− 2 |+⟩⊗n ⟨+|⊗n . (1.26)

Repeated application of these operators induces an oscillation between an initial
state, which is a superposition state over all possible elements

|Initial⟩ =
∑
z

1√
N

|z⟩ = |+⟩⊗n (1.27)

and a state which has high overlap with the target state |z∗⟩, encoding the solu-
tion to the search problem. With the repeated application of these operators, the
overlap of the resulting state increases linearly with the number of applications.
Since the probability of measuring the marked state is proportional to the square
of this overlap ⟨ψ|z∗⟩, this probability, therefore, initially increases as the square
of the number of steps, leading to an asymptotic time complexity of O(

√
N) re-

quired queries, rather than O(N) queries for the classical case of manually checking
individual elements. Grover’s algorithm, while asymptotically optimal, can also be
improved with the use of classical optimizers [35] which is an area of study especially
relevant to Chapter 3.

Realizations of Grover Oracles

While described as an algorithm for searching an unstructured database, such a
database should be queryable by a quantum computer, meaning such an algorithm
is unlikely to be useful for a naive database search, however, there are less obvious
uses of Grover’s algorithm for which a useful implementation could be derived.
Potential examples of Grover oracles that could yield useful implementations could
be:
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• Cryptographic hash functions—Hash functions such as SHA-3 [36] are designed
to be one-way. It is easy to compute the hash of a message, but hard to reverse
engineer a hash to find a corresponding message—a collision. By applying a
hash function to a quantum array, and applying a phase shift if the array takes
some value, one can realize a Grover oracle for this context. This allows one to
find collisions in hash functions asymptotically faster than possible than with
random guessing on a classical computer, since, by design, such functions do
not have an easily exploitable structure.

• Threshold functions for combinatorial optimization problems—One can eval-
uate whether a given state of a quantum computer has an objective function
exceeding or lesser than some threshold and apply a π phase on this condition,
thus producing a Grover oracle-type operation.

• Decision problems—One can realize a Grover oracle that applies a phase on
the condition that all clauses in a combinatorial optimization problem are sat-
isfiable. This is a specific example of a threshold function set to the maximum
value.

1.7.2 Adiabatic Quantum Computing

The Adiabatic theorem, coined in 1928 by Max Born and Vladimir Fock [37], is
stated as follows:

A physical system remains in its instantaneous eigenstate if a given per-
turbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian spectrum.

70 years later, it was noted [23] that this could be exploited to perform quantum
computations. By initializing a system in the ground state of some known Hamil-
tonian one slowly turns off, while turning on a Hamiltonian for which the ground
state encodes potential solutions to a combinatorial optimization problem, one can
measure this ground state and read out a solution. The caveat here is that the in-
terpolation between the initial and final Hamiltonian must be performed sufficiently
slowly to suppress leakage of probability amplitude from the instantaneous ground
state. That is, for time evolution in which the minimum gap between the instanta-
neous ground state and the first excited state takes value ∆E, the time taken for
the adiabatic algorithm to find a ground state of the problem Hamiltonian scales as:

T = O

(
1

∆E2

)
. (1.28)

This means that for increasingly large problem sizes, the time taken by an adiabatic
quantum computer to find a ground state scales exponentially in the number of
qubits if typical problems have a minimum gap that scale as such. Therefore, the
coherence time required for a device to solve useful problems becomes extremely
large, and error correction would certainly be required. As of yet, a practical scheme
for error-correcting the adiabatic algorithm has not been presented, with prospects
for error-correcting schemes that can preserve the usefulness of square-root speedups
generally considered to be poor.
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Adiabatic quantum computing and Grover’s algorithm, applied to the search
problem, represent an (asymptotically) optimal way of searching and solving the
Grover problem [38]. The Grover problem, however, by design, does not have any
exploitable structure. But what of structured problems8? Post-Grover algorithms
for searching for needles in haystacks focus on solving problems that are messier.
Rather than simply marking a set of correct answers, optimization problems have
a number associated with each possible element, leading to significantly increased
complexity. Such problems can be harder, in that even if one finds the element with
optimal cost, one might not know that this is the best solution without exhaustively
checking every other possible solution. Problems of this type might be totally un-
structured, in the case of random cost models, studied in the context of the quantum
approximate optimization algorithm in Chapters 3 and 4, or highly structured, in
the case of max-cut, and sat and SK problems studied throughout the thesis.
These problems are structured, that is, if you take two similar states—states that
share common bits—such states are likely to have similar values for the problem’s
objective function. There are now several candidates for quantum algorithms that
could exploit such structured combinatorial problems. These are summarized in the
following.

1.7.3 Quantum Random Walks

Developed as an alternative approach to quantum computing in the mid-2000s,
quantum random walks saw attention due to the success of classical random algo-
rithms which perform well on problems such as high-k k-sat [39] and computing
matrix permanents [40]. Quantum walks were eventually found to be a separate
method of expressing a universal model [41] of quantum computation and are a
quantum analog of classical random walks, in which the addition of quantum me-
chanical phase allows for more complex dynamics than the Markovian dynamics one
finds in the classical context. To summarize the field, a quantum random walker, by
means of quantum interference, travels further from an initial position than a classi-
cal walker by means of steps that are discrete or continuous. Childs et. al. [42] found
that a problem of traversing a specifically designed graph, accessed by the quantum
algorithm via oracle queries, can be solved exponentially faster by a continuous-
time quantum random walk than by any possible classical walker. Using a search
oracle to obtain square-root speedups in such problems was also shown possible in
the quantum random walk context [43]. The algorithms of quantum random walks,
adiabatic quantum computing, Grover’s algorithm, and the quantum approximate
optimization algorithm, are all examples of algorithms taking advantage of a prob-
lem and driver Hamiltonian, and using some schedule to apply such Hamiltonians
to the aim, to find good solutions to a problem. The thing that differs in the al-
gorithms, is the choice of schedule used, whether continuous or discrete, and, the
choice of driver and problem.

8The question of what structure is in this context is explored in Chapter 4, and ultimately
means that taking some move on some small move on a relevant metric on the space of possible
states results in a correspondingly small change in energy or combinatorial optimization objective
function.
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1.8 Realizing Qubits with Superconductors

There are many candidates for the realization of qubits. The most viable options
for this are currently those of superconducting circuits, trapped ions, and quantum
computing with photon-based qubits. Each of such options has advantages and
disadvantages. For example, all trapped ions or photons are indistinguishable from
other trapped ions or photons of the same species, bypassing any issue of fabrication
defects that plague the design of superconducting qubits, which must be precisely
etched or deposited onto a surface with lithographic techniques. Trapped ions and
photonic implementations have their own issues, with the challenges of keeping
individual ions trapped alongside others, to be addressed by lasers, or the challenge
of inducing interactions between photons, which at low energies, is an uncommon
phenomenon.

Non-linearity is a required property for optical quantum computers and super-
conducting quantum computers, though, for different reasons9. When quantum
computing with photons—which do not readily interact with other photons—one
requires a medium facilitating such interactions. An option for this is the use of
Kerr media, in which the index of refraction is not independent of the power of
incident light or the number of photons transiting. In linear optical quantum com-
puting, such non-linearity is attained via the post-selection to generate entangled
pairs of photons, which can then be used in a measurement-based quantum comput-
ing scheme. In superconducting quantum computing devices, non-linear elements
are needed in order to ensure that the ground and first excited states of the system
are addressable independently from an upper spectrum of states. Without non-
linear elements, one simply derives the physics of a quadratic harmonic oscillator in
which energy levels are spaced equally, with external influences acting on all tran-
sitions between adjacent states. In superconducting qubits, the non-linear element
available is the Josephson Junction, for which the phenomenon of superconductivity
yields a nonlinear inductance.

1.8.1 The Josephson Junction

Josephson Junctions consist of two superconducting regions separated by a non-
superconducting insulating medium. Each superconducting region is described by a
wave function associated with the non-commuting phase and number observables.
The wave function on one side of such an insulator interacts with that of the other
side and for low energies tends to equalize the phase on either side. Differences in
the phase of such wave functions, therefore, incur an energetic cost. The current
flowing across a Josephson tunnel is predicted and measured to be

I = IC sinϕ (1.29)

where ϕ is the difference in phase of the two superconducting materials. IC is the
maximum current sustained without entering the normal phase of the superconduc-
tors. The voltage across the junction is given by:

V = Φ0∂tϕ (1.30)

9For trapped ions the Hamiltonian is already strongly non-harmonic, and therefore no extra
non-linear element is needed.
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Figure 1.3: (a) A circuit diagram for a DC-SQUID, with two Josephson junctions
arranged in a loop. SQUIDs act as Josephson junctions with tunable Josephson
energy. (b) A circuit diagram for an LC circuit.

with Φ0 = h
2e

is the superconducting flux quantum for cooper pairs of electrons.
Combined, these equations describe an energy-conserving circuit element storing
energy:

U = EJ cosϕ, (1.31)

where EJ = ICΦ0

2π
. Since the junction also bears resemblance to a capacitor, with

differing charge density on either side of the insulating junction, a capacitance CJ

is also associated with the circuit element with energy CJV
2 stored.

1.8.2 The SQUID

SQUIDs, or Superconducting QUantum Interference Devices are loops of supercon-
ducting material containing two Josephson junctions. A circuit diagram showing a
SQUID schematic can be seen in Figure 1.3a. If the current across a DC-SQUID is
I then the phases across the two junctions are matched such that the sum of the
Josephson currents equals I, so, one can write

I = IC sin(ϕ1) + IC sin(ϕ2). (1.32)

It is required that the phase of the macroscopic wave function satisfies the boundary
condition of its looped topology. As such the sum of the changes in phase at each
junction should be equal to the external flux-applied phase. The desired properties
of a Josephson junction can be engineered by varying the material used for the
junction, alongside the geometry of the junction. For example, the greater the
surface area of the junction, the greater the critical current, and conversely for the
thickness of the junction.

1.8.3 Deriving Hamiltonians from Circuit Diagrams

A standard method to determine the Hamiltonian of a superconducting device is to
write down the classical equations of motion of a circuit and associate such equa-
tions with a Lagrangian and therefore Hamiltonian. One can then apply canonical
quantization to obtain a quantum description. The energy stored in such a linear
inductor and capacitor can be written as:

EL =
L

2
I2, EC =

C

2
V 2. (1.33)
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The charge Q(t) across the capacitor and the flux threading the inductor Φ(t) can
be written as

Q(t) =

∫ t

−∞
I(t′) dt′, Φ(t) =

∫ t

−∞
V (t′) dt′ (1.34)

since the current through a linear inductor is proportional to the threaded flux via
the inductance, Φ = LI and Q = CV , one can combine the above equations to
write:

Φ(t) = LCΦ̈(t) (1.35)

This equation of motion can be associated with the Euler-Lagrange equation

∂L
∂Φ

− d

dt

∂L
∂Φ̇

= 0 (1.36)

for the Lagrangian

L(Φ, Φ̇) = CΦ̇2

2
− Φ2

2L
(1.37)

from which the Hamiltonian can be derived as

H = Φ̇
∂L
∂Φ̇

− L =
Q

2C
+

Φ2

2L
(1.38)

with the conjugate momentum

Q =
∂L
∂Φ̇

= CΦ̇. (1.39)

These canonical coordinates can be promoted to quantum observables with

Q→ Q̂, Φ → Φ̂ (1.40)

where the observables obey their commutation relations[
Φ̂, Q̂

]
= iℏ (1.41)

which implies that the observables are well described by a quantum mechanical
wavefunction. In the usual way, a quantum harmonic oscillator can be expressed as a
linear combination of ladder operators rather than its classical canonical coordinates.
As such one can write:

Φ̂ =

√
ℏZ
2
(â+ â†), Q̂ = i

√
ℏ
2Z

(â− â†) (1.42)

where Z =
√
L/C is the characteristic impedance of the LC oscillator with frequency

ω = 1/
√
LC.

1.8.4 Superconducting Qubit Varieties

There is a continuum of possible designs for superconducting qubits, each with draw-
backs and advantages, here we list the types that have seen the greatest attention
in the past two decades of development.
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Phase Qubits

A phase qubit is perhaps the simplest superconducting qubit one could produce,
consisting of simply a Josephson junction, biased by an applied current. The first
experiments demonstrating this qubit type occurred in 2002 [44], with a coherence
time of just 10 ns. A demonstration of coupled phase qubits followed in 2006 [45]
when various improvements to the design had been made. The phase qubit design
results in a tilted washboard potential with the two qubit states localized to a well
along this potential. Single qubit gates can be performed by DC and microwave
pulses of the applied bias current, with readout being particularly easy in this case.
Since in the case that the qubit is excited from the first excited state to a higher
state, the well no longer traps the phase and the device behaves as an open circuit,
with the associated appearance of a measurable voltage. The Hamiltonian can be
written as:

ĤPhase = ECQ̂
2 − EJ cos ϕ̂− Φ0

2π
Iϕ̂ (1.43)

where I is an applied bias current, from which the tilted washboard potential can
be observed in the phase observable ϕ̂. The associated circuit diagram can be seen
in Figure 1.4

Flux Qubits

Flux qubits [46, 47] are characterized by mesoscopic persistent currents. While the
simplest incarnation of a flux qubit can consist of just a single Josephson junction
and inductor, a radio frequency SQUID (rf-SQUID) qubit, flux qubits can also be
produced with any odd number of junctions. A popular sub-variant is that of a three-
junction qubit, in which splitting one junction to form a SQUID results in additional
tune-ability. Regardless of the components used, and the degrees of freedom by
which external flux may influence the Hamiltonian, all flux qubits are characterized
by double-well potential, which, away from the symmetric degeneracy point, has
ground and first excited states well-characterized by clockwise and anticlockwise
persistent currents. One of the two Junctions is fabricated with Josephson energy
greater than the other two. For flux qubits in which many junctions are utilized,
the name fluxonum [48] has been coined for inductively shunted versions that reduce
sensitivity to charge noise. The Hamiltonian for a one-junction flux qubit typically
depicted in Figure 1.4c takes the form:

HFlux = ECQ̂
2 + EL(ϕ̂+ ϕext)

2 − EJ cos
(
ϕ̂
)

(1.44)

where the constant EJ can be made to depend on an external control parameter with
the use of a SQUID in place of a Josephson junction. Control of the qubit is achieved
via the external flux parameter. Qubits can be operated at the degeneracy point,
for which the qubit’s energy gap becomes first-order insensitive to external magnetic
fields [49, 50] or in a de-tuned configuration, in which strong qubit-qubit inductive
interactions can be engineered, at the cost of a high exposure to environmental flux
noise10.

10This is a tradeoff made by the designers of the d-wave quantum annealers, who produce large
devices with high connectivity and qubit counts, but, have never published data on coherence times
for qubits therein.
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Figure 1.4: (a) A circuit diagram for a phase qubit, consisting simply of a current
source biasing a single Josephson Junction. (b) A circuit diagram for a charge or
transmon qubit, consisting of an island on which a number of charges can be trapped.
(c) A circuit design for a one-junction flux qubit, in which a double well potential
is formed in the phase variable of the qubit, resulting in ground and first excited
states corresponding to oppositely propagating persistent currents.

Charge & Transmon Qubits

Charge or Cooper pair box qubits and their descendants the transmon qubit are de-
signed such that their Hamiltonians lie close to those of the quantized LC circuits,
with non-quadratic perturbing terms from Josephson junctions allowing the interro-
gation of only the lowest lying two states [51]. First investigated in 1998 [52], charge
qubits presented an alternative design choice to the previously investigated flux
qubits, and, were thought to potentially have more precisely controllable properties.
Namely, it was expected that precise voltage control might be more easily facilitated
than precise flux control, which is subject to spurious magnetic field fluctuations.
The Hamiltonian takes the general form:

ĤCharge = EC(Q̂−Q0)
2 − EJ cos ϕ̂, (1.45)

with the control parameter entering in the form of the offset charge, Q0, or an ex-
ternally applied voltage. There also exists the possibility to promote the Josephson
junction to a SQUID, allowing an additional control parameter, resulting in a qubit
type known as a split cooper pair box. In their initial incarnation, charge qubits
carried a ratio of EJ/EC around unity. In this configuration, however, the devices
suffer from poor coherence times due to sensitivity to charge noise. To address this
sensitivity, the transmon qubit was developed. Transmon qubits use large capac-
itors to shunt the intrinsic capacitance of the Josephson junction, increasing the
ratio EJ/EC to values in excess of 50. Modern transmon designs use large X-shaped
designs, thereby known as xmons, to facilitate the design feature of extra capaci-
tance, while also offering a natural form factor for the tiling of qubits to facilitate
interactions. Transmons can achieve coherence times in the hundreds of microsec-
onds [53], due to their designs, and also other developments in relevant materials
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science, allowing for the rapid pace of system size increases. This has resulted in
systems producing the landmark result of quantum advantage [54].

1.8.5 Restriction to Qubit Basis

The qubits introduced here have an infinite number of energy levels that can be
occupied. Assuming that the qubit can be initialized in the ground or first excited
state and that operations that we apply to qubit do not result in an appreciable
transfer of population from the lowest two lying states to higher energy levels, one
can restrict the operators to their action on the two lowest-lying states. Ensuring
operations are restricted to the qubit subspace is achieved practically by applying the
tools of optimal control theory. The restriction of the Hamiltonian can be achieved
mathematically by projecting the infinite-dimensional Hamiltonian onto the qubit
basis so

Ĥ →
∑

i,j∈{0,1}2
|i⟩ ⟨i| Ĥ |j⟩ ⟨j| (1.46)

where |0⟩, |1⟩ are the ground and first excited states of the qubit. The single-qubit
Hamiltonian then becomes expressible in the desired basis as:

Ĥ =
a

2
Z +

b

2
X (1.47)

which is readily diagonalizable to produce eigenenergies and the operating frequency
of the qubit. In the case of transmon qubits, the computational basis is taken to be
that of the qubit eigenbasis, so a = ω12, b = 0, where ω12 is the qubit frequency. For
Flux qubits, the eigenbasis is taken to be that of the persistent current basis, and
as such both a splitting a and a tunneling b term are present in the computational
basis. For a Hamiltonian with both a and b present, the qubit frequency in its
eigenbasis is given by,

ω12 =
√
a2 + b2 (1.48)

which can be derived via the diagonalization of the single-qubit Hamiltonian.

1.8.6 Interactions Between Qubits

To generate interactions between physical qubits, one should couple the degrees of
freedom of individual systems together with Hamiltonian terms. Depending on the
form of physical coupling and qubit type used, the coupling terms take different
forms when expressed in the single-qubit eigenbasis. For a more complete reference,
the author refers the reader to [55].

Capacitive coupling can be achieved by placing a capacitor between two qubits,
either directly, or indirectly in the case that one requires a tunable coupler. Qubit-
qubit interactions via capacitors take the form:

Hint = C12V1V2 (1.49)

where C12 is the capacitance of the capacitor linking qubits 1 and 2. If the coupling
capacitor has a capacitance much lower than the qubit capacitance, so as to not
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affect the properties of the qubit, the voltages can be expressed as:

Vi →
Q̂i

Ci
(1.50)

as the classical voltage-charge relation would suggest. This coupling gives rise to a
term of the form:

Ĥ12 =
Q̂1Q̂2Cg
C1C2

(1.51)

In the case of the transmon Hamiltonian, one has n̂ ∝ â− â† so, the term takes the
form proportional to:

(â1 − â†1)(â2 − â†2) → X1X2 (1.52)

when projected into the low energy subspace spanned by the qubit, which is possible
when the anharmonicity of the qubit is such that the upper levels remain irrelevant
to the dynamics. This coupling is described as transverse since the coupling terms
have no diagonal elements in the qubit basis.

Inductive coupling Similarly, coupling via electromagnetic inductance can be
achieved by bringing parts of a qubit into the vicinity of another, such that current
in one induces current in another via Lenz’s law. The interaction term from such a
design takes the form:

H12 =M12I1I2 (1.53)

where I1, I2 are the currents flowing across the qubit inductors andM12 is the mutual
inductance between the two qubits. For sufficiently small inductive coupling, one
produces a coupling term well approximated by

M12I1I2 →M12I1cI2c sin ϕ̂1 sin ϕ̂2. (1.54)

away from this limit of low coupling, considerations must be made to correct for the
loading effect, in which effective inductances are shifted from their isolated values in
the presence of others. To make this correction, one inverts an inductance matrix,
which is a procedure followed, for a very symmetric case, in Chapter 6.

Inductively coupled flux qubits, assuming the barrier between well is sufficiently
large such that the ground and first excited state are well described by superpositions
of phase-localized persistent current states, yield transverse couplings. This means,
that, the interaction takes the form with

ϕ̂1 → Z1, ϕ̂2 → Z2 (1.55)

and so the flux qubit Hamiltonian takes the form

Ĥ =
2∑
i=1

a

2
Xi +

b

2
Zi + gZ1Z2 (1.56)

in the persistent current basis. With a sufficiently high inter-well barrier, and, a
non-zero difference in barrier height, the flux qubit Hamiltonian becomes close to
diagonal in the persistent current basis.
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The Quantum Approximate
Optimization Algorithm

In this chapter, the Quantum Approximate Optimization Algorithm (QAOA), along-
side the existing relevant literature, is introduced, setting the scene for the work pre-
sented in this thesis. QAOA is a gate-based variational quantum algorithm, designed
for use on near-term intermediate-scale quantum computers, to solve problems in
combinatorial optimization. It is a member of a class of algorithms, that if quantum
computers are to be useful before the large cost of quantum error correction is re-
quired, might be capable of maximally exploiting such usefulness to solve problems
for which classical computers suffer poorer asymptotic scaling than possible on a
quantum computer.

QAOA was introduced by Farhi et. al. [34] in 2014 as an adaptation of the adia-
batic model of quantum computing to contemporary, gate-based devices. As in sim-
ilar quantum algorithms, QAOA consists of a combinatorial optimization problem,
entering into the algorithm as a phase separation operator, alongside a mixing oper-
ator inducing transitions between states. Unique to QAOA, is the schedule in which
these two Hamiltonians are applied, with QAOA being analogous to a bang-bang
control version of quantum annealing or quantum walk-based algorithms. Shortly
after its discovery, Farhi et. al. found that QAOA provided greater approximation
ratios than the previously best-known classical algorithm, on the specific problem
type of max-e-3-lin-2 [56]. Following this result, a quantum-inspired classical al-
gorithm [57] was discovered, finding greater approximation ratios for the problem
in question. As is the case for similar algorithms such as adiabatic quantum com-
puting and the quantum random walk algorithms, it was demonstrated by Jiang
et al. [58] that QAOA can recover the square-root scaling of Grover’s search algo-
rithm, replicating Grover’s speed-up without the need for Grover’s mixing operator.
Hadfield et al. discovered that QAOA driving operators can be modified such that
a wide variety of problems can be solved without resorting to high-order penalty
terms usually considered in an annealing or adiabatic-based approach [59], this is is
a feature, enabled by the gate-based nature of QAOA, since continuous-time algo-
rithms face an inability to compile operations from multiple gates. QAOA can be
shown to be a universal context for quantum computation [60] in that angles can
be found that allow any diagonal two-qubit unitary to be generated. That is, given
a well-populated problem Hamiltonian with non-rationally-related pre-factors, it is
possible for any general quantum computation to theoretically be performed.
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In this section, we break QAOA up into parts and introduce these individually.
We then consider some of the existing research in the field and the open questions
that still exist.

2.1 Initial State

There are three constituent parts of QAOA. First, there is the initial state of the
quantum register used in the algorithm. Typically, as in Grover’s algorithm or
adiabatic quantum computing, a quantum register is initialized to an unbiased mix
of all possible basis states, given by:

|Initial⟩ = H⊗n |0⟩⊗n = |+⟩⊗n =
1√
2n

2n−1∑
z=0

|z⟩ . (2.1)

Where H is the usual Hadamard gate. While not explored in this thesis, alternative
starting states could be utilized in which only states that satisfy hard constraints are
present [59]. In this case, one could initialize the quantum register in some uniform
superposition over a set of hard constraint-satisfying states. If such states S satisfy
a hard constraint, such an initial state could take the form:

|Initial⟩ = 1√
|S|
∑
z∈S

|z⟩ . (2.2)

Strategies encoding hard constraints are often pursued in the context of adiabatic
quantum computing, for example, the LHZ scheme in which a plaquette system
is used to spread logical qubits over multiple physical qubits, mapping two-body
interactions to single-qubit terms [61]. Such strategies can also be employed when
variables in problems are encoded as unary rather than binary values. Doing so can
be advantageous as it can simplify interactions, at the cost of introducing non-valid
states which need to be discouraged with penalty terms.

2.2 The Problem Hamiltonian

A second component is that of the phase separation operator. This is an operatorized
version of the problem objective function, applying a phase to each computational
basis state proportional to its cost as defined by the problem objective function.
The phase separation operator takes the form:

ÛP(γ) = eiγĤP (2.3)

and where the problem Hamiltonian ĤP is such that

ĤP =
2n−1∑
z=0

C(z) |z⟩ ⟨z| , (2.4)

where C(z) is specified by a combinatorial optimization problem’s objective function
as introduced in Section 1.4. In terms of Z-based interactions on qubits, a generic
cost function C(z) can be decomposed via a Fourier transform as:

ĤP =
2n−1∑
k=0

g(k)Zk1Zk2 . . . Zkn (2.5)
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where ki is the ith bit of the binary representation of k, which indexes a possible
Z-based interaction. Typical problems for QAOA should be such that g is sparse,
being expressible with only a number of non-zero elements growing polynomially
in the number of qubits. As such, compilation to near-term quantum computers
should allow for QAOA state preparation in such a way that preserves Grover-style
square-root speedups. The descriptions of a problem given by g(k) and C(z) are
related via an n-dimensional binary-variable Fourier transform, otherwise known as
the Walsh-Hadamard transform [62]. This transformation can be succinctly written
as:

C⃗ =
√
2
n
H⊗ng⃗ (2.6)

for vectorized versions of g and C. Such a decomposition can be useful in the
simulation of small circuits for QAOA and is further discussed in Appendix A.

2.3 The Driver Hamiltonian

Finally, the QAOA circuit makes use of a driver, or mixing operator, given by:

ÛD = eiβĤD . (2.7)

ĤD typically consists of single-qubit-X operators and can then be written as

ĤD =
n−1∑
i=0

Xi (2.8)

but can be extended to a wider class of operators in the interests of improving
performance or keeping the state of the quantum computer inside a viable subspace
of a problem. In this thesis, for example, we consider the extension of this operator
to the specific case of the full-weight Grover driver, and doing so find analytical
results for QAOA performance at infinite size.

Ultimately, the choice of driver in QAOA is arbitrary. In theory, the criteria for
a good driver, are that it does not commute with a problem Hamiltonian, therefore
generating non-trivial dynamics. While many potential options could drive transi-
tions between computational basis states when alternated with a problem Hamilto-
nian, a stronger condition for a driver being good is that the driver exploits structure
in the problem to which it is applied. In the context of adiabatic quantum comput-
ing, the question of exploiting problem structure is clearer than in the context of
QAOA. It is well known that the annealing time needs to be proportional to the
minimum gap between the ground and the first excited state. Choice of the driver
can affect this gap, with existing works considering the addition of specifically tuned
high-order terms to increase this minimal gap [63]. QAOA, on the other hand, does
not depend so specifically on one particular parameter, though work in Chapters 3
and 4 work towards elucidating the impact of driver choice on the problem structure
that is resolved by a given driver.

Work in this thesis concerns the standardX-driver used in QAOA and the Grover
driver seen in Chapter 3, and, also, an additional line mixing operator in Chapter
4. One could also consider some range of drivers of increasing weight interpolating
between these two extremes, but, preliminary numerical tests, have demonstrated
that for reasons of poor synergy, or a difficult-to-optimize expected value landscape,
such intermediate weighted drivers yield poor results on the problems tested.
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2.4 The Algorithm

The QAOA ansatz state produced by the algorithm can be written as:∣∣∣β⃗, γ⃗〉 =

p∏
p′=1

eiβp′ĤDeiγp′ĤP |+⟩⊗n , (2.9)

which can be efficiently prepared on a quantum computer given the driver and
problem contain a polynomial number of terms, and, from which the resulting mea-
surement outcome probability distribution can be sampled. Such a probability dis-
tribution is hypothesized not to be possible to sample from using resources scaling
polynomially in the number of qubits on a classical computer. So, for sufficiently
large instances, it is possible that QAOA can provide a method of solving com-
binatorial optimization problems that is intractable to simulate classically. The
performance of a set of QAOA angles can be measured by the expectation value of
the problem Hamiltonian under the QAOA state, given by:

⟨ĤP⟩γ⃗,β⃗ =
〈
β⃗, γ⃗

∣∣∣ ĤP

∣∣∣β⃗, γ⃗〉 . (2.10)

Alternatively, and used in some works, but experimentally inaccessible on a real
device implementation of QAOA would be the probability of measuring the best
possible solution to a problem. Then, an objective function that could be considered
would be described by: ∑

z∈{z∗}

∣∣∣〈z∗∣∣∣γ⃗, β⃗〉∣∣∣2 (2.11)

and by optimizing this one might obtain angles that more efficiently find the best
possible solution to a combinatorial optimization problem. Such an objective func-
tion is considered by Akshay et al. [64] in work in which it is demonstrated that
minimum circuit depths are required depending on problem characteristics.

2.5 Strategies for Finding Optimal Parameters

The choice of domain for the parameters γ⃗ and β⃗ for the two QAOA operators is
often arbitrary but is typically taken such that

γ⃗ ∈ [0, 2π]p, β⃗ ∈ [0, π]p. (2.12)

This choice was used in the literature mainly due to the initial incarnation of QAOA
focusing exclusively on solutions to max-cut problems utilizing single-qubit-X
drivers. For this context, the aforementioned range of angles produces the maxi-
mum span of possible operators, since the problem and driver operators are periodic
outside these respective ranges. For problems that do not exhibit this periodicity,
one might consider the use of a greater range of potential values. In the case of
the work in Chapter 3, for example, the range of values for producing unique op-
erators are not constrained, with γ⃗ ∈ Rp. Though there are strong arguments that
values of these parameters optimizing the QAOA expectation value should be small
since for large values of γ, problem Hamiltonians become unstructured and resemble
operators simply applying random phases to each possible state.
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Figure 2.1: A typical QAOA state preparation circuit. A problem and driver Hamil-
tonian are alternated p times, applied to the |+⟩n state, followed by measurement
on all qubits.

2.5.1 Optimizers

There are numerous strategies for optimizing the high-dimensional expected output
value of the QAOA circuit. The choice of optimizer depends, also, on whether
one optimizes a noise-free, simulated version of QAOA, or whether one optimizes
a noisy estimation of the objective function. In general, there are two choices one
can make in picking an optimizer for QAOA. The first, the use of global optimizers,
tries to explore the full search space, with, of course, the associated long runtime.
Attempting to globally optimize a QAOA instance may, in some cases, itself, be an
NP-Hard problem [65], so the use of well-motivated ansatz states and strategies is
important for QAOA to form a viable approach.

Early algorithms discovered for extremizing continuous functions include the
Newton-Raphson method [66] in which the local gradient is calculated and updates
made assuming the cost function is linear. The Newton-Raphson method requires
that one calculates the inverse of the Hessian of the objective function (The matrix
second derivative), which is expensive to compute, or impossible to compute exactly
for an unknown black box objective function. Therefore, methods to approximate
such quantities based on a limited number of observations of the objective function
are necessary and form the basis for quasi-Newton methods. Work has been carried
out investigating the best practice for the use of optimizers for NISQ algorithms [67,
68] and some of the best-known optimizers are presented here.

Nelder-Mead

Perhaps the most widely used method for solving an unconstrained optimization
problem [69, 70]. This downhill simplex method uses a simplex—essentially a gen-
eralization of a triangle—of d + 1 points, where d is the dimension of the search
space, in the QAOA case, 2p. The algorithm progresses by evaluating the objective
function for each point in the simplex and replacing the worst point with a new
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Figure 2.2: The optimization process followed in QAOA in the case where an effi-
cient model of the expectation value is or is not available. Initial parameters are
chosen, then the expected value thereof is calculated either with a CPU or via a
quantum processing unit. A classical optimizer loop is followed until a sufficiently
good solution is found. In the case where an efficient model is used, fine-tuning to
account for instance-model differences can be performed on the QPU, starting from
the CPU-pre-trained parameters.

point derived through reflection, expansion, or contraction along the direction of
the center of mass of the other points.

The algorithm works well for low-dimensional optimization problems, such as
QAOA with a small number of qubits or low circuit depth. It has historically
enjoyed much use due to its lightweight properties—relatively little must be stored
in memory and no gradients must be calculated—but fails to perform well on high-
dimensional data, giving the algorithm poor performance on high-depth QAOA. On
noisy data, as would be the case for QAOA in the presence of noise, the algorithm’s
performance further deteriorates. Where the derivative can be computed, other
algorithms can outperform Nielder-Mead. For use in QAOA, one should use Nelder-
Mead only in the case of p = 1 or other low-depth settings. For larger depths the
method is inappropriate.

Cobyla

Constrained Optimization BY Linear Approximation (COBYLA) [71] is a derivative-
free optimization algorithm that is used to solve constrained optimization problems.
The algorithm works by approximating the objective function, and constraints,
though in the case of QAOA there typically would not be constraints, as linear.

COBYLA operates via iterative refinement of the original problem using linear
programming problems. In each iteration, a linear programming problem is solved
which generates a candidate optimal solution. This solution can then be assessed
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using the original objective function providing a new data point that can be used to
improve the linear programming approximation for the next iteration. The method
gradually reduces the step size and terminates when the step size becomes sufficiently
small.

BFGS

The Broyden Fletcher, Goldfarb, Shanno—BFGS—method [72] is a quasi-Newton
method in which the Hessian is approximated and iteratively updated at each step.
For problems in which the number of variables is large, for example, high-depth
QAOA, a limited memory version of BFGS is available, named L-BFGS [73]. This
version is simply achieved by simply keeping track of a limited number of previous
evaluation points. BFGS requires the objective function to be non-noisy to perform
well.

Basin Hopping

A global optimizer, basin hopping [74] is a stochastic algorithm that searches the
space of possible coordinates by applying cycles of random perturbations followed by
the application of a local optimizer. The SciPy default minimizer for basin hopping
is L-BFGS, though any local optimizer could be used in its place. Naturally, as a
global optimizer, runtimes for this method become prohibitively large for relatively
high-depth QAOA. Ultimately, one should have a good ansatz starting point for
which a local optimizer can find a high-value QAOA state for QAOA to be a useful
heuristic.

CMA-ES

An evolution strategy for optimization, Covariance Matrix Adaption Evolution Strat-
egy (CMA-ES) [75] is a derivative-free, stochastic method well suited to noisy and
high-dimensional objective functions. The strategy samples candidate solutions from
a multi-dimensional normal distribution with a given mean and covariance matrix.
Based on the quality of the generated candidate solutions, the algorithm then up-
dates the mean and covariance matrix for the following round. Such a method would
be useful in the context in which one performs QAOA with an open loop optimiza-
tion resulting in a noisy objective function, though, the method is significantly more
computationally intensive than others.

2.5.2 Start Point Strategies

The choice of starting location for the variational parameters in QAOA likely holds
the greatest importance for the algorithm’s usefulness. In some works, random
initialization strategies are used, picking initial parameters at random and then
repeating them for a number of trials. Anecdotally, it is observed that a strong
initialization strategy is simply that of taking small, non-zero parameters. The
use of parameters initialized at zero typically results in optimizer failure with this
point being a zero gradient inflection point. A mixture of such strategies is also
found to be successful, in which one randomly samples start points randomly, on
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a range that only includes small values of the parameters. It is observed in Chap-
ter 3 that for greater qubit numbers, objective function landscapes become less, not
more, complex, with small-value initialization strategies working well in the infinite
problem-size limit.

Given sufficiently a sufficiently high-depth QAOA circuit, one has a guarantee
that the probability of finding the optimal state is extremized via the connection of
QAOA to adiabatic quantum computing. Considering the general adiabatic quan-
tum computing Hamiltonian given by

Ĥ(t) =

(
1− t

T

)
ĤD +

t

T
ĤP (2.13)

applied to the ground state of ĤD, where T is the total time over which the adiabatic
algorithm occurs. Adiabatic quantum computing finds the ground state with proba-
bility 1 assuming that the time T is sufficiently large, with QAOA circuits being, for
certain parameter regimes, a discretization, or Trotterization of this time evolution.
An ansatz for QAOA parameters explored in work by Sack et al. [76], presumably
especially useful at high depth, where QAOA serves as a good approximation for
AQC would be:

γi =
i

p
δt, βi =

p− i

p
δt. (2.14)

For sufficiently large p, one would set δt = 1 for equivalence with adiabatic quantum
computing. While adiabatic parameters may be one choice for optimal parameters
for QAOA in the limit of large depth, for more realistic depths, such parameters
may simply serve as a good starting point for an optimization process.

2.5.3 Barren Plateaus

Barren plateaus are a phenomenon found to be a general feature of variational quan-
tum circuits. It was discovered that for parameterized random quantum circuits,
typically used in quantum machine learning tasks, the magnitude of the gradient
of the circuit at randomly selected points in the parameter space, tends to become
exponentially small as the number of parameters becomes large [77]. Another conse-
quence of this is that, since the probability that the gradient becomes exponentially
small at a given point becomes large, and choice of start point becomes important
for large parameterized random circuits. Work has linked the phenomenon of barren
plateaus, also, to the expressibility of the variational ansatz used [78]. That is, the
closer an ansatz comes to forming a 2-design1, which is to say that the ansatz is
highly expressive, the lower the variance in the cost function gradient. It is also
expected that the presence of noise, depolarizing or otherwise2 [79].

The discovery of barren plateaus as a generic feature of variational quantum
algorithms becomes less relevant in the context of QAOA. While the algorithm is
variational, several factors reduce the impact of such features. Firstly, start-point
ansatz choices are known for QAOA. The link between adiabatic quantum computing

1Roughly, to be a 2-design is to be such that randomly sampling from the uniformly distributed
parameters in the ansatz results in an equivalent distribution as that of sampling from a uniform
distribution over unitaries.

2QAOA circuits should be sufficiently twirling that any biased noise should result in identical
outcomes to depolarizing noise, given the circuit is sufficiently deep.
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and QAOA gives rise to an obvious choice of this, from which a local optimizer can
proceed [76]. For high-depth QAOA in which the number of variational parameters
can be sufficiently large that the ansatz state is sufficiently expressive to suffer from
vanishing gradients, assuming that parameters vary smoothly from layer to layer,
with the schedule optimized via a Fourier coefficients can collapse the total number
of parameters while maintaining performance [80]. The main reason, however, that
QAOA might not suffer from barren plateaus as consequently as other variational
quantum algorithms, is the relationship between the QAOA variational form and
the objective function one extremizes. In the quantum machine learning context,
there is no relationship between these two elements, whereas, in QAOA, the two are
intimately related, with the problem Hamiltonian taking its values directly from the
objective function by which the quality of the QAOA state is evaluated. For this
reason, the logic of barren plateaus does not necessarily apply in this context.
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Chapter 3

Problem-Size-Independent
Angles for a Grover-Driven
Quantum Approximate
Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) requires that circuit
parameters are determined that allow one to sample from high-quality solutions to
combinatorial optimization problems. Such parameters can be obtained using either
costly outer-loop optimization procedures and repeated calls to a quantum computer
or, alternatively, via analytical means. In this work, we consider a context in which
one knows a probability density function describing how the objective function of a
combinatorial optimization problem is distributed. We show that, if one knows this
distribution, then the expected value of strings, sampled by measuring a Grover-
driven, QAOA-prepared state, can be calculated independently of the size of the
problem in question. By optimizing this quantity, optimal circuit parameters for
average-case problems can be obtained on a classical computer. Such calculations
can help deliver insights into the performance of and predictability of angles in
QAOA in the limit of large problem sizes, in particular, for the number partitioning
problem.

3.1 Attribution & Copyright

This work was carried out by myself, with proofreading and editorial input from Prof.
Wilhelm-Mauch. Some useful conversations with Dima Bagrets were important to
this work, in which the suggestion of the number partitioning problem was given.
Parts of this chapter are reprinted (excerpt, abstract, figures) with permission from
“David Headley and Frank K. Wilhelm, Phys. Rev. A 107, 012412”, Copyright
(2023) by the American Physical Society.

3.2 Introduction

Variational Quantum algorithms aim to exploit the power of Noisy, Intermediate-
Scale Quantum (NISQ) computers [81] through the use of parameterized quantum
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circuits. The Quantum Approximate Optimization Algorithm (QAOA) [34] provides
a universal [60, 82] ansatz state, efficiently preparable on a quantum computer, mea-
surements from which might provide a useful heuristic method for the approximate
solution of problems in combinatorial optimization.

QAOA circuits utilizing standard—single-qubit-X—drivers applied to Grover-
like marked-state problems, recover the asymptotic scaling of Grover’s algorithm
[83]. Furthermore, it has been shown in the same unstructured search problem con-
text, that parameters in QAOA concentrate [84]. That is, for increasing problem
size, the variance in the optimal angles for QAOA circuits tends to zero and op-
timal angles concentrate at terminal values [85]. When considering QAOA in its
original incarnation of single-qubit-X drivers and problem Hamiltonians encoding
combinatorial optimization problems such as max-cut, max-3-lin-2, max-k-sat,
numerical studies have provided evidence that parameters also tend to concentrate,
and, as such, can be determined for classes of similar problems without access to a
quantum processing unit using classically tractable tensor network approaches [86].

That optimal angles in QAOA concentrate, for certain classes of problem, is
useful due to the exponential cost of using classical optimizers in the number of pa-
rameters over which they operate. Should QAOA provide a good heuristic method
for a number of layers greater than ≈ 10, it is likely that naive global classical op-
timization with repeated calls to the quantum computer to estimate and extremize
the expectation value of the problem Hamiltonian is not the method used, due to
the excessively large number of calls to the quantum computer required. Alternative
methods to calculate optimal angles might use numerical methods on smaller or sim-
plified problem sizes, as aforementioned, or use the averaged behavior of problems
at a limiting size. Using this second approach, Farhi et. al. demonstrated that for
Sherrington-Kirkpatrick type spin glasses and similar models, using single-qubit-X
drivers, one can average over model instances to find optimal angles in a calcula-
tion that is independent of the number of spins in a model [87]. This provides a
formula that has been numerically optimized to a depth of p = 10, a result later
generalized [88] to show that the same technique extends to problems involving
clauses incorporating more than two variables, providing an expression numerically
tractable up to a depth p = 20 with the specific hardware used. This work was later
widened to the context of max-cut problems on varying random graph families [89],
with Claes et. al. considering QAOA on infinite-size mixed-spin SK models [90] and
showing that the expected performance of QAOA also concentrates in this context,
at depth 1.

This chapter takes an alternative approach to finding angles in the large problem-
size limit. By using a Grover-style driver that bestows maximal permutation sym-
metry to the expectation value of a problem Hamiltonian under the QAOA state
produced, we simplify the calculation of optimal angles at large n. This procedure
requires that the probability density function (pdf), or density of states of the prob-
lem to be solved is known. In particular, we provide a method to find optimal angles
and their corresponding expectation values on a classical computer, such that high-
quality solutions can be sampled from a quantum computer without the need for
outer-loop optimization of the on-device QAOA state. We find that this method
can be applied to the Number Partitioning Problem (NPP) and other problems
where the probability density function is known or can be approximated, and, also,
problems with a distribution of costs taking the form of or well approximated by a
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Gaussian distribution.
The Ansätze used in variational quantum algorithms, in general, must have

problem specificity to avoid the fate of barren plateaus [77, 91]. In QAOA, this
problem specificity enters into the ansatz twice. Firstly, the problem Hamiltonian
takes its eigenvalues directly from the objective function of the problem to be solved.
Secondly, and more subtly, the driver Hamiltonian biases certain transitions between
computational basis states over others. The use of Grover drivers removes the second
of these and allows one to quantify where the performance in QAOA lies, between
that of algorithms that use amplitude amplification-like structure agnostic speedups
to solve problems, to those which derive performance from classically exploitable
problem structure with respect to the single-qubit basis.

Other works have used Grover drivers in the context of QAOA. It has been
shown that combinatorial optimization problems can be approximately solved using
Grover’s algorithm via the compilation of their objective function to a threshold
function. Grover’s algorithm is asymptotically optimal for the Grover problem [92],
with the performance of the threshold-based algorithm numerically observed to out-
perform the non-threshold version, however, incurring additional compilation over-
head [93, 94, 95]. Though one might not a priori know which threshold to use for
such a compiled version, knowledge of the pdf of the problem, as used in this work
would certainly be sufficient knowledge for the selection thereof.

While it is not expected that Grover-driven QAOA should provide superior per-
formance to that of well-suited problem-specific drivers, it is expected that Grover-
driven QAOA will not suffer from the issue of exponentially diminishing gradients—
barren plateaus—as the angles can be obtained independently of problem size on
a classical computer, provided the problem’s pdf is known. As such, Grover-driven
QAOA provides a point of reference to the performance of a QAOA-type algorithm
in the very average case of driver-problem synergy.

3.3 Theory

QAOA, as previously introduced, is performed via p applications of driver and prob-
lem Hamiltonians applied for parameterized times β⃗, γ⃗. Giving:∣∣∣β⃗, γ⃗〉 =

p∏
p′=1

eiβp′ĤDeiγp′ĤP |+⟩⊗n , (3.1)

which is the problem-dependent QAOA ansatz state, depending on 2p free parame-
ters. One is then required to find angles such that when sampling from the compu-
tational basis measurement outcome distribution of the ansatz state, one finds con-
figurations corresponding to small or large eigenvalues of ĤP depending on whether
a problem is one of maximization or minimization. To this end, the expectation:

Ep(β⃗, γ⃗) = ⟨ĤP⟩β⃗,γ⃗ =
〈
β⃗, γ⃗

∣∣∣ ĤP

∣∣∣β⃗, γ⃗〉 , (3.2)

should be extremized with respect to the variational parameters. Measurements of
the optimized ansatz state then correspond to high-quality solutions to a binary-
variable combinatorial optimization problem specifying ĤP. This work concerns the
calculation of this property in the case that Grover drivers are used, as introduced
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in the following. A challenge in evaluating the performance of QAOA on a classical
computer is the exponential resource requirements to simulate an n-qubit state, a
dependence this work removes.

3.3.1 Properties of Grover Drivers

The driver Hamiltonian ĤD typically consists of single-qubit X operations,

ĤD =
n∑
i=1

Xi. (3.3)

Various works have investigated the use of drivers that differ from this standard
single-qubit driver. For example, a version of QAOA that samples from a differing
selection of higher order drivers for each layer has been shown to improve QAOA
convergence [96, 97]. Drivers can also be used to shift complexity from problem to
driver Hamiltonian in the case of problems of hard and soft constraints [98].

In this work, an alternate driver, which generates the Grover mixing operator,
is used. The Grover driver can be written as a projector onto a Hadamard basis
product state |+⟩⊗n:

ĤG = |+⟩⊗n ⟨+|⊗n =

[
1√
2n

2n−1∑
z=0

|z⟩
][

1√
2n

2n−1∑
z=0

⟨z|
]
. (3.4)

Importantly, this Hamiltonian is invariant under the re-labeling of any pair of states,
i.e., under the permutation operator Ûj↔k with

Ûj↔k = I− |j⟩ ⟨j| − |k⟩ ⟨k|+ |k⟩ ⟨j|+ |k⟩ ⟨j| (3.5)

and so it holds that
ĤG = Ûj↔kĤGÛj↔k (3.6)

for any permutation. Moreover, the initial state of QAOA bears the same property,
as an eigenstate of any permutation operator one can write:

|+⟩⊗n = Ûj↔k |+⟩⊗n . (3.7)

Of course, a problem Hamiltonian is, in general, not invariant under any permu-
tation. However, alongside a Grover-QAOA state (defined as in equation (3.1) us-
ing with HD = HG) its expectation is, since permutation operators may commute
through the driver to annihilate or act as the identity on the initial state. So, for
any permutation of a problem Hamiltonian ĤP, given by P̂ †ĤPP̂ where

P̂ = Ûjm↔km · · · Ûj2↔k2Ûj1↔k1 (3.8)

is a sequence of permutations, the QAOA problem expectation produced by such
a permuted problem Hamiltonian can be shown to be equivalent to that of the
unpermuted Hamiltonian,

⟨P̂ †ĤPP̂ ⟩β⃗,γ⃗ = ⟨ĤP⟩β⃗,γ⃗, (3.9)

as shown in Appendix 3.A. The consequence of this symmetry is that any two
problems which have the same distribution of costs will have identical expectation
values under Grover-driven QAOA states.
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3.3.2 Problem Objective Functions as Random Variables

The only property of the problem Hamiltonian that therefore affects the expectation
is its spectrum. The spectrum of a problem Hamiltonian can be seen as sampling
from some random distribution with probability density function f(c)—describing
the relative likelihood that the random variable C, modeling a problem objective
function, takes real value c—analogous to the density of states function of solid
state physics. Our key result is that as this pdf can be, in general, independent
of the size of a problem, angles can be calculated directly from the pdf, rather
than for any model instance with a given size. By computing angles for the large-n
limit of Grover-driven QAOA, one can determine the asymptotic performance of the
algorithm for large system sizes without suffering from unfavorable scaling in the
number of qubits. The computed angles are for “typical” instances. However, as
the problem size increases, the law of large numbers rapidly reduces the sample-to-
sample fluctuations.

Consider a problem’s objective function that has been sorted from low to high,
denoted by Csort(z), such that

Csort(x) ≥ Csort(y) if x > y. (3.10)

To this quantity, we can associate a quantile distribution function (qdf)

F−1(p) = Csort(z) for p =
z

N
(3.11)

denoting the value of C at its pth quantile. The inverse of the quantile distribution
function is the cumulative distribution function (cdf) F (c) with an associated pdf
f(c) in the continuum limit of large n

F (c) = P(C < c) =
c∑

c′=−∞

P(C = c′) ≈
∫ c

−∞
f(c′) dc′. (3.12)

The quantity on which the Grover-driven QAOA expectation value depends is the
Fourier transform of this pdf, known as the characteristic function Γ which for a
random variable X is defined as the expected value of eiγX and so for the random
variable C modeling an ensemble of objective functions for a given problem:

Γ(γ) = E
[
eiγC

]
. (3.13)

This quantity, associated with the random variable C can be expressed in terms of
the pdf f(c), the cdf F (c) and the qdf F−1(p) as:

Γ(γ) =

∫ ∞

−∞
f(c)eiγc dc =

∫ ∞

−∞
eiγc dF (c) =

∫ 1

0

eiγF
−1(p)dp (3.14)

and is related via a Wick rotation and scaling factor of the system size to the
partition function of the model.

A finite-size, n-qubit problem considered for QAOA is modeled here as taking
2n = N samples from the ensemble random variable C, and as such the approxima-
tion made in this work is that the mean exponentiated objective function value can
be replaced by the ensemble characteristic function Γ. That is, that

Γ(γ) ≈
∑
z

eiγC(z)

N
(3.15)
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with equality in the infinite-N limit. Due to the exponential growth of N with the
number of qubits, such an approximation rapidly improves with increasing system
sizes. As such, it suffices to replace the finite sum in equation (3.15) by the char-
acteristic function of the continuous pdf—from which the problem is modeled to
sample from—in calculations.

3.4 Depth 1

In this section, we wish to obtain an expression for the expectation value of the
depth p = 1 Grover-QAOA problem Hamiltonian E1(γ, β) in which the problem
is expressed only via a characteristic function Γ. We denote the mean value of a
random variable C as

C̄ =

∫ ∞

−∞
cf(c) dc

n→∞
=

1

N

∑
z

C(z) = −iΓ′(0) (3.16)

which can in general be set to zero by adding a constant to the objective function.
Such a shift corresponds only to a global phase of the effected problem Hamiltonian
unitary e−iC̄γI. The expression derived, in full detail in Appendix 3.B consists of
factors for which Equation 3.15 can immediately be substituted, with, however, one
instance of C(z) as a multiplicative factor rather than in an exponent. To substi-
tute this factor, one may differentiate under the sum/integral in the characteristic
function as:

1

N

∑
z

C(z)eiγC(z) = − i

N

d

dγ

∑
z

C(z)e−iγC(z) = −i d

dγ′
Γ(γ′)

∣∣∣∣
γ

= −iΓ′(γ). (3.17)

Substituting the characteristic function Γ and its derivative above, one obtains the
expression

E1(γ, β) = C̄(1 +BB∗ΓΓ∗) + 2 Im(B∗Γ∗Γ′) (3.18)

in which the first term can be set to zero by zeroing the mean value of the problem.

3.4.1 Invariance Under Shifts

Equation 3.18 implies explicit dependence upon the mean value of the distribution
of a problem. We can however exploit some properties of Fourier transforms to show
that besides a constant term, the general expression depends only trivially upon the
absolute position of the distribution modeling the problem Hamiltonian.

For a cost function modeling random variable C, there is a pdf f(c) and associ-
ated characteristic function

Γ(γ) = F [f(c)](γ) =

∫ ∞

−∞
f(c)eiγc dc. (3.19)

One can use the shift property of Fourier transforms to determine that

F [f(c− c̄)](γ) = eic̄γF [f(c)](γ) = eiγc̄ΓCentral(γ), (3.20)

where ΓCentral is the characteristic function of the centered random variable with
mean zero. Expressing the p = 1 expression in terms of this quantity, with

Γ → ΓCentrale
iγc̄ (3.21)
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one finds the first term unchanged. For the primed term, one obtains the expression

Γ′(γ) =
∂

∂γ

[
ΓCentral(γ)e

iγc̄
]
= Γ′(γ)eic̄γ + ic̄Γ(γ)eic̄γ. (3.22)

Substituting these values one finds the expression

⟨ĤP⟩γ,β = c̄(1 +BB∗ΓΓ∗) + 2 Im(B∗Γ∗e−iγc̄
(
Γ′(γ)eic̄γ + ic̄Γ(γ)eic̄γ

)
)

= c̄(1 +BB∗ΓΓ∗) + 2 Im (B∗Γ∗Γ′) + 2 Im(ic̄B∗Γ∗Γ)

= c̄+ c̄ΓΓ∗(BB∗ − 2Re(B)) + 2 Im(B∗Γ∗Γ′)

= c̄+ 2 Im(B∗Γ∗Γ′). (3.23)

As the expanded middle terms evaluate to and cancel to zero since BB∗ = 2Re(B) =
2−2 cos(β). Thus, the expectation value of the Grover-QAOA state at p = 1 depends
on the mean value of the cost function trivially through a constant term.

3.5 Depth 2

The expectation value of the problem Hamiltonian for a p = 2 Grover-driven QAOA
state depends on four parameters and can be expressed as:

E2(γ1, γ2, β1, β2) = ⟨γ1, γ2, β1, β2| ĤP |γ1, γ2, β1, β2⟩ (3.24)

which, if one assumes that the mean of the distribution is zero, can be expanded
in 10 terms seen in Appendix 3.6 with the help of computer algebra [99]. Further
simplification and substitution of the depth-1 expression yields:

E2(γ1, γ2, β1, β2) =

E1(γ1, β1) + E1(γ1 + γ2, β2) + |B(β1)|2|Γ(γ1)|2E1(γ2, β2)

+ 2 Im{B(β1)
∗B(β2)

∗Γ(γ1)
∗Γ(γ2)

∗Γ′(γ1 + γ2)}
+ 2 Im{B(β1)B(β2)

∗Γ(γ1)Γ
′(γ2)Γ(γ1 + γ2)

∗} (3.25)

which can be numerically extremized on a classical computer to find optimal pa-
rameters given a characteristic function Γ.

3.6 Arbitrary Depth

For arbitrary depth p, we have the problem Hamiltonian expectation value of:

Ep(γ⃗, β⃗) = ⟨+|
−p∏
j=−1

ÛP(γj)ÛD(βj)ĤP

p∏
i=1

ÛD(βi)ÛP(γi) |+⟩ (3.26)

where we have introduced the convention that negative indices simply add a negative
sign to the value, as:

γ−i = −γi, β−i = −βi. (3.27)

This can be expanded and expressed as a formula summing over 22p terms expressed
in factors of the characteristic function Γ and the driver-dependent function B. The
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full derivation and explanation of the notation used for which can be found in
Appendix 3.D with the expression for the arbitrary depth expected value of the
problem Hamiltonian taking the form:

Ep(γ⃗, β⃗) = 2 Im

[
2p−1∑

kbra<kket=0

∏
P∈Pbra

Γ

(∑
i∈P

γi

)
Γ′

( ∑
i∈Pcentral

γi

)
∏

P∈Pket

Γ

(∑
i∈P

γi

) ∏
−j|kjbra=1or j|kjket=1

Bj

 . (3.28)

Which can be evaluated independently of n on a classical computer.

3.7 Problem Distributions

To find suitable problems for this algorithm, one requires problems for which the
probability density function is known, but for which no efficient classical algorithms
for finding states of extreme energy exist. The standard QAOA problems such max-
cut, k-sat and SK models approximately follow binomial and Gaussian distribu-
tions, and, therefore could also be considered as Gaussian problems under Grover-
driven QAOA, but, a demonstration that they do so analytically is less obvious
than in the case of the problems we consider here due to the presence of frustration.
The random cost model and number partitioning problem do not feature the same
frustration, with the random variables by which they are defined entering into the
problem via single-qubit terms, with the number partitioning problem made non-
trivial via a global constraint enforcing positivity of the cost function. As such, the
distributions for the latter problems are readily derivable.

3.7.1 Gaussian Problems & The Random Cost Model

The Random Cost Model (RCM) is a toy model used as a testing ground for tech-
niques in the study of disordered systems as is the simplest model exhibiting a phase
transition [100]. The model is not a description of any physical system, nor does
it describe an interesting hard problem. However, it does provide an example for
which our procedure generates a concise analytical expression at low depth. The
RCM is defined as one in which each energy level or objective function value samples
from a normal distribution, so

C ∼ Normal(µ = 0, σ2 = 1), f(c) =
1√
2π

e−
c2

2 . (3.29)

When using the Grover driver, a problem with this pdf can also be obtained via n
independent spins with Hamiltonian∑

i

giZi =
∑
z

∑
i

(−1)zigi |z⟩ ⟨z| (3.30)

in which each Pauli spin weight is set as gi ∼ Normal(µ = 0, σ2 = 1/n) such that
the resulting angles and energy expectations are independent of problem size. This
Hamiltonian is, of course, structured and for another choice of driver could not be

42



Problem-Size-Independent Angles for Grover-Driven QAOA

1 2 3 4 5 6 7 8
Depth p

0.5

1.0

1.5

2.0

2.5

O
pt

im
iz

ed
A

ng
le

~γ
~β

Figure 3.1: Angles for the optimized infinite-size RCM are seen for QAOA depths 1
to 8. As the depth p increases, a similar pattern of optimal parameters for the lim-
iting distribution of the random cost model emerges with the problem-Hamiltonian
angles monotonically increasing and the driver Hamiltonian angles monotonically
decreasing. Such behavior invites comparison to adiabatic quantum computation,
overlooking the non-zero start point of γ and end point of β.

usefully modeled as a Gaussian pdf alone, the Grover driver, however, does not
see this additional structure. This problem yields the desired pdf as a normalized
Gaussian with which is associated a characteristic function via Fourier transform
with

Γ(γ) = e−
γ2

2 . (3.31)

When substituted into Equation 3.18, this characteristic function produces a p = 1
Grover-QAOA problem expectation value of

E1(γ, β) = 2γe−γ
2

sin (β) (3.32)

for which maximization yields optimal angles of

γ =

√
2

2
, β =

π

2
. (3.33)

Angles for higher depth QAOA states can be found in Figure 3.1 and the associated
expectation values in Figure 3.2. The best-known angles are determined via nu-
merical optimization with BFGS [101] on a wide range of start points, in which the
consistent behavior of the angles with increasing depth implies that with increasing
depth one tends towards a continuous terminal schedule.
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Figure 3.2: The expectation value of the Gaussian-distributed random cost problem
at optimal angles exhibits an increasing expectation value at a decreasing rate.

3.7.2 The Number Partitioning Problem

The Number Partitioning Problem (NPP) is that of finding a partition, described
by a number, z ∈ {0, . . . , N − 1}, of a set of n positive real numbers {x0, . . . , xn−1}
indexed by the set {0, . . . , n − 1} into two subsets with indices {i | zi = 0} and
{i | zi = 1} such that the sum of the numbers indexed by each subset is equal. NPP
has applications ranging from task scheduling in multi-core processing to choosing
equally matched teams from a selection of players. It is an example of a problem for
which classical heuristics such as simulated annealing do not perform well, notably,
due to the similarity of the problem to totally unstructured cost problems [102].
The problem has seen study in the context of adiabatic quantum computing [103]
due to the relative ease of computing-related properties in the large problem size
limit, thus, allowing the calculation of the minimum energy gap and asymptotic
time complexity in this context. In the large problem-size limit, adiabatic quan-
tum computing returns a Grover-like quadratic speed up in run-time over random
guessing for this problem.

One may define the decision version of the NPP as to satisfy the equality:∑
i|zi=0

xi =
∑
i|zi=1

xi. (3.34)

Which, for an approximate minimization version of the problem, is characterized by
an objective function:

C(z) =

∣∣∣∣∣∣
∑
i|zi=0

xi −
∑
i|zi=1

xi

∣∣∣∣∣∣ =
∣∣∣∣∣∑

i

(−1)zixi

∣∣∣∣∣ . (3.35)
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When considering this problem in the context of QAOA, or other quantum optimiza-
tion contexts in which many-body interactions are nontrivial to implement, one can
consider an equivalent minimization problem defined by the squared problem C2(z).
To express this as an Ising spin glass Hamiltonian, one can first consider the signed
single qubit problem Hamiltonian:∑

i

xiZi =
∑
z

(∑
i

(−1)zixi

)
|z⟩ ⟨z| , (3.36)

of which the square results in the problem Hamiltonian:∑
i

xiZi
∑
j

xjZj =
∑
i

x2i I + 2
∑
i<j

xixjZiZj

=
∑
z,z′

(∑
i

(−1)zixi

)
|z⟩ ⟨z|

(∑
i

(−1)z
′
ixi

)
|z′⟩ ⟨z′|

=
∑
z

∑
i,j

(−1)zi+zjxixj |z⟩ ⟨z| =
∑
z

C2(z) |z⟩ ⟨z| , (3.37)

which is a problem Hamiltonian encoding for the squared residue of the number
partitioning problem, as:

C2(z) =

∣∣∣∣∣∑
i

(−1)zixi

∣∣∣∣∣ ·
∣∣∣∣∣∑

j

(−1)zjxj

∣∣∣∣∣ =∑
i,j

(−1)zi+zjxixj. (3.38)

Consequently, the NPP Hamiltonian is an all-to-all coupled Mattis-type Ising spin
glass in which couplings consist of the products of random variables. Now we must
determine the pdf f(c) and the associated partition function Γ for this problem.
For convenience, we consider the numbers to be partitioned to be sampled from
distributions such that the resulting cost function distribution has a unit mean.
As such the numbers xi are allowed to take values between 0 and xmax = 1/

√
3n

uniformly, i.e. xi ∼ U(0, xmax) ∀ i ∈ [1 . . . n]. The probability density function for
the individual variables is then defined as:

f(c) =
1

xmax

(Θ(c)−Θ(c− xmax)) (3.39)

where Θ is the Heaviside step function. As such, the pdf for the distribution of
residues defined as CSQ, prior to squaring the cost function, is distributed as:

CSQ ∼
∑
i

(−1)zixi =
∑
i

(−1)ziU(0, xmax) =
∑
i

U(−xmax, xmax), (3.40)

where the factor (−1)zi imparts a minus sign with probability 1
2
and results in a sum

over uniform distributions over the symmetric interval [−xmax, xmax]. This sum of
independent, identically distributed random variables, by the central limit theorem,
approaches a Gaussian distribution in the large n limit. So, in this large n limit

CSQ ∼ Normal

(∑
i

E(U(−xmax, xmax)),
∑
i

Var(U(−xmax, xmax))

)
= Normal

(
µ = 0, σ2 = 1

)
. (3.41)
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For the squared single-qubit cost function C2
SQ(z) = C2(z), one can use the stan-

dard result that the square of a Gaussian distributed random variable is the χ2

distribution with a single degree of freedom with pdf:

f(c) =

{
(2πcec)−

1
2 , c > 0;

0, otherwise.
(3.42)

The characteristic function of this pdf can readily be calculated as

Γ(γ) =

√
1

1− 2iγ
. (3.43)

For p = 1, one can numerically optimize the expectation value E1(γ, β) to find
minimizing angles of

γ∗ = 0.241, β∗ = 5.162 (3.44)

to three decimal places. These angles can be seen in Figure 3.3 in which the value
of β has been shifted by 2π for convenience. Such angles yield an expected value
of E1(γ⃗

∗, β⃗∗) = 0.557. The expectation value of the problem Hamiltonian for this
characteristic function can be minimized to obtain angles that are thought to be
optimal. The best-known angles can be seen in Figure 3.3. The associated qualities
of the solutions attained by these angles are seen in Figure 3.5. To demonstrate
that these angles are appropriate for finite-size instances of the number partitioning
problem, we plot in Figures 3.3 and 3.4 the average result when optimizing finite-
size instances at increasing size for depth 1, 2 respectively. This demonstrates that
with increasing problem size, the optimal angles for finite-size instances rapidly
approach those of the analytically derived, ensemble average optimal angles. Finally,
Figure 3.7 demonstrates the convergence of the landscape defined by the problem
Hamiltonian expectation value of the QAOA state at a given point in the QAOA
parameter space. As the number of qubits in the problem becomes larger, the QAOA
solution quality landscape becomes indistinguishable from the analytically derived
version.

3.8 Compiling the Grover Driver

Compilation of the Grover mixing operator can be attained with or without ancillary
qubits. Without ancillary qubits, the operation can be performed using an n − 1-
controlled-Z rotation. Such a gate can be compiled into two n-qubit Toffoli gates
alongside three two-qubit gates [104]. These Toffoli gates can in turn be compiled
using a number of two-qubit gates and depth quadratic and linear, respectively, in
the number of qubits [105, 106].

3.9 Connection to Grover’s Algorithm

The Grover search oracle problem Hamiltonian searching for string z∗ takes the form

ĤGrover = |z∗⟩ ⟨z∗| . (3.45)

As a random variable, this corresponds to sampling a state with objective function
value zero with probability N−1

N
and a solution with quality 1 with probability 1

N
.
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Figure 3.3: For p = 1, optimal parameters of the NPP converge to the infinite size
angle for increasing n. QAOA states for 30 problem instances are optimized and
angles averaged for each point.

The associated pdf, or probability mass function, given this is a discrete distribution
is:

f(c) =
N − 1

N
δ(c) +

1

N
δ(c− 1). (3.46)

The characteristic function of this random variable would then be:

ΓGrover(γ) =

∫ ∞

−∞
dc eiγc

[
N − 1

N
δ(c) +

1

N
δ(c− 1)

]
=
N − 1

N
+

1

N
eiγ, (3.47)

which could be utilized in the formula derived for Grover-QAOA. The probability
mass function, here, is dependent on the number of qubits. In a way that is not
typical of problems studied in this chapter.

3.10 Performance And Distribution Properties

In this section, we consider the performance of Grover-QAOA as it relates to the
shape of the distribution on which it acts. First one should note that the scale of the
distribution is inconsequential, simply corresponding to a re-scaling of the problem
parameter γ. That is, for some distribution f(c), one can re-scale this by a real
parameter a to obtain a pdf given by af(ac). If γ maximizes performance on the
former, then γ

a
maximizes performance on the latter.

The usual metric for QAOA performance is that of the approximation ratio,
given by

r =
Ep(γ⃗, β⃗)

C(z∗)
(3.48)
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Figure 3.4: For p = 2, optimal parameters of the NPP converge to the infinite size
angle for increasing n. QAOA states for 30 problem instances are optimized and
angles averaged for each point.

where C(z∗) is the optimal attainable cost function value. This metric measures the
sum of the values of clauses that are satisfied when sampling from a given QAOA
state, divided by the number satisfied by the optimal configuration. While this
metric is good for comparing the performance of different algorithms on the same
class of problems, it is not useful for comparing different problems. For example,
earlier in this chapter, the number partitioning problem was considered alongside
a random cost problem. A random cost problem could produce arbitrarily large
negative costs, but the number partitioning problem can only ever have positive
values. As such, methods for more meaningful comparisons are needed. In the
context of this work, for example, one might have cost functions that are non-zero
on their entire domain (a Gaussian, for example) and therefore for which there exists
no maximal cost function value in the large-n limit.

A better metric, therefore, is the quantile of the mean solution. To obtain
this quantity, one can take the QAOA solution quality Ep(γ⃗, β⃗) and can compute
the quantile with which this average quality is associated, using the cumulative
distribution function of the problem in question F (c). By using this metric, it
becomes possible to compare the performance across problems described by different
probability distributions. This measure of success tells you how good your solution
would be compared to the whole spectrum of possible solutions, rather than just
comparing to the optimal value.

As a test of dependence on the performance of Grover QAOA on the distribution
of the problem it solves, we compare the performance of three distributions. The
first, is a rectangular function in which each value of a cost function on a symmetric
range is equally likely to be selected, a triangular cost function, and, finally, the
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Figure 3.5: Angles for the optimized infinite-size NPP model are seen for QAOA
depths 1 to 8. Optimal parameters follow annealing-reminiscent schedules and vary
smoothly. Values are obtained here through the optimization of the Formula 3.28
via the BFGS optimizer and a random start point strategy.

Gaussian distribution as treated previously, as the random cost model. These three
distributions are displayed in Figure 3.8.

The uniform distribution is one in which values are picked at random in some
range, with identical likelihood, that is, it is distributed with pdf:

fUniform(c) =

{
1/2 if − 1 < c < 1,

0, otherwise.
(3.49)

The triangular distribution is related to the uniform distribution as it can be ob-
tained via the sum of two identical, independently distributed uniform distributions.
The pdf for this random variable takes the form:

fTriangle(c) =


c−2
4

if − 2 < c < 0,
2−c
4

if 0 < c < 2,

0 otherwise.

(3.50)

To link these two distributions to the Gaussian distribution, we can use the central
limit theorem, which states that for some sum of independent, identically distributed
random variables, as their number tends to infinity, the resulting distribution tends
to be that of a Gaussian distribution, assuming the moments of the summed distri-
butions are well defined.

When comparing the performance of the Grover problem to differently shaped
problems in Figure 3.9 (top), a value of N = 64 is used. In this context, a fair
comparison to the other distributions would be the mean solution percentile being
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Figure 3.6: Minimizing the NPP for increasing depth p sees monotonically decreasing
expectation. The depth 0 value of 1 is added as a reference point attained by random
sampling from the computational basis.

greater than or equal to 63
64
. As can be seen, the Gaussian pdf returns the highest

value solutions of the distributions tried. In Figure 3.9 (bottom), the solution quan-
tile, rather than simply the expected value is used as a metric for success. One sees
that the Gaussian problem still performs best out of the continuous distributions,
with the square pdf performing worst. The Grover problem for n = 6 outperforms
the Gaussian pdf, requiring depth 6 to attain a percentile of solution for which the
Gaussian pdf requires a depth in excess of 7 for a comparable percentile.

3.11 Conclusion

The power of QAOA as a heuristic for solving problems in combinatorial optimiza-
tion is not yet certain and derives from some combination of Grover-like speedup
alongside performance attributable to the synergy of the problem and driver used.
In this work, we demonstrate a method to determine likely optimal QAOA angles in
the case of a driver with average-case synergy, in which the problem structure can-
not be exploited. For such problem-driver combinations, concentrations of optimal
angles occur for increasing problem sizes and tend to a limit calculable via the pdf of
the problem. It is expected that barren plateaus, limiting the ability of an optimizer
to find good angles for QAOA, will affect problem-driver combinations in which syn-
ergy is not present (for example, problems with high-order terms and single-qubit
drivers). The problem of barren plateaus—in essence the no free lunch theorem of
quantum optimization [107]—necessitates that one finds heuristics for which drivers
and angles to use for a given problem instance. For which, the performance of a
driver in comparison to the Grover version is instructive as to whether a strategy
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Figure 3.7: For p = 1 the landscape can be seen to converge to that of the large-n
limit for n = 4, 7, 12. Periodicity is always observed in β, but as n increases, for
low n, local maxima and minima resurge in γ due to common multiples in problem
energy eigenvalues. For large n, increasing γ past a region near zero results in the
expectation monotonically returning to the mean value of 1.

exploits problem structure and to what degree. The strategy of optimizing QAOA
angles for statistically defined ensembles of problems, rather than instances thereof,
comes with the added advantage of smoother QAOA objective function landscapes
with fewer local extrema, being the average over instance landscapes, as evidenced
by Figure 3.7.

This work originated from asking the question as to whether a single-qubit-X
driver should outperform the Grover driver as an ansatz for the infinite range mod-
els in the work of Farhi et al. [87]. While this work has not directly compared
the performance of Grover QAOA on the SK model, a future direction could com-
pare this, via the application of methods applied to infinite-range SK models, to
the number partitioning problem, or by finding or approximating an expression for

51



Chapter 3

−3 −2 −1 0 1 2 3
Objective Function

0.0

0.1

0.2

0.3

0.4

0.5

L
ik

el
ih

oo
d

Gaussian
Triangle
Square

Figure 3.8: Three probability density functions are compared for performance under
the Grover driver. As the mean and variance of the distributions do not affect the
Grover-QAOA performance, simply scaling the problem variable γ, the performance
depends on higher order moments, which differ for the distributions considered.

the limiting-size pdf of an SK-type model. Future work could also investigate the
performance of subspace-type drivers e.g. XY type in problems of hard and soft
constraints of limiting size [98], in which the form of the drivers on the valid-solution
subspace differs from that of Grover drivers or standard single-qubit mixers. Work
could also determine the dependence of QAOA performance on the shape of the
distribution of the unstructured random variable on which it acts, as has been con-
sidered in the context of non-adiabatic annealing [108]. Various works have provided
analytical results for the use of Grover-type problems or mixing operators to solve
search problems in the context of QAOA, quantum random walks, and adiabatic
quantum computing [109, 58, 110, 84], with this work demonstrating similar ana-
lytical procedures, can be applied to find optimal angles for Grover-driven QAOA
with non-oracle problems. The work in this paper could also be applied to other
contexts, such as that of quantum random walks, in which fully connected graphs
have been previously considered for numerical studies on finding ground states of
spin glasses [111].
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Figure 3.9: The expected solution quality (top) of the Grover-driven QAOA state
is greatest for the Gaussian-distributed variable, this is, however, an unfair com-
parison since the greatest attainable solution quality for the square distribution
considered is 1. The Gaussian problem has no limit to the solution quality that can
be theoretically attained at an infinite size. When considering the performance of
Grover-QAOA for differently distributed problems, the Gaussian problem still out-
performs when using the metric that allows fair comparisons, the percentile of the
mean solution (bottom). While the Grover problem pdf saturates at around p = 5
for the choice of n = 6, the Gaussian pdf requires a depth of around 8 to reach a
comparable percentile of solution quality.
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3.A Permutation Symmetry of Problem

Hamiltonians Under

Grover-QAOA States

The invariance of a QAOA problem Hamiltonian under the permutation operator

P̂ = Ûjm↔km . . . Ûj2↔k2Ûj1↔k1 (3.51)

can be demonstrated using the identities

P̂ P̂ † = Î , eP̂
†ÔP̂ = P̂ †eÔP̂ . (3.52)

Therefore:

⟨P̂ †ĤPP̂ ⟩β⃗,γ⃗ = ⟨+|⊗n
p∏

p′=1

[
eiγp′ P̂

†ĤPP̂ eiβp′ĤD

]
P̂ †ĤPP̂

p∏
p′=1

[
eiβp′ĤDeiγp′ P̂

†ĤPP̂
]
|+⟩⊗n

= ⟨+|⊗n
p∏

p′=1

[
P̂ †eiγp′ĤPP̂ eiβp′ĤD

]
P †ĤPP̂

p∏
p′=1

[
eiβp′ĤDP̂ †eiγp′ĤPP̂

]
|+⟩⊗n

= ⟨+|⊗n P̂ †
p∏

p′=1

[
eiγp′ĤPP̂ eiβp′ĤDP̂ †

]
ĤP

p∏
p′=1

[
P̂ eiβp′ĤDP̂ †eiγp′ĤP

]
P̂ |+⟩⊗n

= ⟨+|⊗n P̂ †
p∏

p′=1

[
eiγp′ĤPeiβp′ P̂ ĤDP̂

†
]
ĤP

p∏
p′=1

[
eiβp′ P̂ ĤDP̂

†
eiγp′ĤP

]
P̂ |+⟩⊗n

= ⟨ĤP⟩β⃗,γ⃗ (3.53)

demonstrating that the expectation value is invariant under any permutation.

3.B Calculation of Depth-1 Expectation Value

We can write down the unitaries for the problem Hamiltonian:

ÛP(γ) =
∑
z

eiγC(z) |z⟩ ⟨z| (3.54)

and driver Hamiltonian:

ÛD(β) = eiβ|+⟩⟨+| = I+ iβ |+⟩ ⟨+|+ (iβ)2

2
|+⟩ ⟨+|+ . . .

= I+ (eiβ − 1) |+⟩ ⟨+| = I+B(β) |+⟩ ⟨+| (3.55)
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with B(β) = eiβ − 1. For p = 1 the problem expectation can be written as:

⟨ĤP⟩γ,β = ⟨+| Û †
P(γ)Û

†
D(β)ĤPÛD(β)ÛP(γ) |+⟩

=
∑

z−1,z0,z1

⟨+| e−iγC(z−1) |z−1⟩ ⟨z−1|
[
I +B∗ |+⟩ ⟨+|

]
C(z0)

· |z0⟩ ⟨z0|
[
I+B |+⟩ ⟨+|

]
eiγC(z1) |z1⟩ ⟨z1|+⟩

=
1

N

∑
z−1,z0,z1

e−iγC(z−1) ⟨z−1|
[
I+B∗ |+⟩ ⟨+|

]
C(z0) |z0⟩ ⟨z0|

[
I+B |+⟩ ⟨+|

]
eiγC(z1) |z1⟩ . (3.56)

Which yields four terms as follows:

C̄ +
1

N2
BB∗C̄

∑
z

eiγC(z)
∑
z

e−iγC(z) +
1

N2
B
∑
z

eiγC(z)
∑
z

C(z)e−iγC(z)

+
1

N2
B∗
∑
z

e−iγC(z)
∑
z

C(z)eiγC(z). (3.57)

One then can substitute the characteristic function of the ensemble to obtain an
expression for the expectation value of the QAOA state, with

1

N

∑
z

C(z) → C̄,
∑
z

eiγC(z)

N
→ Γ(γ). (3.58)

To express the term containing C(z) not in the exponent, one may differentiate
under the sum or integral as∑

z

C(z)eiγC(z) = −i d
dγ

∑
z

C(z)e−iγC(z) → −i d

dγ′
Γ(γ′)

∣∣∣∣
γ

= −iΓ′(γ). (3.59)

Resulting in the expression:

⟨ĤP⟩γ,β = C̄(1 +BB∗ΓΓ∗) + 2 Im(B∗Γ∗Γ′). (3.60)

3.C Calculation of Depth-2 Expectation Value

The p = 2 expression can be calculated similarly to the p = 1 expression, however,
with more terms and thus requiring the use of a computer algebra package [99]. The
result of expanding the expression for the expectation value, setting the mean C̄ to
zero, and substituting the characteristic function and its derivative is the following
expression of 10 terms:

E2(γ⃗, β⃗) = iB(β1)B(β2)Γ(γ1)Γ(γ2)B(β1)
∗Γ(γ1)

∗Γ′(γ2)
∗

− iB(β1)Γ(γ1)B(β1)
∗B(β2)

∗Γ(γ1)
∗Γ(γ2)

∗Γ′(γ2)

− iB(β1)
∗Γ(γ1)

∗Γ′(γ1) + iB(β1)Γ(γ1)Γ
′(γ1)

∗

+ iB(β1)B(β2)Γ(γ1)Γ(γ2)Γ
′(γ1 + γ2)

∗ − iB(β1)
∗B(β2)

∗Γ(γ1)
∗Γ(γ2)

∗Γ′(γ1 + γ2)

− iB(β1)Γ(γ1)B(β2)
∗Γ′(γ2)Γ(γ1 + γ2)

∗ + iB(β2)B(β1)
∗Γ(γ1)

∗Γ′(γ2)
∗Γ(γ1 + γ2)

− iB(β2)
∗Γ(γ1 + γ2)

∗Γ′(γ1 + γ2) + iB(β2)Γ(γ1 + γ2)Γ
′(γ1 + γ2)

∗. (3.61)

This expression can be further simplified via the substitution of the p = 1 expecta-
tion resulting in the final expression in Equation 3.25.
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3.D Calculation of Arbitrary-Depth Expectation

Value

Using the intuition from the p = 1 and p = 2 cases, we can write down the expression
for any term in the arbitrary depth expectation value of the problem Hamiltonian.
We can write the full expectation Ep(γ⃗, β⃗) as:

〈
γ⃗, β⃗

∣∣∣ ĤP

∣∣∣γ⃗, β⃗〉 = ⟨+|
−1∏
j=−p

ÛP(γj)ÛD(βj)ĤP

p∏
i=1

ÛD(βi)ÛP(γi) |+⟩ (3.62)

where we have introduced the convention that negative indices simply add a negative
sign to the value, as:

γ−i = −γi, β−i = −βi. (3.63)

The expectation value can be expanded, substituting the expressions for the driver
and problem Hamiltonians as:

∑
z⃗

⟨+|
−p∏
j=−1

[
eiγjC(zj) |zj⟩ ⟨zj|

(
I +Bj |+⟩ ⟨+|

)]
C(z0) |z0⟩ ⟨z0|

·
p∏
i=1

[(
I +Bi |+⟩ ⟨+|

)
eiγiC(zi) |zi⟩ ⟨zi|

]
|+⟩ . (3.64)

Where the sum over 2p+1 indices z⃗ = (z−p, . . . , z0, . . . , zp) runs over the set {0, N−1}
for each index. Expanding the products in this expression will yield 22p terms that
can be sorted in the number of occurrences of a B variable in the bra or ket.

For the one term with zero B incidences, one finds, for example:

1

N

∑
z⃗

e
∑−p

j=−1 iγjC(zj)C(z0)e
∑p

l iγlC(zl)

· ⟨z−1|z−2⟩ ⟨z−2| . . . |z−p⟩ ⟨z−p|z0⟩ ⟨z0|zp⟩ ⟨zp| . . . |z2⟩ ⟨z2|z1⟩ (3.65)

in which the orthogonal bra-kets evaluate to zero leaving only one index yielding
a non-zero term evaluating to the mean of the objective function C̄. For weight-1
terms one has B in a position l so:

∑
z⃗

⟨+|
−p∏
j=−1

[
e−iγC(zj) |zj⟩ ⟨zj|

]
C(z) |z0⟩ ⟨z0|

p∏
i=l

[
|+⟩ ⟨+| eiγC(zi) |zi⟩ ⟨zi|

]
Bl

·
l−1∏
i=1

[
|+⟩ ⟨+| eiγC(zi) |zi⟩ ⟨zi|

]
|+⟩ , (3.66)

for which the orthogonal bra-kets can be evaluated as:

1

N2

∑
z⃗

e
∑−p

j=−1 iγjC(zj)C(z0)e
∑p

i −iγiC(zi)Bkδz−1,z−2 . . . δz−p,z0δz0,zp

. . . δzk+2,zk+1
δzk,zk−1

. . . δz2,z1 . (3.67)
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The sum is eliminated for all but two partitions giving:

1

N2

∑
z

e
∑−p

j=−1 iγjC(z)C(z)e
∑p

i=k+1 iγiC(z)
∑
z

e
∑k

i=1 iγiC(z)Bk, (3.68)

leaving two variables over which we sum and leaving the non-exponentiated C(z)
and, therefore, the differentiated characteristic function Γ′ in the factor correspond-
ing to the partition containing the central variable z0 as

−iBkΓ
′

( −p∑
i=−1

γi +

p∑
i=k+1

γi

)
Γ

(
k∑
i=1

γi

)
. (3.69)

To expand the expression more generally, we can introduce indices

kbra ∈ {0, . . . , 2p − 1} and kket ∈ {0, . . . , 2p − 1}, (3.70)

each of which are p-bit numbers such that the presence of a 1 in the binary repre-
sentation of the index implies a factor of Bi |+⟩ ⟨+| at the bit position in the bra or
ket for the relevant term. The formula can be rewritten as

2p−1∑
kbra, kket=0

∑
z⃗

⟨+|
−1∏
j=−p

[
eiγjC(zj) |zj⟩ ⟨zj|

(
Bj |+⟩ ⟨+|

)kjbra]
· C(z0) |z0⟩ ⟨z0|

p∏
i=1

[(
Bi |+⟩ ⟨+|

)kiketeiγiC(zi) |zi⟩ ⟨zi|
]
|+⟩ . (3.71)

When the index kket/bra is zero, this expression [Bi |+⟩ ⟨+|]kbra/ket is the identity and
adjacent non-identical z indices result in a Kronecker delta, with ⟨zj|zk⟩ = δzj ,zk
collapsing a sum over one of the z indices. As such, these terms are collected
into a single sum. When a bit in the index kket/bra is one, the projector |+⟩ ⟨+|
annihilates with a basis state vector ⟨zi| and simply produces a factor of 1/N , with
⟨+|z⟩ = 1/

√
N ∀z, leaving the sums over z intact.

To substitute the characteristic function, we note that unbroken chains of 0’s of
length n∗ in the indices kket/bra will result in factors of the form:∑

z1,z2...zn∗

eiγ1C(z1) |z1⟩ ⟨z1| eiγ2C(z2) |z2⟩ ⟨z2| . . . eiγn∗C(zn∗ ) |zn∗⟩ ⟨zn∗|

=
∑

z1,z2...zn∗

δz1,z2δz2,z3 . . . δzn∗−1,zn∗e
iγ1C(z1)eiγ2C(z2) . . . eiγn∗C(zn∗ )

=
∑
z

eiC(z)
∑

i∈[1,...,n∗] γi = Γ

 ∑
i∈[1,...,n∗]

γi

 . (3.72)

To substitute the characteristic function for all incidences of the objective function
C(z), it is convenient to define a set of boundary indices between those that are
grouped as above. We can define these as

Sbra = {0}+ {i|kibra = 1}, Sket = {0}+ {i|kiket = 1} (3.73)

determined by the locations of 1’s in the binary representation of kbra, kket. The
additional boundary at 0 represents the boundary imposed by the initial state of
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QAOA. In the partitions formed by these boundaries, we collect the indices con-
tained in the ith partition of the bra/ket as P i

bra, P
i
ket with

P i
bra = {−j|j > kibra, j ≤ ki+1

bra }, P i
ket = {j|j > kiket, j ≤ ki+1

ket }. (3.74)

And, then, collect these into a set of sets

Pbra = {P i
bra|i ∈ [0,Weight(kbra)]}, Pket = {P i

ket|i ∈ [0,Weight(kket)]}. (3.75)

Finally, one defines a central partition spanning the indices between the last occur-
rence 1 in the binary representation of kbra, kket and containing the non-exponentiated
factor of the objective function

Pcentral = {−j|j > maxSbra}+ {j|j > maxSket}. (3.76)

The expectation value after the substitution of the characteristic function and its
derivative can then be expressed as:

Ep(γ⃗, β⃗) =
2p−1∑

kbra,kket=0

−i
∏

P∈Pbra

Γ

(∑
i∈P

γi

)
Γ′

( ∑
i∈Pcentral

γi

)
∏

P∈Pket

Γ

(∑
i∈P

γi

) ∏
−j|kjbra=1

Bj

∏
j|kjket=1

Bj. (3.77)

For which, exchanging kbra, kket conjugates the term, allowing the expression to be
split into two parts, one in which kbra = kket and one otherwise, so:

Ep(γ⃗, β⃗) =
2p−1∑
k=0

−i
∏

P∈Pbra

Γ

(∑
i∈P

γi

)
Γ

(∑
i∈P

γi

)∗

Γ′ (0)
∏
j|kj=1

BjB
∗
j

+
2p−1∑

kbra<kket=0

−i
∏

P∈Pbra

Γ

(∑
i∈P

γi

)
Γ′

( ∑
i∈Pcentral

γi

)
∏

P∈Pket

Γ

(∑
i∈P

γi

) ∏
−j|kjbra=1

Bj

∏
j|kjket=1

Bj + Conjugate. (3.78)

If the problem mean is zeroed by global phase, Γ′(0) = 0 and the first sum disappears,
leaving:

Ep(γ⃗, β⃗) = 2 Im

[
2p−1∑

kbra<kket=0

∏
P∈Pbra

Γ

(∑
i∈P

γi

)
Γ′

( ∑
i∈Pcentral

γi

)
∏

P∈Pket

Γ

(∑
i∈P

γi

) ∏
−j|kjbra=1or j|kjket=1

Bj

 . (3.79)

A Python script to evaluate the Grover-QAOA objective function Ep(γ⃗, β⃗) for a
given characteristic function is available upon request to the author.
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Driver-Problem Synergy and
QAOA Performance

In Chapter 3, we considered a situation in which a Grover driver was utilized
for QAOA, allowing the calculation of optimal angles for problems in the infinite
problem-size limit. In this chapter we extend this treatment to the typically used
single-qubit-X driver and, in doing so, are required into account a greater amount
of information about the problems that we solve. This work illustrates the mecha-
nism through which the Quantum Approximate Optimization Algorithm can exploit
structure through its drivers. This is the case, as the methods in the chapter make
clear the dependence of the QAOA objective function on the conditional probability
of obtaining a state of a given value when starting from another and taking a num-
ber of steps along a metric defined by a driver. We demonstrate this in the case of
two specific drivers, the line driver, and, also, the typical hypercube, single-qubit-X
driver typically used in QAOA.

4.1 Attribution

This chapter was written exclusively by myself. The work presented here may be
published in the future with myself as the first author and Prof. Wilhelm-Mauch as
an advisory figure.

4.2 Introduction

In a landmark result, Farhi et al. obtained an analytical formula for the performance
of QAOA on SK models of limiting size, at fixed depth [87]. Later work generalized
this result to k-spin models [90]. In a related piece of work, a parameter setting
heuristic was developed [112], exploiting the conditional probabilities also explored
in this chapter.

This chapter aims to take an alternative approach to this area of studying QAOA
on ensembles of problems. Rather than expressing the QAOA expectation as a k-spin
model, then computing an expected value of the QAOA state for this, we attempt
to express the QAOA expected solution value generically in terms of conditional
probability density functions, in the spirit of the previous chapter. To do this, we
break the algorithm into two parts and study a problem-dependent part in isolation.
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By isolating the dependence of this problem dependent part on the problems solved,
one can study a key factor in the performance of QAOA, the exploitation of problem
structure. This work, therefore represents a step towards the determination of good
QAOA angles and QAOA performance, based on generic statistical properties of
problems, which can be computed without access to a quantum computer, and at
limiting problem size.

4.3 Theory

Driver Hamiltonians in QAOA consist of a sum over Hermitian operators. In the
case of the Grover driver, addressed in the previous section, this sum has just one
term regardless of the number of qubits in the QAOA instance. This low number of
terms leads to favorable scaling in the results of the previous chapter, and results
that are intrinsically decoupled from the size of the instance. Once exponentiated to
a unitary operator by a variational parameter used, this Grover-generated unitary
contains 2 terms—the identity and the many-body projector |+⟩ ⟨+|—multiplied by

β⃗-dependent pre-factors. With 2p layers in the expectation value of the problem
Hamiltonian, this results in 22p terms in the expectation value. A way to view this
decomposition is that the driver imposes a distance measure on the configuration
space of the computational basis states of the problem solved. In the case of the
Grover driver, there are just two possible distances, 0 and 1, that is, whether two
states are the same or are different. These outcomes, then, correspond to the identity
and projection operators of the exponentiated, expanded, Grover driver.

ĤG = |+⟩⊗n ⟨+|⊗n =

[
1√
2n

2n−1∑
z=0

|z⟩
][

1√
2n

2n−1∑
z=0

⟨z|
]
. (4.1)

ÛD(β) = eiβ|+⟩⟨+| = I+ iβ |+⟩ ⟨+|+ (iβ)2

2
|+⟩ ⟨+| . . . = I+ (eiβ − 1) |+⟩ ⟨+| . (4.2)

In this chapter, we aim to generalize this. The Grover driver sees structure with
respect to whether two states are the same or different. A direct consequence of
this is that at limiting size, the Grover-driven algorithm simply depends on a pdf
describing a distribution of possible cost function values. Then, in the case of more
complex drivers of more terms, what does the algorithm see and on what properties,
like that of the pdf describing the distribution of randomly sampled states, does
the algorithm depend? The question this chapter aims to answer is that of which
statistics of a problem QAOA resolves at a large size. While the Grover driver is
chosen specifically such that only the distribution of a problem is resolved, other
drivers do not see problems so simply, depending on the relationship between values
of the cost function, not simply the distribution thereof.

For the Grover driver, the driver Hamiltonian is a sum of just 2 terms, and since
there are 2p instances of such a driver in a QAOA expectation value, results in an
expectation value summing 22p terms.

For other choices of drivers, as in the case of the more standard, typically used
single-qubit-X drivers, such a sum will then consist of more terms. This number of
terms will depend on the number of qubits in a QAOA instance, therefore encoding
significantly more complexity than in the Grover case. When such a sum over driver
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terms is exponentiated, we can subsequently group terms by order. The single-
qubit-X driver is written:

ĤD =
∑
i

Xi (4.3)

which exponentiates by parameter β to a driver unitary

ÛD(β) = eiβ
∑

j Xj =
∏
j

[Ic+ isXj] (4.4)

where the shorthand s = sin β, c = cos β has been utilized. Importantly, we can
expand these terms and collect their pre-factors by weight, so:

ÛD(β) =
∑
k

cn−w(is)wXk0

0 X
k1

1 . . . Xkn

n , (4.5)

where k is an n-bit number that indexes each possible term, with w = Weight(k) as
the number of bits in k equal to 1, the Hamming weight of k.

We can perform a similar expansion for a step, or line mixer. The line mixer
occurs in the logical subspace in settings such as that of a one-hot encoding of vari-
ables. Typically, combinatorial optimization problems in this thesis utilize binary
variables, which are naturally mapped immediately to qubits. However, if a problem
consists of variables that may take more than two values, a qubit embedding of such
variables must be selected. An efficient option for such a variable, taking L differ-
ent possible values, would be a binary embedding on ⌈log2(L)⌉ qubits. A challenge
here is that clauses on such a variable then tend to be high-weight operations. An
alternative used in a quantum annealing context is to use a unary encoding, using
L qubits for such a variable. Typically, all qubits will be in the state 0, with the
exception of one qubit in the state 1, with this qubit determining the state of the
variable. An alternative has also been explored, using domain walls to denote the
state of the variable, rather than a hot qubit [113]. While, depending on the size of
the variables, this encoding is significantly more inefficient in terms of qubit count,
one can gain the benefit of lower weight interaction terms, which are preferred in
continuous-time contexts such as quantum annealing in which compiled gates are
not possible. So, on a line of L qubits comprising a unary encoded variable, a driver
Hamiltonian consisting of XY interactions can be used to keep a state—initially
in a valid state with a single qubit in state |1⟩—in a number-preserving subspace.
Such Hamiltonians take the form:

ĤLine =
∑
i

XiXi+1 + YiYi+1, (4.6)

and simply move excitations between qubits, rather than changing the number of
qubits in the |1⟩ state. In the single excitation subspace, this Hamiltonian can be
expressed as:

ĤLine =
∑

|i−j|=1

|i⟩ ⟨j|+ |j⟩ ⟨i| , (4.7)

and, when exponentiated, one obtains a unitary of a form:

Û(β⃗) =
∑
d

f(d, β⃗)
∑
i

[
|i⟩ ⟨i+ d|+ |i+ d⟩ ⟨i|

]
, (4.8)
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which contains terms of differing distance d. The idea here is that one may calculate
the performance of QAOA with consideration towards the properties of the problem
with respect to this driver. In particular, in the line mixer case, the arithmetic
distance between two states is the metric of importance. The work of this section
provides progress towards elucidating the relationship between the choice of driver
and the performance of QAOA. By evaluating the performance of drivers in a con-
text in which a problem has no synergy or best-case synergy with the driver used,
one can determine, approximately, the performance of QAOA on problems, given
their size-independent properties. This approach, which simplifies problems to their
asymptotic statistics, could be important for determining how large-scale QAOA
will perform, compared to classical algorithms, and may provide a good method for
optimizing the variational parameters of QAOA circuits. This could allow one to
determine which drivers should be used for a given problem type.

4.4 Single-Qubit Drive

Single-qubit-X drivers are the most practical mixers for QAOA, since they present
a choice with minimal cost-to-compile on a near-term quantum computer, in the
context of which, such gates are practically free. To examine how they see the
problems for which we use them, we can express the expectation value of the problem
Hamiltonian under the QAOA state as expressed in Chapter 3, in terms of the
weight of different operators. We first carry out these calculations at depth 1 and
then generalize this to depth 2 and up to arbitrarily large circuit depth.

4.4.1 Depth 1

At depth 1 we can write the average solution quality generated by QAOA with
single-qubit-X drivers as:

E1(γ, β) = ⟨ĤP⟩γ,β = ⟨+| Û †
P(γ)Û

†
D(β)ĤPÛD(β)ÛP(γ) |+⟩ (4.9)

and into this expression, we can substitute the expression for the single-qubit-X
driver to produce:

E1(γ, β) =
∑

z−1,z0,z1

⟨+| e−iγC(z−1) |z−1⟩ ⟨z−1|
[
Ic− isX

]n
· C(z0) |z0⟩ ⟨z0|

[
Ic+ isX

]n
eiγC(z1) |z1⟩ ⟨z1|+⟩ . (4.10)

Simplifying this with the identity ⟨z|+⟩ = 1√
N
, one obtains:

1

N

∑
z−1,z0,z1

e−iγC(z−1) ⟨z−1|
[
Ic− isX

]n
C(z0) |z0⟩ ⟨z0|

[
Ic+ isX

]n
eiγC(z1) |z1⟩ . (4.11)

Expanding the brackets, one obtains 22n terms. These can be indexed by two indices
kbra, kket. The indices are associated with the terms produced in the expansion, with
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the jth bit of kbra, denoted k
j
bra, representing whether the I or X operators feature

in the jth qubit. Therefore:

E1(γ, β) =
1

N

∑
kbra,kket

[
cn−wbra(−is)wbracn−wket(is)wket

]
·
∑

z−1,z0,z1

e−iγC(z−1) ⟨z−1|Xk1braXk2bra . . . XknbraC(z0)

· |z0⟩ ⟨z0| eiγC(z1)Xk1ketXk2ket . . . Xknket |z1⟩ . (4.12)

The X operators in each term can be applied to the outer and inner bra and ket
respectively, flipping a corresponding bit in the index z1 or z−1. We use the notation
⊕ to denote the bitwise xor of the indices, that is, for each bit, a ⊕ b is 0 if a = b
and 1 otherwise.

E1(γ, β) =
1

N

∑
kbra,kket

[
cn−wbra(−is)wbracn−wket(is)wket

]
·
∑

z−1,z0,z1

e−iγC(z−1) ⟨z−1 ⊕ kbra|C(z0) |z0⟩ ⟨z0| eiγC(z1) |z1 ⊕ kket⟩ (4.13)

one can then perform an arbitrary change of variable, with z1 → z1 ⊕ kket and
z−1 → z−1 ⊕ kbra. This change of variable moves the shift k from the index zbra/ket
to inside the respective cost function occurring in the exponential. This results in:

=
1

N

∑
kbra,kket

[
cn−wbra(−is)wbracn−wket(is)wket

]
·
∑

z−1,z0,z1

e−iγC(z−1⊕kbra)C(z0)e
iγC(z1⊕kket) ⟨z−1|z0⟩ ⟨z0|z1⟩

=
1

N

∑
kbra,kket

[
cn−wbra(−is)wbracn−wket(is)wket

]
·
∑
z

C(z)eiγ
[
C(z⊕kket)−C(z⊕kbra)

]
. (4.14)

Which is a sum over 22n terms, each of which contains, also, a sum over 2n possi-
ble strings, expressing the problem Hamiltonian’s expected value. In this way, one
obtains terms consisting of first a factor depending on the driving variational param-
eter β. We refer to this factor as the driver factor. The second factor, containing the
sum over strings and depending on the cost function’s variational parameter γ, we
name as the problem factor. So, the problem factor is denoted P = P (γ, kbra, kket),
so

P (γ, kbra, kket) =
1

N

N−1∑
z=0

C(z)eiγ
[
C(z⊕kket)−C(z⊕kbra)

]
(4.15)

and a driver factor is denoted by B = B(β, k) with

B(β, k) = cn−wk(is)wk . (4.16)

Where the full expectation value is a sum over the product of these two quantities
for different kbra, kket. Consolidating the driver factors for each shift to a single term,
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one can write D = B(β, kbra)
†B(β, kket)

E1(γ, β) =
∑

kbra,kket

D(β, kbra, kket) · P (γ, kbra, kket). (4.17)

In Chapter 3, the same decomposition was made, albeit with far fewer terms (2
rather than 22n). The problem factor in the Grover-driven case was also simpler, as
could only depend on the characteristic function of the problem’s pdf by symmetry.
The procedure taken in the context of the Grover driver was to approximate the sum
in the problem factor as an integral, resulting in an analytic expression independent
of the size of the problem solved. In this chapter, we aim to do the same for the
more complex problem factor derived above.

There are further simplifications we can make to the expression for E1 to reduce
the number of terms to be calculated in the sum. Firstly, if two shifts are zero,
then the problem factor integral evaluates to the mean value c̄, which can, itself, be
arbitrarily set to zero. The same occurs in the case that kbra and kket take the same
value. This is evident since:

P (γ, k, k) =
∑
z

C(z)

N
eiγ[C(z⊕k)−C(z⊕k)] =

∑
z

C(z)e0iγ

N
= c̄→ 0. (4.18)

Secondly, by considering that E†
1 = E1, we can pair terms to find pairs for which

imaginary parts cancel leaving the real contribution to the expectation value. Note,
taking the complex conjugate of the expression is equivalent to swapping the values
of kbra and kket in a given term in the definitions of P and D. As such, terms and
their complex conjugate pair can be collected in the sum, allowing us to recast the
sum as fewer terms, so:

E1(γ, β) = 2
∑

kbra<kket=0

Re{D(β, wbra, wket) · P (γ, kbra, kket)}, (4.19)

which has been reduced to contain N(N − 1)/2 terms. Of course, the ultimate goal
of an analytical procedure for calculating the expected value should be at worst to
provide an algorithm scaling polynomially in the number of qubits. The expression
above is still exponential in the number of qubits, so further processing must occur
to reduce this.

It is reasonable to expect that such processing is possible, due to the symmetry
inherent in the formula. All driver factors of identical weight shifts are identical,
resulting in an averaging of corresponding problem factors. To collapse the exponen-
tial complexity here to one of polynomial complexity, one needs to find an expression
for the expected value of the problem factor, averaging over all possible shifts corre-
sponding to a given weight. For example, for n qubits, a term with weights wk, wb

has
(
n
wk

)
·
(
n
wb

)
possible shifts, over which one should average. The calculation of

such an expectation value should then be efficient, scaling also at most polynomially
in the number of qubits.

4.4.2 Depth 2

At depth 2 we can write down the expected value of the problem Hamiltonian as:

⟨ĤP⟩γ1,γ2,β1,β2 = ⟨γ1, γ2, β1, β2| ĤP |γ1, γ2, β1, β2⟩ , (4.20)
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which, inserting the expressions for the problem and driver Hamiltonians, results in:

E2(γ1, γ2, β1, β2) = ⟨ĤP⟩γ⃗,β⃗
= ⟨+| Û †

P(γ1)Û
†
D(β1)U

†
P(γ2)Û

†
D(β2)ĤPÛD(β2)ÛP(γ2)ÛD(β1)ÛP(γ1) |+⟩

=
∑

z−2,z−1,z0,z1,z2

⟨+| e−iγ1C(z−1) |z−1⟩ ⟨z−1|
[
Ic1 − is1X

]n
e−iγ2C(z−2) |z−2⟩ ⟨z−2|

[
Ic2 − is2X

]n
C(z0) |z0⟩ ⟨z0|

[
Ic2 + is2X

]n
eiγ2C(z2) |z2⟩ ⟨z2|

[
Ic1 + is1X

]n
eiγ1C(z1) |z1⟩ ⟨z1|+⟩ .

(4.21)

From here, one may substitute ⟨z|+⟩ = N−1/2 and expand the driver unitaries into
sums over shifts, each of which takes a value between 0 and 2n. Again, we introduce
a driver-related function:

B(kj) = cos(βj)
n−wk,j(i sin βj)

wk,j . (4.22)

We also introduce the notation in which negative indices of k refer to those in the
bra, with positive indices referring to those in the shift of the ket. So kbra,i → k−i
and β−i = −βi. So

=
1

N

∑
k−1,k1,k−2,k2

∑
z−2,z−1,z0,z1,z2

e−iγ1C(z−1) ⟨z−1|B(k−1)X
k1−11Xk2−1 . . . Xkn−1

e−iγ2C(z−2) |z−2⟩ ⟨z−2|B(k−2)X
k1−2Xk2−2 . . . Xkn−2

C(z0) |z0⟩ ⟨z0|B(k2)X
k12Xk22 . . . Xkn2

eiγ2C(z2) |z2⟩ ⟨z2|B(k1)X
k11Xk21 . . . Xkn1 eiγ1C(z1) |z1⟩ . (4.23)

We can simplify this as in the depth-1 case by applying the X operators outwards
from the center of the expression. The operators have the action of permuting the
labels in their outermost bra or ket. Therefore the expression can be written as:

=
1

N

∑
k−1,k1,k−2,k2

∑
z−2,z−1,z0,z1,z2

B1(k−1)B2(k−2)B
†
2(k2)B

†
1(k1)

e−iγ1C(z−1) ⟨z−1 ⊕ k−1|z−2⟩ e−iγ2C(z−2) ⟨z−2 ⊕ k−2|z0⟩C(z0)
eiγ2C(z2) ⟨z0|z2 ⊕ k2⟩ ⟨z2| eiγ1C(z1) |z1 ⊕ k1⟩ . (4.24)

Where the orthogonal bra-ket terms here are equivalent to Kronecker delta functions
between their arguments and can be written as:

=
1

N

∑
k−1,k1,k−2,k2

∑
z−2,z−1,z0,z1,z2

B1(k−1)B2(k−2)B
†
2(k2)B

†
1(k1)

e−iγ1C(z−1)δz−1⊕k−1,z−2e
−iγ2C(z−2)δz−2⊕k−2,z0C(z0)e

iγ2C(z2)δz0,z2⊕k2e
iγ1C(z1)δz2,z1⊕k1 .

(4.25)
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Now, to simplify the expression and evaluate the Kronecker delta functions, one
can make changes of variable z0 → z, z−1 → z−1 ⊕ k−1 ⊕ k−2, z−2 → z−2 ⊕ k−2,
z1 → z1 ⊕ k1 ⊕ k2, z2 → z2 ⊕ k2. This change moves the shifts from the Kronecker
delta functions to the instances of the objective function, allowing the sum to easily
be collapsed to a single z variable as:

=
1

N

∑
k⃗

D(β⃗, k⃗)

·
∑
z

C(z)e−iγ1C(z⊕k−1⊕k−2)+iγ1C(z⊕k2⊕k1)−iγ2C(z⊕k−2)+iγ2C(z⊕k2). (4.26)

Where the driver factor D is a product of all factors B. Which has a problem
factor with four terms in the exponent rather than the two seen in the p = 1 case.
Exchanging the shifts in the bra and ket has the effect of conjugating the expression,
and, therefore, the sum can be re-cast accordingly.

4.4.3 Arbitrary Depth

At this point the pattern extending the expression to arbitrary depth becomes clear,
and this can be written as:

Ep(γ⃗, β⃗) =
∑

k⃗bra ,⃗kket

D(β⃗, k⃗bra, k⃗ket) · P (γ⃗, k⃗bra, k⃗ket). (4.27)

This can be simplified somewhat first by considering that, as in Chapter 3, if the
shifts are all the same, the problem factor will simply evaluate to the mean value
of the cost function, which can be arbitrarily set to zero. Secondly, we can also
pair terms here such that we only consider a sum over real values. Exchanging the
values of k⃗bra, k⃗ket has the same effect as taking the complex conjugate, so we can
reduce the number of terms by a factor of two by grouping terms and their complex
conjugate. As such, we can express the sum as:

Ep(γ⃗, β⃗) =
∑

k⃗bra<k⃗ket

2Re
{
D(β⃗, k⃗bra, k⃗ket) · P (γ⃗, k⃗bra, k⃗ket)

}
. (4.28)

In which the notation k⃗bra < k⃗ket can be understood as considering k⃗bra/ket as an pn
bit number for which the comparator > is defined. Alternatively, one can remove
the factor of two in front of the real value and make the replacement <→≠.

This expression scales exponentially in n and p, but critically we can consolidate
many of these terms such that the expression is only polynomial in n. Here, the
driver factor can be expressed as:

D(β⃗, k⃗bra, k⃗ket) =

p∏
i=1

[
cos βi

n−w−i(−i sin βi)w−i cos βi
n−wi(i sin βi)

wi
]
, (4.29)

with the problem factor as:

P (γ⃗, k⃗bra, k⃗ket) =
∑
z

C(z)ei
∑

i γi[C(z⊕si)−C(z⊕s−i)], (4.30)
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where the substitutions:
si = ki ⊕ ki+1 . . .⊕ kp (4.31)

and
s−i = k−i ⊕ k−i−1 . . .⊕ k−p (4.32)

have been made. So the problem factor depends on 2p shifts that accumulate. And,
subsequently, the problem of approximating this sum can be reduced to taking the
expected value of the quantity

P (γ⃗, k⃗) ≈ E
[
cei

∑
j γj[csj−cs−j ]

]
(4.33)

for which we need to know the pdf describing the distribution of the cost function
C denoted by f(C = c), alongside the conditional pdfs describing the likelihood of
obtaining a cost csi after starting at a string with cost function value c and making a
move described by the permuting string si. Since we take the difference of variables
described by such conditional pdfs, we must also determine the covariance matrix
of the 2p shifts’ associated random variables.

4.5 Evaluating Problem Factors Analytically

The problem factor sum can be approximated as an integral over continuous vari-
ables. As in Chapter 3, we can use the following substitutions and, therefore ap-
proximate the problem factor in the continuum limit. This continuum limit problem
factor would be expected to be accurate for modestly large n due to the exponential
scaling of the number of terms in the sum.

Treating the quantity C(z) as a random variable c, we can first substitute into
the sum, the quantile distribution function, and change the variable of integration,
resulting in an expression in terms of the pdf describing the objective function.

1

N
= δp→ dp, C(z) → F−1(p) (4.34)

which when applied to the problem factor at p = 1 yields:

P =
N−1∑
z=0

F−1(p)eiγ
[
C(z⊕kket)−C(z⊕kbra)

]
δp

n→∞−−−→
∫ 1

0

F−1(p)eiγ
[
ckket−ckbra

]
dp

=

∫ ∞

−∞
cf(c)eiγ

[
ckket−ckbra

]
dc = Ec

[
ceiγ(ckket−ckbra )

]
. (4.35)

This expression, compared to that derived in Chapter 3, has an extra factor, there-
fore, the problem factor is not easily replaced by a simple characteristic function
as was the case when the Grover driver was used. The expression depends on two
quantities ckket and ckbra , which represent the value of the cost function after the
input string yielding the objective function value c is permuted by the shifts kbra
and kket.

We can, also, model the quantities ckket and ckbra as continuous random variables.
These are, however, not independent of the value of c. Therefore, these are condi-
tional distributions, describing the likelihood of the problem’s objective function
taking the value ck given it takes value c and has its index modified by string k.
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Using the law of the unconscious statistician, we may take the expectation over the
random variables to write the expected value of the integral as

P (kket, kbra, f, f|c,kket,kbra) = Eckket ,ckbra

[∫ ∞

−∞
cf(c)eiγ

[
ckket−ckbra

]
dc

]
=

∫∫∫
R3

cf(c)eiγ
[
ckket−ckbra

]
fkbra(ckbra , ckket , c)fkket(ckket , ckbra , c) dc dckket dckbra .

(4.36)

A quantity that can be evaluated independently of the problem size n with, however,
dependence on the size of the problem entering via the exponentially large number
of potential shifts on which the problem depends.

Complicating the evaluation of this integral is the non-independence of the quan-
tities ckket and ckbra . Therefore, rather than performing the integrals over both
random variables, it will normally make sense to perform the sum of the random
variables, consolidating them to a single, independent variable, before performing
the integration. The extension of this to higher depth simply adds more terms to
the exponent, depending on an increasing number of shifts.

Regardless of the depth, the problem factor for a set of shifts then takes the form
of an expectation value of the quantity

P = E
[
ceiX

]
(4.37)

in which, the quantity X is a random variable constituted by the sum of a num-
ber 2p other, not necessarily independent, random variables. Assuming that the
sum consists of Gaussian-distributed random variables, the variable X will, itself,
be Gaussian. However, making no assumptions about the specific way that X is
distributed, but that it is distributed with mean µ and variance σ2, with pdf de-

scribed by
fX(x−cµ

σ )
σ

. Then, the problem factor can be expressed as follows, with the
dependence on the specific shifts, on which is dependent, contained within the mean
and variance of the variable X. The expected problem factor can be written as∫∫

R2

cf(c)fX(x, c)e
ix dxdc =

∫∫
cf(c)

fX
(
x−cµ
σ

)
σ

eixdxdc (4.38)

where fX is normalized to have mean 1 and variance 1 and describes the form of the
random variable X. We have defined u = x−cµ

σ
such that x = uσ+cµ. This assumes

that the dependence of X on c is entirely mediated via the mean and variance of X,
such that this change of variables decouples the dependence. Then, we can write

=

∫∫
cf(c)fX(u)e

i(uσ+cµ)dudc =

∫
cf(c)eicµdc

∫
fX(u)e

iuσdu. (4.39)

To account for the non-exponentiated instance of c one can differentiate under the
integral with respect to the mean value of X (in units of c), µ, then, one obtains:

−i∂µ
∫
f(c)eicµdc

∫
fX(u)e

iuσdu (4.40)

for which one can recognize that the expression is that of two characteristic functions,
though with differing frequency domain variables. one obtains:

−iσ∂µΓ(µ)ΓX(σ). (4.41)
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Assuming the two characteristic functions are both those of Gaussian distributed
variables, one can then substitute the standard expression for the characteristic
function of a Gaussian with

Γ(γ) = e−
1
2
γ2 , (4.42)

and obtain:

iµe−
µ2+σ2

2 . (4.43)

For σ = 0 the Gaussian over x tends to a Dirac delta distribution, but, no special
treatment is required and this evaluates unproblematically to the above. It might
be expected that for high-depth QAOA, where all parameters are non-zero, thus,
in a non-trivial region where one might expect optima to occur, the central limit
theorem might result in any X taking Gaussian form even if the quantities from
which it is derived are not. This would follow from the central limit theorem, given
X would take its value from a large sum of random variables.

4.6 Monte Carlo Estimation of Expected

Solution Quality

While other works compute the expectation value of QAOA states by manual com-
putation of a multinomial sum [87, 90]. In this section, an alternative procedure
based on sampling terms from the objective function is described. The overarching
logic here is that while the number of terms in the QAOA expectation derived in
the previous sections scales exponentially as N2p, one would expect that the overall
complexity of the formula is not increasing, since, properly normalized, increasing
problem sizes will necessarily tend to a limiting value.

A Monte Carlo technique takes some integral, or sum, given by

A =

∫
Ω

f(x⃗) dx⃗ ≈
∑
x⃗

f(x⃗i)δx
d (4.44)

and approximates the integral by sampling from M points x⃗i ∈ Σ. Given uniform
sampling, the value of the integral can then be approximated as

A ≈ 1

M

M∑
i=1

f(x⃗i). (4.45)

To avoid frequent sampling regions of the problem in which an integrand is very
small, one can incorporate importance sampling into this procedure, in which case,
a co-ordinate x⃗i is sampled with likelihood described by a pdf g(x⃗i). Then the
integral can be approximated by:

A ≈ 1

M

M∑
i=1

f(x⃗i)

gi(x⃗i)
, (4.46)

in which terms contribute less according to how frequently they would be sampled.
All that remains for this method is the choice of function designating the importance
of different terms. There exist algorithms for optimizing such prior distributions,
such as the vegas algorithm [114], in which g(x⃗i) is assumed to be separable in
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the coordinates. By adaptively improving the prior, the algorithm learns to sample
more frequently in areas for which the integrand is concentrated.

Ultimately, in the application of this method to QAOA, we wish to isolate the
dependence on the size of the problem in question from the complexity of evaluating
the expectation value of the QAOA state for this problem. For problems in this sec-
tion, in the context where the statistical properties of the problems are those which
matter, not the finite-size fluctuations of an instance of a problem, this should be
possible. Through some abuse of notation, one might imagine that the expectation
value of the problem Hamiltonian at infinite size can be expressed in the form of an
integral over continuous weights as:

Ep(γ⃗, β⃗) =

∫ n∏
i=1

(
n

wi

)(
n

w−i

)
Re
{
D(w⃗ket, w⃗ket, β⃗) · E(P (w⃗ket, w⃗ket, γ⃗))

}
dw⃗bradw⃗ket.

(4.47)
With some continuous generalization of the combinatorial factors, which, however,
are not necessitated by a sampling approach. This quantity, which would be ex-
pected to be asymptotically static with n, therefore should require a number of
samples independent of the size of a problem.

An alternative application of Monte Carlo methods would be to evaluate the
expected value of the problem factor for a given set of weights. One can use the
Monte Carlo approach to calculate expectation values of the problem factor given a
set of shift weights, giving

Ew⃗bra,w⃗ket

[
P (k⃗bra, k⃗ket)

]
. (4.48)

This would require a number of iterations per each possible allocation of 2p weights
and therefore the evaluation would scale as O(n2p), assuming that the required num-
ber of samples to obtain a good approximation of the problem factor is constant.
Especially when assuming a well-informed prior of how the problem factor is dis-
tributed with respect to shifts, one would expect this constant scaling of required
samples to be the case.

4.7 Applying the Method to Classes of Problem

Now we have a frame for expressing QAOA expectation values in the context of
problems as random variables, we can find problems for which the problem factor
is calculable. That is, assuming one can find an expression for the problem factor
in the continuum limit, by determining expressions for the probability density func-
tions describing the random variables for a given set of shifts, and then computing
the integral over weights. As in the Grover case, a respectable application of this
method would find problems for which the problem statistics are known, while still
constituting a problem that is computationally interesting and hard.

4.7.1 The Random Cost Model

For the simplest possible application of this method, we can calculate the perfor-
mance of X-driven QAOA on problems that do not have any structure with respect
to the driver. In this context, no structure refers to the fact that the conditional
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distribution describing the probability of finding a state of cost c′, given a move
from a state of cost c, is the same as the global pdf. It does not matter where
you start from, if you make any non-zero move, this is equivalent to re-sampling a
state randomly. As previously introduced in Chapter 3, this is named the random
cost model. We define the pdf for the random cost model to be Gaussian, though
any normalized distribution could be used. Using a Gaussian distributed variable,
however, carries the advantage that sums of such independent Gaussian distributed
variables are also Gaussian. So,

f(c) =
1√
2π

e
−c2

2 where

∫ ∞

∞
f(c) dc = 1. (4.49)

We can also define the conditional pdf defining ck identically for non-zero shifts. In
terms of clauses on n qubits, the random cost model can be attained via a sum over
all possible Pauli-Z-based strings, so:

ĤRCM =
2n∑
i=0

giZ
i1Zi2 . . . Zin , (4.50)

where subscripts j on ij denote the jth bit of the index i. The weights gi, in this
case, would need to be taken to be Gaussian distributed with mean 0 and variance
1
N

such that the distribution of objective function values is distributed with the
standard parameters. For a shift k ̸= 0, the cost function has no dependence on the
starting position and results in a pdf equivalent to that of randomly sampling a new
state. So,

fk ̸=0(ck|c) = f(ck) =
1√
2π

e
−c2k
2 where

∫ ∞

∞
f(ck) dck = 1. (4.51)

When a shift k = 0, the variable ck is, of course, unchanged from c and would have
a pdf described by a Dirac delta function centered on c, so

fk=0(ck|c) = δ(ck − c). (4.52)

Given such a pdf and conditional pdf, the task remains to evaluate the expectation
value of the problem factor.

Depth 1

At p = 1 there is one problem parameter γ = γ1. The problem factor depends on
two shifts, kbra and kket. The random variable X for which we take an expectation
value is therefore:

X = γ(ckket − ckbra). (4.53)

To understand this random variable, we can consider all possible cases of the shifts.
One can first note that if both of kbra, kket are the same, the difference of the

variables ckket − ckbra is zero or described by a Dirac delta distribution centered at
zero. In this case, the variable describes the difference in the values of a cost function
when applying two identical sets of flips. Of course, with the same flips, one arrives
at the same location and the difference between the value of the cost function and
itself at this location is zero. Via Equations 4.41 and 4.43, this is also apparent as
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the mean of the variable X is zero, or the mean value of the cost function which can
be trivially set to zero. So,

P (γ, k⃗bra = k, k⃗ket = k) = 0. (4.54)

In the less trivial case in which both kbra, kket are non-zero and non-equal, one notes
that the variances and means of these Gaussian sums, since they are identically
independently distributed, are equal. As the means are equal, the difference of these
mean values is zero, and therefore via Equation 4.43 the problem factor evaluates
to zero. Essentially, since the random variable X is completely independent of the
value of the start point c, the integrals are separable from the odd integral over
symmetric bounds in c, therefore evaluating to the mean value of 0.

This leaves the final case in which one of kbra, kket is zero and one is non-zero.
These terms will have mean µ = ±γ depending on which term is non-zero and
variance γ (in units of c) since the non-zero is a normalized Gaussian centered at
zero, with the zero shift term being a Dirac delta distribution centered at c. So,
Equation 4.43 dictates that the problem factor evaluates to:

±iγe−γ2 . (4.55)

Putting these possible cases together, one can write the full, case-wise expression
for the problem factor as:

P (kbra, kket, fc, f|c,k) =


0 if kbra = kket,

0 if kbra ̸= 0 and kket ̸= 0,

iγe−γ
2
if kbra = 0 and kket ̸= 0,

−iγe−γ2 if kket = 0 and kbra ̸= 0.

(4.56)

And, so, we can evaluate the structure factor for every possible pair of shifts.

One then needs to combine this with the driver factor and evaluate the full sum
over shifts. For this specific case, we can re-factorize to evaluate all terms as a single
algebraic expression. While in this case, it is possible to factorize the full expression,
it is expected that this is not typical for more complicated problems and at higher
depth. It would, in general, be worthwhile to obtain QAOA expectation via this
method even in the case that we could simply reduce the size of the sum from an
exponential number of terms to a number polynomial in the number of qubits, so
such a compact result is not essential.

Substituting the analytical expression for the problem factor into the full expres-
sion, we obtain:

E1(γ, β) =
∑

kbrakket

[
cn−wbra(−is)wbracn−wket(is)wket

]
· P (kbra, kket, fc, f|c,k) (4.57)

in which we can remove terms that evaluate to zero as per Equation 4.56. This
results in a set of 2n − 1 terms and their complex conjugates:

E1(γ, β) =
N−1∑
kket=1

[
cn−wket(is)wket

]
cniγe−γ

2

+ c.c. (4.58)
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To evaluate all such terms in a single formula, we can note that the β dependent
pre-factor can be expressed using Euler’s formula as

[c+ is]n =
n∑

w=0

(
n

w

)
[cn−w(is)w] = einβ, (4.59)

and, therefore, subtracting the zero weight term to match the initial indices of the
sums above and below, one obtains

N∑
kket=1

[
cn−wket(is)wket

]
= einβ − cos βn. (4.60)

When substituted, this results in[
i
n−1∑
k=1

cn−w(is)w − i
n−1∑
k=1

cn−w(−is)w
]
· cnγe−γ2 =

[
ieinβ − ie−inβ

]
· cnγe−γ2

= 2 sin(nβ) cos(β)nγe−γ
2

. (4.61)

This formula is the analytically derived solution quality for a QAOA state for the
random energy model at p = 1. The formula is plotted in Figure 4.2 alongside
the convergence of finite-size instances to the analytically calculated landscape. As
this expression is separable, to find optimal parameters for this formula, one may
simply differentiate the expectation value with respect to the variational parameters
and evaluate this to zero. For γ this optimal value is the same as the random cost
model for Grover-driven QAOA in Chapter 3 with a maximizing value γ = 1√

2
. The

maxima for β will occur where

∂

∂β
sin(nβ) cos(β)n = 0 (4.62)

which some algebra determines is satisfied at points:

β∗ =
2πm+ π

2n+ 2
(4.63)

for integer m. For large n, with m = 0 corresponding to the first maxima, one
determines that

β∗ ≈ π

2n
(4.64)

so
sin(nβ∗) cosn(β∗) ≈ sin

(π
2

)
cos
( π
2n

)n
≈ 1. (4.65)

Therefore, QAOA at depth 1 on random cost models obtains a mean sampled solu-
tion quality of

E1(γ
∗, β∗) =

√
2

e
. (4.66)

This is identical to the performance of the Grover-driven version of the algorithm in
Chapter 3 for an identical problem. The expectation-maximizing driver parameter,
however, is smaller for large n in the case of single-qubit-X driven problems. This
could potentially result in issues with the desired precision for the single-qubit gate,
as increasing problem sizes would require increasingly shorter-durationX-gates. The
convergence of finite-size instances to these analytically determined angles is seen in
Figure 4.1.
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Figure 4.1: Generated instances of unstructured Gaussian problems are used to
find optimal QAOA parameters at p = 1. The parameters concentrate on the
theoretically predicted values for increasing problem sizes.

Depth 2

Computing the expectation value of QAOA applied to the random cost model at
depth 2 results in the need to compute a problem factor in which the exponentiated
random variable X contains four terms rather than the previous 2, alongside an
additional γ parameter. And so, one is required to calculate the mean and variance
of the sum of four terms X where:

X = γ1
[
cs1 − cs−1

]
+ γ2

[
cs2 − cs−2

]
. (4.67)

The calculation of the mean and variance of this property is simplified by the
Gaussian nature of the variables which are summed, but complicated by the non-
independence of these variables. For example, if the shifts associated with a pair of
these ck’s are equal, they are co-dependent, with mean values that add, but variances
that do not, whereas, in the case that the shifts are different, their distributions are
independent.

The mean does not depend on the independence of the variables and can be
evaluated as:

⟨X⟩ = cγ1(δs1,0 − δs−1,0) + cγ2(δs2,0 − δs−2,0) = cµ. (4.68)

To compute the variance of X, we can sum over the potential shifts k. For each k, we
add together the factors that contribute to that shift, then square the contributions
from each shift. This is because the variances for independent variables combine
additively, with each shift composing an independent random variable. That is,

Var(aX1 + bX2) = a2Var(X1) + b2Var(X2), (4.69)
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Figure 4.2: For p = 1 the landscape can be seen to converge to that of the large-n
limit for n = 3, 5, 15 for random cost models. As the landscape compresses in the
driver-parameter β as the number of qubits increases, the x-axis is scaled by the
qubit number to keep the main features in the landscape visible. The landscape
exhibits the same maxima as that of the Grover-driven version of Chapter 3.

and so

Var(X) = σ2 =
∑

k∈{k1,k−1,k2,k−2}

[
γ1
(
δk1,k − δk−1,k

)
+ γ2

(
δk2,k − δk−2,k

)]2
. (4.70)

So, for depth 2, there are at most 4 shifts to consider for each term (There is no
contribution to the variance if the shift we are considering has no overlap with those
of the term). Of course, we don’t want to calculate each of these exponentially
many terms independently. For p = 1 we were able to case-by-case consider the
possibilities, however, for p = 2 the number of cases is significantly larger. Firstly,
if no shift is non-zero, the integral evaluates to zero. If all shifts are non-zero then
the integral evaluates, also, to zero. This means one, two, or three shifts must be
non-zero to give non-zero contributions. There are, then, many cases that must be
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categorized by their mean and variance. While not addressed in this thesis, this
combinatorics problem is expected to be tractable in polynomial time on a classical
computer.

Arbitrary depth

To evaluate the structure factor at arbitrary depth, a similar procedure applies,
though, with n2p different weight combinations, or N2p combinations of shifts to
consider. For a set of shifts, one has a random variable consisting of a sum over 2p
shifts. As in the previous case, the problem factor would be zero in cases where all
shifts are non-zero, and, therefore, one would expect the expectation value of the
objective function to be constituted largely from a relatively small fraction of the
space of possible shifts. This is, therefore a pathological case for the use of Monte
Carlo techniques with random sampling, as one should know exactly where the non-
zero expectation is concentrated in order to approximate the sum with a number of
queries scaling sub-exponentially in the number of qubits of the problem.

To evaluate QAOA performance on random cost models, one could pick a prior
distribution of where we expect the large elements of the expectation value to lie,
given what we know about the problem. That is, we should sample from a combina-
tion of weights in the QAOA expectation value in Equation 4.47 where one expects
the contribution to be non-zero. Taking intuition from the p = 1 case, this should
be cases in which one or more of the weights are zero.

Implications

In Chapter 3, we demonstrated that we can calculate the performance of structure
agnostic drivers known as Grover drivers when they are used for QAOA. In the
previous section, we have moved this structurelessness to the problem, while still
using the usual single-qubit-X driver of QAOA. We have shown explicitly that at
p = 1, with Gaussian problems, the performance of Grover-driven QAOA is identical
to that of X-driven QAOA, presuming that the problems have no structure relative
to the driver, in the single-X case, and have any structure, but with identical global
pdf, in the Grover case.

4.7.2 Generalized Gaussian Correlation Models

In early work by Mezzard and Gross [115], the properties of k-spin models were
investigated. This followed from work by Derrida [116] in which the large-k limit of
such models results in properties identical to those of random costs. For a Hamil-
tonian given by:

Ĥ =
∑

Weight(l)=k

glZ
l1Z l2 . . . Z ln , (4.71)

where gl takes non-zero values for terms l with k non-zero bits. Derrida sets the
coupling values with pdf

f(gl) =

√
nk−1

πJ2k!
exp

[
−g

2
l n

k−1

J2k!

]
. (4.72)
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That is, the values are normally distributed with mean 0 and variance 2J2k!
nk−1 . The

probability of sampling a random state with energy c, in the large n limit can then
be written as:

f(c) =
1√
nπJ2

exp

[
− c2

J2n

]
. (4.73)

Which is, in fact, independent of k1. The joint probability for finding two states
with costs c1, c2 can be written in terms of a normalized distance between the two
states

q = 1− 2w

n
(4.74)

where w is a number of bit flips separating strings with values c1 and c2, and so, is
written as:

f(c1, c2, q) =
[
nπJ2(1 + qk)nπJ2(1− qk)

]− 1
2

· exp
[
− (c1 + c2)

2

2n(1 + qk)J2
− (c1 − c2)

2

2n(1− qk)J2

]
. (4.75)

This joint pdf does not depend explicitly on the configuration of a given spin, only
the cost thereof, and the Hamming distance separating the two. Derrida showed
that in the limit of large k, the joint probability distribution tends to separability.
That is, for strings that are neither identical nor the negated version of the other,
the probability that they will take given energy is independent of their distance,
which is the key property defining the random cost model. Therefore, from this,
one would expect the QAOA parameters obtained for the random cost model to be
valid for k-spin problems with high k.

One observation one could make here is that in order to keep a constant random
sampling pdf, with variance 1, as is used in this thesis2 would be to set J2 = 2

n
.

This means that for a k-spin model, the pre-factor of a given term takes a variance
of 2J2k!

nk−1 = k!
nk .

p = 1

To determine the value of the problem factor associated with this joint pdf, one
should determine the mean of the marginal distribution. So, for a random vari-
able derived via that starting at a value c and moving by a shift of weight w, the
conditional distribution for the value of the new string is given by Bayes theorem,
with:

f(c∗|c) = f(c∗, c, q)

f(c)
, (4.76)

which gives:

f(c∗|c, d) =
[
2π(1 + qk)(1− qk)

]− 1
2 exp

[
− (c+ c∗)2

4(1 + qk)
− (c− c∗)2

4(1− qk)
+
c2

2

]
, (4.77)

1That is, there is a whole class of Gaussian correlated problems for which Grover-driven QAOA
performs equally well, for which, we would expect there is a significant advantage to using X-
drivers.

2In the literature, the variance of the overall pdf is not kept constant. Often, the important
quantity to keep steady is the free energy per spin, and therefore a different convention is used.
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for which the exponent can be factorized as:

f(c∗|c, d) =
[
2π(1 + qk)(1− qk)

]− 1
2 exp

[
− c∗ − qkc

2(1− qk)(1 + qk)

]
, (4.78)

from which a mean and variance can readily be calculated. Determining the problem
factor at depth 1 requires that one takes the difference of two such random variables
determined by two such conditional distributions. One could mechanically calculate
a pdf for such a difference of random variables, though a simpler method is to use
the associated rules for adding the first and second moments of such distributions.

For the mean value of a difference between two variables, one simply takes the
difference of the constituent random variables. Consequently:

E(X − Y ) = E(X)− E(Y ). (4.79)

Computing the expected value of the marginal distribution, one then obtains:

E(c∗) = cqk. (4.80)

from which the mean of the difference of two such variables follows trivially. The
variance of the difference between the two variances is complicated by the fact that
the distributions are not independent and can co-vary. The variance of the difference
of two, non-independent random variables, ck, cb is given by

Var(ck − cb) = Var(ck) + Var(cb)− 2Cov(cb, ck). (4.81)

The variances can be computed from the marginal distribution in Equation 4.77 and
evaluate to:

Var(c∗) = 1− q2k. (4.82)

Which leaves the covariance to be calculated. Clearly, if the two distributions are
totally co-dependent, with the bit-distance between the two variables being zero,
the total variance should go to zero. So with qk = 1 and qb = qk, the covariance
should then be equal to 1 − q2kb . This works for a covariance of qk − qkbq

k
k , has

the appropriate symmetry when interchanging qb and qk. This formula can also be
verified numerically for finite but large n. Therefore, the variance of the difference
is given by

Var(cb − ck) = 2− q2kb − q2kk − 2qk + 2qkkq
k
b (4.83)

and the problem factor can be simply written as per Equation 4.43.

Arbitrary depth

To calculate the problem factor at a higher depth, a more involved calculation of
the variance of the resulting exponentiated random variable in the problem factor
must be performed. While the calculation of the mean value is not complicated by
higher depth, more covariances must be considered.

For a random variable:

X =
∑
i

γi(cb,i − ck,i), (4.84)
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the mean is simple to calculate:

E(X) =
∑
i

γi(E(cb,i)− E(ck,i)), (4.85)

and the variance would be given by:

Var(X) =
∑
i

γ2i (Var(cb,i)− Var(ck,i))

+
∑
i<j

γiγj [Cov(cb,i, cb,j) + Cov(ck,i, ck,j)]−
∑
i≤k

γiγj [Cov(cb,i, ck,j)] , (4.86)

where the covariances depend on the distances between the incident strings. The
calculation of which grows as O((2p)2) and therefore can be efficiently computed
regardless of the depth.

As every term in the mean and variance depends on a distance raised to the
power k, the mean and variance of the k-spin model can be seen to tend to the
values determined for the random cost model, for example, the mean value at depth
1, of cqk, rapidly becomes zero for all non-zero values of q in the limit of large
k, likewise, the mean value of the conditional pdf for the random cost model is a
Dirac delta function centered at zero for non-unity values of q, that is, zero weight
shifts. However, the random cost model retains the symmetry in that applying an
n-bit shift in the random cost model results in a randomized state, whereas, in the
high-k-spin model this Z2, all bit-flip symmetry is maintained regardless of k, with
flipping all bits either resulting no change for even k or multiplication by −1 for the
case of odd-k models.

4.7.3 Free Spins in a Random Magnetic Field

After considering Gaussian correlation models generally, we can focus on the simplest
example, that of the k = 1 case, corresponding to free spins situated in a randomly
varying magnetic field. This problem type is one which, of all k-spin models, has a
maximal structure with respect to the single-qubit basis, while still taking energy
levels that are randomly distributed3. Namely, if one flips a bit, the value of the
cost function changes by a small amount, rather than the total randomization that
occurs in the case of the random cost model.

This model is simple to solve analytically as the QAOA circuit does not induce
any entanglement between qubits. Therefore, it does not represent an interesting
problem to solve on a quantum computer but can be studied as a limiting case
of strong, Gaussian correlations in the cost function. The fact that the model is
analytically solvable makes it a good test case for the method of QAOA performance
via statistics, as the QAOA expected value landscape can be efficiently computed
on a classical computer.

The problem is defined with

ĤP =
∑
i

giZi, (4.87)

3Of course, problems could exist that are extremely structured with respect to the X driver, in
the example of spins in a uniform magnetic field, QAOA will always be able to find a ground state
at depth 1. Interesting problems, however, should be less structured.
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Figure 4.3: The mean (red) and variance (blue) of the cost function value of a
configuration having started at cost c and undergone a number of bit flips determined
by the variable q. As the number of bit flips tends to n/2, the variance of the resulting
cost increases to a maximum, and the mean value of the resulting cost tends to zero.
In the limit of large k, the mean is non-zero only when |q| = 1 and the variance
tends to 1 for all values |q| ≠ 1.

where gi ∼ N (µ = 0, σ2 = 1/n) which results in an overall pdf that is centered
on zero and with unit variance. Random sampling from this problem can therefore
sample solutions with value c with likelihood given by:

f(c) =
1√
2π

e
−c2

2 where

∫ ∞

−∞
f(c) dc = 1. (4.88)

Which is identical to that of the random cost model. The QAOA solution quality
expectation value is possible to compute for this problem since it is a separable
problem with no interactions between qubits. Simply considering the single-qubit
Hamiltonian

Ĥ = gZ, (4.89)

we can write down the single qubit, p = 1 QAOA problem Hamiltonian expectation
as:

⟨+| e−iγZe−iβXgZeiβXeiγZ |+⟩ = g sin 2β sin 2gγ (4.90)

Which is the cost for a single spin. To compute the expected value of the QAOA
problem Hamiltonian for n spins, we can sum many of such terms for differing values
of g. Take g, as in Equation 4.87 to be normally distributed with variance 1/n. We
can find an expected value of the cost per spin. Therefore, we can obtain a value
of the per-spin objective function and then multiply this by the number of spins to
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obtain the total expected QAOA solution quality. As such,

E[g sin 2β sin 2gγ] = sin(2β)

∫ ∞

−∞
gf(g) sin(2gγ) dg, (4.91)

of which the factor of sin(2β) is separable, with the remainder, depending on γ, is a
sine transform of gf(g), otherwise expressible as the a sum of two Fourier transforms∫ ∞

−∞
gf(g) sin(2gγ) dg =

−∂γ
4

[∫ ∞

−∞
f(g)e2igγdg + f(g)e−2igγ dg

]
1

2

d

dγ
e−2σ2γ2 = 2σ2γe−2σ2γ2 . (4.92)

Differentiating this to find the maximal value, one obtains:

γ∗ = ± 1

2σ
(4.93)

from which one multiplies by n and substitutes the optimal parameters to obtain
an objective function value of:

E1(γ
∗, β∗) =

√
n

e
. (4.94)

This means that for this problem, as the number of qubits increases, the perfor-
mance increases as

√
n, even though the distribution of the overall objective function

remains static. This demonstrates a case in which QAOA can exploit problem struc-
ture. With a Grover driver that is not specific to the problem Hamiltonian, the best
one would hope to attain would be an expected value that is static and approaching
a terminal value with increasing n, since in Chapter 3 we have demonstrated that
there is no dependence on n possible.

This single-qubit model is also treated in [117], however, in which the scaling
is considered differently. Importantly, a situation in which each qubit has uniform
Gaussian coupling is used, to calculate the average energy per spin. In this work,
to force comparison to Grover drivers and unstructured problems, we consider the
case in which the overall pdf is static in n.

Problem factors at p = 1

For this model, to compute the relevant moments, we simply need to take the
formulae obtained in Equations 4.80 and 4.83. As such, the value of a cost function
c∗ starting at a state with value c and applying a shift with weight described by q,
the mean value c∗ that results is cq, with variance 1− q2.

To evaluate the problem factor for this problem at p = 1, we must compute
the difference of two random variables derived via separate sets of bit flips as in the
previous section. Considering a start point c and two sets of shifts sb, sk. These shifts
have weights wb, wk. From these weights come three weight, or distance parameters,
qb, qk, q. Where the first and second encode the weights of the permuting strings on
the bra- and ket-related terms. The third represents the bit-distance between the
shifts kb, kk, with wind = kb ⊕ kk and therefore:

q = 1− 2wind

n
, (4.95)
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Figure 4.4: The statistics of a 1000-bit instance of the Gaussian-distributed single-Z
model and its conditional statistics under random 50-bit 200-bit, and 700-bit flips.
The black line denotes the value of a starting string z with histograms demonstrating
the probability of finding a string of a given value after a number of random bit-
flips are applied. The mean and variance of the analytical distributions (solid lines)
match the numerical observations for mean and variance (transparent histograms)
of a cost function starting at a string with a high value of around 2.5 and having 50,
200, or 700 bits flipped out of a possible 1000 bits. One observes that as more bits
are flipped, the distribution tends closer to, and reaches the distribution attained
through random sampling, before decreasing in variance as the fraction of flipped
increases past 50%.

where ⊕ denotes the bit-wise xor of the shifts, essentially the sum of weights of the
two shifts, minus the weight of shifts that are common to both shifts. One considers
two random variables, denoted cb, ck. From which the expected value and variance
of the difference of such variables, multiplied by the problem parameter γ must be
evaluated. This is, again, the procedure in Section 4.7.2, with k set to 1.

E [ck − cb] = E [ck]− E [ck] = (qb − qk)c =
2∆w

n
c (4.96)

where ∆w is the difference in weight of the two permuting strings. For the variances,
one obtains:

Var(cb − ck) = 2− q2b − q2k − 2q + 2qkqb =
4wind

n
− 4∆w

n
. (4.97)

A numerical simulation of the resulting distribution is plotted in Figure 4.4 alongside
the analytically determined Gaussian distributions, demonstrating that the two are
in agreement for large system sizes of 1000 bits. For these computed values, the
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Figure 4.5: The energy landscape of QAOA states prepared for the average case
random single-qubit-energy problem alongside 20 random 10-bit instances and the
analytical average case.

problem factor can then be written using Equation 4.43 as:

P (kb, kk) = i
2∆w

n
γ exp

{
−1

2

(
2∆w

n

2

+

(
4
wind

n
− 4

∆w2

n2

)2
)
γ2

}
. (4.98)

Comparing this problem factor to an analytical formula for the expectation shows
that this analysis holds and the QAOA landscape, as a function of the variational
parameters, is identical using this formula to that determined via the use of Equa-
tion 4.92. That this statistical treatment results in identical values can be seen
in Figure 4.5, in which the result using the asymptotic statistics of the model, is
compared to the landscapes obtained via an analytical shortcut.

This case of statistically-defined, non-interacting spins, is, of course not a hard
problem for QAOA to approach. It does, however, verify that the method of using
problem statistics, calculating problem factors via conditional probabilities, rather
than being an approach determined by individual instances, provides the correct
answer in a test case, and gives a succinct analytical optimal solution.

Problem factors at higher depth

The problem factors for higher depth can be evaluated in a similar fashion, however,
their evaluation is complicated by the exponential number of different shifts to con-
sider in p and n. The analytically determined average QAOA performance is simple
to calculate for greater depth, with, however, an increasing number of sinusoidal
terms to evaluate and integrate over. While not tested in this thesis, this test case
provides a good method for verification of the higher-depth performance of QAOA,
in the problem ensemble average frame.
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4.8 Line Mixers

A second obvious context in which structure might exist, and be exploited by QAOA,
is that structure with respect to the L1 norm on the labels of a combinatorial opti-
mization problem. Under such a norm the driver-metric induced distance between
two states is simply the absolute value of the difference of their labels. Such a norm
corresponds to what we describe as the line mixer, which occurs in the niche context
of one-hot encoded variables. Alternatively, ignoring a need to motivate the investi-
gation of the mixer with a real-world use case, the line mixer provides an alternative
context to probe QAOA performance, in which the metric for the distance between
states is simplified and perhaps more intuitive. Line mixers induce the arithmetic
distance metric on the space of possible solutions, favoring structure that would be
uncommon in typical QAOA problems expressed in qubit operators, but that which
would be easier to identify visually, by simply plotting values of a cost function
against their label z. Structure in this case can be thought of as states with similar
labels, as measured by their absolute difference, having values of the cost function
that are similar.

4.8.1 Driver Factors in Line Mixers

In this section, we will analyze the performance of a restricted QAOA driver, the line
mixer, on statistically defined problems. In this case, we use the driver Hamiltonian:

ĤD =
∑

|i−j|=1

|i⟩ ⟨j|+ |j⟩ ⟨i| (4.99)

Exponentiating this, one obtains the driver unitary:

ÛD(β) = eiβĤD = exp

(
iβ
∑
z

|z + 1⟩ ⟨z|+ |z⟩ ⟨z + 1|
)

=
∑

d∈[−N,N ]

f(d)
∑
z

[
|z⟩ ⟨z + d|

]
, (4.100)

where we are assuming that addition on the state labels applies periodic boundary
conditions. That is, for symmetry, the driver is connected at the ends, resulting in
a driver symmetry in which permuting all values of the cost function by adding a
number to their index, the QAOA expected solution quality is preserved. We can
calculate the pre-factor f(d) via:

f(d) = ⟨z| ÛD(β) |z + d⟩ (4.101)

where the pre-factor must take terms from either an odd or even number of steps.
To obtain f(d), one must add together all of the paths in the expansion that result
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in a term corresponding to a distance of d. So, for f(0) we have

f(0) = 1 + ⟨x|
[
iβ
∑
z

|z + 1⟩ ⟨z|+ |z⟩ ⟨z + 1|
]
|x⟩

+ ⟨x|
[
iβ
∑
z

|z + 1⟩ ⟨z|+ |z⟩ ⟨z + 1|
]
·
[
iβ
∑
z′

|z′ + 1⟩ ⟨z′|+ |z′⟩ ⟨z′ + 1|
]
|x⟩+ . . .

= 1 + 0− 2
β2

2!
+ 0 +

(
4

2

)
β4

4!
+ · · · ≈

∑
k is even

(
k
k
2

)
ikβk

k!
. (4.102)

Which, if the sum is taken to infinity, is a zeroth order Bessel function of the first
kind, denoted J0. We can write down the general expression for even values (at low
β) as:

f(d) ≈
∑

k is even≤d

(
k
k+d
2

)
ikβk

k!
, (4.103)

and odd values as:

f(d) ≈
∑

k is odd≤d

(
k

k+d+1
2

)
ikβk

k!
. (4.104)

To evaluate the binomial coefficients at large k, we can use Sterling’s formula, or a
more accurate approximation, since the values for which we take combinations could
grow large, complicating their calculation.

4.8.2 Expected QAOA Solution Quality for Line Mixers

The treatment of the problem factor for line mixers is very similar to the case of
the X-driven mixer, however with a different structure of shifts. First, we consider
a random cost model, then suggest the forms that models with synergistic structure
might take.

Depth 1

At depth 1, the expectation value of the QAOA problem Hamiltonian is:

E1(γ, β) = ⟨ĤP⟩γ,β = ⟨+| Û †
P(γ)Û

†
D(β)ĤPÛD(β)ÛP(γ) |+⟩

=
1

N

∑
z−1,z0,z1

C(z0)e
−iγC(z−1)eiγC(z1) ⟨z−1| eiβ

∑
z′ |z′+1⟩⟨z′|+|z′⟩⟨z′+1|

· |z0⟩ ⟨z0| eiβ
∑

z′′ |z′′+1⟩⟨z′′|+|z′′⟩⟨z′′+1| |z1⟩
=

∑
dbra,dket

f(dbra)
∗f(dket) ·

∑
z

C(z)e−iγ[C(z+dket)−C(z+dbra)] (4.105)

to which one can apply the treatment of instances of C(z) as random variables,
allowing one to transform the sum over z to an integral in the limit of large n.
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Arbirtary depth

At arbitrary depth, the expectation value can be calculated as follows, firstly, one
writes:

Ep(γ⃗, β⃗) = ⟨ĤP⟩γ⃗,β⃗
= ⟨+| Û †

P(γ1)Û
†
D(β1)U

†
P(γp) . . . Û

†
D(βp)ĤPÛD(βp)ÛP(γp) . . . ÛD(β1)ÛP(γ1) |+⟩

=
1

N

∑
d⃗

p∏
p′=1

[f(dp′)]
∑
z⃗

∑
x⃗

C(z0)e
i
∑

i∈[−p,p] γpC(zp)

· ⟨z−1|x−1⟩ ⟨x−1 + d−1|z−2⟩ ⟨z−2|x−2⟩ ⟨x−2 + d−2| . . . |z−p⟩ ⟨z−p|x−p⟩ ⟨x−p + d−p|
· |z0⟩ ⟨z0|z−p⟩ ⟨z−p|xp−1 + dp−1⟩ ⟨xp−1| . . . |z2⟩ ⟨z2|x1 + d1⟩ ⟨x1|z1⟩ (4.106)

in which the bra-kets evaluate to Dirac deltas and collapse all sums with the excep-
tion of a single index z. Each time we obtain a bra-ket of the form ⟨z + d|z′⟩, one
makes the substitution z → z − d to obtain a simple Kronecker delta. This results
in:

Ep(γ⃗, β⃗) =
∑
d⃗

[
p∏

p′=1

f(dp′)

]
1

N

∑
z

C(z0)e
i
∑p

i=1 γp[C(zp−si)−C(zp−s−i)] (4.107)

in which the shifts si are defined such that

si = di + di−1 + . . .+ d1, s−i = d−i + d−i+1 + . . .+ d−1. (4.108)

This is similar to the expression derived for X-driven QAOA albeit following the
structure of additive distance between state labels. This formula can be treated
with the substitution of random variables in the place of values of C(z) similarly to
the other cases.

4.8.3 Problems for Line Mixers

Taking intuition from the treatment of the X driver, problems for line mixers might
be expected to perform well on should have a structure that results in the value of
the objective function decaying to its average value slowly as steps increasing the
distance are applied. An extreme example in the case of this is the case of the RCM
in which, on average, the value of the objective function decays to the mean after a
single, non-zero step.

Random Cost Model

The random cost model, used in the cases of the Grover and X-driven QAOA can
also be considered in the context of the line mixer. Since the p = 1 performance
of the Grover and X driver have been found to be equivalent in this problem, it is
informative to determine whether this is a general feature, or whether line mixers
perform differently on this problem.
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Depth 1

for p = 1, one must compute the random variable X which is the difference between
two random variables depending on two shifts. The calculation in Equation 4.43 can
also be used here, as the quantities are Gaussian. which means the problem factor
is

iγe−γ
2

, (4.109)

if one shift is zero and the other is non-zero and zero otherwise. This means the full
p = 1 expectation can be expressed as:

E1(γ, β) =
∑
d>0

f(0)∗f(d)iγe−γ
2

+ c.c. (4.110)

In which the γ-dependent part is separable and identical to the single-X case. There-
fore, one must evaluate the sum:∑

d>0

if(0)∗f(d) + c.c. (4.111)

In the previous case, it sufficed to calculate the sum over all distances, which gave
a simple substitutable expression. In the line mixer case, we can write a similar
expression with:∑

d

f(d) =
∑
d

⟨x| ÛD(β) |x+ d⟩

=
∑
d

⟨x| exp
(
iβ
∑
z

|z⟩ ⟨z + 1|+ |z + 1⟩ ⟨z|
)
|x+ d⟩ = e2iβ. (4.112)

Therefore, by subtracting the zero distance value, and taking the sum to infinity for
the limit of large problem sizes, one obtains a p = 1 expected value of:

if(0)∗
∑
d>0

f(d) + c.c = J0(2β) ·
[
e2iβ − J0(2β)

]
+ c.c = 2 sin(2β)J0(2β). (4.113)

We can numerically optimize this formula to determine an optimal β parameter and
expected performance in the limit of large problem sizes. One finds, that, as in
the case of the Grover driver, but in contrast to the case of X-driven QAOA, the
performance and also the optimal angle for line mixers is asymptotically independent
of the number of qubits. This independence occurs since the maxima occur at
a value of β which corresponds to low order terms, and therefore, the structure
cannot depend on the total size. We find an optimal driving angle of

β∗ ≈ 0.516, (4.114)

with the expected value of samples from the QAOA circuit being

E1(γ, β) ≈
1.289√

2e
. (4.115)

Which under-performs the Grover and X-driven versions, attaining a mean solution
quality on average ≈ 64% as high as in the aforementioned cases.

Higher-depth solution qualities could be investigated for this problem and driver,
however, for this driver and problem combination, properties approach the infinite-
size limit rapidly. The utility of calculating the performance of arbitrary depth
QAOA circuits at infinite size is then questionable, when modest system sizes, with
results averaged over many instances, obtain near-identical values.
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4.9 Conclusion

To conclude the chapter, we have applied the procedure of Chapter 3 to two, more
general contexts. The first of these contexts is that of the standard driver used
in QAOA, the single-qubit-X driver. The second, a niche driver that serves to
elucidate structure that can be observed simply by plotting the energies of a problem
by their label, is that of the line mixer. By applying the method of expressing
QAOA expectation values in terms of asymptotic statistical properties of a problem,
we determine that, while Grover QAOA of Chapter 3 depends only on how the
energies are distributed, other drivers require more information. In particular, the
expected QAOA solution quality requires the conditional probability of measuring
a state of a given cost, supposing it is a certain distance from a state of initial
cost, where distance is defined by a driver-determined metric. For X-driven QAOA,
such a metric is the Hamming distance, while for line mixers, the relevant metric is
the arithmetic distance between state labels. This work opens up the possibilities
for a workflow for QAOA in which statistical properties are determined from a
problem via an efficient sampling procedure, then, expected QAOA solution quality
calculated, with no use of a quantum processor. Such capabilities would allow for
few-shot use of a large quantum computer to find good solutions to combinatorial
optimization problems without the need for on-device optimization procedures, and,
benchmarking of QAOA performance without access to physical devices.

To test this method of determining performance from conditional cost function
values, we used the test case of the random cost model. As the asymptotic per-
formance of QAOA on this model could be calculated for the Grover, X, and line
driver, we could evaluate that Grover and X drivers perform identically at p = 1,
with line drivers underperforming these. This suggests, that for problems with van-
ishing structure, higher-weight terms might improve performance for line mixers,
but are unlikely to help QAOA performance for X-driven QAOA. This conclusion
is apparent, since adding higher distance terms to a driver takes one closer to the
Grover driver, with equality if all distances are used.

We demonstrated how the method could be used for k-spin models, which contain
Gaussian correlations in the cost function that decay as a function of the distance
from a reference state. One might expect, that given combinatorial optimization
problem, to solve, one could determine problem statistics and match such a problem
to a value of k. This could provide either angles for finding good solutions with
QAOA, or at a minimum, angles to start an on-device optimization of the expected
value.

The answer to the question of whether QAOA-type algorithms can outperform
other, potentially classical, heuristic methods for approximately solving combinato-
rial optimization problems might be expected to come in the form of a combination
of Grover-type speedup, and exploitation of problems structure, via the driving
Hamiltonian. Therefore, the question of how QAOA resolves this problem struc-
ture, as this chapter attempts to explain, takes us some way to understanding how
and where QAOA might be useful.
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Approximating QAOA with
Digital-Analog Interactions

Quantum algorithms that may run on quantum computers in the near term (5 to 10
years) must run on imperfect devices subject to environmental noise, imperfect gates,
and a lack of correction mechanisms for errors. As such, greater performance may
potentially be attained from co-designed, algorithm-specific devices. This chapter,
alongside the chapter that follows, is an attempt to imagine what such a device
might look like for performing a wide variety of QAOA problems, simplifying device
design at the expense of additional sources or errors.

5.1 Paradigms of Quantum Computing

The usual approach in quantum computing is to create a device with a universal gate
set, for which, many possibilities are known. Universality is achieved by the capacity
to implement a basic gate set from which any gate can be implemented. The most
commonly considered choice for a device level gate set would be an interacting gate
such as the cnot, cz or iswap gates alongside the full spectrum of single-qubit
gates offered by single-qubit rotations on two axes. For encoded logic gates in error
correcting codes such as the surface code, a discrete gate set of Clifford gates—the set
of gates effecting permutations of Pauli operators—plus T -gates—the π/4 Z-rotation
gate—can be used to achieve universality on qubits encoded within a topological
error correcting code. The digital-analog scheme provides a way to make use of
an alternative gate set, one in which single-qubit gates are readily available, but
interacting gates are consolidated to a single resource interaction, itself shaped by
single-qubit gates. As opposed to the gate-based paradigm of quantum computing,
this is named the digital-analog paradigm.

5.2 Spin Echo and Dynamical Decoupling

The digital-analog paradigm, or scheme, traces its roots to quantum computing
with nuclear magnetic resonance, and spin echo processes. Spin echo is a technique
to refocus a large number of spins using a resonant driving field when there is
uncertainty as to the procession frequency of the spins. This technique exploits the
effective time reversal caused by a single-qubit-X π pulse. Considering a one-qubit
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system with the Hamiltonian

Ĥ(t) = αZ + β(t)X, (5.1)

where α is unknown and β(t) is a controlled parameter. If β(t) = 0 time evolution
effected by Ĥ(t) is

Û(t) = T exp

{
i

∫ t

t=0

Ĥ(t)

}
= T exp

{
i

∫ t

t=0

αZ + β(t)X

}
. (5.2)

The idea in spin echo sequences is that β(t) can be set such that the result of the
time evolution is insensitive to the value of α. Increasing the time between spin-echo
pulses allows one to calculate the T2 decoherence time of a system, which is the time
taken for a system to dephase. Such procedures are the simplest use of average
Hamiltonian theory, in which one designs pulse sequences, such that, when one time
averages the applied Hamiltonian, the result is a simpler, desired Hamiltonian [118].
Another use of average Hamiltonian theory is that of dynamical decoupling [119],
in which a similar procedure aims to average interactions with the environment to
zero.

The digital-analog scheme introduced in this chapter is a generalization of this
to a many-qubit case, setting control pulses such that unwanted interactions are
averaged to zero. Though the scheme in this work requires significantly more com-
plex sequences of pulses to effect the average Hamiltonian required, the result is a
large number of possible average Hamiltonians that can be effected, by one, generic
resource.

5.3 Attribution & Copyright

The idea for this project occurred when Ana Martin gave a talk in Saarland and
the idea to apply the ideas presented there to QAOA was immediately obvious to
Thorge Mueller and myself. The document was written by myself, with the excep-
tion of Section 5.12 which was written entirely by Prof. Wilhelm-Mauch. Software
development and the execution of large-scale simulations for the paper were per-
formed by Thorge Mueller, in the thesis of whom this work also appears. Parts of
this chapter are reprinted (excerpt, abstract, figures) with permission from “David
Headley, Thorge Müller, Ana Martin, Enrique Solano, Mikel Sanz, and Frank K.
Wilhelm, Phys. Rev. A 106, 042446”, Copyright (2022) by the American Physical
Society.

5.4 Introduction

Quantum computing is entering an era in which classical computers cannot simulate
the behavior of programmable quantum computers [54]. In this new era of quantum
information processing, it is likely that the first algorithms that will be useful for
solving computational problems will be heuristic in nature. These algorithms come
without provable performance guarantees provided by the likes of Shor’s factoring
algorithm [18] or the Grover search algorithm [20] but are encouraged by strong mo-
tivation from classical algorithm research, in that the most effective algorithms for
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solving certain problems classically are often not provably so. At present, two such
algorithms are most likely to prove useful in the near term [120]—The Variational
Quantum Eigensolver (VQE) [121] and the Quantum Approximate Optimization
Algorithm (QAOA) [34] otherwise known as the Quantum Alternating Operator
Ansatz [59]. These are variational algorithms, using classical optimizers and pa-
rameterized quantum circuits to mitigate the effects that errors may introduce on
quantum devices making no use of quantum error correction. This work concerns
the latter of the two.

The development of QAOA was motivated by a need for algorithms that can run
on noisy, pre-error correction devices. Algorithms used on devices of this era will
necessarily have a degree of co-design between architecture and algorithm. Work
by Rigetti, for example, used a noisy, programmable quantum device to solve a
combinatorial optimization problem inspired by the on-device layout of qubits [122].
Following this approach, we extend the work of Parra-Rodriguez et al. on the Digital-
analog (DA) paradigm of quantum computation [123, 124, 125], in which a device
is designed and operated in the style of a quantum simulator with always-on multi-
qubit interactions. We show that QAOA is a natural algorithm for this setting. This
paradigm, leveraged to minimize errors associated with turning on and off gates on
a quantum device, could allow for a simpler design in which only the timing of
single-qubit gates must be considered, reducing the control complexity and, there-
fore, the mechanisms through which environmental noise can corrupt the computing
system. The problem of negative interaction times, introduced by the aforemen-
tioned scheme, is resolved in this work by exploiting periodicity in time applied to
the resource interaction, or problem solved, allowing any two-local problem to be
solved with a homogeneous resource interaction and problems exhibiting periodicity
(max-cut, max-2-sat) to be solved with heterogeneous resource interactions.

The chapter begins with a mathematical description of the digital-analog com-
putational paradigm and the combination of this scheme with QAOA. The costs of
compilation for embedding QAOA within the digital-analog paradigm are examined
and the potential hardware platforms on which digital-analog quantum computing
for this purpose could be performed are discussed. The performance of DA-QAOA
is examined using computational simulations and the errors of the method are ana-
lytically bounded. It is finally concluded that while using the digital-analog scheme
for QAOA results in additional errors, these errors are not as damaging as in other
potential uses of the digital-analog paradigm due to the variational nature of QAOA.
The novel result of this chapter is that the combination of DA computation with
QAOA is synergistic. For realistic device parameters, errors introduced by DA com-
putation do not adversely affect the performance of QAOA.

5.5 The Digital-Analog Quantum

Computational Paradigm

Quantum algorithms can, in general, be separated into two classes: continuous and
discrete. At the extreme end of continuous quantum algorithms lie those of quan-
tum simulators, devices fabricated to follow dynamics of interest with, however, no
capacity for complicated programmed time evolution [126]. Likewise, continuous
algorithms such as the quantum adiabatic algorithm [23, 127] and quantum random
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Figure 5.1: The two schemes for digital-analog computation. (a) The stepwise or
sDAQC scheme in which a series of programmable digital single-qubit gates are ap-
plied in alternation with analog resource interactions. (b) The always-on or bDAQC
scheme in which the resource interaction is never turned off and single-qubit oper-
ations are applied in parallel with the resource interactions. Performing the single-
qubit operations simultaneously with the resource interaction introduces coherent
errors but reduces device control requirements. The first interaction block denoted
with the time interval t0 corresponds to the idle block.

walk algorithms [128, 129] make use of a predefined analog Hamiltonian with gener-
ally limited programmability to solve computational problems. Discrete algorithms,
on the other hand, are defined in terms of sequences of digital unitary gates. A gate-
based quantum computer can perform any discrete, gate-based algorithm, including
Trotterized versions of continuous algorithms [130]. Whereas a device designed for
continuous quantum algorithms, though may be theoretically universal, will gen-
erally only be able to run the restricted set of time evolutions for which they are
built—it is, in theory, possible to express any discrete-time quantum algorithm (e.g.
Shor’s) as a continuous time quantum algorithm, but generally not practical [131].
Devices of analog quantum computation such as quantum simulators can benefit
from superior noise resilience characteristics stemming from a reduced requirement
to completely control the full dynamics of every qubit [132], as is required in a fully
gate-based, digital model.

The DA paradigm [123, 124] is designed to take the best features of both digital
and analog quantum computing and has been shown to yield an implementation

92



Approximating QAOA with Digital-Analog Interactions

= Single-qubit X = Resource Interaction= Single-qubit X
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Figure 5.2: A quantum circuit depicting the digital-analog time evolution required
to simulate an arbitrary Ising Hamiltonian on 5 qubits. 10 uses of a resource Hamil-
tonian are required, each surrounded by a unique combination of single-qubit-X
operations.

for the quantum Fourier transform and the Harrow-Hassidim-Lloyd algorithm, in
which significant advantages over regular digital schemes are demonstrated for rea-
sonable coherent-control error assumptions [125, 133]. The basic premise of the
DA scheme is that blocks resembling the time evolution of an analog simulator are
performed, punctuated by digital single-qubit operations. This premise is depicted
in quantum circuit form in Figure 5.1. The DA paradigm yields two options for
its implementation, the step-wise scheme (sDAQC) and the always-on or banged
scheme (bDAQC), in which error is introduced to computations due to the non-
commutativity of single-qubit operations used simultaneously with an entangling
resource interaction. This work proposes the use of an always-on-resource (bDAQC-
QAOA) on near-term quantum devices for discrete optimization. To this aim, the
step-wise scheme provides a guarantee that if single-qubit gates can be applied suf-
ficiently fast, no errors are introduced and the always-on scheme produces the same
state as a standard gate-based implementation.

We consider a context in which we have access to a resource Hamiltonian con-
sisting of a sum of all possible interaction ZZ terms between connected qubits j, k
on an n-qubit device, each with relative strength rjk,

ĤResource =
n∑
j<k

rjkZjZk. (5.3)

Where sums in this work over qubit indices start from 1. We use this resource as
an interacting resource to simulate problem Hamiltonians required for QAOA. In
sDAQC, we assume that our device has the capability for this resource Hamiltonian
to be turned on and off, alongside the ability to perform arbitrary single-qubit
gates. We can, therefore, alternate our resource interaction with single-qubit gates.
In bDAQC we do not assume that the resource Hamiltonian can be turned off
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and on, but retain the ability to perform arbitrary single-qubit gates at any time,
simultaneously applied alongside the resource interaction.

Let us assume that the resource Hamiltonian available is an all-to-all (ATA) Ising
Hamiltonian: where in the homogeneous case, rjk = 1 ∀ j, k (the units of r are set
such that 1 represents a relevant energy scale for the device). In the simulations and
resource estimates performed in this work, we consider only resource Hamiltonians
in which no element of r is zero. However, the following procedure does not require
an all-to-all connected resource interaction to succeed. Here, we require only that
the interactions present in the arbitrary Hamiltonian that we intend to simulate
are also non-zero in the resource Hamiltonian. Although this is not necessary in
general [134], we assume it for the sake of simplicity. Experimental settings likely to
provide such resource Hamiltonians are discussed in Section 5.9, and this discussion
is extended by work in Chapter 6.

To use a fixed interaction resource Hamiltonian to simulate the time evolution of
an arbitrary spin-glass Hamiltonian, older techniques developed for quantum com-
puting with nuclear magnetic resonance spin systems can be deployed. Named av-
erage Hamiltonian theory [135, 136], one can design a sequence of interactions and
single-qubit operations such that the time average of such evolutions is identical to
that of a Hamiltonian of interest.

There are n(n−1)/2 individual degrees of freedom in an arbitrary Hamiltonian to
be simulated by our resource. We will, therefore, require n(n − 1)/2 time intervals
over which the resource is applied, each with surrounding single-qubit operations
such that each block is linearly independent of the others. In order to select the
single-qubit operations with which to surround uses of the resource interaction, one
can pick the n(n − 1)/2 ways one can select two of n qubits, applying X gates to
these qubits before and after an application of the resource Hamiltonian [124]. This
choice of block-surrounding operations can be seen in Figure 5.2 for n = 5 qubits.
Between adjacent blocks, single-qubit-X operators will sometimes cancel, reducing
the total number of single-qubit gates required substantially.

The unitary evolution we wish to implement is that of an Ising Hamiltonian with
arbitrary couplings:

ÛArb(t) = eiĤArbt and ĤArb =
n∑
j<k

gjkZjZk, (5.4)

which we wish to express as a sequence of digital-analog blocks. One notes that the
time evolution implemented by a digital-analog block with X operators on qubits
a, b is equivalent to that of a constant effective Hamiltonian XaXbĤResXaXb as

(Xa ⊗Xb)e
tabĤRes(Xa ⊗Xb) = etab(Xa⊗Xb)ĤRes(Xa⊗Xb). (5.5)

This immediately follows from the identity:

eitÛ V̂ Û
†
=

∞∑
k=0

(it)k(Û V̂ Û †)
k

k!
= ÛeitV̂ Û †, (5.6)

valid for any unitary operator U . Using the above, we may write an arbitrary
Ising Hamiltonian as a sum of digital-analog effective Hamiltonians, one for each of
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n(n− 1)/2 blocks. Therefore:

ĤArb =
n∑
j<k

n∑
l<m

tlmrjkXlXmZjZkXlXm, (5.7)

for some vector of times t⃗ to be computed. An illustration of this Hamiltonian
applied on a 5-qubit device can be seen in Figure 5.2. Using the identity XiZi ≡
−ZiXi to commute Pauli-X operators to cancellation one obtains:

n∑
j<k

n∑
l<m

tlmrjk(−1)δlj+δlk+δmj+δmkZjZk. (5.8)

Through this expression we replace n(n − 1)/2 possible interaction strengths gjk
between qubits j, k with n(n − 1)/2 resource interaction times tlm sandwiched by
single-qubit-X operators on qubits l,m. Using the linear independence of Pauli
strings, we can write

gjk
rjk

=
n∑

l<m

tlm(−1)δlj+δlk+δmj+δmk (5.9)

in which finding gjk is a matrix inversion problem made apparent by consolidating
the parameter pairs l,m and j, k each to one parameter

κ = n(l − 1)− l(l + 1)

2
+m, (5.10)

µ = n(j − 1)− j(j + 1)

2
+ k. (5.11)

We arrive at a solution time vector in time scaling at most O(n6) using Gaussian
elimination on a classical computer of a matrix with dimension n(n−1)/2×n(n−1)/2
of

tκ =M−1
κµ (g/r)µ for Mκµ = (−1)δlj+δlk+δmj+δmk . (5.12)

For the case of n = 4, M is singular as, for example, X1X2ĤResourceX1X2 =
X3X4̂̂HResourceX3X4 and the condition of linear independence of the effective Hamil-
tonians from different blocks is not met. This, however, is a special case and the
obtained Hamiltonians are linearly independent for all n > 4. QAOA problems of
interest, however, far exceed this value in size.

An obstacle to the usage of this scheme is that any of the times calculated in
this procedure may be negative. Following the computation of a time vector tκ
providing a DA circuit to simulate a desired Ising Hamiltonian, negative times must
be eliminated as it is experimentally impossible to run an always-on interaction—the
nature of which we can’t temporarily change—for a negative time.

5.6 Negative Digital-Analog Block Times

In this section, a procedure is presented that exploits the case in which the resource
Hamiltonian is homogeneous, or one of g⃗, r⃗ takes only values with some high least
common multiple, resulting in periodic time-evolution. This condition holds for
max-cut and sat problems considered in this work (all ZZ Hamiltonian terms in

95



Chapter 5

Section 5.7 have at least half-integer pre-factors or integer multiples thereof). In the
case that the resource Hamiltonian is homogeneous, any negative time-block can
simply be run for a positive time 2π + t, exploiting the periodicity of the unitary
effected as eiĤt = eiĤ(2π+t), for rjk = 1 ∀ j, k. As such, with homogeneous resource
Hamiltonians, we can always replace tlm with tlm mod 2π. This technique, involving
a homogeneous resource, is unfortunately undesirable as a method to rectify all
negative time blocks as we will take a time interval that is typically small and
replace it with a larger time 2π − |tlm|. This will result in a DA schedule of single-
qubit gates and analog block times requiring a longer total time to run on hardware,
incurring greater error rates.

For an inhomogeneous resource Hamiltonian we need to consider one additional
time block surrounded by no single-qubit operations. To determine the size of this
idle block required, consider

Mt⃗ = M(⃗t− tmin1⃗ + tmin1⃗). (5.13)

M admits 1⃗ as an eigenvector with eigenvalue λ. Intuitively, 1⃗ is an eigenvector of M
because when applying all possible two-X-surrounded DA blocks for an equal time,
the time evolutions mostly cancel out leaving a smaller but homogeneous effective
interaction. This produces

Mt⃗ = M(⃗t− tmin1⃗) + λtmin1⃗ (5.14)

and considering a new, non-negative time vector t⃗∗ = t⃗− tmin1⃗

Mt⃗ = Mt⃗∗ + λtmin1⃗. (5.15)

Applying all possible two-qubit-X DA blocks does not, however, result in a similar
homogeneous contribution to the simulated Hamiltonian to resource Hamiltonian
ratio for all system sizes. We wish to have an eigenvalue λ that is negative, such
that when multiplied by negative tmin we produce a positive idle time. Unfortunately,
the contributions to the ratio for NISQ-relevant cases with n > 6 are themselves,
positive. The relation between n(n + 1)/2 + 1 time-intervals and the Hamiltonian
simulated can be written as

gκ =Mκµt
∗
µrκ + tidlerκ (5.16)

with tidle = λtmin. We solve the negativity problem by letting the always-on resource
Hamiltonian run for time λtmin surrounded by no single-qubit gates if tmin is negative.
Since tidle is negative for relevant cases of n > 6, we must use one of two methods to
change the sign of this time, depending on whether a homogeneous or inhomogeneous
resource Hamiltonian is available. If the resource is homogeneous we can evolve for
time tidle mod 2π, as before. This cost of running for this positive time will only
add a small contribution to the total algorithm run-time since it only occurs once
per set of DA blocks. In realistic experimental cases, however, we expect only non-
homogeneous resource Hamiltonians to be available. Even with non-homogeneous
resource Hamiltonians, non-negative idle time is still possible through exploiting
properties of the simulated problem Hamiltonian. By setting ĤArb → −ĤArb in
Equation 5.4 and using the fact that all ZZ coupling constants in ĤArb will be
integer multiples of 1/2 or zero for max-cut and max-2-sat problems, we can
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simulate the Hamiltonian of the correct sign by exploiting the periodicity of the
unitary eff ected, as eitĤProblem = ei(−t)(−ĤProblem) = ei(−t mod 2π)(−ĤProblem). This factor
of −1 in front of the problem Hamiltonian can then be absorbed into the matrix M
in Equation 5.16 causing the eigenvalue λ to become negative. This allows a positive
idle-time correction, resolving the negative sign issue for inhomogeneous cases.

The method presented here provides a convenient decomposition of an arbitrary
Ising Hamiltonian into time blocks of our resource interaction surrounded by two
pairs of single-qubit rotations. The problem of negative times is resolved for the case
of resource or target Hamiltonians satisfying certain constraints. For Hamiltonians
not satisfying the aforementioned constraints, approaches including the decomposi-
tion into multiple DA sequences satisfying these constraints, or a strategy involving
a higher number of analog blocks could still be pursued. To incorporate a greater
number of time blocks one could solve the under-determined linear system g⃗ = Mt⃗
with t⃗ ≥ 0 where the time-vector t⃗ is of higher dimension than g⃗ and, therefore, M is
no longer square (and invertible). Approaches to solving such a problem are compli-
cated by the time non-negativity constraints and require a quadratic programming
approach. Recent work by Galicia et al. [134] extends the digital-analog paradigm
to the scenario in which only interactions available on a device with linear, nearest-
neighbor connectivity can be used to systematically produce an all-to-all connected
arbitrary Hamiltonian. Strategies for architectures that are more connected than
linear, yet not fully connected, can therefore also produce arbitrary Ising Hamilto-
nians, by restriction to a linear chain, or by manually inserting the swap operations
of a swap network [137], themselves compiled to digital-analog sequences.

5.7 Digital-analog QAOA

In Digital-Analog QAOA (DA-QAOA), we use the DA paradigm to perform an
algorithm that approximates the QAOA. We take access to the device Hamiltonian
utilized in the previous sections with:

ĤDevice(t) = f(t)Ĥresource + α

n∑
i=1

(xi(t)Xi + zi(t)Zi) (5.17)

where

ĤResource =
n∑
j<k

rjkZjZk. (5.18)

We use this device interaction to apply or approximately apply a QAOA circuit with
a problem Hamiltonian comprising of a subset of the non-zero entries in the resource
Hamiltonian rjk.

Problems we might consider would primarily be those of max-cut and max-2-
sat. As mentioned in the discussion of negative times, these are problems in which
periodicity can be exploited to remove the problem of negative interaction times
for the scheme. However, a resource Hamiltonian that also exhibits periodicity, any
two-local problem could be addressed, for example, finding low energy states for
SK-models (Gaussian distributed couplings), or number partitioning-type problems
(Mattis type squared single-qubit Gaussian terms addressed in Chapter 3). Other
problems that exhibit the same periodicity would be weighted max-cut or weighted
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max-2-sat, presuming, that the weights have a common increment that can be
expressed with relatively few bits of precision1.

In the stepwise scheme (sDA-QAOA), we assume control over the parameters
f, xi, zi each taking values from {0, 1}. In this case, it is possible to express a QAOA
circuit exactly, given the problem or Hamiltonian has properties that allow for the
elimination of negative times. In the banged scheme (bDA-QAOA), f is assumed
to be fixed at unity by hardware constraints, with only the single-qubit parameters
permitted to be altered. The single-qubit terms are assumed to be stronger than
the resource Hamiltonian by a factor α ≥ 1 and in typical applications, α is ex-
pected to fall between 10− 1000 depending on architecture [138, 139]. In near-term
architectures, it is almost always the case that single-qubit operations are orders
of magnitude faster than interactions, due to inherently lower complexity. While
current devices tend to exhibit a ratio of single-qubit rotation speed to interaction
strength at the lower end of this range, around α = 100, current engineers have had
little to gain from making these operations faster, since they are typically limited by
two-qubit interaction times and fidelity. Single-qubit operations are often considered
as zero cost since the error budget is dominated by the two-qubit interactions. We,
therefore, expect that a device optimizing for DA applications could be engineered
for greatly higher ratios α, resulting in higher fidelity for DA-QAOA than would
be implied by current devices. Also, it would typically be possible to use slower
multi-qubit interactions relative to the single-qubit terms, to further reduce error.

During driving in bDAQC, all single-qubit-X operations are set to 1, Z terms to
0, giving a driver Hamiltonian of

ĤbDA-Driver =
∑
j<k

rjkZjZk + α
n∑
i=0

Xi (5.19)

applied for device time given by the variational parameter β divided by the driver
strength α with β ∈ [0, π]. One notes, that this range of possible values for β is
picked due to the periodicity of the QAOA driving operator. However, in banged
QAOA, this periodicity is no longer present. Regardless, observations of where the
optimal parameters land in practice demonstrate that the original range is still the
best choice. This can be argued for from an entropic perspective. The single-qubit-
X driver sees bit-wise structure in the problems it solves. When one applies the
bDA-QAOA Hamiltonian for more than π, one has an operator further from that of
the typical QAOA driver, and, therefore, one might expect it to exploit the bit-wise
structure less adeptly.

During the DA resource Hamiltonian steering operations, in which we apply
single-qubit gates to transform the resource Hamiltonian to something best approx-
imating a problem Hamiltonian of interest, we use a similar Hamiltonian in which
only a specific set of single-qubit-X terms are active. As described in Section 5.5,
we wish to implement a full X gate before and after each resource block. The time
to apply this gate will be ∆t = π

α
. Applying the DA-QAOA device Hamiltonian for

a single QAOA layer thus effects the following unitary

ÛDA−QAOA = T exp

(
−i
∫ ttotal

0

ĤDevice(t) dt

)
, (5.20)

1The size of the idle block introduced in Section 5.5 will be directly proportional to the inverse
of the minimum spacing in the couplings in the problem Hamiltonian.
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with x⃗(t) defined by the aforementioned matrix inversion procedure, T is the time-
ordering meta-operator and z⃗(t) used in the case that we are solving a 2-sat problem
or otherwise a problem with single-qubit terms. ttotal is the sum of all times in the
non-negative DA time vector multiplied by the variational parameter γ in addition
to the driving time β/α. A depiction of this device Hamiltonian used to apply a
max-cut problem Hamiltonian is presented in Figure 5.3.

5.8 Compilation Costs of DA-QAOA

In this section, the cost in on-device time to perform QAOA using DAQC and
different resource Hamiltonians is evaluated. We include in our comparison the time
taken by a completely digital quantum computer under reasonable assumptions. We
emphasize here that the time taken to perform an algorithm is only a good indication
of the fidelity of the algorithm’s experimental implementation (or quality of solution)
if the device running the experiment is coherence limited. In contemporary quantum
processors, the limitation is typically not coherence time but the error incurred
during the use of two-qubit operations, per operation. An evaluation of whether
a device using a DAQC or DQC paradigm performs better would require in-depth
knowledge of the error mechanisms of a device operating in the respective paradigm.
Such an analysis is expected to favor DAQC given the reduction of errors from
turning couplings on and off.

When comparing the performance of a device making use of the DAQC paradigm
to a device running completely digital computations, we must make fair assumptions
concerning the capability of each device. We compare the case in which both DAQC
and DQC can perform interactions between any pair of qubits. In DQC, the key
limitation we apply—besides the differing error models that are expected to comprise
the main advantage of DAQC—is the inability to perform simultaneous two-qubit
gates on a single qubit. A given QAOA problem Hamiltonian in DQC must therefore
be decomposed into a number of time steps. This number of time steps for a graph-
based problem can be shown to, at most, equal the maximum vertex degree of the
problem graph plus one. DAQC in comparison applies all operations at once but
must utilize many time blocks to time-average the device resource interaction to
the problem Hamiltonian of interest. An example of a QAOA max-cut problem
compiled to both the DQC and DAQC is found in Figure 5.3 for a 5-regular max-
cut problem on an 8 qubit device. One notes that for this particular problem, the
DA circuit can be performed faster than the digital for sufficiently fast X gates.

Comparisons of the time taken to implement a problem Hamiltonian are pre-
sented in Figure 5.4. In this plot, we compare Hamiltonians from Section 5.9, with
homogeneous and inhomogeneous resource interactions. For the inhomogeneous re-
source interactions, we use couplings rjk ∼ N (1, δ2) where δ is the fractional stan-
dard deviation of the coupling strength. Values of 5% and 10% are used for this
inhomogeneity. For the |r|−6 and |r|−3 power law behavior, we assume that qubits
are placed in a linear array. For a fair comparison between this resource Hamiltonian
and the others, we scale the couplings such that the average coupling between two
qubits is the same for all resource Hamiltonians used. Disregarding the speed ad-
vantage from exploiting the periodicity of a homogeneous resource, small deviations
in the couplings do not greatly affect the compiled time. If, however, any individ-
ual coupling becomes especially small, the compilation time grows correspondingly
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Figure 5.3: Circuit compilations for an 8-qubit max-cut problem on a 5-regular
graph. (a) A decomposition of the max-cut problem Hamiltonian into ZZ inter-
actions. The lines connected to two open circles represent ZZ interactions applied
for time tint. On the right-hand side, we see that the circuit can be parallelized into
six time steps, each of which sees one qubit interact with only one other qubit at a
time. Six time steps corresponds to the maximum degree of a vertex plus one. (b)
The same circuit can be compiled into the scheme of sDAQC in which a resource
all-to-all homogeneous Ising Hamiltonian is turned on and off, punctuated by single-
qubit gates. This decomposition requires 20 uses of the resource Hamiltonian and
50 single-qubit-X operations. The time taken to apply the problem Hamiltonian
is 5tint + 21tX . (c) Finally, we compile the problem Hamiltonian in the bDAQC
scheme, in which the resource Hamiltonian remains on throughout the procedure.
This circuit only approximates the time evolution invoked by the QAOA problem
Hamiltonian but can be carried out in time 5tint and also with 49 single-qubit-X
operations. In the limit of infinitely fast X gates, (c) is equivalent to (a) and (b).
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Figure 5.4: Plots showing the on-device required time for implementation of a QAOA
problem Hamiltonian. In this case, random Erdős Rényi max-cut problems are
used with a filling factor of 0.75. Units of time are defined relative to the native
device resource interaction strength. In these plots, we show the time taken when
using various possible resource Hamiltonians. The left-hand side demonstrates that
if the resource Hamiltonian available varies across orders of magnitude in coupling
strength, as happens in the case of an inverse power law coupling between qubits in
an array, the time taken in the digital-analog scheme becomes extremely large (and
likely impractical). The right plot shows the series on the left excluding the inverse
power law couplings. A homogeneous resource Hamiltonian is competitive with an
idealized digital compiling scheme, though higher for qubit numbers higher than
10. The upper blue (square marker) and green (circle marker) lines demonstrate
that if we use a resource Hamiltonian with normally distributed couplings close to
1 (standard deviations 0.05 and 0.1), the time taken is longer. The significant gap
between the Homogeneous and non-homogeneous series occurs as the periodicity of
the homogeneous resource Hamiltonian’s effected time evolution can be exploited to
reduce the idle time. The units for the time displayed in the plot are dimensionless
multiples of a timescale defined by the resource Hamiltonian.
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large.

The asymptotic scaling of the algorithm is at worst O(n2) as n(n − 1)/2 inter-
action windows are needed to simulate arbitrary Hamiltonians.

5.9 High-Connectivity Hardware Platforms

In this section, we consider potential hardware realizations of DA-QAOA. A NISQ
device able to solve a wide variety of combinatorial optimization problems running
QAOA would require a highly connected quantum device to avoid the need for swap-
ping operations. One could then utilize platforms in which non-local interactions
occur natively while benefiting from the reduced control overhead provided by the
digital-analog scheme. It has been proposed to use the digital-analog scheme to
compile swap gates themselves to sequences of digital and analog blocks [134]. For
realistic near-term hardware, however, we expect any algorithm utilizing swap op-
erations to be out of reach, whether compiled to digital gates or to digital-analog
time blocks, due to their excessive contribution to circuit depth and, therefore, de-
coherence.

Generally considered to be the most mature platform for quantum computing,
superconducting solid-state qubit architectures tend to have low connectivity due to
their 2d-designed nature and are, in current manifestations, not an ideal candidate
for performing DA-QAOA [55], the potential use of this platform was explored for
DAQC in transmon qubits utilizing the cross resonance effect in work by Gonzalez-
Raya et al. [140]. Other systems, for example, Rydberg neutral atom arrays or cold,
trapped-ion architectures allow for native interactions between all qubits in a device.

Rydberg neutral atoms are atoms in which one or more electrons are in a highly
excited state. Excited states of these atoms have high lifetimes owing to their large
spatial extent and, therefore, small spatial overlap with the ground state of the
atom [141]. Optical lattices of Rydberg atoms can feature non-local, all-to-all Van-
der-Waals interactions scaling with |1/r|6 for distances r greater than the optical
lattice spacing. Such an interaction is highly non-homogeneous but could be utilized
for the digital-analog scheme.

Trapped ion systems have demonstrated the highest fidelity two-qubit opera-
tions [138, 142] and the highest coherence time of any existing platform [143]. These
systems, however, fail to achieve high fidelity when many qubits are loaded into a
trap. This limitation occurs due to the frequency crowding of the energy levels used
to address the coupling of each ion to the collective motional state of the trapped
ions. When the requirement for control over interactions between individual ions in
a trap is relaxed, trapped ion platforms perform exceptionally as simulators [144]
and qubit numbers competitive with the best superconducting processors can be
used to explore physics outside the reach of classical simulation. Interactions be-
tween trapped ions scale on the order of |1/r|δ with δ typically varying between
0 − 3 [145], with r as the distance between two trapped ions. A system utilizing
a value of δ = 0—in which the interaction is mediated by the joint vibrational
modes—would have a homogeneous coupling if no other non-homogeneous behavior
is present between pairs of ions. The case of δ = 3 occurs when the interaction is
mediated purely via spin-spin interactions, incurring a dipolar decay law.
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Figure 5.5: The percentage difference between the mean approximation ratio at-
tained by bDA-QAOA and error-free QAOA, averaged over 50 randomly generated
max-cut problems with constant filling factor pclause = 0.7. Blue (dark region on
the far left side of the figure) colors indicate that the bDA-QAOA ansatz state is
worse than that provided by error-free QAOA, whereas, shades of brown (the light
gray region immediately left of the white region of zero error) indicate an improve-
ment of the bDAQC over error-free QAOA. On the x-axis, the ratio α of single-qubit
to problem Hamiltonian term strength is seen where error-free QAOA exists in the
limit as this ratio becomes infinite.

5.10 Results

In this section, the main computational results of our work are presented. In the first
subsection, we present the performance of bDA-QAOA in comparison to a standard
QAOA circuit for a set of chosen randomly generated problems. In the second
subsection, we analyze this further to demonstrate that the algorithm is performing
better than one might expect for a banged DA algorithm and that this boost in
performance results from the variational freedom of DA-QAOA.

5.10.1 Performance of bDA-QAOA

In bDA-QAOA, we perform QAOA using the ansatz state prepared by applying
QAOA layers of the form described in Equation 5.20 as∣∣∣β⃗, γ⃗〉α,DA

= Ûα-DA-QAOA |+⟩⊗n . (5.21)

bDA-QAOA introduces errors in the form of the misspecification of the problem
and driver Hamiltonians, between which, due to relative times taken on the device
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Figure 5.6: The percentage difference in mean approximation ratio attained by
bDA-QAOA at parameters maximizing error-free QAOA and bDA-QAOA with op-
timized parameters, averaged over 50 randomly generated max-cut problems with
constant filling factor pclause = 0.7. On the x-axis, the ratio α of single-qubit to prob-
lem Hamiltonian term strength is seen where error-free QAOA exists in the limit
as this ratio becomes infinite. Darker colors imply that for the concerned speed
ratio and qubit number, the variational nature of QAOA can account for differences
between bDA-QAOA and the ideal algorithm. This plot shows the benefit of using
a variational algorithm such as QAOA over a non-variational algorithm in the DA
context where the coherent error is introduced.

to perform and that the driver is generic to all problems, the misspecification of
problem Hamiltonian will introduce more error. This problem of misspecification is
not new to the field of quantum optimization and is known in quantum annealing
literature as J-chaos, in which critical characteristics of a problem to be solved are
not correctly incorporated into the dynamics of an annealing device. Such issues
can be fatal to the performance of AQC if error mitigation strategies are not uti-
lized [146]. bDA-QAOA finds a connection to the algorithms of quantum random
walks [111] and AQC in that the problem Hamiltonian and single-qubit driving
operators are performed simultaneously. One might therefore expect that simply
running a problem Hamiltonian at the same time as a driver in QAOA should not
be fatal, in fact, scheduled quantum random walks and diabatic AQC are active
fields themselves [109, 147]. Simulations performed of bDA-QAOA in which the re-
source Hamiltonian is identical to the problem Hamiltonian to be solved, such that
no DA steering single-qubit operations are required, indeed, showed no discernible
net-negative impacts when compared to error-free QAOA.
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Coherent errors occurring in bDA-QAOA with a non-problem-specific resource
Hamiltonian, however, are expected to be more damaging than the errors in QAOA
with an always-on problem Hamiltonian. This is because in bDA-QAOA the always-
on resource is not specific to the problem we wish to solve. These errors should
therefore result in a less problem-specific QAOA ansatz state which results in a
worse expected approximation ratio at a given depth. Figure 5.5 displays the mean
approximation ratio attained by the bDA-QAOA ansatz state. For high α we see a
regime in which, as expected, bDA-QAOA performs identically to error-free QAOA.
Secondly, we see an intermediate regime where minor increases in the mean approx-
imation ratio are observed. Finally, in the case of low α we observe consistently
worse results for bDA-QAOA, due to problem misspecification induced by coherent
DAQC errors.

5.10.2 Variational Resilience of DA-QAOA to DA Errors

QAOA is a variational algorithm. It is expected that variational algorithms have
better error tolerance properties due to the fact that a classical optimizer can ac-
count for systematic coherent over- or under-rotations and other systematic coherent
errors [148], making variational quantum algorithms appealing candidates for NISQ

quantum computing. QAOA works by finding a parameter set β⃗∗, γ⃗∗ maximizing
⟨ĤP⟩β⃗,γ⃗. However, when we change the QAOA ansatz operators to those of bDAQC,

there is no clear reason why the parameters β⃗∗, γ⃗∗ maximizing ⟨ĤP⟩β⃗,γ⃗ also maximize

⟨ĤP⟩α,DA

β⃗,γ⃗
where

⟨ĤP⟩α,DA

β⃗,γ⃗
=
〈
β⃗, γ⃗

∣∣∣α,DA

ĤP

∣∣∣β⃗, γ⃗〉α,DA

. (5.22)

Figure 5.6 suggests that this is not the case and shows that a significant increase
in the success probability of QAOA results from the variational freedom of the al-
gorithm. Figure 5.6 should be understood to demonstrate the parameter regimes
for which it makes more sense to perform a variational algorithm such as QAOA
rather than a fixed gate sequence algorithm such as the quantum Fourier transform.
For high α, the error introduced by the scheme is negligible, and both variational
algorithms and fixed sequence algorithms will perform similarly. In the middle of
the plot, a dark turquoise band can be seen implying that while a non-variational al-
gorithm will have low fidelity due to the presence of DA-induced coherent errors, the
variational algorithm still functions. For low enough α, we enter a regime in which
even the variational algorithm fails to recover any performance through altering pa-
rameters. We interpret that this lack of ability of DA-QAOA to absorb error in the
low α regime is a manifestation of barren plateaus in the objective function [77].
Barren plateaus are a feature discovered to occur in the optimization landscapes of
quantum neural networks. When parameterized random circuits are used as ansätze
in variational algorithms, the gradient of the objective function with respect to the
variational parameters is observed to become exponentially small in the number of
qubits used. When α reduces to a certain value, we interpret that the DA-QAOA
ansatz loses specificity to the problem Hamiltonian of interest. The variational form
used for optimization no longer bears similarity to the objective function used and
is, consequently, no better an ansatz than a random quantum circuit. At this point
of low α, we observe that the gradient of our objective function with respect to the
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variational parameters γ⃗, β⃗ tends to become prohibitively small and the approxima-
tion ratio attained therefore varies little with differing parameters.

5.11 Analytical Fidelity Bounds for bDA-QAOA

In this section, we demonstrate that the error introduced by performing QAOA in
the banged digital-analog paradigm in comparison to regular QAOA can be analyt-
ically bounded. In particular, we place a lower bound on the fidelity of a state that
arises from a bDA-QAOA circuit in comparison to a state prepared by error-free
QAOA. This error consists of multiple steps, each of which is of the same nature
as that occurring when Trotterizing a Hamiltonian with non-commuting terms for
simulation. In the case of bDAQC-induced error, there are, however, two complica-
tions. Firstly, there is only a single Trotterization time-step which cannot be made
arbitrarily small with the use of higher numbers of Trotter blocks. Secondly, we use
Trotterization in reverse in this fidelity bound. In a usual Trotterization procedure,
the simultaneous case is ‘correct’ and the digitized version introduces error. In the
digital-analog scheme, however, the opposite is true. The sequential Hamiltonian is
ideal and the simultaneous Hamiltonian introduces error. These differences do not
affect the validity of the bound, since the bound used in this work is valid for arbi-
trarily large time steps. The bound used, to our knowledge, represents the current
lowest bound on Trotter error [149] and limits the size of the greatest eigenvalue
of an operator derived via the difference of two unitaries. The first unitary is that
generated by the sequential application of two Hamiltonians Â, B̂, with the second
generated by the simultaneous application of such Hamiltonians:

∥∥ exp(iÂ/2) exp(iB̂) exp(iÂ/2)− exp
(
i(Â+ B̂)

)∥∥
≤ 1

12

∥∥ [[Â, B̂] , B̂] ∥∥+ 1

24

∥∥ [[Â, B̂] , Â] ∥∥. (5.23)

The system Hamiltonian during time periods in which both the single-qubit opera-
tions and the resource Hamiltonian are active is

ĤSteering, µ = α
∑
m∈Sµ

Xm + ĤResource (5.24)

where Sµ is the index set of X operators applied following DA time-block µ. There
are n(n+1)/2+2 periods of time for which we apply this bound, n(n+1)/2 sets of
single-qubit operations following interaction blocks, one idle block, and the driving
block of the QAOA algorithm. We wish to compute the error resulting from using
this, rather than its single-step Trotterization. Of these error effecting blocks, n− 3
will have four full single-X rotations, n(n − 1)/2 − (n − 3) + 1 will have two full
single-X rotations and one, the driver, will have n single-X rotations of duration
β ≤ π. We can allocate Â = tĤR and B̂ = tα

∑
m∈Sµ

Xm. Where every term in ĤR
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consists only of Pauli-Z strings. We can thus write

∣∣∣∣∣∣∣∣e itĤR
2 eitα

∑
m∈Sµ

Xme
itĤR

2 − e
it
(
α
∑

m∈Sµ
Xm+ĤR

)∣∣∣∣∣∣∣∣
≤ α2t3

12

∣∣∣∣∣∣
∣∣∣∣∣∣
ĤR,

∑
m∈Sµ

Xm

 , ∑
m∈Sµ

Xm

∣∣∣∣∣∣
∣∣∣∣∣∣

+
αt3

24

∣∣∣∣∣∣
∣∣∣∣∣∣
ĤR,

∑
m∈Sµ

Xm

 , ĤR

∣∣∣∣∣∣
∣∣∣∣∣∣ , (5.25)

because every block in the DA-QAOA setting will be surrounded by resource blocks,
it does not matter whether the Trotterization is symmetric or asymmetric. To
calculate the first commutator, we can expand the sums and compute each individual
term

∑
m∈Sµ

∑
m′∈Sµ

∑
j<k

[[ZjZk, Xm] , Xm′ ]

=
∑
m∈Sµ

∑
m′∈Sµ

∑
k>m

2 [ZmZkXm, Xm′ ] +
∑
m∈Sµ

∑
m′∈Sµ

∑
j<m

2 [ZjZmXm, Xm′ ]

=
∑
m∈Sµ

∑
m′∈Sµ

∑
j ̸=m

2 [ZjZmXm, Xm′ ]

=
∑
m∈Sµ

∑
j ̸=m

4ZmZj +
∑

m′∈Sµ|m′ ̸=m

4iYmYm′

 . (5.26)

We have here assumed that the resource is homogeneous. In a given single-qubit
block there will be s possible indices in the corresponding set Sµ. As such we will
have s(n−1) Z strings and s(s−1) Y strings. The eigenvalues of sets of terms that
can be simultaneously diagonalized will add linearly. We have two orthogonal bases
in which eigenvalues are added as such, the sums of which will add in quadrature.
The greatest eigenvalue of the entire sum in Equation 5.26 can then be written

s
√
(s− 1)2 + (n− 1)2. The contribution to the bound in Equation 5.25 from this

commutator can therefore be written

α2t3s
√
(s− 1)2 + (n− 1)2

3
. (5.27)
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For a homogeneous resource, the commutator in the second term can be written as∑
m∈Sµ

∑
j,j′<k,k′

[[ZjZk, Xm] , Zj′Zj′ ]

=
∑
m∈Sµ

∑
j,j′<k,k′

2(δjm + δkm) [ZjZkXm, Zj′Zk′ ]

=
∑
j′<k′

∑
m∈Sµ

∑
j ̸=m

2Zj [ZmXm, Zj′Zk′ ]

=
∑
m∈Sµ

∑
j ̸=m

∑
j′ ̸=m

4ZjZj′ZmXmZm

=
∑
m∈Sµ

∑
j ̸=m

∑
j′ ̸=m

−4ZjZj′Xm, (5.28)

where the negative sign is of no consequence. We have (n− 1)2 terms per single-
qubit-X operator and s X-operators giving s(n− 1)2 strings. At worst the greatest
eigenvalue of this operator sum will be equal to the number of Pauli strings. We,
therefore, obtain a full bound of

∆µ =
αst3

3

(
(n− 1)2

2
+ α

√
(s− 1)2 + (n− 1)2

)
. (5.29)

We wish to bound the minimum fidelity of a coherent erroneous operation caused
by using bDA-QAOA

fα−DA−QAOA = min
ψ

∥∥∥⟨ψ| Û †
QAOAÛα-DA-QAOA |ψ⟩

∥∥∥2 . (5.30)

If the magnitude of the greatest eigenvalue of the difference between two unitaries
operators is bounded as in the Trotterization bound

∥Û − Ûα∥ ≤ ∆ (5.31)

then
∥Û †Ûα − I∥ ≤ ∆ (5.32)

which yields a bound of
∥ei|θ|max − 1∥ ≤ ∆ (5.33)

where ei|θ|max is the greatest eigenvalue of Û †Ûα, assuming the eigenvalues are small
such that all angles lie on the interval [−π/2, π/2]. The greatest phase acquired
under the erroneous evolution can then be related to the greatest eigenvalue bound
as

2 sin

( |θ|max

2

)
= ∆, θ = 2 sin−1

(
∆

2

)
(5.34)

where 0 < ∆ < 1. Consider the fidelity of a state under an erroneous operator
Ô = Û †Ûimperfect corresponding to the time-step µ during which a round of single-
qubit-operations are performed: ∥∥∥⟨ψ| Ô |ψ⟩

∥∥∥2 . (5.35)
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We can write this in the basis diagonalizing Ô,∥∥∥⟨ψ′| diag
(
eiθ⃗
)
|ψ′⟩
∥∥∥2 (5.36)

and this fidelity is minimized when the state is an equal superposition of the most
positive and most negative argument eigenstates of Ô.

min
ψ′

∥∥∥⟨ψ′| diag
(
eiθ⃗
)
|ψ′⟩
∥∥∥2

=
1

4

∥∥∥(⟨θmax|+ ⟨θmin|) Ô (|θmax⟩+ |θmin⟩)
∥∥∥2

=
1

4

∥∥⟨θmax| eiθmax |θmax⟩+ ⟨θmin| eiθmin |θmin⟩
∥∥2

≥ 1

4

∣∣ei|θ|max + e−i|θ|max
∣∣2

= cos (|θ|max)
2. (5.37)

So the fidelity of a single-qubit block µ is

fµ ≥ cos (|θ|max)
2, (5.38)

or in terms of the bound of the greatest eigenvalue of this set of single-qubit-
operations ∆µ:

fµ ≥ cos

(
2 sin−1

(
∆µ

2

))2

≥ 1−∆2
µ, (5.39)

with equality in the limit of small ∆. Using the sub-additivity of infidelity [150] we
can finally express

fα−DA−QAOA ≥ 1−
n(n−1)/2+2∑

µ=1

(1− fµ) = 1−
n(n−1)/2+2∑

µ=1

∆2
µ. (5.40)

For one set of single-qubit-rotations, the driver, all X terms are active, giving s = n.
The remaining time blocks either have 2 or 4 single-qubit gates active determined
by whether cancellations occur. No cancellations occur for n − 3 blocks resulting
in s = 4, with the remaining n(n − 1)/2 − (n − 2) blocks taking s = 2. The time
taken to perform each block is t = π/α. For large n we find that the speed of
single-qubit gates must increase approximately as the number of qubits squared for
high-fidelity with the ideal QAOA state. While this discussion has considered only
the use of a homogeneous resource Hamiltonian in the interest of brevity, this is not
critical to the calculation of the bound. A heterogeneous resource would result in a
sum of Pauli strings with non-unit pre-factors, which could be subsequently summed
straightforwardly, as in the homogeneous case.

5.12 Sensitivity to Other Errors

Next to the errors discussed in the previous sections that are imminent to the hard-
ware simplification provided by our digital-analog approach, the algorithm is ex-
posed to other sources of errors common to NISQ computing. As detailed error
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budgets of concrete hardware are currently hard to determine, we would like to
qualitatively evaluate their impact on our technique. A detailed evaluation of the
effects of different noise sources applicable to digital-analog quantum computing in
comparison to a gate-based approach was performed in [151], with results in favor
of the digital-analog paradigm.

On the one hand, single-qubit gate errors induced by decoherence measured by
T1/2 will have a full impact on this algorithm as these are repeatedly executed. Small
errors in the rotation axis will also have a full impact as they can be mistaken for
a modified problem Hamiltonian. Errors in the rotation angle can be expected to
be less critical as some of them can be accommodated in the classical optimization
process. So all in all, single-qubit errors have the same if somewhat smaller impact
than in a compiled gate model QAOA.

Two-qubit gates do not appear directly in our scheme thus avoiding two-qubit
gate control errors as well as the additional entry points for noise through fast two-
qubit control ports. However, the interaction mediated by the problem Hamiltonian
can still create entangled states, which decay faster than non-entangled states. No-
tably, an n-qubit GHZ state de-phases in a time T2/n [152]. The precise degree of
entanglement needed for a specific problem instance is currently unknown for any
quantum optimization algorithms. Yet, we can summarize that the sensitivity of
digital-analog QAOA to two-qubit errors is lower than the compiled version. Given
a single-qubit error rate, alongside the total execution time of the algorithm relative
to T2, the depth at which this algorithm can be faithfully executed could be inferred.

In this estimate, we need to keep in mind whether coherent over-rotation errors
have an effect different from incoherent errors. This case could occur if they inter-
fered in a structured way. Given the randomization effect of the problem Hamil-
tonian to any state, this is unlikely and we expect that their impact is faithfully
represented by the measured fidelity.

5.13 Conclusion

The possibilities of using models of quantum computation less conventional than the
standard gate-based approach have not been fully considered. In this work, we show
that while an alternative approach—the digital-analog paradigm—might introduce
errors of its own, the device complexity required to control the time evolution of
the system can be reduced and errors introduced are of a nature that can be non-
fatal to variational algorithms such as QAOA in certain regimes. We demonstrate
that the digital-analog paradigm is an ideal setting in which to do QAOA, as each
problem Hamiltonian operator can be performed in a single DAQC block, that
resource Hamiltonians expected from hardware can be utilized to implement QAOA
Hamiltonians mitigating swapping overhead associated with mainstream approaches
and that QAOA displays error resilience beyond that of pre-programmed algorithms
in the digital-analog paradigm. This work presents new possibilities for the design
of NISQ devices for combinatorial optimization, bridging the gap between current
devices and full, fault-tolerant quantum computers, and bringing hardware closer to
the point of demonstrating a quantum advantage for real-world problems.

110



Chapter 6

High-Connectivity Devices
for DA-QAOA

In Chapter 5, we devised a scheme for performing QAOA on a device with non-
standard native interactions. In this chapter, we discuss how a device designed for
such a purpose could look in practice. The digital-analog scheme was originally con-
sidered for the context of trapped ion quantum computing, however, the paradigm of
superconducting qubits is arguably a more mature technology with recent state-of-
the-art results occurring on such devices. Therefore, we demonstrate in this chapter
how a superconducting device can be purpose-built for Digital-Analog QAOA and
explore the feasibility of such a design.

6.1 Attribution

The work in this chapter was carried out by myself, with the general idea for the
design of such devices coming from Prof. Wilhelm-Mauch. The work was helped by
useful discussions with Dr. M. Ansari and J. Pazem.

6.2 Introduction

Most key implementations of QAOA to date are those of gate-based architectures.
For example [153], the most impressive example of a QAOA implementation on a
device is that in which the Google Sycamore chip, a device with 53 qubits of which
23 were used, ran the QAOA algorithm to find solutions to non-planar max-cut
problems and SK instances. Non-planar problems have the drawback of requiring
more advanced compilation methods on any device in which the qubits find them-
selves embedded on a 2d plane, without crossing coupling links, as superconducting
devices typically do. Swap gates are therefore needed, and are expensive, requiring
three two-qubit gates to apply a single swap between two qubits. The need for
swap gates also introduces a classical routing problem in which logical qubits must
be routed efficiently such that interactions can occur between all required pairs of
qubits [154, 155, 156].

A device for QAOA, therefore, would stand to gain from the capability to apply
arbitrary interactions without the need for routing and swaps, though such capabili-
ties would always come at the cost of additional engineering challenges. This chapter
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is an attempt to imagine such a device, using the digital-analog scheme to enable a
device that is simplified in control requirements, but complicated in fabrication and
characterization.

There have been attempts to consider the digital-analog scheme for supercon-
ducting devices, as is attempted in this chapter. For example, Gonzalez et al. [140]
considered the use of the cross-resonance effect to generate interactions between
transmon qubits, the most commonly utilized interaction for transmon devices [157].
A second work utilizes charge qubits [158] arranged in linear chains, with tunable
SQUID devices mediating interactions. This approach, alongside relevant digital-
analog single-qubit gate schedules, allows the simulation of various spin latices, such
as Fermionic Hubbard models. These two implementations are engineered to em-
phasize scalability. Scalability to large qubit numbers is likely a sensible goal for
the use of a quantum device for simulating large models and observing phenomena
thereof. As an example, work on Rydberg arrays in a 2d optical trap [159] observed
large-scale entanglement and quantum phase transition phenomena on 256 qubits,
far more than contemporary gate-based quantum computers. Such large-scale in-
vestigations are made possible by the reduced requirement to control devices than
is required for the typical gate sets for universal quantum computation.

6.3 General Timescales and Design Parameters

When building a device for digital-analog QAOA, we are constrained by certain
timescales. On the upper end, we have the coherence time of a device. The coherence
time of a device can be compared to the T2 phase relaxation time in nuclear magnetic
quantum computing. This is the time it takes for the transverse magnetization of
the system to decrease to a value of e−1 times its initial magnitude. In a more
general sense, coherence time represents the duration for which a digital-analog
computation can maintain a certain level of fidelity, such that meaningful results
can still be obtained. Depending on the realization of a qubit, there exists some
characteristic timescale over which the information encoded in a qubit decoheres,
via interaction with the environment. Such a timescale will typically represent an
upper limit on the time in which a calculation should be complete before the results
of such a calculation are scrambled by noise.

On the lower end of constraining timescales, we have the shortest time in which
single-qubit operations can be performed. Single-qubit operation times are deter-
mined by the specific qubit design, with the factors that result in fast or slow
single-qubit gates being beyond the scope of this thesis. Another important factor
is the quality of readout schemes for the device’s state, allowing one to obtain the
results of a computation.

In between these upper and lower timescales is, typically, the two-qubit interac-
tion time. For performing QAOA with digital-analog quantum computation, with
QAOA at depth p, with m digital-analog blocks required per layer (where in the
best case we simply have m = 1), and assuming that the problem parameters γ ≈ 1,
one would therefore choose to engineer a resource interaction strength such that the
circuit would be finished in a time on the order of the coherence time, so:

ginttCoherence ≈ mp. (6.1)

However, work in Chapter 5 demonstrates that the ratio of single-qubit term strength
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Figure 6.1: A design schematic for a digital-analog QAOA device using inductively
coupled flux qubits. Flux qubits are coupled inductively to a central loop such that
a homogeneous all-to-all Ising interaction is realized.

to interaction term strength, the speed ratio used in Figure 5.5, should take a value of
order ≈ 100 for Digital-Analog QAOA to perform well and retain a problem-specific
variational ansatz. This places a limit on circuit depths attainable with a given
coherence time. For depth p = 1 QAOA, the interaction strength can, therefore, be
m/tCoherence and so the ratio of the single-qubit gate time to the interaction strength
will be tCoherence/mtsq.

Typical single-qubit gates can be performed in ≈ 10 ns−20 ns [160] and coherence
times for transmon and flux qubits are approximately 30µs to 70µs [161, 162], giving
a ratio between the single-qubit and interaction times of 1500 − 7000. Taking into
account a factor of 100 for the minimum speed ratio for a relevant QAOA variational
ansatz, this allows for QAOA depths of up to 15− 70 with problem-specific device
connectivity, or a product of DA-interaction time, and p, equaling such a value.
In a device with coupling inhomogeneity, as would be found in some inductively
interacting flux qubits, one might only attain a QAOA depth of p = 1, given the
high, worst-case interaction times needed. Information as to required DA interaction
times can be found in Figure 5.4, where the cost displayed in this figure, multiplied
by the QAOA depth p is the constrained quantity.

6.4 Device Proposals

The most basic designs one could construct that produces the desired all-to-all
resource interaction involve engineering a device such that transverse interactions
produce the resource Hamiltonian of the digital-analog scheme. For flux qubits,
transverse interactions are commonly used, as such interactions naturally arise when
considering such qubits in the persistent current basis. In the context of charge
and transmon qubits, such interactions, named parasitic interactions, arise from
couplings with higher energy levels [163], and are typically unwanted, therefore
engineered to be as small as possible, or removed. While we focus on the case of
the flux qubits, one could also explore the use of parasitic interactions on transmon
qubits, to perform the digital-analog scheme for QAOA of Chapter 5.
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6.4.1 A Flux-Qubit Device

Figure 6.1 presents a proposed circuit diagram for a device in which flux qubits are
inductively coupled together via a global resonator. Because flux qubits have, as
their basis states, persistently flowing macroscopic currents, we can mediate inter-
actions between them by coupling each, inductively, to a shared central resonator.
The author made use of the resources of [164, 165] in the development of this section,
with the first [164] providing a general overview and the second providing a specific
use-case [165].

To determine the form of a resulting Hamiltonian from such a device, including
the interaction Hamiltonian, we can begin with the classical Kirchhoff circuit laws
alongside the Josephson relation and the loop flux quantization condition. Kirch-
hoff’s law conserves current flowing into and out of any element of an electrical
circuit and ensures that the sum of changes in electric potential around any loop is
zero. Therefore, ∑

node edges

Iedge = 0,
∑

loop edges

Vedge = 0. (6.2)

The central superconducting loop of the device1 is characterized by a current IC
induced by the inductively coupled qubits. This current is associated with a super-
conducting phase ϕC which is locked via the flux quantization condition to match
the external flux through the loop, which can be set to zero. For the flux qubits
surrounding, one has that the current flowing through the Josephson qubit elements
is equal to that of the qubit inductor, via application of the current law around each
loop, so

IQubit = IQubit inductor. (6.3)

Where we always take the convention that current is defined as positive in a clock-
wise direction, and denote the jth qubit current as Ij There is a per-qubit loop
quantization requirement written as

ΦInductor + ΦQubit, j = Φext, j + 2kπ (6.4)

in which the external parameter is typically utilized to perform single-qubit gates,
but is set about a value of a half-integer number of flux quanta2 to result in the
desired double well potential. For the low energy states considered, we use k = 0
always here. Optionally, a Josephson junction can be replaced by a SQUID to allow
for additional tunability. Using the flux quantization condition on the mediating
loop, one can write that

LCIC −
∑
j

MjIj + ΦC,ext = 2kπ, (6.5)

in which the negative signs occur due to the oppositely induced current to that of
the qubits. The external flux is set to zero, and we assume that for small currents,
k = 0 also. Mj is the mutual inductance between qubit loop j and the coupler loop,

1The electrical resistance of any circuit element used for a qubit-based application must have
zero or negligible electrical resistance.

2Other designs, namely those utilizing π junctions [166, 167], allow for the degeneracy point
to be moved to correspond to an external flux of zero, reducing control complexity when this
operating point is used.
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given by α
√
LjLC, where 0 < α < 1 is the coupling coefficient between the two

inductors, which can be made small and large depending on the spatial geometries
of the inductor loops. Assuming that zero external flux is applied to the coupler
loop, the current conservation condition becomes

IC =
∑
j

Mj

LC

Ij (6.6)

as the coupler loop’s state is entirely determined by that of the surrounding qubits.
For each qubit, the total flux through the inductor can be written as:

IjLj +MJIC = Φj, (6.7)

where Ij is the qubit current. We can isolate Ij to be eliminated, so:

Ij = Φj/Lj −Mj/LjIC, (6.8)

and substitute this into Equation 6.6 to obtain a formula for the coupler current in
terms of the qubit inductor fluxes alone. This gives:

IC =
ΦC −∑αjΦj

(LC −∑j αjMj)
. (6.9)

This suggests the re-scaling of the coupler inductance to account for the qubit coupler
interactions as LC → L̃C with

L̃C = LC −
∑
j

αjMj, (6.10)

and so we can simply write the current as

IC =
−∑αjΦj

L̃C

. (6.11)

Equating the qubit current I∗j to the current flowing through the qubit inductor,
one obtains:

I∗j = Φj/Lj −
αj
∑

j′ αj′Φj′

L̃C

, (6.12)

where, note, αj = Mj/Lj. That equation can be then identified as an equation of
motion, written now in the phases alone, as would be determined via the Euler-
Lagrange equation from the system Lagrangian as:

∂

∂Φj

L(Φ, Φ̇) = d

dt

∂

∂Φ̇j

L(Φ, Φ̇). (6.13)

We can then write the system Lagrangian as

Lj(Φ, Φ̇) =
αj

L̃C

∑
j′

αj′Φj′Φj +
∑
j

Lj(Φ̇j,Φj), (6.14)

where one can verify that for a simple single-junction flux qubit at a typical operating
point, one has

Lj(Qj,Φj) =
Φ̇j

2C
+

Φ2
j

2Lj
+ Ej cos(Φj), (6.15)
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for which the Euler-Lagrange equation produces the correct equation of motion in
the absence of the coupling term as:

Q̇ =
Φj

Lj
− Ej sin(Φj) =

Φj

Lj
− I∗j = 0. (6.16)

As a Hamiltonian this returns simply the same expression with, however, a positive
contribution from the potential (phase) energy:

Ĥ =

(∑
j

Φ̇j∂Φ̇j
− 1

)
L(Φ, Φ̇) =

∑
j

Ĥj(Φ, Φ̇) +
αj

L̃C

∑
j′

αj′Φj′Φj, (6.17)

which is a transverse, all-to-all, ZZ-type interaction, when projected in the persis-
tent current basis with a sufficiently large barrier.

Choice of flux qubit and operating regime

What remains is to determine parameter regimes for the design of the device and
the desired interaction strengths. The obvious operating regime for a flux qubit
for the purpose of digital-analog computing is to be far from the degeneracy point.
Away from the degeneracy point, the qubit eigenbasis is made close to that of the
persistent current basis, and so, the approximation of interactions as longitudinal
becomes closer to exact in the qubit basis. To design to this specification, one can
either increase the difference in energy of the two-qubit states, localized to the wells
of the double well potential, or, increase the size of the barrier separating the qubits.
The downside to this configuration, and the reason why many modern iterations of
flux qubits do not operate at this point, is the sensitivity of the qubit to external
flux noise, resulting in shorter coherence times. However, recent advances in qubit
fabrication have proved successful in reducing this with absorbed O2 molecules being
a major cause of such errors [168].

The ideal form of a flux qubit for this application would be the three-junction
flux qubit, where one junction is split to form a SQUID. Such a design allows for
external control of the barrier height—the parameter γ on Figure 6.1—resulting in
the capacity for strong transverse drive required for fast single-qubit gates.

The desired ratio between the many two-body terms and the maximum attain-
able single-qubit-X strength should be greater, and perhaps significantly greater,
than 100, as determined in Chapter 5. With 10 ns single-qubit gate times, at a
frequency of 200MHz, this means two-body terms with a strength of around or less
than 2MHz. The strength of the interactions in Equation 6.17, assuming parameters
for each qubit are set equally, are

Eint =
α2

Lc − nα2Lj
L2
jI

∗2, (6.18)

where the current I∗ is that of the persistent current in the flux qubits. Due to the
speculative nature of this work, determining exact figures for system parameters is
not useful, but order-of-magnitude estimates for where such parameters might lie,
and to which regimes they could be engineered to operate in, can instruct as to how
a device might be used.
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Early work showing that flux qubits, around 10 µm in size could be entangled
with inductive interactions [169] used qubit inductances of 39 pH and critical cur-
rents of 400 nA and persistent currents of 320 nA. In this setting, the mutual induc-
tance between the two qubits was estimated to be 2.7 pH. This means a value for α
of this device around the 1% level, resulting in an interaction at 410MHz. This inter-
action was presumably engineered to be particularly strong due to the constraints
on coherence time in such an early experiment, being an early demonstration of
entanglement with flux qubits.

Work proposing more coherent quantum annealing proposes qubits operating
with a lower persistent current magnitude of 180 nA [50] compared to the value of
3 µA used by the D-Wave systems [170], with qubit inductances of 265PH. Work
involving resonators used to couple qubits in the literature involve inductances on the
order of 1.8 nH [171], 1 nH [172]. Assuming persistent currents at the lower 100 nA
and qubit inductance of 50 pH, with α = 0.01 to target an interaction strength of
2MHz, and, a 10 qubit device, this fixes the reduced central resonator inductance at
a value of 2 pH which is smaller than typically utilized by two orders of magnitude.
Greater coupler inductances could be obtained via the usage of smaller persistent
currents, qubit inductances, or coupling coefficients. Due to the non-homogeneous
contribution of qubit-qubit direct inductive coupling, it may well be favorable to
utilize a large loop with small mutual inductance with individual qubits, but such
that the qubits are spatially separated such that the direct interactions are negligible.

6.4.2 Charge Qubits and Transverse Interactions

In charge and transmon qubits, longitudinal interactions are not so readily available
as in flux qubits away from the degeneracy point. While such interactions exist, it is
rare to find an interaction that is purely longitudinal as is the case for persistent cur-
rent basis flux qubits. Charge and transmon qubits typically use capacitor-mediated
interactions, which result in anXX-type coupling in the qubit basis. XY -type inter-
actions, generating iswap gates are also available, being considered more expressive
than the pure XX or Y Y interaction types [173]. Considering a charge, or transmon
qubit analog of the longitudinally coupled flux qubit device, one could construct a
device with all qubits capacitively coupled to a central lumped charge, as seen in
Figure 6.2. Alternatively, a similar type interaction could be obtained by using the
flux qubit device of Figure 6.1 with the qubits operating at the first order flux insen-
sitive degeneracy point. The challenge of using such transverse interactions, while
fine for typical uses in quantum computing with tunable interactions, is problem-
atic when one considers always-on interactions since the qubits are not stationary
in the basis on which the interaction acts. It is not, then, obvious how to extract
digital-analog-like dynamics in this context, as is in the context of transverse inter-
actions. While work has considered the use of transmon qubits for digital-analog
computation with the cross resonance effect [140], such work utilizes a restricted
connectivity setting in which capacitively coupled qubits can be selectively brought
into resonance with their neighbors, compared to the high connectivity envisaged
for the implementation of digital-analog QAOA.
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Figure 6.2: A DA-QAOA device design schematic for use with charge qubits. Charge
qubits are coupled capacitively to a central charge island such that a close-to-
homogeneous all-to-all interaction is realized. As a capacitive interaction, the in-
teraction is transverse to the qubit eigenbasis and would require more complicated
control schemes than in the case of persistent current qubits.

6.4.3 Galvanic Coupling of Flux Qubits

Galvanic coupling might be a favorable method for use in a device for digital-analog
QAOA, primarily due to the interaction deriving from kinetic, rather than geometric
inductance. Rather than placing qubits and coupler loops in proximity to each other,
such that mutual inductance leads to interactions, galvanic coupling physically wires
circuits together, resulting in potentially stronger interactions. First considered by
Levitov et al. [174] in 2001, and developed by Massen van den Brink in 2006 [175],
the topic still sees attention as a viable scheme for coupling flux qubits [176]. When
using coupling of this type, one is less bound to the constraints of interactions that
typically scale as the cube of the distance between loops, embedded onto a 2d plane.
Galvanic interactions do, however, typically result in particularly strong interactions,
which is often cited as an advantage, but, in the context of always-on digital-analog
interactions, might be disadvantageous and induce greater error.

The galvanic analog of the flux qubit design presented in Figure 6.1 is presented
in Figure 6.3. In the following treatment, we simply minimize the classical potential
induced by the loop, which gives an approximation of the form of the interaction
potential. A more full treatment could consider the coupler loop with quantum
degrees of freedom and apply a Schrieffer–Wolff transform as is done in works where
more exotic regimes are required, for example, when one wants greater than two-
body interactions to be present [177]. Note, the following assumes inductances are
vanishingly small, such properties could be attained by manufacturing qubits to have
a small size, with the double well potential deriving only from contributions from
Josephson junctions. To start the analysis of the potential landscape in Figure 6.3,
we may write down a Hamiltonian with cosine terms for each Josephson junction in
the device. The indexing scheme for the phases ϕij is such that the first index refers
to the qubit, with the second referring to one of the three-qubit junctions, where
the indices 1, 2 refer to the identical junctions running vertically. Indices 0 and 3
refer to the junctions associated with α and γ respectively. ϕC refers to the phase
across the single Josephson junction associated with the parameter β. Uppercase Φ
refers to an externally applied flux, which is expressed in dimensionless units of the
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Figure 6.3: A device proposal in which three-junction flux qubits are wired directly
to a coupler loop, such that a homogeneous all-to-all Ising interaction is realized via
kinetic inductance.

flux quantum.

U
(
ϕ⃗
)
= −

∑
i∈[0,n],j∈{1,2}

E cos(ϕij)−
∑
i∈[0,n]

γE cos(ϕi3)

−
∑
i∈[0,n]

αE cos(ϕi0)− βE cos(ϕC). (6.19)

Eliminating one degree of freedom per loop using the flux quantization condition

Φi =
∑

j∈{0,1,2,3}

ϕij, ϕC =
∑
i

ϕi0 + ΦC, (6.20)

results in the formula:

U
(
ϕ⃗
)
= −

∑
i∈[0,n],j∈{1,2}

E cos(ϕij)− βE cos

(
ΦC +

∑
i

ϕi0

)
−
∑
i∈[0,n]

(γE cos(Φi − ϕi0 − ϕi1 − ϕi2) + αE cos(ϕi0)) . (6.21)

Minimizing this potential using ∂ϕijU = 0 for the indices j = 1, 2, one finds the
qubit current conservation condition:

E sin(ϕi1) = γE sin(Φi − ϕi0 − ϕi1 − ϕi2) = E sin(ϕi2) (6.22)

for each qubit, showing that for low-lying states, the remaining loop phases remain
identical and ϕi1 = ϕi2. A second set of equations can be derived by minimizing
with respect to the junction phases linking the flux qubits to the coupler loop, ϕi0,
as:

γ sin(Φi − ϕi0 − ϕi1 − ϕi2) = α sin(ϕi0) + β sin

(
ΦC +

∑
i

ϕi0

)
= sin(ϕi). (6.23)

Which is a current conservation condition dictating that the current around the
coupler loop should be equal to the current flowing around the top of a qubit loop
plus the current flowing around the bottom of a qubit loop. By setting α >> 1 one
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ensures that the inner loop phase is small relative to the qubit phases. Using this
approximation, we can solve the first equation to obtain the usual phase minima of
flux qubits of cos(ϕ) = 1

2γ
. Applying zero flux bias to the coupling loop and using

the small angle approximation for the inner junction phases, one obtains the current
condition

αϕi0 + β
∑
i

ϕi0 = sin(ϕi) (6.24)

by the symmetry of the Hamiltonian, assume that the internal ϕi0 phases can take
one of two values ϕ+, ϕ− depending on whether the associated qubit state has a left-
or right-circulating current. For positive, and negative phase qubits, this equation
will then read

αϕ+ + β
∑
i

ϕi0 = sin(ϕ), αϕ− + β
∑
i

ϕi0 = − sin(ϕ). (6.25)

Assuming k qubits have positive phase and n − k have negative phase, combining
these equations gives:

α
∑
i

ϕi0 = (2k − n) sin(ϕ)− nβ
∑
i

ϕi0, (6.26)

and can be rearranged to:

β
∑
i

ϕi0 = β
2k − n

α + nβ
sin(ϕ) = w sin(ϕ). (6.27)

Now define w, which can be interpreted as the magnetization of the system,

w =
2k − n

α + nβ
β, (6.28)

and so Equations 6.25 can be combined to eliminate the sum of internal phases to
produce:

ϕ± =
− sin(ϕ)

α
(w ± 1). (6.29)

Plugging these values into the relevant terms in the potential energy and using a
small angle approximation, one obtains the usual single-qubit potential, but, also,
an interaction term given by

Uint(ϕ⃗i0) = −
∑
i∈[0,n]

(αE cos(ϕi0))− βE cos

(
ΦC +

∑
i

ϕi0

)
, (6.30)

which can be expressed in terms of the magnetization w as:

Uint(k)/EJ = −α
[
k cos

(
sin(ϕ)

α
(w + 1)

)
+ (n− k) cos

(
sin(ϕ)

α
(w − 1)

)]
− β cos

(
w sin(ϕ)

β

)
. (6.31)

With a small angle approximation, for large α, this gives:

Uint(k)/EJ =
sin(ϕ)2

2α

(
k ((w + 1))2 + (n− k) ((w − 1))2

)
+

sin(ϕ)2w2

2β
. (6.32)
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This can then be expressed as:

Uint(k) ≈
3nw(k)2 sin(ϕ)2EJ

2α
= E∗(n− 2k)2. (6.33)

and, finally, this, as demonstrated in Appendix 6.5, can be finally expressed in terms
of ZZ interactions as:

Ĥint =
3nβ2 sin(ϕ)2EJ

α(α + nβ)

n∑
i<j

ZiZj, (6.34)

which is the desired form. While such an interaction can be made strong in the case
that β is made large and α small, breaking the assumptions of the section, for the
low interaction strengths needed for digital-analog QAOA, one can fabricate α as
large as needed and β as small as necessary, to result in the appropriate strength.

6.5 Conclusion

To conclude the section, flux qubit devices for digital-analog QAOA could be viable
and could be a promising area for experimental attention. Regardless, scalability
could prove challenging due to the quadratic circuit depth incurred in the interaction
time required for a computation. Such a device for digital-analog QAOA should
also be extremely well characterized in its interaction, as uncertainty in the form of
a resource interaction formed would result in a QAOA ansatz state not resembling
the ideal version attained by a noiseless gate-based implementation. Building highly
symmetric devices, as proposed, could help with issues of heterogeneous interaction,
as symmetry in the design manifests in symmetry in the interactions formed.

In the near term of noisy quantum computation at an intermediate scale of
10−100 qubits, devices such as the D-Wave annealer have been seen as a promising
step and a potential way to leverage quantum advantage, even if theoretical proof
of quantum advantage cannot be attained. Devices and schemes such as the one
presented in this and the previous chapter, therefore, might offer an alternative route
to the scalability of useful quantum computers, albeit, with more coherent qubits.
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Appendix

6.A Weight-Dependent Potential to

ZZ Interactions

To calculate the effective interactions yielded by a potential term, quadratic in the
weight of the state of a set of qubits, we can use a n-bit binary Fourier transform of
the energy spectrum resulting from the multi-qubit interaction. The device interac-
tion potential in Equation 6.33 can be expressed as:

Û =
∑

s⃗∈[0,1]n
g(s⃗)Zs0Zs1 . . . Zsn , (6.35)

where

g(s⃗) =
1

2n

∑
x⃗∈[0,1]n

U(k)(−1)x⃗·s⃗. (6.36)

Substituting in our potential, where k is the weight of a string x⃗ gives

g(s⃗) =
1

2n

∑
x⃗∈[0,1]n

(n− 2k)2 (−1)x⃗·s⃗. (6.37)

Consider a value of g corresponding to a single-qubit Zj interaction. For such a
term, si = δi,j and so

g(δi,j) =
1

2n

∑
x⃗∈[0,1]n

(n− 2k)2 (−1)xj (6.38)

=
1

2n

∑
x⃗∈[0,1]n, ̸xj

(n− 2k)2 − (n− 2− 2k)2 (6.39)

=
1

2n

∑
x⃗∈[0,1]n,̸xj

−4 + 4n− 8k. (6.40)

Evaluating the average over the weight of all remaining bit strings gives a value of
k = (n− 1)/2 which, substituted into the expression gives:

=
1

2n

∑
x⃗∈[0,1]n,̸xj

4(n− 1)− 8(n− 1)/2 = 0, (6.41)

meaning that the interaction Hamiltonian results in no single-qubit terms.
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Considering possible two-qubit ZZ interactions, one takes si = δi,j1 + δi,j2 and,
substituting this into the binary Fourier transform, one obtains:

g(s⃗) =
1

2n

∑
x⃗∈[0,1]n

(n− 2k)2 (−1)x⃗·s⃗ =
1

2n

∑
x⃗∈[0,1]n

(n− 2k)2 (−1)xj1+xj2

=
1

2n

∑
x⃗∈[0,1]n, ̸xj1 , ̸xj2

(n− 2k)2 − 2 (n− 2− 2k)2 + (n− 4− 2k)2 , (6.42)

which simplifies to

=
1

2n

∑
x⃗∈[0,1]n, ̸xj1 , ̸xj2

n2 − 4nk + 4k2 − 2(n2 + 4 + 4k2 − 4n− 4nk + 8k)

+ (n2 + 16 + 4k2 − 8n− 4nk + 16k) =
1

2n

∑
x⃗∈[0,1]n,̸xj1 ,̸xj2

8 = 2. (6.43)

This means that the interaction produces all ZZ interactions with a pre-factor of
2. Now we can show that the higher order terms evaluate to zero, and determine
how the general case evaluates. Taking an n∗-local term, we can expand the Fourier
coefficient as:

g(n∗) =
∑

x⃗∈[0,1]n−n∗

n∗∑
p=0

(
n∗

p

)
(n− 2p− 2k)2(−1)p, (6.44)

which can be expanded as a polynomial in p∑
p

(
n∗

p

)
(n2 + 4p2 + 4k2 − 4np− 4kn+ 8pk)(−1)p (6.45)

∑
p

(n2 − 4kn+ 4k2)

(
n∗

p

)
(−1)p − 4(n− 2k)

(
n∗

p

)
p(−1)p + 4

(
n∗

p

)
p2(−1)p. (6.46)

To evaluate these sums we can use the binomial theorem,

(x+ 1)n =
n∑
p

(
n∗

p

)
xp. (6.47)

Setting x = −1 demonstrates that the first term in the sum is zero for all n > 0.
To obtain the second term, one can operate with x∂x and x∂xx∂x under the sum,
giving

nx(x+ 1)n−1 =
n∑
p

(
n∗

p

)
pxp (6.48)

and

nx(x+ 1)n−1 + nx2(x+ 1)n−2 =
n∑
p

(
n∗

p

)
p2xp. (6.49)

Setting x = −1 in the first of these gives 0 if n > 1 and the second gives 0 for
all n > 2. Therefore, our device interaction potential induces no terms of weight
greater than two and can be expressed as required as:

Ĥint =
3Enβ2 sin(ϕ)2

α(α + nβ)

n∑
i<j

ZiZj. (6.50)
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Conclusion

Quantum computing technologies are developing rapidly, with vast improvements to
state of the art capabilities in the past five years. From the development of many-
qubit devices sustaining error rates sufficient to exploit their size for algorithmic uses,
to the first demonstration of quantum error correction codes that incur decreasing
logical error rates with increasing code distance [178]. While such developments
are impressive, there exists, still, a gulf between the current state of the technology
and the capabilities expected to be required for algorithmic advantage with quantum
computing. That is, running Shor’s algorithm on a fault-tolerant quantum computer
to break 1024-bit RSA encryption would require logical qubit counts in the tens
of millions [179], a number that might be reduced by improvements to physical
hardware. There is, therefore, a gap for intermediate applications, to make use of
devices between those that might exist in the future for full-scale, fault tolerant,
quantum computing, and the current era of small devices.

This thesis presents work in this area. In the first half we presented analytical re-
sults aimed at understanding the performance of QAOA, and how this performance
relates to average properties of the combinatorial optimization problems it solves.
Firstly we show in Chapter 3 that performance is calculable in the infinite problem
size, or average problem context, when using a Grover driver. Building on this work,
in Chapter 4, we expand the context to non-Grover drivers, and demonstrate that
we can obtain a general form for QAOA expectation values that depend only on
problem-specific conditional probabilities. Therefore, we can calculate the perfor-
mance of the algorithm on entire ensembles based on their statistics, and structure in
the problems with respect to the driver chosen. We use this method to compare the
performance of QAOA with two different drivers, that of the standard single-qubit-X
drivers and that of line mixers. We use the random cost model for this compari-
son, determining that the Grover driver and the X driver perform identically at
depth 1, with the line mixer underperforming the two on random cost problems.
The primary objective of this research, then, might be to identify statistical prop-
erties from a problem, allowing for a less computationally demanding calculation of
QAOA performance and optimal QAOA angles, instead of training QAOA on a sin-
gle problem instance. This could be especially important for problems of large scale,
for which procedures that take time polynomial in the problem size would have high
utility for calculating optimal QAOA angles and expected performance. Further
work could investigate the difficulty of determining relevant problem statistics from
a given problem, with sub-exponentially scaling resource requirements in problem
size, and also, to the problem of efficiently evaluating QAOA expectation values at
depths greater than 1, a capability that the methods Chapter 3 succeeds in, but
Chapter 4 falls short of. Further development in this area could negate the need for
training of QAOA circuits in the way initially conceived, in which a noisy estimate
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of the expected value of the state output by the quantum computer is iteratively
improved with the use of a classical optimizer.

In the second part of the thesis, in Chapter 5 and 6, a novel scheme for performing
QAOA with always on interactions is investigated. Building on previous applications
of the digital-analog paradigm of quantum computing, we found that variational al-
gorithms, and QAOA in particular, yield natural synergies to the digital-analog
context. Such synergies occur because QAOA is naturally resilient to systematic
coherent error, which is the variety of error introduced by the banged digital-analog
scheme, with a resource Hamiltonian remaining on for the duration of a calcula-
tion. We showed the regimes of interaction strength, compared to the speed at
which single-qubit operations could be performed, at which QAOA, performed in
the error-inducing digital-analog scheme, performed comparably to an ideal error-
free implementation of QAOA. We solved issues with the implementation that arose,
including those of negative interaction times resulting from the derivation of digital-
analog block times. Finally, we presented a blueprint for a flux-qubit-based device
that could take advantage of the digital-analog context for QAOA. By connecting a
number of flux qubits to a resonator, a homogenous interaction could be produced,
ideal for digital-analog QAOA. As in the case of quantum annealing and the D-Wave
quantum annealer, such ideas could give way to new devices that are not designed
for universal quantum computation, but might leverage the engineering effort levied
on building fault tolerant devices, to provide potentially useful, coherent machines
for the solution of combinatorial optimization problems in the near term.
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Appendix A

QAOA Simulation With Fast
Walsh-Hadamard Transforms

To study the properties of QAOA, it must be simulated. While there will always
be an upper limit to the size of a system one can completely simulate on a classical
computer, the structure can be exploited to allow the largest possible system sizes
to be tractable. In this section we demonstrate a technique for simulating QAOA
at a basic level, allowing full control over the driver and problem Hamiltonians. A
comparison to the Google cirq package is made.

The simulation of QAOA or other quantum algorithms with n qubits and thus
N = 2n basis states, requires, at worst, that at each time step, one performs multi-
plies a matrix of size N ×N by a length N vector. In this work, a Python package
has been developed for accelerated simulation while maintaining a high level of flex-
ibility and ease of driver selection. A typical QAOA circuit simulated in a Python
package takes an initial state |+⟩ and applies driver and problem Hamiltonians until
all operators are applied. This state is then:∣∣∣γ⃗, β⃗〉 = ÛD(βp)ÛP(γp) . . . ÛD(β1)ÛP(γ1) |+⟩ , (A.1)

where
ÛP = exp

(
iγ diag(E⃗c)

)
= diag(exp

(
iγ E⃗c

)
. (A.2)

Likewise, one can express the driver unitary similarly as

ÛD = H⊗n exp
(
iβ diag(E⃗X)

)
H⊗n = H⊗ndiag(exp

(
iβ E⃗X

)
H⊗n, (A.3)

which means that since the Hadamard transforms can be performed in O(N log(N)),
with the fast Walsh-Hadamard transform, rather than the worst case O(N2) scaling
from naive multiplication, application of the driver and problem unitaries can be
applied via element-wise multiplication by a complex number in time O(N). To

obtain E⃗X , consider that surrounded by Hadamards, the single-qubit-X operators
become single-qubit-Z operators as HXH = Z. Combining this with the n-bit
binary Fourier transform method for converting between energy and interaction
representations of our problem Hamiltonian, one can find the energy representation
of ĤD as

ĤD =
∑
k

hkXk1Xk2 ...Xkn = H⊗n

[∑
k

hkZk1Zk2 ...Zkn

]
H⊗n, (A.4)
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Figure A.1: A comparison between the time to optimize a depth-5 QAOA circuit
with a problem Hamiltonian deriving from an instance of the number partitioning
problem. The NumPy implementation described in this section is lightweight and
results in a faster runtime for qubit counts below 10.

from which one can then take the Hadamard transform of h⃗ to obtain E⃗X = H⊗nh⃗.
The missing ingredient here is the ability to apply the n-qubit Hadamard gate
without explicitly writing down its full 2n × 2n matrix in memory to do this, one
uses the fast Walsh-Hadamard transform.

A.1 Fast Walsh-Hadamard Transforms

The Fast Walsh-Hadamard Transform [180] of a vector is a method to compute the
Walsh-Hadamard transform of a vector, using N logN additions or subtractions,
in comparison to the N2 operations required for a naive approach. One uses the
recursive definition of the Walsh-Hadamard transform and uses a divide-and-conquer
approach to perform the calculation.

Hn =
1√
2

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
. (A.5)

Which is equivalent to applying the single-qubit Hadamard gates to an array from
top to bottom, without expressing the single-qubit gates in the full n-qubit-spanned
space.

A comparison of the aforementioned method with a state-of-the-art simulator
written by Google is presented in figure A.1. It can be seen that for small instances
the NumPy vector implementation with fast Hadamard-Walsh transforms performs
better by an order of magnitude at low qubit counts but suffers from a poorer
overall asymptotic scaling. The cause of this scaling is expected to be due to the
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Google simulator exploiting the local nature of the problem solved in this plot. For
differing driver choices, for example, the line mixers used in Chapter 4, encoding
in Cirq becomes difficult and one might see better performance from the NumPy
implementation.
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