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Abstract

Tropical forests provide essential ecosystem services related to human livelihoods.
However, the distribution and condition of tropical forests are under significant
pressure, causing shrinkage and risking biodiversity loss. Tanzania is undergoing
substantial forest cover changes, but monitoring is limited, partly due to a lack
of remote sensing knowledge, tools, and methods. This study has demonstrated
a comprehensive approach for creating a national-scale forest monitoring system
using Earth Observation data to inform decision-making, policy formulation, and
combat biodiversity loss. A Maximum Entropy model was used to predict for-
est change under different climate change scenarios (RCP 4.5 and RCP 8.5 for
2055 and 2085). This analysis identified that these landscapes will experience
increased isolation and reduced connectivity. For example, upland forests, essen-
tial refugia of species, and endemism were predicted to almost halve in extent by
2085. A national forest baseline was created for 2018 through the application of
Landsat 8 imagery. The classification was developed using the extreme gradient
boosting (XGBoost) machine-learning algorithm and achieved an accuracy of 89%
and identified 46% of the country’s area is covered with forest. Of those forested
areas, 45% were found within nationally protected areas. Using a novel methodol-
ogy where habitat suitability analysis was used to constrain the classification, the
forest baseline was classified into forest types, with an overall accuracy of 85%.
Woodlands (open and closed) were found to make up 79% of Tanzania’s forests.
To map changes in forest extent, an automated system for downloading and pro-
cessing Landsat 8 imagery was used along with the XGBoost classifiers trained to
define the national forest extent. The Landsat 8 scenes were individually down-
loaded and processed and the identified changes were summarised on an annual
basis. Forest losses identified for 2019 were found to total 157,204 hectares, with
an overall accuracy of 82%. Forest loss within Tanzania has already triggered eco-
logical problems and alterations in ecosystem types and species loss. Therefore,
the importance of a forest monitoring system, such as the one presented in this
study, will enhance conservation programmes and support efforts to save the last
remnants of Tanzania’s pristine forests.
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Chapter 1

Tropical Forests

1.1 Introduction

Tropical forests remain the core of the global biosphere and the hub of several earth

systems and cultural frameworks. The biome comprises an intricate and wide vari-

ety of macro and micro-scale habitat variability, which influences animals, plants,

hydrology, soil quality, and seasonality encountered by diverse human communi-

ties worldwide (Roberts, 2019). Globally, tropical forest habitats are dynamic,

with the mosaics of expansion (e.g., woody encroachment), contraction at the ex-

pense of another habitat (e.g., succession), or even complete disappearance (e.g.,

deforestation) (Venter et al., 2018). For example, across Africa, it is common

for landscapes to consist of a mixture of forest, woodland, and grassland mosaics.

Therefore, there is no generally agreed universal definition of tropical forests.

Therefore, the descriptions of eco-regions are based on the climates they occur,

the composition of plants and animals they inhabit, and the complex nature of

1
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interactions among different components that make tropical forest ecosystems.

Tropical forests characterised by varied structural and physiognomic types ranging

from evergreen forest, seasonally dry deciduous forest, savanna, and thorn scrub to

grassland and semi-desert vegetation exists (Torello-Raventos et al., 2013).

The diverse nature of tropical forests has been recognised as providing many es-

sential ecosystem services, benefiting the human population (Willis et al., 2013).

However, the extent and distribution of tropical forests have significantly reduced

over the last century, primarily due to human disturbance and deforestation (Malhi

et al., 2013). This is of international concern, as in addition to anthropogenic

change, climate-induced change is increasing the risk of biodiversity loss across

the tropics (Lambin et al., 2003).

1.2 Distribution and Environment

Tropical forests are confined to the equator mainly between the Tropic of Cancer

and Capricorn at latitude 23.5◦N and 23.5◦S (Grace et al., 2014; Moore, 2008;

Corlett, 2014) (Figure 1.1), the majority in the Neotropical region (South Amer-

ica) with an area of about 4 x 106 km2, Asia covering about 2.5 x 106 km2 and

Africa with an area of about 1.8 x 106 km2 (Thomas and Baltzer, 2001). The

total coverage of tropical forests is approximately 10% of the entire world’s land

area (Corlett, 2014). However, it is crucial in terms of global biogeochemical and

water cycles and forms the most abundant terrestrial reservoir of biological variety

(Mayaux et al., 2005).

The tropical regions receive high solar energy levels and a longer vegetation growing
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period supported by a pattern of warm air circulation and relatively wet seasons.

Rainfall varies between the years driven by Intertropical Convergence Zone (ITCZ),

including El Niño cycles resulting in seasonal variability. Temperatures decrease

with altitude, decreasing at about 0.6◦C for every 100 m up-slope. Tropical forests

exist with an annual rainfall of roughly above 800 mm and a mean temperature

of above 7◦C, where drier areas support savanna, grassland, or desert, and colder

regions have treeless alpine vegetation, especially on high mountains. Similarly,

tropical forests grow on a vast range of soil types, from intensely fertile soils in

volcanic areas and river floodplains to infertile peat and sand where adequate

nutrient recycling is present (Corlett, 2014).

Figure 1.1: The global location of the tropical forests. Sourced from Moore (2008)
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1.3 Why are Tropical Forests Important?

The importance of tropical forests is well recognised as they form the most dis-

tinct and complex biome on Earth, with unique and distinct biological organisms

of high economic value and many human livelihoods dependent on these ecosys-

tems (Potapov et al., 2012; Bazzaz, 1998). About two-thirds of global biodiversity

is found in tropical forests (Gardner et al., 2009) and 50% of well-known plant

species are located in tropical forests (Mayaux et al., 2005; Duveiller et al., 2008).

They also play a significant role in the global carbon cycle, absorb an enormous

amount of incoming solar radiation, and, consequently, have very low solar radia-

tion reflectivity (albedo). Hence, tropical forests have been recognised globally in

different Multilateral Environmental Agreements (MEA) such as the Convention

on Biological Diversity (CBD) and the United Nations Framework Convention on

Climate Change (UNFCCC) (Duveiller et al., 2008). However, they are decreasing

at all levels, mainly conversion to other land use (Figure 1.2) that is expected to

increase (Wright and Muller-Landau, 2006), intensifying the net flux of carbon

dioxide into the atmosphere (Fearnside, 2000; Cramer et al., 2004).

The tropical forests are changing globally (Figure 1.4) due to a diverse array of

drivers (Figure 1.2). The situation is particularly critical in tropical dry forests

and woodlands, with a suitable climate for many arable crops with natural land

clearing and burning (Malhi et al., 2014). Preventing these anthropogenic changes

is a significant challenge to overcome from a political and social point of view.

These issues are relevant at multiple scales, with both local and global issues to be

tackled. However, the application of Earth Observation data can help to address

issues of inadequate information (Malhi et al., 2014). The Food and Agriculture
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Organisation of the United Nations (UN-FAO) has been a pioneer in conducting

global forest resources assessment since 1947, at an interval of five to ten years

(Olander et al., 2008). These have been a primary source of information on tropical

forest extent and loss around the global (Hansen et al., 2010).

Figure 1.2: a)The proportion of deforestation drivers and b) Area proportion of de-
forestation drivers. Estimates of the magnitude of deforestation drivers as recorded
by 46 countries: a)sum of country data weighted by net forest area change by coun-
try b) weighted by net forest area change by country for the period 2000 – 2010.
Sourced from Hosonuma et al. (2012)

The FAO tropical forest data are valuable and have been widely used. However,

the quality is often questionable, as reporting methods and accuracy vary from

one country to another (Meyer and Turner, 1992), alongside variation in tropical

forest definitions (DeFries et al., 2002). For example, a declining trend in defor-

estation for tropical regions was reported by FRA for the 1980s to 1990s, while

the opposite trend was reported from satellite-based studies (DeFries et al., 2002).
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Therefore, the provision of satellite-based data is referred back to the 1970s (Fig-

ure 1.3) with more missions to be launched over the coming years (Reiche et al.,

2016) will support in investigating changes in tropical forest areas with broad ge-

ographic coverage. However, the vast majority of the research on tropical forest

monitoring to date is heavily biased toward particular areas, especially the South

American forests (Malhi et al., 2014) whilst Africa, apart from the Congo Basin,

has been severely understudied. For example, for the period from 1995 – 2003,

about two-thirds of studies focused on the Amazon Basin, 18% focused on central

Africa and 17% on Southeast Asia (Fuller, 2006). Therefore, expanding tropical

forest monitoring beyond these areas is required to capitalise on Earth Observa-

tion data availability with extensive area coverage. Perhaps most importantly,

attempts to combine societal constraints while contributing to an increase in sci-

entific knowledge and provide up-to-date and appropriate maps of the tropical

forest status.
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Figure 1.3: Historical, current, and future optical and synthetic aperture radar
(SAR) missions. The access of data in bold is in the free-of-charge missions and
the missions with restricted data policy access in mid-2015. The expected missions
to continue with data acquisition are in red (G). Sourced from Reiche et al. (2016)

1.3.1 Tropical Forest Conversion

Before modern agriculture and industrialisation, tropical forests were largely pris-

tine natural environments (Roberts et al., 2017). Human activities entrenched in

changes of social and economic systems and referred to as the agent and causes of

tropical forest loss (Meyer and Turner, 1992; Myers, 1993; Geist and Lambin, 2002)

(Figure 1.2). The term agent is confined to individuals, corporations, government

agencies, or development projects that clear the forests, while causes are the motive

forces in clearing forests (Tejaswi, 2007). In the tropics, especially in developing

countries, small-scale farming for subsistence or cash crops, rural population ex-

pansion, and local population growth or immigration into hinterland forest areas

accelerate forest conversion. Similarly, an increase in capital investments induces
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the development of infrastructures such as road construction, fossil-fuel, minerals

extraction, and hydro-electric dams at the expense of removing the forests (Malhi

et al., 2014). Therefore, anthropogenic changes influence tropical forests on both

spatial and temporal scales, resulting in significant short-term and gradual long-

term change (Coppin and Bauer, 1996).

The decrease/loss of forest cover is simply deforestation, which implies a shift from

forests into other land covers (forest to non-forest) formations without the revival

of forests by natural or artificial reforestation within a human planning horizon

(Achard et al., 2010; Palo, 1999), i.e., tree cover falls below the minimum crown

cover resulting in carbon stock reduction (DeFries et al., 2007).

1.3.2 Impact of Tropical Forest Loss

The loss of tropical forests has been of international concern (Fisher, 2012), and

affects erosion, increase in run-off and flooding, increase in CO2 concentration, cli-

mate change, and biodiversity loss (Lambin et al., 2003; Mas, 1999; Godoy et al.,

2012; Bazzaz, 1998). Therefore, the removal of tropical forests will increase the

albedo, reducing evapotranspiration, and decrease water cycling between the land

and the atmosphere (Bazzaz, 1998) resulting in reductions in local, regional, and

continental rainfall. It impacts the terrestrial life, marine environment, and even

the atmospheric condition as carbon dioxide is released into the atmosphere and

hence changes the global climate (Houghton, 2012; Sitch et al., 2015; Le Quéré

et al., 2009). The impacts, coupled with the change in the hydrological regime

(water quality and water flows), increase soil erosion and sediment deposits. Con-

sequently, adverse changes in tropical forest conditions impact millions of people
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in the regional, global environment, and biodiversity distribution (De Wasseige

et al., 2014). It will continue to be a significant problem in tropical countries in

the next 20–30 years as anticipated by Craglia et al. (2012), and will increase wa-

ter scarcity, affect air quality, and public health, with economic losses and social

consequences (Barbier and Burgess, 2001; Busch and Engelmann, 2015). The de-

forestation in tropics has been reported widely as an important part of reducing

scientific doubts about the estimates of greenhouse gas emissions (Achard et al.,

2002). This demonstrates the need for more conservation of tropical forests, in-

cluding reducing threats from (Figure 1.2). Table 1.1 summarises some studies on

the impacts of tropical deforestation.

Table 1.1: Summary of studies on the impact of tropical deforestation

Areas References
Biological diversity loss (Myers et al., 2000; Bradshaw et al., 2009;

Pandit et al., 2007)

Increase atmospheric concentration
of Carbon dioxide (carbon sink) (Houghton, 2003a; Costa and Foley, 2000)

Climate change at local and region (Nobre et al., 1991; Malhi et al., 2008;
Lawrence and Vandecar, 2015)

Impact on livelihoods of people
depending on the tropical forests (Brown et al., 2014; Culas, 2007)

1.3.3 Climate Change and Tropical Forest Loss

Climate change impacts pose a significant threat to tropical forests and biodi-

versity, including alterations in ecosystem types and species loss. For example,

climate change may induce prolonged droughts, intense fires, plant stress, and

tree mortality (Nobre et al., 2016). It will also increase mixed forest, savanna, and

grassland, and expansion of savanna, grasslands, and desert ecosystems. Similarly,
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rainfall variations have impacted tropical forests as changes in phenological time

affected pollination and seed dispersal and narrowed biological diversity (Bazzaz,

1998).

The loss of tropical forests contributes about 20 – 30% of the world’s greenhouse gas

emissions (Figure 1.5), through CO2 (Achard et al., 2007; Goetz et al., 2009). Dif-

ferent studies have reported carbon emissions caused by tropical forests loss (Harris

et al., 2012). However, uncertainties in emissions results are also highly associated

with land-use change fluxes (Achard et al., 2010; Houghton, 2003b). For example,

Harris et al. (2012) reported tropical deforestation accounts for about 0.80GtC

(8.0%) of all emissions, Grace et al. (2014) reported about 0.90GtC (8.49%) of all

emissions, and Houghton (2003b), reported about 0.81GtC, accounting for about

7.44% of emissions. Nevertheless, these figures identify tropical forest losses as con-

tributing to climate change, something which needs to change if global warming is

to be restricted to just 2◦C (Houghton et al., 2015). However, there is increasing

evidence of climate action of limiting global warming to 1.5textsuperscript◦C (Ro-

gelj et al., 2018), through protecting and expanding forest ecosystems that store

carbon and minimise emissions from land use.

The effect of future climatic conditions necessitates monitoring tropical forests,

and policy responses are required. However, there is limited availability of the

data and methods required, especially in sub-Saharan Africa enabling policy ac-

tion (Mitchard, 2018). Under the Kyoto Protocol and during the first commitment

period 2008 – 2012, committed to reducing CO2 emissions and other GHGs at be-

low 5 % compared to 1990 levels. It is to be achieved by conserving tropical

forests and enhancing carbon stored in the forests by monitoring. The use of

freely available Earth Observation data is an important part of that. The changes
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in carbon stocks can be quantified based on the activities related to afforestation,

reforestation programs, and regeneration (Patenaude et al., 2005) as the neces-

sary mechanism of the United Nations Framework Convention on Climate Change

(UNFCCC) (Achard et al., 2010).

Figure 1.5: The extent of carbon emissions from tropical deforestation between
2000 and 2005. Sourced from Harris et al. (2012)

1.3.4 Institutions and Policies on Tropical Forest Monitor-

ing

The loss of tropical forests has a global impact. International agency organisations

are putting efforts together to halt the problem through international cooperation

agreements. For example, the adoption of conventions such as the Paris Agreement

in 2015 under the United Nations Framework Convention on Climate Change (UN-

FCC). The UNFCCC has been exploring possible ways of reducing greenhouse gas

(GHG) emissions resulting from tropical deforestation (DeFries et al., 2007). It is

achieved by assessing forest cover extent and loss; valuable for forest resource man-

agement, conservation, and monitoring (Potapov et al., 2012). The information on
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tropical forest loss is necessary for developing strategies and assessing programs’

proficiency in sustainable forest use, conservation, and Reducing Emissions from

Deforestation and Degradation (REDD+) initiatives (Shapiro et al., 2015; Hunt-

ingford et al., 2013). The REDD+ creates the financial value of carbon stored

in forests due to the focus on curbing tropical deforestation (Brown et al., 2014).

The efforts to reduce tropical deforestation caused by the conversion of forests

to cropland, pasture, or other land use are the most significant steps in reducing

carbon emissions from tropical forests.

The declaration on tropical forest conservation efforts includes the XIV World

Forest Congress in 2015, Durban, South Africa, on enhancing new technologies for

forest monitoring and improving decision-making. A mechanism such as carbon

credit can be used to reduce deforestation in tropical countries. It is an alternative

economic support approach to reduce rates of tropical deforestation (DeFries et al.,

2002; Fearnside, 2003).

The necessity of accurate information on the extent, losses, and causes of tropical

deforestation is a yardstick for policy and decision-makers. Recent international

agreements such as the 2030 Agenda on Sustainable Development require Earth

Observation data to achieve Sustainable Development Goals (SDGs) for enhancing

life on land (goal 15) and its targets. However, Culas (2007), argued that there

should be a synergy between institutional factors and export marketing policies

on forest products in curbing tropical deforestation.
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1.4 African Tropical Forests

Africa is home to some of the most magnificent tropical forests in the world after

the Amazon basin. About 20% – 23% of the total area is covered by forests and

recognised for high biodiversity levels; significant hotspot areas include the Congo

basin of Central Africa, the Upper Guinea forest of West Africa, and the Eastern

Arc Mountains in East Africa (Eva et al., 2006; Gondo, 2012). The African tropical

forests provide livelihoods for more than 60 million people dwelling within or in

the vicinity of the forests for food, medicinal products, fuel, fibers, non-timber

forest products, and gratifying societal and cultural purposes (De Wasseige et al.,

2014).

This dependency has increased the dynamic state of these forests and hence in-

creased the decline in forest cover. The decline in forest cover is associated with

changes in policies that fail to prevent illegal activities in forests, correlated with

the absence of defined tenure that has increased over-utilisation. Moreover, politi-

cal instability, civil conflicts, and logistics linked with poor infrastructure increased

forest loss in Africa (Malhi et al., 2013). For instance, about 44% of forest cover

decreased in three countries of Sudan, Zambia, and the Democratic Republic of

Congo from 1990 to 2000 (Nair and Tieguhong, 2004).

Likewise, pressures on savanna woodlands in Southern and East Africa have inten-

sified due to social pressures from increasing conflict over the use of forest resources

(FAO, 2016). However, the lack of national capacity on reporting deforestation in

many African countries remains a barrier. Similarly, the rates of deforestation and

patterns are uncertain as deforestation often occurs on small scales by subsistence
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farmers (Malhi et al., 2013) (Figure 1.2). Therefore, knowledge about the extent of

forest area in Africa is essential, as is the availability of medium to high-resolution

images such as those acquired from Landsat and Sentinel-1/-2 archives. These

data will support both management and monitoring for the commitment of the

REDD+ process, which requires a continuing process of Measurements, Reporting,

and Verification (MRV) in monitoring deforestation or regrowth of African forests

at national scales (De Wasseige et al., 2014).

1.4.1 Vegetation Types in Africa

The categorisation of African vegetation as defined in 1903 and modification of

classification progressed in the early 1980s’ to 16 vegetation types. The main

classes: are forest, woodland, bushland and thicket, shrubland, grassland, wooded

grassland, desert, Afroalpine vegetation, scrub woodland, mangrove, herbaceous

fresh-water swamp, and aquatic vegetation, saline and brackish swamp, bamboo

and anthropic landscapes (White, 1983).

The development of remote sensing techniques and images has improved the clas-

sification of vegetation types in Africa (Mayaux et al., 2004), merging some classes

and expanding others to obtain the main forest categories. For instance, commonly

used sub-classes of the forest include montane forest, sub-montane forest, closed

deciduous forest, swamp forest, and mangrove. Savanna woodlands expanded

to deciduous woodland, deciduous shrubland with sparse trees, open deciduous

shrubland, and grassland with scattered trees and thickets (Figure 1.6).

The forest classifications have also applied physiognomy characteristics like height,

canopy cover, density, thorniness, deciduousness, and leaf type to separate bushes
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and grasses from forests. For example, canopy cover for shrubs is classified as

closed and open, and deciduous and evergreen forests are split into needle-leaf and

broadleaf subclasses (Ardö, 2015).

Figure 1.6: Land cover map of Africa derived from MODIS depicting the distribu-
tion of different vegetation types. Adapted from Ardö (2015)

1.4.2 Forest

The forests in Africa are sub-categorised based on the amount of rainfall, tempera-

ture, and altitude. Most of the forests in Africa remain evergreen or semi-evergreen

throughout the year with monthly mean temperatures not less than 25◦C, and the

mean annual precipitation of above 1500 mm except in the western part of Mada-
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gascar, which is drier and where deciduous forests grow. The forests are composed

of three storeys layers and, are usually dominated by the middle strata, reaching

about 20 – 40 m high. The upper tree strata reach a height of 40 to 60 m and

are often characterised by emergents (Sayer, 1992). Therefore, forest types in-

clude montane forest, sub-montane forest, closed evergreen lowland forest, closed

deciduous forest, swamp forest, and mangrove forest.

1.4.2.1 Montane forest

Montane forests are found at a high altitude between 1000 and 2500 m above sea

level and characterised by the presence of clouds. Both montane grasslands to

alpine deserts exist and receive more rain than lowland forests and are frequently

abundant in epiphytes. However, the height of the trees decreases with increasing

altitude. Therefore, they are recognised for the provision of hydrological services

and the protection of biodiversity. Montane forests occur on the disconnected

highlands spreading from West Africa and Sudan in the North through the Alber-

tine Rift and the Eastern Arc Mountains, Mt. Kilimanjaro, Mt. Kenya, and Mt.

Elgon in Uganda to the Southern Africa highlands. Montane forests are fragile

ecosystems susceptible to anthropogenic activities and climate change, increasing

vulnerability and leading to extensive habitat fragmentation (Foster, 2001; Soh

et al., 2019).

1.4.2.2 Sub-montane forest

The sub-montane forests occur in very restricted localities representing an inter-

mediary between lowland forests and montane forests and occur at elevations of
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900 – 1500 m. The canopy can reach a height of around 15 to 20 m with occasional

emergent trees and may also contain shrubs. However, the sub-montane forests

are less well known with biological parameters related to lowland and montane

forests and are subjected to similar stresses related to climatic and anthropogenic.

Sub-montane forests occur in isolated and fragmented endemic-rich forests of East

Africa on the Eastern Arc Mountains of Kenya and Tanzania (East Usambara

Mountains) and patches from Somalia to Mozambique, West Africa in Cameroon,

the central Guinea-Congolian forests, and the unique forest ecosystem in Mada-

gascar (Sayer, 1992; Malhi et al., 2013).

1.4.2.3 Closed evergreen lowland forest

The closed evergreen lowland forests are unique with a combination of different

ecological, climatic, and human interactions. Well-drained soils characterise them,

and the upper canopy may reach more than 5 m of height and a canopy cover of

higher than 70% at an altitude up to 900 m above mean sea level (Bartholome and

Belward, 2005). They occur mainly in two regions of Central Africa in the Congo

basin with the upper stratum of 35–45 m and fewer seasonal variations. Mixtures

of closed semi-deciduous forests are also found in West Africa in the upper layer

up to 70% mixed with evergreen class (Mayaux et al., 2004).

1.4.2.4 Closed deciduous forest

Closed deciduous forests are characterised by shedding off their leaves during the

dry season and sprouting new leaves during the rainy season. They exist in lowland

areas of high water tables like riverine or riverbanks. Closed deciduous forests have
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broad leaves and a close canopy above 40%. They may attain a height of greater

than 5 m, occurring in Uganda, Kenya, Tanzania, Ethiopia, Cameroon Equatorial

Guinea, and Madagascar (White, 1983; Sayer, 1992).

1.4.2.5 Swamp forest

Swamp forests are defined based on location, habitat, opposing forest structure,

and physiognomy and occur permanently or periodically influenced by freshwa-

ter. The Congolian swamp forest is the most extensive in Africa, with a flat

area between 350 and 400 m in elevation (Dargie et al., 2017). The structure of

swamp forests and species composition is influenced by flooding frequencies and the

soil drainage conditions with high nutrients due to the decomposition of accumu-

lated materials, which support plants’ growth (Thomas and Baltzer, 2001). These

properties generate sub-types of the forest like riparian forests and periodically

inundated forests with the upper layer reaching 45 m high (White, 1983).

1.4.2.6 Mangrove forest

Mangroves occur on the seashores and river estuaries between high and low wa-

termarks, are permanently influenced by saltwater, usually grow in distinct zones,

and are only rarely mixed. Albeit the zonation depends upon the tide, the more

proximal the species extends to the mangrove’s outer edge, with extended and

closer stands in saltwater. In Africa, by 2005, about 3.2 million hectares of coastal

land were covered with mangrove forests (Osorio et al., 2016) with 17 mangrove

species, where eight species are found in the west and central Africa while nine

species are novel to the coast of East Africa. The distribution extends along the



CHAPTER 1. TROPICAL FORESTS 20

Atlantic coast from Mauritania, Senegal in the Saloum Delta, Guinea Bissau, and

Central Africa from Liberia to Angola and along the Indian Ocean from Somalia

to South Africa. The mangrove forest attains a greater than 30% of the canopy

cover (Ajonina et al., 2008).

1.4.3 African savanna

Savanna is a vast landscape in Africa covering about 15.1 million km2 with grasses,

an open tree canopy, and a short wet season, which prevents this ecosystem from

being a closed forest (Campbell et al., 1996). The dry season is associated with

lightning-induced or human-set fires and restricts vegetation growth (Scholes and

Archer, 1997). Savanna vegetation grows in dry climatic conditions where the tem-

perature ranges from 23–28◦C, low precipitation, and frequent seasonal drought.

It characterises the savanna ecosystem as drought resistance (xerophytic), and the

existence of common fire has induced savanna plants to adapt to fire incidences

(phyrophytic) (Skarpe, 1992; Marchant, 2010).

Table 1.2 summarises the adaptation features of the savanna woodlands. In many

parts of Africa (East and Southern Africa), savanna woodlands have been known

locally as miombo woodlands (Huntley, 1982; Frost et al., 1986; Campbell et al.,

1996), which describes trees in the genus of Brachystegia, Jubernardia and Isober-

linia (Malmer, 2007; Campbell et al., 1996). It is estimated that savanna wood-

lands may attain a height between 4–11 m and a canopy cover between 14–65%

for fine-leafed savanna and deciduous savanna (Scholes et al., 2004).

Southern and Central Africa are recognised with vast savanna woodlands (miombo

woodlands), extending from Angola, Zambia, Tanzania, Malawi, Mozambique,
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South Africa, Namibia, Zimbabwe, and parts of the Democratic Republic of Congo

(Campbell et al., 2007; Malmer, 2007) (Figure 1.7). African savannas are subjected

to intensive agriculture and pasture by supporting the livelihood of many commu-

nities (Mitchard and Flintrop, 2013). For instance, 2.7 million km2 of the savanna

area in Central and Southern Africa (Campbell et al., 2007) support about 60

million people as a source of wood or charcoal that provides energy for 40 million

people in urban areas (De Wasseige et al., 2014). The savanna biome is fur-

ther categorised based on seasonal cycles as deciduous, deciduous shrubland with

sparse trees, open deciduous shrubland, thickets, and grassland with scattered

trees (Chidumayo, 2001).

Table 1.2: General adaptation features of savanna woodland

Structure Explanation

Deciduous Trees usually lose leaves during the dry period to reduce
evapotranspiration

Leaves Small leaves, waxy and often thorn-like and sunken
stomata to reduce moisture loss

Bark Thick and or resinous which protect the vascular system
in the dry season and fire incidence

Roots Most trees are deep-rooted to reach the water table and
wide root network to increase the surface area for water
absorption

Spacing Open spacing about 80 stems per ha, which also reduces
competition for scarce water and nutrients

Water storage Semi-succulent trees like baobab which store water in
the trunk

Dormancy Most of the trees become dormant for the duration of
the dry period which during this period trees shed leaves
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Figure 1.7: The distribution of savanna woodlands (miombo) in Africa. Sourced
from Malmer (2007)

1.4.3.1 Deciduous woodland

A form of savanna forest with an open canopy of about 15 – 40% and height higher

than 5 m and sometimes with discontinues, fewer shrubs lose their leaves in the dry

season. They occur mainly in East and Central Africa in Tanzania, Madagascar,

Botswana, Zambia, and Lesotho (Jin et al., 2013).

1.4.3.2 Deciduous shrubland with sparse trees

This form a mosaic of shrubs less than 5 m tall with scattered trees of about 50

– 70%, which appear emergent and less localised, and a layer of perennial grasses

reaching 20 – 50% (Chidumayo et al., 2011).
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1.4.3.3 Open deciduous shrubland

An open stand of bushes, usually 0.5 to 5 m tall, with canopy cover greater than

25%. Bushes typically cover 50 – 70% of the area, while grasses cover the remaining

20 – 50%. Open deciduous shrublands are present in most of Africa’s dry regions

with shallow soils, for example, Karoo shrubland in Namibia (Burke, 2001).

1.4.3.4 Thickets

Thickets consist of dense evergreen or deciduous shrubs without grass or other

breaks in the canopy. Thickets grow and interlock, making an impassable commu-

nity, and typically grow up to 5 m tall but may also reach 8 – 11 m in height. In

Africa, significant areas of thicket are present in Tanzania, Zambia, South Africa,

and Ethiopia.

1.4.3.5 Grassland with sparse trees

The grassland of the savanna is more extensive and with a continuous layer of

grasses. Grasses and other herbs cover the ground; either without woody plants

or woody covers < 10% of the land. They are found in central Madagascar, on the

Kalahari sands in western Zambia and eastern Angola, and part of west Uganda

with a mixture of thickets (Sayer, 1992).
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1.5 Forests in Tanzania

Tanzania is endowed with a tremendous diversity of forests, with an estimated

48.1 million ha of forest, representing 55% of the total country land area (88.3

million ha) (MNRT, 2015), placing among the top 36 global biodiversity hot spots

(Myers et al., 2000) (Figure 1.8). Management of forest resources in Tanzania is

by the central government at about 34.5%, local government authorities at about

6.5%, under village management (village land) at about 45.7%, private forest land

at about 7.3% and 5.7% on general-use land (MNRT, 2015).

The importance of forest resources is well-known, ranging from ecosystem services

for wood and non-wood forest products (NWFPs) supporting people’s livelihood

and the country’s economy, contributing about 4% of the gross domestic product

(GDP) (Green Advocates International, Inc., 2014). The wood products range

from firewood, charcoal, and round to sawn wood, with 92% of energy in Tanzania

coming from wood (fuelwood) (Malimbwi et al., 2016; URT, 2001). Ecosystem

services include watershed protection for power generation and irrigation, soil con-

servation, biodiversity preservation, climatic amelioration, and ecotourism. Cli-

mate change mitigation is increasingly important for forests, most notably through

REDD, forest conservation, sustainable management of forests, and enhancement

of forest carbon stocks (REDD+) initiatives (Mustalahti et al., 2012).

Despite the importance and diverse nature of forests, Tanzania is placed among

the countries with the most extensive forest cover loss (Hansen et al., 2013), mainly

induced by human activities. Generally, forest encroachment, shifting cultivation,

and wildfires are common. For instance, it has been estimated that between 1990
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and 2010, the loss of forest cover was about 403,350 ha per year (FAO, 2010), inline

with Tanzania forest reference emission levels, reported a loss of about 469,420

ha per year (URT, 2017). Efforts to halt the loss of forests are in place, but

deforestation continues to occur at an alarming rate that contributes significantly

to the ongoing loss of biodiversity. Limited capacity for forest monitoring has also

compromised these efforts. The government has relied on estimates based on either

global-scale studies or small-area local studies. These data are an essential source

of information. However, they lack uniformity and completeness in terms of time

and coverage (Brink and Eva, 2009).

The increased invasion and shifting cultivation in protected and unprotected forests

are speedily decreasing the natural forest cover and forest biodiversity (URT,

2001). A declining trend in forest cover threatens people’s survival and, there-

fore, is an issue of profound concern and utmost priority for forest monitoring to

support policy-makers for sustainable forest management in Tanzania.
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Figure 1.8: Biodiversity hotspots in Tanzania. Created using Natural Earth data
and biodiversity hotspots layer sourced from Hoffman et al. (2016)

1.5.1 Forest Types and Distribution

Natural forests are significant categories of vegetation in Tanzania. They contain

over 10,000 plant species, hundreds of which are endemic and about 2,261 plant

species endangered, whereby 1,456 species are likely threatened and 805 species are

potentially threatened (Stévart et al., 2019). Natural forests include woodlands

categorised as closed and open and forests classified as montane in mountainous

areas, and lowland, and mangrove forests along the coast of the Indian ocean.

The woodlands are found in the country’s western, central, and southern parts,

with a closed canopy, especially along Lake Tanganyika and parts of the north with
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Accacia-Commiphora woodland (Burgess et al., 2004). The distribution of forests

and woodlands varies, whereby woodlands occupy about 50.6% of the country

area, forests approximately 3.5%, and around 45.9% occupied by other land covers

(Malimbwi et al., 2016).

1.5.1.1 Forests

The forests occur in continuous stands of trees that reach up to 50 m in height and

are rich in species. Disturbances are also present. Altitude is the determinant of

forest distribution where precipitation and nutrient recycling is high. Three canopy

layers may exist in tall forests: emergent, middle, and lower and characterised

further by the presence of lianas, climbers, creepers, and epiphytes, mostly ferns

(Vesa et al., 2010). Three subtypes of forests exist, including montane, lowland,

and mangroves.

1.5.1.2 Montane Forest

Montane forests are categorised based on altitude and rainfall per year, as either

humid montane or dry montane forests. The moist montane forests are found

around 1400 to 1850 m above sea level, with rainfall ranging from 1200 mm to above

2000 mm per year (Robertson, 2002). Humid montane forests exist in two layers,

whereby the upper layer consists of trees reaching a height of about 15 – 30 m and

sub-emergent trees about 5 -10 m in height with a herbaceous layer of the forest

floor. They occur along the west Usambara Mountains and on Mt. Kilimanjaro.

The dry montane forests are found up to 1200 m elevation with rainfall between

850 and 1300 mm per year. The rainless period persists for up to 5 months and the
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mean tree height range from 10 to 20 m occasionally reaching 45 m. They occur

on the Eastern part of Mount Meru, Mount Hanang, Poroto, Mount Rungwe, and

the Livingstone Mountains (Mugasha et al., 2004) (Figure 1.9a).

Figure 1.9: a) Montane b) Lowland forest in Tanzania based on drone capture at
the height of about 60 m at a) Mount Rungwe Nature Forest Reserve (Mbeya)
and b) Rondo Nature Forest Reserve (Lindi), October 2018

1.5.1.3 Lowland Forest

The lowland forests are found near the coast of the Indian Ocean and in smaller

areas consisting of mosaics with woodlands and montane forests (Figure 1.9b). For

instance, the lower part of the Eastern Arc Mountains with altitudes ranging from

540 – 810 m above sea level, and rainfall amount varies from 1000 -1500 mm per

year. The mean tree height in the lowland forest ranges from 15 to 20 m, with

emergent trees reaching 35 m (Burgess et al., 2010; Robertson, 2002). Lowland

forests are associated with bamboo and occur on the South of Iringa to the Lindi

region, up to 615 m of altitude. According to MNRT (2015), lowland forests are

estimated to cover an area of about 1.7 million ha.
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1.5.1.4 Mangrove Forest

The mangrove forests grow on the upper part of the intertidal zone of the delta’s

sheltered shores, alongside the river estuaries and creeks with silt and clay soil

at an altitude of about 25 m above sea level (Burgess et al., 2010) (Figure 1.10).

The height of mangrove forests ranges from shrubs to tall trees, which reach about

2 m to 30 m and above (Mugasha, 1996). Mangrove forests extend from Tanga

in the north to Mtwara region in the south, where the Ruvuma river forms an

estuary near the Mozambique border. The largest area of mangroves occurs in the

Rufiji River delta, but mangroves are also present in the Wami and Ruvu River

deltas.

Figure 1.10: Mangrove forest in Tanzania based on drone capture at the height of
about 60 m at Nyamisati- Rufiji delta, October 2018
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1.5.1.5 Woodland

The savanna woodlands (miombo woodlands) cover the largest area of natural

vegetation in Tanzania, about 90% of the total forest cover (URT, 1998). Miombo

woodlands are generally dominated by the tree species of Brachystegia, Julberna-

dia and Isobernia (Backéus et al., 2006; Campbell et al., 2007; White, 1983). They

exist in three layers; the first layer with canopy trees of 14–20 m in height, the sec-

ond layer has trees with a height of 8–12 m (Mugasha, 1996) and the third consists

of trees of 1–2 m high (Campbell et al., 1996). The canopy cover determines the

type of savanna woodlands as closed (Figure 1.11a) or open (Figure 1.11b).

Figure 1.11: a) Closed b) Open woodland in Tanzania based on drone capture at
the height of about 60 m at a) Ngulakula forest reserve (Rufiji), October 2018 and
b) Igombe river forest reserve (Tabora), October 2019

1.5.1.6 Closed woodland

Closed woodlands (Figure 1.11a) are characterised by a crown cover of greater

than 40% and the availability of perennial C4-grasses. This ecosystem has regular

fire occurrences from May to November before the rainy season. Humans rather

than natural fires cause most fires (Mugasha et al., 2004).
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1.5.1.7 Open woodland

Open woodlands (Figure 1.11b) share similar characteristics as closed woodland,

with the main difference being canopy cover, where open woodlands have a crown

cover of about 10 – 40%.

1.5.1.8 Thicket

Thicket woodlands are characterised by impenetrable woody density and a height

of less than 5 m and a crown cover of 5 to 10% and are found in central Tanzania

(Itigi thickets) (Figure 7.17).

Figure 1.12: Thicket woodland in Tanzania based on drone capture at the height
of about 60 m at Itigi-Manyoni, October 2019

1.6 Motivation of Study

For a developing country such as the United Republic of Tanzania, forests are

a significant resource at multiple levels. Despite the value of forests, changes
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in use patterns pose a noticeable threat to forest resource sustainability in both

socio-economic and ecological functioning. It has increased the scarcity of forest

resources, further aggravated by the continuing high deforestation rate and associ-

ated with a change in climatic conditions experienced in many parts of Tanzania.

Therefore, the need for data and information on the state of Tanzania’s forest

resources is of increasing importance. Yet, Tanzania’s forest resource status and

trends are mostly unknown, with current data being fragmented and outdated

(Vesa et al., 2010).

The lack of institutional capacity has largely constrained data reliability on Tanza-

nian forest resources with inadequate national-wide coverage in forest monitoring

using an Earth Observation (EO) based system. The application of an EO-based

system, especially using freely accessible satellite data and advanced remote sens-

ing methods, can provide a cost-effective and timely approach to achieving sys-

tematic wall-to-wall information about forest monitoring in Tanzania. This infor-

mation is required to support the national policy processes for the enhancement

of sustainable forest management (SFM) while at the same time addressing the

issues of REDD+ and Green House Gas (GHG) as international reporting obliga-

tions and the 2030 Agenda for Sustainable Development Goals (SDGs) through

combating deforestation (Anderson et al., 2017).

1.7 Study Aim and Objectives

This study aims to create the basis for a long-term national forest monitoring sys-

tem for Tanzania. Such a system needs to help the country bridge the information

gap and knowledge concerning remote sensing in forest monitoring over a national
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level. It further serves as a strategy for reducing the dependence on traditional

forest surveys in Tanzania, which are expensive, time-consuming, and spatially

limited. Every update needs 2 to 5 years to cover the country. Similarly, the field

inventory data are acquired using sample plots and typically grouped to the forest

stand level with a shortfall in the forest types’ spatial variability.

To achieve this aim, the study will focus on the following research questions:

i. What is the distribution of the different forest types in Tanzania?

ii. How the forest types will be impacted by future climate change?

iii. What is Tanzania’s current (baseline) spatial extent of forest cover?

iv. How can forest extent change be mapped as part of an on-going monitoring

system?

In achieving the stated research questions, this study sought to achieve the follow-

ing objectives:

i. To map the distribution of major forest (including woodland) types in Tanza-

nia using Earth observation data;

ii. To assess the impacts of future climate change on forests in the mainland of

the United Republic of Tanzania (hereafter referred to as Tanzania);

iii. To develop a method for establishing the current (baseline) spatial extent of

forest cover in Tanzania;

iv. To develop a method for detecting changes in forest extent as a part of an

on-going monitoring system.
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1.8 Outline of the thesis

This thesis consists of nine chapters:

Chapter 1 provides a detailed review of the general background to the study of

tropical forests, specifically in terms of their distributions and changes. The

chapter concludes with the research significance and outlines the research

aim questions, and objectives.

Chapter 2 provides background to the study, reviewing habitat suitability mod-

elling and future climate change impacts for different forest types and their

implications for forest conservation decisions. The chapter reviews differ-

ent remote sensing and spatial analysis methods and constraints of remote

sensing data from various sources for tropical forest monitoring.

Chapter 3 describes mainland Tanzania in terms of geographical location, cli-

matic conditions, and vegetation cover. The study area was used to develop

the methods for mapping forest extent and monitoring change.

Chapter 4 presents an overview of the datasets used in the study and their pre-

processing, and analysis. The forest inventory data used to assess the accu-

racy of the land cover and change maps are described. The Free/Libre and

Open-Source software (FLOSS) used in this study is also outlined.

Chapter 5 describes the pilot area (the Rufiji catchment) for a subnational study

and the methodology for generating a new forest baseline (forest/non-forest)

and forest type classification. The chapter provides an understanding of data

volume and constraints associated with storage and processing times.
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Chapter 6 presents an approach for spatial climate change modelling relevant

to Tanzanian forests for assessing the present and simulating future climate

change scenarios on diverse forest types. This provides an overview of the

implications for changes in the distribution of the forest types in the globally

significant tropical ecosystems of Tanzania.

Chapter 7 presents the methodology for generating forest baseline and forest

types maps for Tanzania provides the findings and discusses these and the

implications for forest management in Tanzania.

Chapter 8 describes a forest change analysis and monitoring method based on

the forest baseline developed in Chapter 7 over Tanzania, provides the out-

puts discusses these in relation to current and future forest management

Chapter 9 presents the main conclusions of the research, discussing the key find-

ings, research questions, research limitations, future outlook for mapping

and monitoring tropical a, and contributions to operational forest monitor-

ing systems.



Chapter 2

Background

Critical actions are required to support tropical forest conservation through ef-

fective monitoring, especially from anthropogenic and climate change impacts as

forest habitat destruction continues unabated around the tropics. Essential mea-

sures include predicting forest habitat and forest mapping and associated changes.

To do this, we need to take advantage of key technologies such as Earth Observa-

tion data, computational power, and machine learning.

2.1 Forest Habitat Suitability Modelling

Tropical forests are essential components of climate change mitigation strategies,

such as REDD+ under the UNFCCC (Romijn et al., 2012). However, the chang-

ing climate induces a threat to tropical forest ecosystem habitats as changes in

precipitation regimes and temperature increase pests, diseases, and fire and storm

incidences. Yet, there is little information on these threats to the forests, especially

36
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in the sub-Saharan region (Chidumayo et al., 2011), impacting human livelihoods

that depend on forest-related services and exacerbating poverty. The situation

induces increased deforestation and degradation of the remaining suitable forest

habitats (Thomson et al., 2010). Therefore, information on the relationship be-

tween forest habitats and climate change will support national forest management

and design monitoring methods to protect the remaining tropical forests.

Efforts to protect and enhance critical forest habitats while mitigating climate

change effects on species diversity and distribution need supportive information

for informed policy decisions, spatial planning, and conservation practices based

on reliable habitat suitability and underlying environmental factors (Guisan et al.,

2013).

The application of habitat suitability models (HSMs) or species distribution models

is a useful tool for forest monitoring and supports improving tree species’ ecological

knowledge (Guisan et al., 2013) for informing landscape-scale decisions (Bellamy

et al., 2020; Seidl et al., 2017) and climate change.

2.1.1 Predictive Forest Habitat Distribution Modelling

HSMs are categorised as static and probabilistic. They are static and probabilistic

because they statistically relate the distributions of populations, species, commu-

nities, or biodiversity to their present environment. The static distribution models

act as equilibrium – or at least pseudo-equilibrium - between the environment

and observed species patterns. The probability of the mode is important because

it predicts the occurrences of species conditional on the environmental covariates

(Guisan and Zimmermann, 2000).
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The predictive model’s functionality and selection are based on the species occur-

rence record and the predictor variables (Elith et al., 2006). Therefore, the growth

in computational power, machine learning, and Earth Observation data (Guisan

et al., 2017) has increased the use and application of predictive models for forest

habitat suitability analysis and future climate change predictions.

The predictive models include the envelope approach that focuses on the geo-

graphical (Burgman and Fox, 2003) and environmental (Busby, 1991) distribution

of species or population. A regression-based model that relies on robust statis-

tical theories (e.g., Guisan et al., 2002) for example, Generalized Linear Models

(GLMs), Generalized Adaptive Models (GAMs) (Antúnez et al., 2017) and Multi-

variate Adaptive Regression Splines (MARS) (Elith and Leathwick, 2007) and the

other predictive models are based on Boosting and Bagging approaches. These

include Random Forest (RF) (Valavi et al., 2020) and Boosted Regression Tree

(BRT) (Elith et al., 2008).

The Maximum Entropy (MaxEnt) (Phillips et al., 2004) approach has been widely

applied in predicting species and distribution modelling (Elith et al., 2011). For

example, modelling habitat suitability of Dipterocarpus alatus trees in Central

Thailand (Kamyo and Asanok, 2020), climate change impacts on the distribution

of Euscaphis japonica trees in China (Zhang et al., 2020), a shift in the range for

Brachystegia (miombo) woodland as evidence from climate change in Southern

Africa (Pienaar et al., 2015), and prediction of debts in coastal forests extinction

in South Africa using habitat suitability models (Olivier et al., 2013).
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2.1.2 HSM for forest conservation decision

HSMs are increasingly applied to address forest dynamics simulation, associat-

ing habitat requirements (Edenius and Mikusiński, 2006) with climate projection

scenario analysis (Van Vuuren et al., 2011a) for more practical planning tools in

forest management. They can also be used to support the mitigation of future

climate impacts on forests, hence serving biodiversity and human livelihood. It

will support identifying suitable forest habitats for restoration and conservation,

which can contribute to increasing forest cover and maintaining important forest

matrices and the connectivity of forest fragments. Therefore, HSM can be applied

to establish the habitat suitability for different forest types (e.g., in Tanzania) to

support regional and global efforts on restoring degraded and deforested landscapes

(Seidl et al., 2017). They can also be used to support the prediction of climate

change impacts on forests, including those identified in the Fifth Assessment Re-

port (AR5) of the United Nations Intergovernmental Panel on Climate Change

(IPCC) on the climate and associated with Representative Concentration Path-

ways (RCPs) scenarios (Van Vuuren et al., 2011a). This is required for reducing

emissions from deforestation and forest degradation (REDD+) as proposed by the

United Nations Framework Convention on Climate Change (UNFCCC) (Romijn

et al., 2012).

2.2 Forest mapping

The application of remote sensing appears to make significant contributions to

monitoring the remaining tropical forests. Importantly, remote sensing comprises
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a collection of information on physical, chemical, and biological systems about the

Earth’s physical planet (Achard et al., 2010). It is, therefore, applied in mon-

itoring by assessing the past, and current status, and changes for both natural

and human-made environments. The availability of satellite data since the 1970s

(Figure 1.3), with reasonable ground resolution (Coppin and Bauer, 1996; Huang

et al., 2009), (for example 30 m for Landsat) provides timely information related to

tropical forest areas and associated changes over time with extensive area coverage

(Franklin, 2001).

The repeated coverage at short intervals (e.g., 1-16 days) with imagery consis-

tently available helps to improve the detection, identification, and mapping of

forests, with this need for monitoring and reporting (Nelson et al., 2022; Borlaf-

Mena et al., 2021; Mas, 1999; Coppin and Bauer, 1996). Earth observation data

allow measurements of all forest areas at a relatively low cost, regardless of re-

moteness and access. The process of monitoring tropical forests has effectively

improved with more reliable results as remotely sensed data are combined with

ground measurements (DeFries et al., 2007).

The mapping and monitoring of tropical forests using different satellite data sources

have received increased attention from governments, non-government, academic,

and private sectors (Fuller, 2006; Keenan et al., 2015). EO also supports the UN-

FCCC by contributing spatial estimates of GHG emissions associated with defor-

estation, especially in tropical regions (Achard et al., 2010). The state of tropical

forests and their dynamics, derived through monitoring, are essential inputs to

sustainable forest management policies. It is necessary for forest ecosystem man-

agement implementation, which requires accurate and up-to-date mapping data

(Coppin and Bauer, 1996).
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Remote sensing operational systems have supplemented or complemented the tra-

ditional approach of forest cover survey from field samples, which is no longer

the most efficient means to map forest cover at regular intervals over large areas

(Fuller, 2006). Remotely sensed data have contributed to the increased speed, cost

efficiency, precision, and timeliness associated with inventories and made it possi-

ble to generate maps of forest characteristics with different spatial resolutions and

accuracies than before (Lister et al., 2020; Crowley and Cardille, 2020; McRoberts

and Tomppo, 2007).

2.3 Remote Sensing Data for Tropical Forest Mon-

itoring

Remote sensing data are collected and classified based on platform carriers and

sources of energy. The platform is a vehicle that carries the sensor, for example,

satellites, aircraft, or balloons, and the sensors receive electromagnetic radiation

and convert it into a signal that is recorded and displayed as numerical data in the

form of an image. The wavelengths of energy used by different types of sensors

are used to categorise sensors specifically as optical or radar instruments. Optical

and radar satellites operate in varying portions of the electromagnetic spectrum

and can be used to capture information on forests (Lynch et al., 2013).

2.3.1 Optical Data

Optical remote sensing offers extensive data applied in tropical forest mapping and

monitoring due to its broad area coverage, repetitiveness, and cost-effectiveness.
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The sun is the energy source for optical sensors where the energy is reflected

from the Earth’s surface and the resulting information for vegetation is generated

based on the surface of the canopy and little information under the canopy. The

relevant wavelength regions are from the visible to near and middle infrared of the

electromagnetic spectrum at about 0.4 to 2.5 µm (Horning et al., 2010). The high

spatial resolution optical data relevant for large-scale forest monitoring varies from

3 (e.g., PlanetScope) to 30 m (Landsat)

The capability of optical sensors in vegetation mapping is related to sensitivity

to greenness (Tong et al., 2019), fractional tree cover (Putzenlechner et al., 2022),

tree density (Gomes et al., 2018), forest type, and vegetation density (Lynch et al.,

2013). These characteristics have made it possible to estimate foliar chemical

content (foliar chemistry), which is linked to the biogeochemical status of the

forest ecosystem. This supports determining changes in plant species composi-

tion (Girard et al., 2020) and forest stress monitoring (e.g., damage due to fire,

climate/weather-related hazards including drought events, floods, and extreme

temperatures as part of climate change and disturbances (David et al., 2022)).

The presence of insects and disease can also alter the foliage with this also caus-

ing structural changes (e.g., in crown form or branching pattern of trees) as can

human activities such as elective or high-intensity logging or thinning (Mitchell

et al., 2017).

In contrast, coarse resolution (> 100 m) includes Moderate Resolution Imaging

Spectroradiometer (MODIS), National Ocean and Atmospheric Administration

(NOAA, and Advanced Very High-Resolution Radiometry (AVHRR). These have

been useful in biomass mapping and estimation at a national, regional, and global

scale (Kumar et al., 2015). AVHRR data have been used for mapping global
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vegetation, whilst MODIS data and derived measures (e.g., indices) have been used

to generate a quantitative measure of vegetation such as Gross Primary Production

(GPP), the fraction of Absorbed Photosynthetically Active Radiation (fAPAR),

and Leaf Area Index (LAI) (Fensholt et al., 2006). Table 2.1 summarises that

some of the studies utilised optical data to monitor different types of tropical

forests.

Table 2.1: Some studies utilised optical data in mapping tropical forests

References Location Data type Brief description
(Kim et al., 2015) Humid tropical forest

(34 countries)
Landsat images- 30 m Estimation of forest

area and associated
change from 1990 –
2010 (Wall to wall
mapping)

(Hansen et al., 2010) Global forest cover loss MODIS images- 500 m Mapping of tropical
forests (wall to wall
mapping)

(Hansen et al., 2013) Global forest cover
change

Landsat images- 30 m Mapping of tropical
forests (wall to wall
mapping)

(Achard et al., 2014) Humid tropic tropical
forest

Landsat images- 30 m Estimation of defor-
estation and forest re-
growth based on sam-
ples

Limitation of optical sensors: Atmospheric conditions frequently prevent ob-

servations from optical data (e.g., because of clouds or haze) or compromise the

signal due to atmospheric scattering and absorption, especially during the wet

season. This reduces the number of satellite passes suitable for monitoring the

tropical forest, as only cloud-free scenes can be processed. To obtain all-weather

capacity, active radar systems, which penetrate clouds, have capabilities that are

advantageous in comparison to optical data, especially in the tropics where cloud

cover is frequent (Lu and Weng, 2007; Rosenqvist et al., 2000).
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2.3.2 Radio Detection and Ranging (Radar) Data

Radar operates in the microwave part of the electromagnetic spectrum (EMS).

It is sensitive to different vegetation properties such as leaf area index (LAI),

and other parameters related to forest structure such as height and volume. The

radar’s energy can penetrate the tree canopy (wavelength dependent) capturing

information on the leaves, branches, and trunks (Lynch et al., 2013). The radar

system collects data related to the backscattering process whereby reflected signals

generate data on the image. It involves scattering and absorption of energy when

hitting the tree canopy, and the radar measures the strength of the backscatter.

The signals emitted from radar (transmitting antenna) occur at both horizontal

(H) and vertical (V) polarization.

In radar, the polarization (plane) of the electromagnetic radiation waves is recorded

as horizontally (H) or vertically (V) transmitted and received (i.e., HH, VV, or VH;

(Horning et al., 2010)). Radar systems operate in the microwave portion of the

EMS, and are therefore able to penetrate clouds and haze (including from smoke)

and are therefore well suited for use in the tropics where clouds are persistent and

fires are also commonplace (De Grandi et al., 2000; Siegert et al., 2001).

Forest monitoring using Synthetic Aperture Radar (SAR) data is an increasingly

promising remote sensing approach for mapping forest disturbances in the tropics

because of the ability to operate in all weather conditions of the day or night

(Hirschmugl et al., 2020). Spaceborne radar currently operates at X-band, C-band,

and L-band. For example, TanDEM-X Interferometric data have been used in

forest height mapping such as Chen et al. (2019) in Northwest Canada. The height

estimates provided R2 values of 0.78 and 0.88, mean errors (ME) of 1.66 m and 1.90
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m, and root-mean-square errors (RMSE) of 2.7 m and 2.9 m, respectively, when

compared to independent height estimates derived from field plots and airborne

LiDAR. Similarly, Sentinel-1 time series have been used for estimating boreal forest

height mapping in Central Finland with an accuracy of 28.3% rRMSE for pixel-

level predictions, and 18.0% rRMSE on stand level (Ge et al., 2022).

The release of the Japanese Earth Resources Satellite (JERS SAR), Advanced

Land Observing Satellite-2 (ALOS-2), Phased-Array L-band Synthetic Aperture

Radar – 2 (PALSAR-2) mosaics at 25 m resolution by the Japan Aerospace Ex-

ploration Agency (JAXA) significantly increased access to radar data and studies

related to forest monitoring with SAR. Similarly, ALOS PALSAR mosaics were

used to produce the first SAR-based annual for 2007–2010 global maps of forest

and non-forest cover, from which forest losses and gain maps were also generated

(Shimada et al., 2014). Forest disturbance monitoring using different SAR sensors

has also been demonstrated using Sentinel-1 C-band and TerraSAR-X data (e.g.,

in the Republic of Congo) (Hirschmugl et al., 2020).

The estimation of forest parameters such as tree height, DBH, etc. have been

achieved with lower frequency (L and P band) Synthetic Aperture Radar (SAR)

(Santos et al., 2003). Radar data, for example, TerraSAR-X have been used in

mapping deforestation in the tropical rainforest of Ecuador with an accuracy of

about 81% in the classification of forest and non-forest (Delgado-Aguilar et al.,

2017). However, C-band SAR data is less suited for forest disturbance assess-

ment and above-grove biomass estimation than L-band SAR due to its shorter

wavelength, which limits the penetration into the canopy (Hirschmugl et al.,

2020).

Limitation of radar data: Radar remote sensing provides a solution in ar-
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eas of persistent clouds. However, radar images have constraints of speckle noise,

which may result in low classification accuracy (Maghsoudi et al., 2012). These re-

quire more processing techniques; for example, the temporal reduction filter (Lopes

et al., 1990; Quegan and Yu, 2001). Topography also causes geometric and radio-

metric distortions, particularly in mountainous areas (Joshi et al., 2016).

2.3.3 Light Detection and Ranging (LiDAR)

LiDAR is an active remote sensing technique; similar to radar, but the difference

is that the laser operates in the visible or near-infrared part of the electromagnetic

spectrum (Hudak et al., 2002). It works by transmitting the laser light’s pulse

toward the ground and measuring the time for the return pulse. Therefore, the

information is collected based on the distances between the sensor and the object

on the ground. It is determined by the return time for each pulse back to the sensor

(Lillesand et al., 2015; Lim et al., 2003). In vegetation mapping, the incident pulse

of energy usually reflects off the canopy, including branches, leaves, and the ground

surfaces (Dubayah and Drake, 2000).

Forest parameters that can be measured with an airborne LiDAR system include

canopy height, subcanopy height, topography, and the vertical distribution of the

intercepted surface between the canopy top and the ground (Dubayah and Drake,

2000). These parameters enable estimation of tree basal area (Means et al., 1999),

wood volume (Wang et al., 2008), aboveground biomass (Lu et al., 2012) and LAI

(Lefsky et al., 1999).

Further application of the airborne LiDAR system is for identifying historical forest

disturbances, such as selective logging and recovery in tropical forests. For exam-
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ple, Kent et al. (2015), analyzed canopy gaps in an area of 16 km2, and about

10.2% of canopy gap fraction were found in logged areas as related to 5.6% in

unlogged areas. Similar monitoring of selective logging on the western Amazonia

between 2010 and 2011, indicated a decrease in the canopy from 22.8% to 18.7%

(Andersen et al., 2014).

Airborne LiDAR data have also been combined with other airborne data (Carnegie

Airborne Observatory (CAO) hyperspectral data) in mapping tree species compo-

sition of savanna woodlands in South Africa with an overall accuracy of 79% (Cho

et al., 2012). Similarly, Castillo et al. (2012) used LiDAR remote sensing to map

the growth distribution (succession stages) of secondary forest in the dry tropical

forests of Costa Rica based on changes in vertical structure (height) and obtained

an accuracy of r2 equal to 0.69. The derived information from LiDAR is increas-

ing and supporting decision-makers in the forestry discipline (Hudak et al., 2009;

Roberts et al., 2020). Although both types of sensors present different advantages

in monitoring tropical forests, this thesis focuses on utilising optical sensors, as

data are extensively available and free to download.

Limitation of LiDAR: The limitation is associated with a high cost for com-

mercial airborne LiDAR for a small area of coverage (Bohak et al., 2020).

2.4 Information Extraction from Remote Sens-

ing Data

The development and availability of different remote sensing techniques are increas-

ing opportunities to observe, monitor, and study Earth’s surface, atmosphere, and
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environment (Miyoshi et al., 2020). To optimally exploit remote sensing data, it is

important to consider pre-processing, information extraction, and interpretation

requirements and processes that allow the generation of useful information rele-

vant to address user needs. With an optical system, information is collected in the

green, red, infrared, near-infrared, and shortwave infrared of the EMR spectrum

(Brolly et al., 2021), and classification from such data typically involves assigning

each pixel value in the image to a predefined class that represents a specific fea-

ture/objects on the ground (Sivanpillai et al., 2005). This enhances the capacity

to then assess, monitor, and predict the dynamics of land covers and the influence

of both human activities and natural events and processes on environments (Brolly

et al., 2021).

The identification of features on an image is either by visual or automated tech-

niques. Visual interpretation has been the traditional method for extracting infor-

mation, with this informed by the known characteristics of objects discerned from

aerial photographs or satellite imagery (Sowmya et al., 2017). In this approach, a

human interpreter uses various parameters of object recognition and interprets ob-

jects/phenomena and their spatial and spectral patterns based on tone, shape, size,

pattern, texture, and shadow (Horning et al., 2010). However, in computing tech-

nology and storage, visual analysis has instead been replaced with sophisticated

image classification algorithms (Sarker, 2021; Barmpoutis et al., 2020). These in-

clude the application of artificial intelligence (AI), particularly machine learning

(ML) and deep learning (DL), which have become widespread in research and in-

corporated into different applications, including text mining, spam detection, video

recommendation, image classification, and multimedia concept retrieval (Sarker,

2021). AI algorithms exist to effectively build data-driven systems for classification
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analysis, regression, data clustering, feature engineering, dimensionality reduction,

association rule learning, or reinforcement learning techniques (Alzubaidi et al.,

2021). Such approaches have also improved forest mapping and monitoring over

larger forest areas; such as in Africa (e.g., using DL)(Waldeland et al., 2022).

2.4.1 Image Classification

Image classification converts the continuous pixel values measured by the instru-

ment to a set of categories, with thematic meaning to the end user. The entire

image classification process involves: a) defining the classification system, b) se-

lecting data from different sensors, c) collecting reference data, and finally, d)

conducting an accuracy assessment (Jensen et al., 2005; Lu and Weng, 2007). Im-

portant factors to consider during the selection of the image classification approach

include the spatial resolution of the remotely sensed data, data sources, and acces-

sibility of software for image classification. It is important to identify the optimal

approach for the problem being tackled as there isn’t a single ‘best’ classification

approach for all problems (Hubert-Moy et al., 2001; Horning et al., 2010).

The method of extracting information from remotely sensed data includes per-pixel

(Wu et al., 2021; You et al., 2019; Foody et al., 1996; Vieira et al., 2003), sub-pixel

(Wang et al., 2020; Qi et al., 2019; Lu et al., 2003) or object-level or a combination

(hybrid) of this (Deepan and Sudha, 2020; Zhang et al., 2020; Lu and Weng, 2007).

Classification algorithms have evolved alongside the advancement in computing

power available. These classification techniques include neural networks, decision

trees, and support vector machine (Zagajewski et al., 2021; Jozdani et al., 2019;

Blaschke, 2010; Franklin and Wulder, 2002; Rogan et al., 2008; Lu and Weng,
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2007) which are based on statistical assumptions (e.g., either parametric or non-

parametric).

2.4.1.1 Parametric classifiers

Parametric classifiers are based on the assumption that the data have Gaussian

distribution by creating parameters for the mean vector and covariance matrix

(Hubert-Moy et al., 2001; Lu and Weng, 2007; Kamavisdar et al., 2013; Cortijo

and De La Blanca, 1997). It assumes a normal distribution for each class in an im-

age. Example of parametric classifiers includes a Maximum Likelihood algorithm,

Bayesian, Multivariate Gaussian, Naive Bayes, Decision Tree, Support Vector Ma-

chine, Classification Tree, discriminant analysis, and Minimal Distance Classifier

(Sahoo and Kumar, 2012).

Maximum likelihood classifier (MLC): The maximum likelihood classifier is

possibly used to be the most extensively applied technique for classifying remote

sensing data. It relies on statistical assumptions of a normal distribution of class

signatures (Huang et al., 2002). The image classes are pre-defined with adequate

training samples, referred to as signatures (Lu and Weng, 2007). MLC presumes

each pixel has a probability of belonging to a particular class. Therefore, each

pixel is assigned to a class based on the highest level of probability. The MLC is

limited by the distribution of the training data set, which may not be statistically

distinguishable in feature space (Schowengerdt, 2006; Ahmad and Quegan, 2012).

Consequently, the final thematic map appears to have a mixture of isolated labeled

pixels in other classes which increases the classification error. It may occur when

there is an overlap within the training samples for a given category (Cortijo and

De La Blanca, 1997).
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MLC has been applied to classify tropical forests for tree species mapping and

forest types (Erinjery et al., 2018; Laurin et al., 2016). The comparison of MLC

with other techniques found it can provide robust results for both optical and

radar data. For instance, in an analysis of hyperspectral data, three classification

techniques were compared (MLC, ANN, and decision tree classifier), ML performed

better with an accuracy of 86% (Kuching, 2007). Table 2.2 summarises some of

the accuracy results for MLC techniques in different types of tropical forests.

Table 2.2: Example of MLC application in tropical forest mapping

Vegetation type Sensor type Accuracy (%) Reference
Tropical forest Landsat TM 94.84 (Foody et al., 1996)
Tropical forest Airborne Image 86 (Kuching, 2007)
Tropical forest ASTER 88.50 (Baatuuwie and

Van Leeuwen,
2011)

Tropical forest Landsat image 90.94 (Tottrup, 2004)
Mixed forest SAR image 59.4 (Waske and Braun,

2009)
Rain forest Hyperspectral image 88 (Clark et al., 2005)
Tropical land cover Landsat TM 97 (Ahmad and Que-

gan, 2012)
Montane Tropical forest Landsat TM 87 (Helmer et al.,

2000)
Tropical forest Landsat TM and PALSAR 91.1 (Laurin et al., 2013)
Species mapping Sentinel-2 90.73 (Laurin et al., 2016)

Discriminant analysis (DA) algorithm: DA is also a statistical parametric

technique, which depends on the average sample and the covariance matrix calcu-

lated from the training sample. The estimated covariance matrix is calculated by

the regularisation process using two parameters of quadratic, ML classifier, and

linear classification (variance matrix) to reduce cross-validation error (Cortijo and

De La Blanca, 1997). It minimises intra-class variance and maximises inter-class

variances (Hubert-Moy et al., 2001). However, this method also suffers from sim-

ilar limitations as the ML classifier as the sample average and covariance matrix
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are not robust in features separation (Herwindiati et al., 2014).

Parametric classifiers are limited to fixed decision boundaries of the training sam-

ples. When the training samples are not aligned with the decision boundaries,

misclassified pixels are produced and a noisy classification often results from (Cor-

tijo and De La Blanca, 1997; Hubert-Moy et al., 2001). The application of non-

parametric techniques is considered robust in reducing noisy classifications and in

the tree species classification of the tree species (Table 2.3).

Table 2.3: Summary results of DA techniques in tropical forest mapping

Vegetation type Sensor type Accuracy (%) Reference
Tropical rain forest Landsat TM 86 (Thessler et al.,

2008)
Tropical tree species Aerial photography, CASI and HyMap 87 (Lucas et al., 2008)
Rain forest-species Hyperspectral image 87 (Clark et al., 2005)
Tropical forest Landsat image 90.94 (Tottrup, 2004)
Mixed forest SAR image 59.4 (Waske and Braun,

2009)
Rain forest Hyperspectral image 88 (Clark et al., 2005)
Tropical forest Landsat TM 92.20 (Foody and Hill,

1996)

2.4.1.2 Non-parametric classifiers

The non-parametric classifiers (machine learning algorithms) have few underlying

assumptions of data distribution like normality or normalised mean and variance

have been demonstrated as providing more reliable classification than parametric

classifiers (Foody, 1995). The application of non-parametric classifiers in remote

sensing-based applications has increased over the past decade (Thanh Noi and

Kappas, 2018).

The growth of open-source machine learning/deep learning with the application

of artificial intelligence provides systems provide the ability to learn and improve
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classification outputs without being explicitly programmed. The availability of ma-

chine learning libraries supports the classification process, including Scikit-Learn,

TensorFlow, and Keras. Example of machine learning classifiers includes Support

Vector Machines (SVMs), Artificial Neural Networks (ANNs), k -Nearest Neigh-

bor (k -NN), Random Forest (RF), Extremely Randomized Tree classifier (ERT),

Extreme Gradient boosting (XGBoost), and Light Gradient Boosting (LGBM).

Therefore, this study will mainly focus on the application of machine learning

classifiers (non-parametric classifiers).

Support Vector Machines (SVM): SVM is a machine learning algorithm

(Huang et al., 2002) that works by building a hyperplane concerning the maxi-

mum gap of the training samples used for classification. It subsequently classifies

the features into one of the defined classes (e.g., land covers) (Qian et al., 2015).

The most significant distance in the hyperplane of the adjacent training sample of

the given class results in a good separation. When the margin is more extensive,

it lowers the generalisation error of the classifier (Kamavisdar et al., 2013). For

example, when two classes cannot be separated linearly, the method looks for the

hyperplane that maximises the margin and minimises the proportional quantity

of the misclassification errors (Pal, 2005). SVM is useful for classification due to

its ability to work with limited training samples (Mountrakis et al., 2011). The

application of SVMs in vegetation mapping with different types of remote sensing

data is well documented (see Huang et al., 2008; Su et al., 2009; Keramitsoglou

et al., 2006; Knorn et al., 2009).

A comparison of classification methods will focus on the accuracy of the results.

For instance, Thanh Noi and Kappas (2018), compared three non-parametric clas-

sifiers; RF, k -NN and SVM for land cover classification using Sentinel-2 images
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and SVM outweigh the other two techniques with marginal differences; SVM had

95.29%, followed by RF with 94.59% and k -NN with 94.10%. Whilst Qian et al.

(2015) obtained 92.6% for SVM, decision tree (DT) 88.4% and k -NN with 86.8%.

Similarly, Kaszta et al. (2016) compared four classifiers; k -NN, ML, RF, and

SVM on a seasonal separation of African savanna woodland classification using

Worldview-2 image and the results indicate the accuracy of 83% and 77% for

SVM on pixel and object-based classification respectively, followed by RF for 82%

and 75%, k -NN had 80% and 73% and ML had 78% and 72% respectively (Kaszta

et al., 2016).

Table 2.4 presents significant SVM findings in forest mapping using different sen-

sors. SVMs indicate high-accuracy classification results, but a disadvantage of this

technique is that it depends on quite a lot of hyper-parameters, which need to be

optimised (Pal, 2005).

Table 2.4: Summary results of SVM techniques in tropical forest mapping

Vegetation type Sensor type Accuracy (%) Reference
Natural tropical forest ALOS PALSAR 86 (Longépé et al., 2011)
Rain forest Landsat TM 84.30 (Sesnie et al., 2010)
Tropical vegetation Radar data 99 (Lardeux et al., 2009)
Mapping tree species WorldView-2 77 (Omer et al., 2015)
Tropical rainforest Synthetic Aperture Radar (SAR) 63.30 (Pouteau and Stoll, 2012)

Artificial Neural Networks (ANNs): This classifier is made of layers, and each

layer constitutes neurons. The neurons are comprised of at least three arranged

layers; an input layer, one or more hidden layers, and an output layer. The neuron

in the input layer informs of the individual pixels’ multispectral reflectance values,

such as texture, surface roughness, terrain elevation, slope, and aspect. The hidden

layer helps simulate the non-linear arrangement of the input data, and the output

layer represents the final thematic map cover class (Jensen et al., 2005).



CHAPTER 2. BACKGROUND 55

The advantages of ANNs have been discussed in comparison with other techniques

(Mas and Flores, 2008). For some applications, ANNs have demonstrated an

improved classification accuracy with the ability to adapt or learn from the previ-

ous results and update the classification more objectively, based on the ability to

learn intricate patterns (Lek and Guégan, 1999). The classifier also can combine

multi-source data from different sensors and auxiliary data like elevation, slope

(Carpenter et al., 1997; Benediktsson et al., 1990), and more using less training

dataset (Paola and Schowengerdt, 1995).

These advantages extend the application of ANNs in land cover classification, un-

mixing and retrieving biophysical features of cover, change detection, data fusion,

object recognition, and prediction (Mas and Flores, 2008). Pal (2005) compared

three classification techniques of ML, ANNs, and SVMs based on the number

of bands and training dataset and the results ranked ANNs the second; SVMs

(93.6%), ANNs (88.4%), ML (85.8%). In a comparison of mapping tropical coast

forests in Thailand using ASTER images, ANNs showed an accuracy of 94.99%

as compared to 94.15% for SVM and 93.9% for ML (Szuster et al., 2011). Olthof

et al. (2004), used ANNs to map storm damage impacts on deciduous forests using

Landsat data and produced an overall accuracy of 94%. However, the method is

computationally complex which reduces its accessibility for those classifying remote

sensing data (Thanh Noi and Kappas, 2018). Table 2.5 summarises the application

of ANN in different types of tropical forests.
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Table 2.5: Summary results of ANN techniques in tropical forest mapping

Vegetation type Sensor type Accuracy (%) Reference
Tropical forest SPOT HRV 95 (Kimes et al., 1999)
Tropical forest Landsat ETM+ r = 0.82 (Ingram et al., 2005)
Species mapping Landsat TM 83 (Foody and Cutler, 2006)
Forest cover mapping PALSAR and MODIS 89 (Dong et al., 2012)
Forest biomass prediction Landsat TM r > 0.71 (Foody et al., 2003)

k-Nearest Neighbor (k-NN): k -NN is the most well-known and extensively

used non-parametric classifier. It works by searching the k nearest neighbors of a

majority sample to classify in a given training data sets. The majority votes of

its neighboring object classify the feature in an image through euclidean distance

evaluation, and the most populated class (pixel) is assigned to the selected neigh-

bors. Sometimes is referred to as the nearest neighbor when the value of k is equal

to one (Cortijo and De La Blanca, 1997). The value of k had a significant role in

the performance of classification accuracy, as the tuning parameter of the k -NN

classifier (Qian et al., 2015). The essential parameters in k -NN are the distance

metric, defined by the relative position of the feature on the image. The k value

depends on the nearest neighbors and the size of the geographical radius of the

searching a neighbor pixel occurrence (Tomppo and Halme, 2004; Haapanen et al.,

2004).

The critical part is the selection of the k value in achieving the desirable classi-

fication results (Franco-Lopez et al., 2001; McRoberts and Tomppo, 2007). The

large value of k reduces the “salt and pepper” effect that is common to many clas-

sification outputs. However, boundaries between classes are less separated, while

a small k value increases misclassification results (Lu et al., 2014). k -NN is widely

applied in the multi-source estimation of forest inventories with the use of satel-

lite data and field measurements (Tomppo and Halme, 2004; Koukal et al., 2007;



CHAPTER 2. BACKGROUND 57

Haapanen et al., 2004).

The main advantages of the k -NN method include easy application, as there are no

statistical assumptions (Thessler et al., 2008), the potential of combining different

data from other sources (Franco-Lopez et al., 2001), and the ability to produce

both statistics for arbitrary area units as well as wall to wall maps (Tomppo and

Halme, 2004). However, the disadvantages of k -NN require extensive training

datasets to train accurately, which can also result in a classifier that is slow to

apply. Working with comprehensive training data set has been a drawback of the

k -NN classifier in terms of computation and handling (Hubert-Moy et al., 2001).

Moreover, the rule is negatively affected by wrongly labeled training samples as

errors are propagated (Cortijo and De La Blanca, 1997). Applications of k -NN on

tropical forest mapping are summarised in Table 2.6.

Table 2.6: Previous studies applied the kNN method in tropical forest mapping

Vegetation type Sensor type Accuracy (%) Reference
Land cover mapping Sentinel-2 95 (Thanh Noi and

Kappas, 2018)
Forest/non-forest classification Landsat TM and ETM+ r = 0.82 (Haapanen et al.,

2004)
Tropical rain forest Landsat TM and SRTM 83 (Thessler et al.,

2008)
Tropical forest- Landsat TM and PALSAR 89 (Lu et al., 2014)

Random Forest (RF): RF is a machine learning classifier, as a tree-based clas-

sifier (Rodriguez-Galiano et al., 2012), assuming that each tree depends on the

values of a random vector sampled independently and with the same distribution

for all trees in the forest (Breiman, 2001). RF classifier works by selecting ran-

domly subsets of the training samples and variables, which produce several decision

trees (Belgiu and Drăguţ, 2016).

The advantages of RF include determining each variable’s importance and hence
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increasing classification accuracy (Rodriguez-Galiano et al., 2012; Cutler et al.,

2007). The benefits of RF are outlined in Chutia et al. (2016). The variables are

ranked based on their weight in explaining the dependent variables. Non-linear

relationships of nonparametric and categorical data are also handled. It reduces the

challenge of spatial autocorrelation, which bias parametric linear models (Segal,

2004).

RF classifier is gaining popularity in remote sensing classification due to its accu-

racy of classification outputs (Pal, 2005; Belgiu and Drăguţ, 2016). The approach

is being increasingly applied in mapping conditions of forest health (Wang et al.,

2015) and mapping tree canopy cover and biomass (Karlson et al., 2015). Pelletier

et al. (2016), assessed the robustness of RF in mapping land cover in the south

of France combining Landsat 8, sentinel-2, and SPOT-5 sensors and with an over-

all accuracy of 83.3% compared to 77.1% from SVM. The bootstrap aggregation

technique of the RF classifier makes the classifier less sensitive to noise (Chan and

Paelinckx, 2008; Rodriguez-Galiano et al., 2012). However, the method is sensitive

to the sampling design (Belgiu and Drăguţ, 2016). Table 2.7 summarises some RF

technique applications in different types of tropical forests.

Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting

(LGBM):

The XGBoost is a machine learning classifier algorithm that can be applied for

both regression and classification tasks and has been designed to work with large

and complicated datasets (Chen and Guestrin, 2016; Ke et al., 2017). XGBoost is a

parallelized (Figure 2.1) and optimized version of the gradient boosting algorithm

(Al Daoud, 2019). Parallelizing the whole boosting process vastly improves the

training time. Instead of training the best model on the data (like in traditional
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methods), this algorithm has the capability of handling thousands of models on

various subsets of the training dataset and then voting for the best-performing

model (Chen and He, 2022).

Therefore, XGBoost is a scalable tree-boosting approach that has demonstrated

good results across a wide range of applications in numerous analysis and machine

learning competitions (Mitchell and Frank, 2017). The XGBoost method focuses

on building several models sequentially, whereby each new model tries to fix the

deficiencies in the previous model. Also, it is useful and robust for noise reduction

and mapping uneven class distribution, particularly in steep and inaccessible areas

with difficult field data collection (Zhang et al., 2019). Additionally, XGBoost is

also supporting parallel and complicated computing on both central processing

units (CPUs) and graphics processing units (GPUs), which increases training and

prediction speed (Mitchell and Frank, 2017).

Figure 2.1: XGBoost level-wise tree growth. Sourced from Al Daoud (2019)

LightGMB is one such algorithm that depends on decision trees (Figure 2.2) and

is used in predicting the accuracy to attain the desired results (Al Daoud, 2019).

It is a gradient-boosting framework and powerful algorithm that uses a tree-based

learning methodology (McCarty et al., 2020). The computation speed is very

fast for this algorithm, hence the name “light”. LGMB can also process a large
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volume of data and requires a lesser amount of memory. The LGBM performs a

classification by using the features it selects.

The main difference with XGBoost is that the decision trees in LGBM split the

tree leaf with the best fit whereas other boosting algorithms split the tree depth-

wise or level-wise rather than leaf-wise. So when growing on the same leaf in

LGBM, the leaf-wise algorithm can reduce more loss than the level-wise algorithm

and hence results in much better accuracy which can rarely be achieved by any of

the existing boosting algorithms(Al Daoud, 2019).

Hence, LightGBM focuses on selecting the most useful feature for the decision

tree’s growth and does not require feature selection before model training. It can

use the assessment of feature importance, especially regarding complex datasets

(Shi et al., 2019). Also is robust to overfitting as trees are grown sequentially

by altering the weight of the training data distribution to reduce function loss

(Ustuner and Balik Sanli, 2019).

Figure 2.2: LightGBM level-wise tree growth. Sourced from Al Daoud (2019)
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2.4.2 Analysis of tropical forest cover change detection

Forest cover change detection entails applying multi-temporal data sets to dif-

ferentiate areas of forest between dates of imaging (Singh, 1989; Coppin and

Bauer, 1994; Lillesand et al., 2015). Well-timed and precise change detection

of forest resources is enormously vital for understanding relationships and interac-

tions between human or natural phenomena for better decision-making (Lu et al.,

2004). The forest change detection process depends mainly on the temporal factors

(when and how long the changes occurred) (Hussain et al., 2013; Coppin et al.,

2004).

Forest disturbances may arise in the short term due to fire or forest insects and

in the long term such as human-induced changes, for example, conversion from

forest to other land covers or exploitation of the forest resource (Coppin et al.,

2004). This necessitates an appropriate timing for the image acquisitions. For

disturbances that occur over a short period, image acquisitions are required at a

temporal high frequency. However, where changes are presented for a long period

then the frequency of observations becomes critical (Lunetta et al., 2004), but iden-

tifying the date on which a change occurs is important. For instance, to identify

the date of a deforestation event a high temporal frequency of images is required,

whilst for assessing trends in forest growth, extended time series covering multiple

years are required (Franklin, 2001). The main aspects considered for change de-

tection include detecting the changes, identifying the nature of changes, measuring

the extent of changes, and assessing the spatial pattern of change (Macleod and

Congalton, 1998). Forest change detection studies with remotely sensed data have

used various methodologies in the tropical environment (Mas, 1999).
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The robust quantitative estimates of forest cover change is a necessary step in the

process of managing tropical forests and is essential for supporting decision-making

processes and interventions focused on sustainable forest management. It is an

important way of understanding the extent of forest cover loss and gains over time

(Ygorra et al., 2021). The expansion of agriculture into forest land, timber logging,

charcoal production, and firewood harvesting are the major drivers of deforestation

in the tropics (De Alban et al., 2018). Changes in forest cover can alter the supply

of the ecosystem and influence the biological processes, hydrological fluxes, and

regional climate leading to greenhouse gas emissions affecting the well-being of

nature and humanity (Negassa et al., 2020).

Therefore, it is important to have a good understanding of all processes leading

to tropical forest cover change, such as deforestation, degradation, afforestation,

and regeneration. Earth Observation data are critical in providing a systematic

and temporally resolved assessment of those changes. The current availability

of long-term Landsat sensor data and the launch of Sentinel-1A/1B and -2A/2B

are fostering the development of new approaches to better characterize temporal

changes in forests (De Bem et al., 2020). Furthermore, advances in high perfor-

mance and cloud computing, machine learning, and high-quality temporal datasets

(e.g., Landsat collection 1), as well as the development of datacube formats, are

increasingly facilitating the analysis of forest cover change and the temporal dy-

namics of forest biophysical parameters (Bouvet et al., 2018; Berninger et al.,

2018).

Table 2.8 summarises some of the tropical forest cover change based on satellite

data (Kim et al., 2015) and (Figure 2.3) presents annual deforestation rates in

some tropical hotspots of Amazon, Congo Basin, and South East Asia (Rosa et al.,
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2016).

Figure 2.3: Tropical annual deforestation rates based on 100 model replicates at
five years’ interval. Sourced from Rosa et al. (2016)

Table 2.8: Satellite-based estimates of tropical forest cover change (1000 ha/yr)
for the 1990s and 2000s

Area 1990s 2000s ∆Rate Method Data Reference
Tropics -5648 -9111 61.3% Sampling Landsat (FAO and JRC, 2012)
Tropics -6000 -7000 16.7% Sampling Landsat (FAO and JRC, 2014)
Humid tropics -5800 - Sampling AVHRR (Achard et al., 2002)
Tropics -6050 -5930 -2% Sampling Landsat (Achard et al., 2014)
Humid tropics -3960 -3170 -20% Sampling Landsat (DeFries et al., 2002)
Tropics -5563 - - Wall-to-wall AVHRR (Hansen et al., 2008)
Humid tropics - -5400 (gross loss) - Sampling Landsat (Hansen et al., 2013)
Humid tropics -4040 -6535 61.8% Wall-to-wall Landsat (Kim et al., 2015)

2.4.2.1 Change Detection Methods

Different change detection methods have been applied in detecting forest distur-

bances (e.g., Huang et al., 2010; Jin and Sader, 2005; Hansen et al., 2008; Kennedy

et al., 2009; Lunetta et al., 2006). These methods are grouped into two categories

of variation in the analysis of classification results between two dates and analysis

of radiometric differences between dates (Zhan et al., 2000; Singh, 1989).
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2.4.2.1.1 Map-to-Map Change: This type of technique, commonly known

as post-classification or delta classification, discriminates between two imaging

dates. Each image between the two periods is registered and classified indepen-

dently (Lillesand et al., 2015; Coppin et al., 2004). The explicit knowledge of the

baseline classification and the change transition benefits this technique (Tewkes-

bury et al., 2015). It has the advantage of providing more useful information on

initial and final land cover classes in the form of a complete matrix of change

direction (Fan et al., 2008; Coppin et al., 2004). However, the final change the-

matic map entirely depends on the accuracy of each independently classified image,

whereby the error in the initial classification is likely to be taken to the last change

detection process.

Forest-type change mapping over a large geographic area is still challenging, due to

complex forest-type compositions, spectral similarity among various forest types,

poor quality images with clouds or cloud shadows, and difficulties in managing and

processing a large amount of data (Li et al., 2022) compared to forest/non-forest

change mapping whereby only two classes are considered

Therefore, to achieve change detection with post-classification, a high level of

spatial registration accuracy of the two images is a pre-requisite (Singh, 1989;

Mas, 1999; Lillesand et al., 2015). Hence, accurate spatial registration will elimi-

nate misclassified pixels in either of the two dates labeled as change (Zhan et al.,

2000).

2.4.2.1.2 Image-to-Image: Each pixel in an image is subjected to arithmetic

operations to generate changes over time. There are several types of image-to-

image change detection methods.
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Image differencing: Arithmetic operation of subtracting digital image value

from another digital image of the same area but acquired at different dates, i.e.,

time t1 and time t2. A pixel-by-pixel comparison produces a third image with

numerical values different from the original images. The two images need to be

perfectly co-registered before differencing. However, in practice, exact image reg-

istration and perfect radiometric corrections are never obtained for multidate im-

ages. Residual differences in radiance not caused by land cover changes are still

present in images due to structural and functional images not having the same

signal intensity in the same areas (Théau, 2022).

The challenge then of this technique is to identify threshold values of change and

no-change in the resulting images. The standard deviation measure is often used

as a reference value to select these thresholds (Li et al., 2019). Different normaliza-

tion, histogram matching, and standardization approaches are used on multidate

images to reduce the scale and scene-dependent effects on differencing results.

The image differencing method is usually applied to single bands but can be also

applied to processed data such as multidate vegetation indices or principal com-

ponents (Théau, 2022).

The result pixels with values at or near zero have similar spectral values and have

no change, and the areas of radiance change will have positive or negative values

over the two epochs (Campbell and Wynne, 2007; Jensen et al., 2005; Coppin

et al., 2004; Macleod and Congalton, 1998; Lillesand et al., 2015). This technique

can identify pixels that have changed in brightness value between the two periods

(Jensen et al., 2005). A comparison with other change detection methods found

superior results with image differencing compared to post-classification (Macleod

and Congalton, 1998).
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Image rationing: Image rationing is also a pixel-to-pixel computation by the

ratio of the images from two different times t1 and time t2. The pixels of no

change will have one value, and changed pixels will have higher or lower values.

This technique had the advantage of normalising sun angle and shadows for the

images (Lillesand et al., 2015). However, the method also needs to have perfect co-

registration of the two images before rationing, and the selection of the threshold

value for change no-change remains critical (Singh, 1989).

Change Vector Analysis (CVA): CVA is a multivariate method that gener-

ates output information based on change vector direction and multispectral change

of magnitude between the two images dates. The spectral change vector represents

the type of change, and the vector direction indicates or discriminates transitions

occurrence (Nackaerts et al., 2005; Johnson and Kasischke, 1998; Flores and Yool,

2007; Bruzzone and Serpico, 1997). Identification of change and no-change pixels

is determined by setting a threshold value through stages of this iterative process

until the optimal amount of the magnitude of change is obtained (Chen et al.,

2003). However, features like deep water are available to select the threshold value

for unchanged pixels and record their scope from the change vector image (Jensen

et al., 2005).

For example, a change in the intensity value (brightness) from one image to an-

other, which relates to a change in color, is the spectral direction of change used

in showing vegetation changes. It is relatively straightforward to differentiate for-

est from bare soil (i.e., deforestation). If the first image has forest cover and the

second image appears to be barren soil, the intensity will be different as the soil

will be brighter in most spectral bands and the forest will be darker. Hence, the

directional change in color will be observed and distinguished between a kind of
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changes (Horning et al., 2010). Therefore, CVA is applied as a change detec-

tion technique in forest monitoring (Silva et al., 2003) but also suffers a similar

challenge in identifying change transitions.

Image transformation: Typically involves the separation of features on the two

images of the same area acquired at different times (Singh, 1989). This transfor-

mation is based on first-order (linear) or high-order statistics (nonlinear) operators

such as variance, correlation, etc. The most common transformation methods are

principal component analysis (PCA), Multivariate Alteration Detection (MAD),

Iteratively Reweighted Multivariate Alteration Detection (IR-MAD), Covariance

Equalization (CE), and the Cross-Covariance (CRC) (Minu and Shetty, 2015).

The PCA is commonly used, with this being a linear transformation that defines a

new, orthogonal coordinate system such that the data can be represented without

correlation. The transformation is found from the original data’s eigenvectors of

the covariance matrix. Each pixel is transformed by vector multiplication of its

original vector and the eigenvectors, resulting in coordinates in the new space. The

transformed data is re-arranged back into two images corresponding to the first

and second principal components. The first component images contain no-change

pixels whereas the second component images contain change information between

the different dates (Lillesand et al., 2015).

Tasselled cap (TC) is a linear transformation consisting of a set of parameters,

called TC coefficients, to convert the original set of bands to a new set of un-

correlated bands through a weighted sum of the first ones (Zanchetta and Bitelli,

2017). The original m-band space is transformed into a new n-dimensional set of

axes (with n ≤ m) with different coordinates for the image pixels. The new axes

often referred to as “features” have a physical meaning in terms of surface char-
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acteristics and are not image-dependent. Therefore, TC transformation is used to

enhance the contrast between forest, cleared areas, and regrowth, where images

are stacked into a composite multi-date and used in a principal components (PC)

transformation to identify change components. In addition, consecutive TC image

pairs can be differenced and stacked into a composite multi-date differenced image

(Guild et al., 2004).

TC provides an analytical way to detect and compare changes in vegetation, soil,

and manmade features over short- and long-term periods and is used to enhance

the contrast in the image to differentiate the area of change, such as deforestation,

and regrowth (Zanchetta et al., 2015). TC reduces the Landsat images’ spec-

tral redundancy for visible and infrared bands and generates vegetation indices

of brightness, greenness, and wetness (Schowengerdt, 2006). An example of the

TC technique application includes a change detection in deforestation and land

conversion in Brazil (Guild et al., 2004). See Mas (1999) for a detailed comparison

of different change detection methods in monitoring land cover changes.

2.4.2.1.3 Map-to-Image method: The map-to-image change detection (Bunting

et al., 2018; Thomas et al., 2018), as opposed to the widely used image-to-image

and map-to-map methods (Walter, 2004; Dingle Robertson and King, 2011; Bruz-

zone and Prieto, 2002), aims to avoid the particular classification errors that are

common with post-classification comparison procedures from the individual classi-

fication (Desclée et al., 2006) while maintaining the classification context which is

not possible using an image-to-image approach. Therefore, with the map-to-image

approach, a baseline map with well-defined classes is used to detect changes from

a second independent image.
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The map-to-image method works by assuming a known spectral from the optical

data response distribution (e.g., normal) for the classes of interest (i.e., forest/non-

forest), and change features are identified as features that do not fit the expected

distribution will reside within the tail (i.e., not near the mean). Therefore, the

normality is assessed using skewness (asymmetry) and kurtosis (peakedness) of the

distribution (Thomas et al., 2018) following the number of observations (images)

acquired over a given period and location. A key advantage of this method is that

it uses the earlier map and aims to update the current map to generate the next

map rather than create a new one while also requiring only a limited number of

parameters for deriving changes.

2.5 African Forests Monitoring System

African forests play a crucial role in the global carbon cycle but are deteriorating

due to deforestation, witnessing overexploitation to meet the demand for natu-

ral resources across the region. According to Achard et al. (2002), estimates of

forest cover change analysis in Africa using remote sensing started in the late

1990s through the UN FAO Remote Sensing Survey of the Global Forest Resource

Assessment and the TREE-2 project of the Joint Research Centre (JRC).

The UN FAO reported a deforestation rate of 0.34% per year between 1990 and

2000 and TREES, reported a deforestation rate of 0.36% per year (Mayaux et al.,

2005). An example of the forest cover change analysis in African tropical forests

focused on the Congo basin of Central Africa (Table 2.9). However, intimate

knowledge of forest cover change in other parts of the region is crucial to improve

forest governance and strengthening forest monitoring.
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Table 2.9: Example of studies on deforestation in the African region based on
remote sensing data

Author Location Data Brief description
(Brinkmann et al., 2014) Madagascar Landsat Deforestation mapping
(Zhuravleva et al., 2013) DR-Congo Landsat Forest degradation
(Potapov et al., 2012) DR-Congo Landsat ETM+ Forest cover loss
(Hansen et al., 2008) Congo Basin MODIS and Landsat Forest cover change
(Duveiller et al., 2008) Central Africa Landsat TM and ETM Deforestation mapping

2.6 Forest Monitoring from Space in Tanzania

Tanzania has been relying on field surveys to assess forest area estimates. The

surveys are based on a sampling design, as the practicalities and cost of mapping,

the whole country are prohibitive. Hence, extensive forest areas remain under-

sampled due to their inaccessibility. The application of remotely sensed data in

forest mapping and monitoring allows for a reduction in the use of field samples

and improves forest extent estimates (Næsset et al., 2016). In Tanzania, remotely

sensed data is limited in forest mapping and monitoring. However, forest mapping

has a long history in Tanzania from aerial photographs centered on designating

types of forests for logging purposes and general land cover. For instance, in 1984,

a Southern African Development Community (SADC) produced a woody biomass

map, which was used to estimate forest extent in Tanzania (MNRT, 2015).

In 1995 and 1996, two projects implemented another design for natural resource

mapping in Tanzania through Hunting Technical Services (HTS) and the Africover

project under the United Nations Food and Agricultural Organization (FAO).

The HTS land cover map was produced with the interpretation of scale-controlled

Landsat TM and Système pour l’Observation de la Terre (SPOT) images cap-
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tured between May 1994 and July 1996. The land cover map was produced with

six vegetation classes (MNRT, 2015). The Africover land cover map was gener-

ated through visual interpretation of Landsat and SPOT images acquired between

February 1995 and June 1998 (Wang et al., 2005).

The most recent land use and cover were delivered through the National Forest

Resources Monitoring and Assessment (NAFORMA) project (2009-2014). Landsat

images acquired between June 2008 and June 2009 were utilised in the classification

process and the map was applied in linear extrapolation and comparison of the

1984 SADC map and 1995 HTS map for estimating forest cover change in Tanzania

(MNRT, 2015).

Despite previous studies having used satellites based on forest mapping (Reiche

et al., 2016) few studies have assessed area coverage and trend of forest cover

in Tanzania (Table 2.10). Most of the studies concentrated on protected areas,

hotspots (high biodiversity), i.e., the Eastern Arc Mountains, mangroves, and

other coastal forests (Godoy et al., 2012; Green et al., 2013; Mayes et al., 2015;

Kashaigili et al., 2013). It indicates that forests outside the areas with less impor-

tance (general-use land) remain unmonitored. Therefore, this shows a lack of a

comprehensive monitoring system for the extent and condition of forests in Tan-

zania. However, both previous estimates of forest extent change in Tanzania show

a decrease in forest cover at the expense of other land uses (Table 2.10) (URT,

2014a).
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Table 2.10: Example of deforestation studies based on remotely sensed data in
Tanzania

Author Location Data Description
(Mayes et al., 2015) Western Tanzania (Tabora) Landsat 5 and 8 Loss of forest cover ≈

7%
(Kashaigili et al., 2013) Coastal of Tanzania Landsat 3 and 4 Forest reserves (Pugu

and Kazimzumbwi),
rates loss ≈ 4.5- 25.3%

(Godoy et al., 2012) Coastal of Tanzania Landsat 5 and 7 A decrease in defor-
estation rates ≈ 1.0%
- 0.4% /year from 2000
to 2007

(Green et al., 2013) Eastern Arc mountains forests Landsat 4, 5 and 7 Loss 5% of green forest
and ≈ 43% of Miombo
woodland

A new global deforestation analysis based on satellite estimated forest loss trend

in Tanzania from 2001 - 2019 (Hansen et al., 2013) presented by Global Forest

Watch1 indicated average deforestation of 132,056 ha per year for 19 years as

summarised on Table 2.11. Given this enduring condition, there is a pressing

need to provide up-to-date and appropriate estimates of the status of forests in

Tanzania, to evaluate the impact of past and current changes on the functioning,

survival, and use of this knowledge, to improve the understanding and forecast the

consequences for future applications (Huang et al., 2009).

1https://www.globalforestwatch.org/
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Table 2.11: Tree cover loss trend in Tanzania (2001 - 2019) and corresponding
above-ground biomass. Sourced from Hansen et al. (2013) version 1.7 for 2019

Year Tree cover loss (ha) Aboveground biomass loss (Mg) Aboveground CO2 emissions (Mg)

2001 82,214 12,671,096 23,230,343
2002 85,081 1,208,008 22,146,827
2003 84,068 11,395,125 20,891,063
2004 66,892 8,835,618 16,198,632
2005 91,583 12,196,269 22,359,826
2006 85,296 10,618,161 19,466,629
2007 121,685 16,250,075 29,791,803
2008 164,251 20,845,152 38,216,111
2009 143,354 18,208,623 33,382,479
2010 138,486 18,561,346 34,029,135
2011 137,805 18,464,285 33,851,189
2012 154,433 20,232,335 37,092,613
2013 181,510 22,715,834 41,645,695
2014 198,228 25,207,949 46,214,579
2015 111,961 14,120,429 25,887,453
2016 152,854 19,537,038 35,817,902
2017 194,876 24,763,073 45,398,966
2018 171,708 21,547,702 39,504,120
2019 142,773 18,298,897 33,547,978

2.7 Challenges of Monitoring Tanzanian Forests

from Space

Limited access to remote sensing data, exceptionally high resolution for verifica-

tion, and technical infrastructure (hardware, software, and internet access) have

restricted the ability to regularly monitor the forests of Tanzania (DeFries et al.,

2007; Pettorelli et al., 2014), specifically at a national scale. It is linked with the

high price of proprietary software in processing the remotely sensed data, reflected

in the budget deficit (Horning et al., 2010). Clouds and shadow contaminations

from optical sensors (Huang et al., 2009; Tucker and Townshend, 2000) remain

a significant issue in mapping and monitoring forests. Clouds restrict when two

images are needed for mapping forest change over the same season (Ju and Roy,
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2008). Seasonality fluctuation in the tropics has also hindered forest mapping,

especially in separating non-forested vegetation (Walker, 2016).

However, the advances in technology in spaceborne radar imagery, which operates

at microwave frequencies, provide an alternative solution for mapping tropical

forests, as these data are unaffected by clouds and other atmospheric conditions,

including the new Sentinel satellite constellation that provides both optical and

radar data at high resolution and temporal frequency (Shimizu et al., 2019).

Therefore, integrating radar and optical sensors for future applications could cir-

cumvent the problem of clouds (Reiche et al., 2013). The availability of free, open-

source software has bridged the gap related to processing and analysing large data

sets (Pettorelli et al., 2014; Bunting et al., 2014). Similarly, increased computer

storage and processing technology capacities have made it feasible in mapping

forest cover over large areas (Walker, 2016).



Chapter 3

Study Area Description

3.1 Geographical Location

The study focused on the United Republic of Tanzania mainland, located in East

Africa between latitudes 100 00’ and 110 45’ South of the Equator and longitudes

290 15’ and 410 00’ East of the Greenwich (Figure 3.1). The country occupies

945,100 km2 with the highest point in Africa, Mount Kilimanjaro rising 5,950

meters above sea level. Except along the coast, most of Tanzania lies above 200

m, and much of the country is higher than 1000 m above sea level and bordered

by eight countries (Figure 3.1).

76
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Figure 3.1: Map of the study area with regions labelled. Created using Natural
Earth data in QGIS

3.2 Climate conditions

The climate of Tanzania is mostly classified into Tropical Savannah (Aw) based on

Köppen Climate Classification (Spinoni et al., 2015) with alternating dry and wet

seasons (Figure 3.2)1. However, the climate is mainly influenced by the changes

in elevation. Therefore, four microclimate zones exist:

1. Lowland Coastal Zone - depicts an area with an elevation that ranges

between 0 and 1000 m above sea level and is frequently moist with rainfall

1https://commons.wikimedia.org/wiki
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ranging from 1000 mm to 1800 mm per year.

2. Highlands Zone - includes the North-Eastern Highlands and the Southern

Highlands. As catchment areas, these are usually receiving high rainfall of

up to 2000 mm per year.

3. Plateau Zone - Areas located around Lake Victoria and along the west,

mainly dry areas with an average rainfall of around 600 mm.

4. Semi-Arid Zone - comprises the country’s central regions and, on average,

gets less than 600 mm per year.

Figure 3.2: Köppen Climate Classification of Tanzania. Sourced from Wikimedia
commons

Generally, the country receives bimodal rainfall linked with the southward and

northward movement of the Inter-Tropical Convergence Zone (ITCZ), ranging be-

low 400 mm and a maximum of over 2000 mm per year (Hardy et al., 2013). The
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long dry season occurs from May to October, with a rainfall period from November

to April. The rain season along the coast and the areas around Mount Kilimanjaro

occur from March to May, with short rains between October and December. In

the western part of the country, around Lake Victoria, rainfall is adequately dis-

tributed throughout the year, with the peak period between March and May. The

maximum mean temperature ranges from 26.60C in the southwestern to 33.10C in

the northeastern for September to March while the mean minimum temperature

occurs in July with a range of 5.30C in the southwestern parts and 18.30C in the

coastal areas (National Bureau of Statistics, 2017). Figure 3.3 summarises the

average monthly temperature and rainfall in Tanzania over 25 years (World Bank

Group and others, 2019).

Figure 3.3: Tanzania average monthly temperature and rainfall for 1991-2016.
Sourced from World Bank Group and others (2019)
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3.3 Soil and Geology

Tanzania has 19 dominant soil types, according to the World Reference Base for

Soil Resources (WRB). The most predominant soil type is Cambisols covering

about 35.64% of the country area. This type of soil is characterized by slight or

moderate weathering of parent materials and the absence of substantial portions

of illuviated clay, organic matter, and aluminum or iron compounds. It supports

various forest types, especially on the steep slopes of highlands. Other dominant

kinds of soils are Acrisols (8.67%), Leptisols (8.11%), Luvisols (7.26%), Ferrasols

6.32%), Vertisols (5.02%) and Lixisols (4.95%) (Mlingano Agricultural Research

Institute, 2006).

The Great Rift Valley is one of the most distinctive geological features, caused

by faulting throughout eastern Africa and associated with volcanic activity in

the country’s north-eastern regions. Two branches of the Rift Valley run through

Tanzania. The western part holds Lakes Tanganyika, Rukwa, and Nyasa, while the

eastern section ends in northern Tanzania and includes Lakes Natron, Manyara,

and Eyasi (Chorowicz, 2005).

3.4 Drainage

Tanzania has an abundance of inland water with several lakes and rivers (Fig-

ure 3.4). Inland water occupies about 20% of the total land area. wetlands occupy

10% of the country area of which 5.5% are international Ramsar sites, freshwater

lakes (6.1%), and rivers and their catchment areas. There are over 2,810 rivers and
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streams (permanent and seasonal), 2,325 springs, 440 lakes and dams, and 22,379

deep boreholes (URT, 2014a).

There are about 115 wetlands ecosystems, the most significant of which include

Kilombero, Malagarasi-Muyovosi, Rufiji-Mafia, Lake Natron, and Ihefu. In terms

of their distribution, 60% extend over village land while the remaining 40% are

located on public and protected land (URT, 2014b). Lake Tanganyika forms the

deepest and longest freshwater lake in Africa and the second globally, which runs

along the western border of Burundi, DRC, and Zambia. Lake Victoria is the

world’s second-largest lake and drains into the Nile River. The country also has

many large rivers, including Rufiji, Kagera, Mara, Ruaha, Pangani, Ruvuma, and

Malagarasi, flowing into nine drainage basins (Figure 3.4, Table 3.1).

Figure 3.4: Tanzania drainage system. Created using Natural Earth and DIVA-
GIS data in QGIS
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However, water resources have become a national concern since the mid-1990s

due to new agriculture opportunities, increasing the demand for irrigation and hy-

dropower. The increase in water scarcity and the long dry season have contributed

to water-use conflicts, growing in many cities and rural areas. Similarly, there is

a lack of information on water quantity and quality and an inadequate framework

for tackling cross-sectoral water issues, resulting in a lack of sustainable water

resource management (URT, 2014b).

Table 3.1: Water basins in Tanzania

Basin Catchment area (km2) Drainage basin
Pangani 55,176.82 Indian Ocean
Wami/Ruvu 66,867.18 Indian Ocean
Rufiji 182,708.10 Indian Ocean
Ruvuma 102,743.38 Indian Ocean
Lake Nyasa 34,266.09 Indian Ocean
Lake Rukwa 77,808.92 Endorheic basin
Lake Tanganyika 167,732.23 Atlantic Ocean
Lake Victoria 114,508.14 Mediterranean Sea
Internal drainage 143,67.76 Endorheic basin

3.5 Vegetation description

Tanzania is endowed with various vegetation types (Figures 3.5–3.6 and Fig-

ure 3.7). The relative appearance distinguishes between vegetation types and

subtypes in terms of stature, stratification, canopy closure, and relative com-

position. The vegetation composition resulted in three primary layers of trees,

shrubs/bushes, and grasses/herbs. Five types of vegetation are distinguished in

Tanzania, divided into four forest types, two woodland types, three bushland types,

thicket, and thicket with emergent trees and grassland (Table 3.2).
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Figure 3.5: a) Open grassland and b) Wooded grassland. Credit: NAFORMA
2012

The unmixed grassland (Figure 3.5a) is often limited to the plains of the Serengeti,

Masai Steppe, to alpine areas of the Southern Highlands; only exposure and

edaphic conditions prevent the natural development of trees apart from grasses

or herbs. However, most of the grassland vegetation occurs as subtypes combined

with either a limited wooded or bushed component (Figure 3.5b) and (Figure 3.6b).

Bushland is predominantly comprised of woody plants, which are multi-stemmed

from a single root base. The other type of vegetation constitutes agriculture crops,

including agroforestry systems, wooded crops, herbaceous crops, and grain crops

(Vesa et al., 2010) (Figure 3.7).
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Figure 3.6: a) Dense bushland and b) bushland with emergent trees. Credit:
NAFORMA 2012

The conversion of natural vegetation to other land uses resulted in different vegeta-

tion categories whereby the physiognomy varies widely following the importance of

the tree and crop components. This occurs in the agroforestry system, woodland,

bushland and grassland with scattered crops. The agroforestry systems contain

permanent tree crops (timber and fruit) mixed with permanent and annual crops

(banana, yam, beans, coffee, etc.) (Figure 3.7a-b).

Figure 3.7: Agroforestry system a) tree crops and b) mixture of tree crops and
other trees. Credit: NAFORMA 2012
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Table 3.2: Potential vegetation types in Tanzania

Primary-class Sub-class Main uses
Forest Montane Catchment forests

Lowland Groundwater forests, some
coastal forests

Mangrove Productive ecosystems for both
utilization and conservation

Plantation Timber and fuelwood production
Woodland Closed Both closed and open are used

for beekeeping, hunting, recre-
ation, grazing, conservation, tim-
ber production

Open
Thicket Emergent trees Beekeeping, hunting, recreation,

grazing, conservation
Bushland Dense Grazing

Open Hunting, recreation, grazing
Emergent trees Grazing

Grassland Open Both used for hunting, recre-
ation, grazing, wildlife

Wooded
Bushed

3.5.1 Forest regeneration

The capacity of forests to recover (regenerate) from natural and anthropogenic

disturbances remains the key to sustainable forests’ existence. Forests in Tanza-

nia regenerate quickly following wood harvesting (logging), fire, floods, prolonged

drought, or clearing from shifting cultivation. Once vegetation has been cleared

and the land abandoned, regeneration often occurs. Still, the speed of forest re-

generation depends on the severity of disturbances and methods used in a clearing,

the sources available for regeneration (vegetative shoots), and site history (type,

frequency, and intensity of stress or disturbance) (Mugasha et al., 2004).

For example, natural regeneration in woodlands depending on species may require

four to five years (Mugasha et al., 2004). However, some species may attain a
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height of up to 3 m within one year after harvest with no further disturbances

(Sangeda and Maleko, 2018). Studies indicate that lowland forest areas abandoned

from cultivation recover between 11-31 years, compared to the montane forest with

recovery between < 6 to 10 years (Mwampamba and Schwartz, 2011).

3.6 Administrative and Demographic

Administratively, Tanzania is divided into 26 regions (Figure 3.8), with 162 dis-

tricts. Tanzania’s population has increased more than five times, from 10.05 million

in 1960 to about 59.7 million in 2020 (Figure 3.9). The average annual intercensal

growth rate is 2.7, according to the 2012 Population and Housing Census (PHC).

However, Tanzania’s total population is projected to reach about 130 million by

2050, nearly threefold of the current level (URT, 2018).
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Figure 3.8: Tanzania settlement areas by 2020. Created using Humanitarian Data
Exchange (HDX) based Open Street Map Export (HDX, 2020)

The current urban population is expected to grow from 22 million in 2020 (35% of

the total) to over 70 million ( 53%) by 2050, increasing migration to urban areas

(World Bank, 2019). The growth of new urban settlements progressing emerging,

and existing cities and towns are quickly expanding (Figure 3.8). For example,

according to the United Nations (2019), Dar es Salaam is expected to become a

megacity by 2030, with a population predicted to surpass 10 million people.

Nevertheless, due to the high population increase, the number of people in rural

areas is anticipated to rise from 33 to 65 million people over the same period

(World Bank, 2019). An intensification of pressures on and conflicts surrounding

natural resources is expected.
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Figure 3.9: Tanzania population trend from 1950 projected to 2020. Sourced from
United Nations, 2019 World Population Prospects

3.7 Economy and land cover

Tanzania has a mixed economy in which agriculture represents a key role (Fig-

ure 3.10) (Bergius et al., 2020). Around 70% of the population live in rural areas

and depend on natural resources for food, fuel, and fodder. Only about 17%

of rural dwellers have access to electricity, and approximately 85% of Tanzania’s

power requirements are supported by biomass such as charcoal and firewood, pre-

dominantly for cooking and heating (International Renewable Energy Agency,

2017).

Agriculture includes crop production, animal husbandry, forestry, and fishing.
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Figure 3.10: Employment in agriculture (% of total employment in Tanzania).
Sourced from World Bank Group and others (2019)

About 44 million hectares of arable land (approximately 45% of total land area)

(Figure 3.11), out of which only 24% is under crop production (World Bank,

2019). The cultivated land consists of roughly 80% traditional subsistence farm-

ing systems with considerable diversity of crops grown and field size. Therefore,

agriculture is the most vital economic sector, employing more than two-thirds of

the country’s workforce and sustaining more than three-quarters of Tanzanians’

livelihoods (Bergius et al., 2020).

However, poor land use and watershed management practices have led to the

degradation of forests and watercourses, endangering the natural resource base

upon which Tanzania’s economy and the poor depend. Increasingly, natural catas-

trophes such as droughts and El Niño climatic crises have influenced agricultural

productivity, power generation, and transportation. This has had detrimental im-

pacts on the economy. Despite the overall gradual growth in sub-Saharan Africa,

Tanzania’s GDP has grown at an average annual rate of 6.6% in real terms over
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the past decade (World Bank, 2019).

Figure 3.11: Tanzania agriculture land (% of land area). Sourced from World
Bank Group and others (2019)

The most recent statistics on land cover types were presented in the National

Forest Monitoring and Assessment (NAFORMA) of Tanzania (MNRT, 2015).

However, global land cover products also exist since the year 2015 (Figure 3.12)

through Land Cover Climate Change Initiative (CCI) under the European Space

Agency (ESA) CCI projects (Santoro et al., 2017). More than 60% of Tanza-

nia’s land is covered with forest/woodland/bushland/grassland (Table 3.3). The

cultivated land accounts for about 20%, but a small percentage infringed in for-

est/woodland/bushland and a greater extent in grasslands.
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Table 3.3: Land cover types in Tanzania (MNRT, 2015)

Land cover Area (ha) %

Forest

Montane 995,300 1.1
Lowland 1,656,500 1.9
Mangrove 158,100 0.2
Plantation 554,500 0.6

Woodland

Closed woodland woodland 8,729,000 9.9
Open woodland 35,997,300 40.8
Woodland with scattered crops 2,530,000 2.9

Bushland

Thicket 971,900 1.1
Dense bushland 2,012,400 2.3
Bushland with emergent trees 309,400 0.4
Thicket with emergent trees 308,300 0.4
Open bushland 2,843,500 3.2
Bushland with scattered crops 1,162,700 1.3

Grassland

Wooded grassland 4,712,300 5.3
Bushed grassland 438,900 0.5
Open grassland 3,091,100 3.5
Grassland with scattered crops 596,600 0.7

Cultivated land

Agro-forestry system 1,373,000 1.6
Wooded crops 1,521,100 1.7
Herbaceous crops 5,045,400 5.7
Mixed tree cropping 154,700 0.2
Grain crops 9,866,700 11.2

Open land

Bare soil 161,100 0.2
Salt crusts 18,300 0.0
Rock outcrops 73,100 0.1

Water

Inland waters 154,700 0.2
Swamp 1,007,900 1.1
Rock outcrops 73,100 0.1

Others

Unspecified (e.g., built-up areas) 1,892,700 2.1
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3.8 Forests and Wildlife conservation

The protection of forests and wildlife areas in Tanzania represents about one-third

of the country’s total land area and is one of the world’s highest ratios (World

Bank, 2019).

3.8.1 Forest resources

The forest areas act as a carbon sink, absorbing emissions generated in the country

and beyond, making a net sink of GHGs. Economically, forests’ contribution to

the national GDP is estimated to be between 2.3% and 10% of the country’s total

GDP. However, the subsidy is underestimated as the actual consumption of wood

fuels, bee products, catchment, environmental values, and other forest products

remains unrecorded, especially in rural areas (URT, 2014b).

In Tanzania, ‘Forest’ is defined as an area of land with at least 0.5 ha, with a

minimum tree crown cover of 10% or with existing tree species planted or naturally

having the potential of attaining more the 10% crown cover, and with trees which

have the potential or have reached a minimum height of 3 m at maturity in-situ

(URT, 2017).

Forests link and support other sectors. For example, forests stabilize stream flows

and reduce disasters such as landslides, erosion, and floods in steep topography

areas and high precipitation. Forests also have an essential function in the supply

of irrigation water for lowland farming and fish production. Forest management

categorises forests either by vegetation cover, usage (e.g., production), and legal

status. Production forest is an area of land covered by forest, reserved or used
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principally for sustainable production of timber and other forest produce.

In contrast, protection for forests is provided by forest reserves or used chiefly

for protecting watersheds, soil, and biodiversity protection. The productive forest

area comprised 60.3% of the total forest area, and about 39.7% of the forest area

accounted for protected forest areas, and most are catchment areas and natural

reserves. Furthermore, concerning legal status, approximately 23.3% of the forest

area is within wildlife-protected regions (National Bureau of Statistics, 2017).

3.8.2 Wildlife sector

The wildlife sector has an essential contribution to the national economy through

tourism, photographic scenery, wild animal hunting, and licensing of trophy sales.

The protection of wildlife areas is under the National Parks, Game Reserves, and

Game controlled areas. These areas are both home to wild animals with various

activities, organization, and protection statuses.

National parks in Tanzania cover a total area of 57,424 km2. Ruaha is the biggest

national park with an area of about 20,300 km2 (35.4%) of the total area of national

parks. Serengeti is the next largest national park with an area of 14,763 km2 about

25.7% of the total area of Tanzania’s national parks. Saanane is the smallest

national park covering about 50 km2 (URT, 2014b).

Game reserves are wildlife-protected areas declared for conservation. However,

consumptive and non-consumptive wildlife utilization is allowed with permits.

There are a total of 28 game reserves covering an area of about 117,755.4 km2.

Selous is the largest game reserve covering an area of 50,000 km2 with approxi-

mately 42.5% of the total area under game reserves. The remaining game reserves
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individually constitute less than 10% of the general game reserve area. There are

a total of 42 game-controlled areas covering 55,565.02 km2. Kilombero is a dom-

inant game-controlled area covering 6,500 km2, equivalent to 11.7% of the total

game-controlled areas (National Bureau of Statistics, 2017).

The linked impacts of climate change, and anthropogenic factors, including en-

croachment, land fragmentation, deforestation, and degradation of natural habi-

tats, affect the existence of wildlife ecosystems. Such changes in natural habitats

may change wildlife distribution patterns and are compounded by climate change,

and such circumstances may raise conflict for resources. Among migratory species,

which use a network of sites, may constrain their ability to adapt to changes (URT,

2014b).

Figure 3.13: Protected areas in Tanzania
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Figure 3.12: Tanzania land cover for the year 2015 from ESA CCI (Santoro et al.,
2017). Legend modified for only present land covers in Tanzania.



Chapter 4

Datasets and Software

The study integrated data from different sources and Free/ Libre and Open-Source

Software (FLOSS) to monitor and analyse the extent of forests in Tanzania. The

data were sourced from Landsat 8 Satellite Sensor, environmental data, Plan-

etScope images provided by Planet Labs, fieldwork survey, using a drone and

hand-held Global Positing System (GPS), and forest inventory data from the Na-

tional Forest Inventory (NFI).

4.1 Remotely Sensed Data

The satellite-based imagery provides data spanning over 40 years. Landsat delivers

the most extensive and most advanced experience of medium spatial resolution

satellite imagery (Roy et al., 2014). Medium-resolution satellite data establishes

a great wealth of data required to map and monitor forest cover and cover change

at a global, national and local scale.

96
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However, persistent cloud cover and low data availability in the tropics (Mitchard

et al., 2011; Duveiller et al., 2008), created excessive gaps in the Landsat archives

(Broich et al., 2011) and tree phenological variations have remained a challenge

in mapping tropical forests. Therefore, images were selected from the dry sea-

son (June to November) to minimise cloud contamination and discrepancies in

reflectance caused by seasonal vegetation fluxes and sun angle changes (Coppin

and Bauer, 1996). However, before the final image acquisition, it was necessary to

evaluate the year’s optimal time for separating forest phenological changes from

other vegetative classes based on yearly seasonality (Table 4.1).

Table 4.1: A summary of clear-sky image availability in Tanzania based on sea-
sonality

Month Seasonality Cloud Free observations Remarks
January - March Wet season 3 - 6 Cloudy and low number of clear-sky images

April - June Wet to dry season 6 - 11 Moderate number of clear-sky images

July - September Dry season > 11 High number of clear-sky images
September - December Dry to rain onset 11 - 6 High to moderate number of clear-sky images

The structure and composition of tropical forests are highly variable and complex

(Marselis et al., 2018; Bhavsar et al., 2017; Mayes et al., 2015). It has been as-

sociated with seasonal patterns (plant phenology) as when leaf flush, senescence,

and leaf abscission occurs (Samanta et al., 2012). Understanding these behav-

iors supports the discrimination of different forest compositions and types in the

tropics under different seasons (wet or dry) (Table 4.1). The application of satel-

lite measurements has made it possible to examine these changes. For example,

an increase in near-infrared (NIR) reflectance is observed during the dry season

(more light) and a decrease during the wet season (less light) (Samanta et al.,

2012). Therefore, the reflectance properties of vegetation change from one season

to another.



CHAPTER 4. DATASETS AND SOFTWARE 98

For this study, images were selected from the dry season. However, it was not

possible to identify the optimal month for separating forests from other vegetation

covers like grasses, bushes, crops, etc. Therefore, the Normalised Difference Vege-

tation Index (NDVI; equation 4.1) was used as a radiometric measure of photosyn-

thetic active radiation absorption of the canopy chlorophyll in observing vegetation

growth and variation through the growing seasons.

NDV I =
NIR−RED

NIR +RED
(4.1)

During the peak of the green season, the spectral response of deciduous and ev-

ergreen forests, agriculture, and shrubs are almost similar at 30 m resolution,

with high NDVI values. Hence, throughout the rainy season, it is hard to sepa-

rate forests from other vegetation during the rainy season due to having similar

spectral signatures, which may cause over-estimating forests’ extent. Therefore,

during dryer months, leafless deciduous vegetation is classified as bright or dark

soil (low NDVI response and high reflectivity on IR bands), reaching the highest

separability compared to evergreen vegetation.

Therefore, the zonal statistic available in the Remote Sensing and GIS Software

Library (RSGISLib) was used to extract the monthly NDVI value for each vegeta-

tion type from the images. Polygons were used as regions of interest and as input

to perform the pixel-in analysis, by averaging the pixels in the polygon (equation

4.2)(Bunting et al., 2014).

X =
∑

XiK|
∑

K ′ (4.2)

Where K denotes the percentage of the pixel that intersect the polygon and if K
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= 1 means the polygon is entirely contained in the pixel. Extracted pixel values

for all pixels within a polygon were exported as a comma-separated values (CSV)

file and used for further analysis (NDVI plots for different vegetation types for

June to November).

4.1.1 Landsat 8 Satellite Sensor

The Landsat Data Continuity Mission (LDCM) launched Landsat 8 on February

11, 2013, with two improved sensor payloads, the Operational Land Imager (OLI)

and the Thermal Infrared Sensor (TIRS) (Irons et al., 2012). The OLI sensor was

added with two reflective bands of a short-wavelength blue band (0.43 - 0.45 µm),

which is intended to improve the sensitivity to chlorophyll and other suspended

materials in coastal areas and enhance atmospheric aerosol properties. The other

is a new short-wavelength infrared (1.36 - 1.39 µm) that can be used for cirrus

cloud detection because of strong absorption by water vapor (Roy et al., 2014; Sun

et al., 2017).

Landsat 8 captures a 185 km swath with an approximate final scene size of 185 km x

180 km and is defined in the second Worldwide Reference System (WRS-2) with 30

m spatial resolution (Figure 4.1). It provides repetitive and synoptic observations

with a temporal resolution of every 16 days, making it suitable for forest mapping

and monitoring. Landsat 8 uses pushbroom sensors with long and linear arrays of

detectors, improving data quality (signal/noise ratio) and radiometric resolution

(12 bits), higher than the preceding Landsat TM and ETM+ with 8 bits.

Landsat 8 data from OLI and TIRS sensors are radiometrically corrected, co-

registered, and corrected for terrain distortion (Irons et al., 2012), and therefore,
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reduce the uncertainty during applications (Roy et al., 2014). Approximately

700 Landsat 8 scenes are acquired per day, compared to about 450 image scenes

from Landsat 7 (Ihlen, 2019). This has increased the availability of images to

minimise the problem of clouds, especially in the tropics. Therefore, Landsat 8

data were used to establish the forest baseline and subsequent forest changes for

this study.

Similarly, the development of the Copernicus Programme by the European Space

Agency (ESA) and the European Union (EU) has contributed and increased to

the effective monitoring of tropical forests by producing Sentinel-2 multispectral

products. Sentinel-2 satellites are the second constellation of the ESA Sentinel

missions and carry multispectral scanners onboard. The current adoption and

application of Sentinel-2 can be attributed to the higher spatial resolution of 10 m

in the visible through to the near-infrared bands which are higher than many other

medium spatial resolution images, the high temporal resolution of 5 days, and the

availability of the red-edge bands providing opportunities for multiple applications

(Immitzer et al., 2016). Sentinel-2 offers improved data compared to other low to

medium-spatial resolution satellite images (e.g., Landsat), especially in temporal

and spatial resolution. Note that the 13 bands for Sentinel-2 images have spatial

resolutions ranging from 10 to 60 m (Drusch et al., 2012).

However, for this study, at a country scale, Sentinel-2 images were not used because

of an excessive data volume requiring more processing and classification time, and

short temporal coverage (from 2015) (Lima et al., 2019) compared to Landsat

mission (Reiche et al., 2016). Though the methods developed are transferable to

Sentinel-2 and are expected for future forest monitoring in Tanzania, considering

short revisit cycles that can support detecting forest changes including near to
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when they occur.

Figure 4.1: Tanzania Landsat paths and rows in WRS-2

4.1.2 PlanetScope Imagery

The PlanetScope1 data were collected to support the accuracy assessment of the

classification results from the Landsat 8 imagery. The PlanetScope constellation

can image the entire land surface every day with a capacity of collecting 150 mil-

lion km2 (Lemajic et al., 2018) and comprises around 200 satellite micro-satellites

(Doves) imaging at 3 m spatial resolution (Baloloy et al., 2018). The satellites

serve in two different orbits; the International Space Station (ISS) and the Sun

Synchronous Orbit (SSO). The SSO is typical to many earth-observing satellites

that set equator crossing time and acquire images only in descending orbit. The

1https://www.planet.com/
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ISS was used during the demonstration phase where PlanetScope CubeSats were

launched into an orbit with a 52-degree inclination at approximately 420 km alti-

tude (Kääb et al., 2019). PlanetScope data acquired from 2016 and in early 2017

were the result of this launch, but thereafter ground-based launches were used

to introduce near-polar sun-synchronous orbits. Coverage during this demonstra-

tion period (i.e., 2016 to 2017) was more sporadic and included gaps (Frazier and

Hemingway, 2021).

The SSO satellites cross the equator at 9:30-11:30, acquiring images of an area at

almost the same time in every revisit (Guyana Forestry Commission and others,

2011). The scenes were acquired in four spectral bands of Red, Green, Blue, and

Near-Infrared (NIR), and an Analytical Ortho Tile product (level (3A) was selected

as multiple orthorectified scenes merged in a single strip and provided sufficient

details (spatial resolution of 3 m) to validate results from medium resolution (30

m) of Landsat 8.

4.2 Environmental Data

Forest mapping and monitoring through remote sensing requires data processing

from images acquired by sensors on satellites and other platforms, to extract in-

formation about targets/features on the Earth’s surface or processes of interest at

a given time (Arenas-Castro et al., 2019). One of the significant advantages of

remote sensing is the ability to access, in some cases, an extensive open database

(e.g., for Landsat). This allows for the analysis of images obtained for different

points in time, which can be used to analyse changes in the surface (Giuliani et al.,

2020). Therefore, this study used a combination of data such as environmental
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variables that were applied during image pre-preprocessing (e.g., Digital Elevation

Model) and assessing forest types, habitat suitability, and subsequent future cli-

mate change impact. The environmental variables selected included those relating

to climate, terrain, and soil characteristics. The environmental variables were ac-

quired from the KITE dataset (AFRICLIM)2 (Platts et al., 2015). The Shuttle

Radar Topography Mission (SRTM) 1-arc second elevation data, were obtained

from USGS Earth Explorer. Soil characteristic variables were derived from World

Soil Information (ISRIC)3 (Hengl et al., 2015).

4.3 Field Data Collection using drones

The best period of discrimination in most of the forest cover areas in Tanzania

is during the dry season (late June to mid-October). The dry season indicates

a period of lower water availability that limit the growth of shrubs, herbaceous

plants, and grasses. It enables the separation of forests from other vegetation with

remotely sensed data. It is challenging to separate forests from other green under-

stories in the rainy season due to similarities in their spectral reflectance. There-

fore, field data were collected between September - October 2018 and 2019.

Field data collection is vital for accurately interpreting the results of the satellite

image analysis (Congalton and Green, 2019), through verification, evaluation, or to

assess the results of classified outputs. Field data can provide reliable data to guide

the analytical process, such as creating training samples to support classification.

Also, contribute information on real-time data modelling for the spectral response

2https://webfiles.york.ac.uk/KITE/AfriClim/ByCountry/Tanzania/
3https://www.isric.org
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of landscape features (Lillesand et al., 2004), including different forest types, tree

species, and land uses.

Two kinds of information were collected, including flying a drone at a height of

approximately 60 m and GPS records for the areas visited. The other informa-

tion recorded includes forest type, land use, land cover, and any associated forest

disturbances. The field samples for accuracy assessment were chosen to focus on

areas of the thematic map that were visually inspected and found to be less sep-

arated the pixels in terms of forest/non-forest and forest type. As a result, areas,

where different forest categories occur in mosaics with mixed pixels (e.g., open

and closed woodlands, lowland forests) or in close proximity to each other, were

considered (e.g., montane and upland tropical forests). Tanzania has a vast area

of forest categories (MNRT, 2015), and it was not possible to cover all places with

the limited time available in the field and with a drone flight time of about 25

minutes per flight.

4.4 Forest Inventory Data

The forest inventory data were acquired from the National Forest Resources Mon-

itoring and Assessment (NAFORMA) based on a total of about 32,660 plots col-

lected from May 2010 to June 2013, including about 19,382 plots covering forested

areas. The forest inventory included information on biophysical parameters (num-

ber of stems per ha, basal area per ha, volume per ha, biomass per ha, land use,

vegetation type, soil type, regeneration (number and species of seedlings), for-

est management, disturbances, species, and ownership. Plots consisted of 1, 5,

10, and 15 m radius concentric nested circular subplots, collected over a series of



CHAPTER 4. DATASETS AND SOFTWARE 105

study clusters – L-shaped transects, consisting of six to ten plots with 250 m spac-

ing between plots. The study clusters were distributed based on a double sampling

for the stratification approach (Tomppo et al., 2014). Forest inventory data are

usually collected on a much finer scale, which allows modelling the distribution of

tree species on a much finer scale and accuracy assessments. Therefore, the forest

inventory data were used for establishing the habitat suitability of forest types

in Tanzania and subsequent future climate change impact prediction (Chapter 6)

and accuracy assessment for forest types classification (Chapters 5 and 7).

The habitat suitability for the forest types was established using the dominant

tree species from the forest inventory data. These data contain information that

links forest-habitat relationships for different forest ecological sites. The species

were selected as proxy indicators of habitat types for different existing forest types

in Tanzania. The presence-only records were chosen based on abundance from the

plot measurements for each forest type. The selection included both percentage

frequency (occurrence) and abundance (proportional of individuals). This implies

that only the most frequent and abundant species from each forest type were

selected for establishing the habitat suitability of forest types in Tanzania.

The sampling design for the inventory data captures the forest condition under

all forest types. At every location, the L-shaped cluster was established with five

sampling plots for each arm located at 250 m distances from one another (both

arms of the L had equal length) (Figure 4.2). The sampling plot locations were

established using a held-hand global positioning system (GPS) and presented in a

local projection. The study clusters from the inventory were distributed based on

a double sampling for stratification (Tomppo et al., 2014).
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Figure 4.2: Cluster design for ground truth dataset collection. Sourced from Vesa
et al. (2010)

4.5 Free/Libre Open Source Software (FLOSS)

The FLOSS promotes collaboration and contributions from different parties in

software production and innovation processes in generating an innovative capa-

bility in software technology that offers mature, capable, and reliable software

to contribute to the creation of this infrastructure (Yildirim and Ansal, 2011).

FLOSS creates a unique opportunity for developing countries such as Tanzania,

to reduce reliance on commercial software and to create spatial data infrastruc-

tures (SDI) where resources for system development and maintenance are scarce

(Brovelli et al., 2017). FLOSS appears as a solution to the question of intellec-

tual property, which limits the application of remote sensing as neither copyright

nor patents can bring an acceptable balance between innovation incentives and

knowledge sharing (Zimmermann and Jullien, 2007). The introduction of FLOSS

induced a revolution in the field of remote sensing, supporting collaboration, with

practical knowledge and the exchange of ideas and information in a significant way
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(Kganyago and Mhangara, 2019; Ciolli et al., 2017).

Therefore, the application of FLOSS in geospatial data and analysis (Bunting

et al., 2014), aims at sustainability in the current and future forest monitoring for

supporting the development of early warning systems for forest change in Tanzania.

Hence, FLOSS gave a long-term solution to software costs (de Klerk and Buchanan,

2017) and was applied to this study.

4.5.1 Remote Sensing and GIS Software Library (RSGIS-

Lib)

The Remote Sensing and GIS Software Library (RSGISLib)4 (Bunting et al.,

2014) is a collection of tools for processing and analysing remote sensing and

GIS datasets. The tools are accessible through a Python binding with over 300

functions in a scriptable manner for data analysis and batch processing. RSGISLib

contains a comprehensive set of modules including; image calibration, classifica-

tion, image calculations, image filtering, image morphology, image registration,

image utilities, raster GIS, image segmentation, vector utilities, zonal statistics,

etc. RSGISLib can interact with other open-source software, for example, a com-

bination of RSGISLib and GDAL support vegetation index calculations derived

from Landsat 8 and Sentinel-2 images, including the Normalized Difference Veg-

etation Index (NDVI) and Normalized Difference Water band Index (NDWI) for

informing on the photosynthetic activity or water content of different vegetation

cover types.

The ability of RSGISLib to support extensive dataset analysis and large area cov-

4https://www.rsgislib.org
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erage were important aspects of this study with an extensive area coverage of about

945,100 km2. RSGISLib can be used on standard computers and High-performance

computing (HPC) with the ability to process data and execute intricate calcula-

tions at high speeds. The capability of RSGISLib has been applied to large-scale

mapping, including the global mangrove Mapping extent (Bunting et al., 2018),

Mapping mangrove extent and change with worldwide coverage (Thomas et al.,

2018). Therefore, the RSGISLib was deemed to be well-suited for this national-

scale study.

4.5.2 Python

Python5 is a high-level scripting language and flexible in processing and automa-

tion of processes with the ability to support various programming models, includ-

ing object-oriented, functional programming, and procedural styles making clear

and understandable syntax. Therefore, it has an extensive standard library, fully

utilised in bindings of RSGISLib (Bunting et al., 2014). This study employed

Python language from image acquisition through Google cloud services6 to pre-

processing and analysis of the final results.

4.5.3 Geospatial Data Abstraction Library (GDAL)

Geospatial Data Abstraction Library (GDAL7) provides a library for reading and

writing raster and vector geospatial data formats. It also supports access to user

and geographic metadata information. GDAL also provides a set of tools that

5https://www.python.org
6https://cloud.google.com/storage/docs/public-datasets
7https://gdal.org
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are valuable to access information from the header file (e.g., satellite image) with

useful command-line utilities for data translation and processing (Clewley et al.,

2014; Zhao et al., 2011). It provides functions to open raster files and retrieve

their meta-data as well as their image data; supports building image pyramids,

statistics, and an attribute raster attribute table (RAT) (Clewley et al., 2014) and

reading and converting HDF5 image file format into standard GIS format (Bunting

and Gillingham, 2013; Zhao et al., 2011).

4.5.4 Scikit-learn

The Scikit-learn8 is an open-source, popular machine-learning library available

from within Python (Pedregosa et al., 2011). It offers dozens of built-in machine

learning algorithms and models that support supervised, and unsupervised learn-

ing and various tools for model fitting, data preprocessing, model selection, and

evaluation (Garreta and Moncecchi, 2013). The library is built upon the Scientific

Python set of libraries (Table 4.2).

Table 4.2: Some examples of Scikit-learn Libraries

Library Application
NumPy For base n-dimensional array package

SciPy For scientific computing

Matplotlib For 2D/3D plotting
IPython For an enhanced interactive console
Sympy For symbolic mathematics symbols
Pandas For data structures and analysis

Scikit-learn provides implementations for many popular machine learning classi-

8https://scikit-learn.org/stable/
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fication algorithms such as Support Vector Machines, Neural Networks, Random

Forests, K-Nearest Neighbors, Decision Trees, K-Means, and Principal Component

Analysis. Therefore, many of the machine learning classifications implemented in

this study use the Scikit-learn module alongside RSGISLib for applying the model

to the image data.

4.5.5 Extreme Gradient Boosting (XGBoost)

Selection of a classification model is a critical stage that intends to optimise clas-

sification by minimising error and improving classification accuracy, processing

time, and managing large dataset (Britto Jr et al., 2014). XGBoost, is a novel

machine learning algorithm, as a decision tree-based ensemble technique for struc-

tured or tabular data (Li et al., 2020). XGBoost is a flexible and highly scalable

tree structure enhancement model that can handle sparse data, greatly improve

algorithm speed, reduce computational memory in very large-scale data training,

and can reduce the degree of model overfitting (Chen and Guestrin, 2016; Li et al.,

2019).

4.5.5.1 Why XGBoost was selected

XGBoost was selected over other algorithms because of the following attributes:-

System Optimization

i. Parallelization: XGBoost algorithm uses successive tree building in a paral-

lelized application. It is made possible because of the exchangeable nature of

loops used for building base learners; the outer loop computes the leaf nodes of

a tree and the second inner loop calculates the features. Therefore, to improve
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run time, the order of loops is interchanged utilising initialization through a

global scan of all instances and sorting using parallel threads. This switch

improves algorithmic performance by offsetting any parallelization overheads

in computation.

ii. Tree Pruning: XGBoost uses the ‘max depth’ parameter and starts pruning

trees backward. This ‘depth-first’ approach improves computational perfor-

mance significantly.

iii. Hardware Optimization: The algorithm has been designed to make efficient

use of hardware resources. This is accomplished by cache allocating internal

buffers in each thread to store gradient statistics. Further enhancements such

as ‘out-of-core’ computing optimize available disk space while handling big

data frames that do not fit into memory (Chen et al., 2019).

Algorithmic Enhancements

i. Regularization: It penalizes more complex models through regularization to

prevent overfitting.

ii. Sparsity Awareness: XGBoost naturally admits sparse features for inputs by

automatically ‘learning’ the best missing value depending on training loss and

handles different types of sparsity patterns in the data more efficiently.

iii. Weighted Quantile Sketch: XGBoost employs the distributed weighted Quan-

tile Sketch algorithm to effectively find the optimal split points among weighted

datasets.

iv. Cross-validation: The algorithm comes with a built-in cross-validation method

at each iteration, taking away the need to explicitly program this search and
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to specify the exact number of boosting iterations required in a single run

(Hanif, 2019).

Therefore, XGBoost is gaining popularity in data mining and is increasingly utilised

by data scientists and has provided leading-edge outcomes in different fields, no-

tably the financial area, such as business forecast risk assessment (Carmona et al.,

2019), crops mapping (Ustuner and Balik Sanli, 2019), physical activity classifica-

tion in health monitoring (Rahman et al., 2020), but remains relatively not fully

utilised in forestry (Li et al., 2019). In this study, XGBoost was implemented

in the python interface (Brownlee, 2018) for both forest baseline classification for

forest/non-forest, forest types classification, and forest change analysis to support

forest monitoring in Tanzania.

4.5.6 TuiView

TuiView9 is an open-source viewer for remote sensing data initially designed to

view raster data and support display vector data (Clewley et al., 2014). Python

is the scripting language used in TuiView through the PyQt library for the GUI

elements and GDAL to view images. It contains much functionality for viewing

and manipulating Raster Attribute Tables (RAT), required in the object-based

classification within RSGISLib and capable of handling extensive datasets and

generating overviews (Clewley et al., 2014). TuiView also allows querying and

plotting of raster values and display of raster attribute tables and highlighting

rows for queried pixels and creating new attribute table columns and updating

of columns (Bunting, 2017). In this study, TuiView supported the prompt and

9http://tuiview.org/
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efficient visualisation of large files and executed simple queries.

4.5.7 Quantum GIS (QGIS)

Quantum GIS (QGIS) is an Open Source Geographic Information System that

is released under the GNU Public License (GPL) (Sherman et al., 2004). QGIS

integrates with Python scripting language in the automation of GIS tasks. Since

its inception in 2002, several versions of QGIS exist free for download. Therefore,

the software provides useful GIS tools in spatial analysis, geoprocessing, geometry,

and data management tasks. QGIS also links (expendable) to support various

formats such as basic ESRI shapefiles and image formats like KEA (Bunting and

Gillingham, 2013) also able to link with Web Map Service (WMS) andWeb Feature

Service (WFS). The tasks implemented through QGIS for this study included data

creation (vector data), editing, and map composition.

4.5.8 KEA file format

The KEA is an image file format that supports the full implementation of the

GDAL data model within an HDF5 file. The file format was accessed through a

software library libKEA and GDAL. The format has comparable performance to

existing formats and can help compress large raster files into small sizes using zlib

without losing image information (Bunting and Gillingham, 2013). The KEA file

format enabled the compression of large remotely sensed datasets for this study

for both storage and analysis.
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4.5.9 Raster Input and Output (I/O) simplification (RIOS)

The Raster Input and Output (I/O) simplification (RIOS10) is an assemblage

of python modules that make it easy to write raster processing code in Python

(Gillingham and Flood, 2013). Raster data comes in many file formats with some of

them, even multilayer files. Managing large datasets that exceed the capacity of the

main memory is often the bottleneck in the computation. Therefore, RIOS reads an

image into memory in a block and converts it from one format to another, and saves

newly created objects, types, and amounts of stored information (e.g., object size,

range of values). It handles the opening of the existing image and creating the new

image and checking the alignment of projections, raster grid, stepping through the

raster in small blocks, and reading and writing Raster Attribute Tables (Clewley

et al., 2014; Bunting, 2017). RIOS supported the analysis of large datasets for this

study in small blocks without hindering computational memory.

4.5.10 Atmospheric and Radiometric Correction of Satel-

lite Imagery (ARCSI) software

Utilising optical imagery requires specialised algorithms and dedicated tools, es-

pecially for the analysis of large datasets. Pre-processing is an indispensable step

for producing analysis-ready data (ARD) products. ARCSI11 aims to address

pre-processing challenges by providing an automatic architecture for retrieving

the atmospheric correction parameters to generate ARD data (Bunting et al.,

2018).

10http://www.rioshome.org
11https://arcsi.remotesensing.info



CHAPTER 4. DATASETS AND SOFTWARE 115

The analysis’s main task is to employ an atmospheric correction for using the 6S

radiative transfer model (Vermote et al., 1997), accessed through the python in-

terface Py6S (Wilson, 2013). The software provides a fully automated processing

chain for the pre-processing optical imagery to generate surface reflectance and to-

pographically correct imagery, enhancing replicability and ensuring output unifor-

mity (Bunting, 2017). Therefore, this study employed ARCSI software to generate

ARD data from the Landsat 8 imagery for this national forest study (Figure 4.3),

including an implementation of the cloud masking algorithm FMASK (Zhu et al.,

2015; Zhu and Woodcock, 2012).

PlanetScope images were acquired in the standard Analytic Product (Radiance)

and processed to top-of-atmosphere reflectance and then atmospherically corrected

to bottom-of-atmosphere reflectance. This ensures consistency across localized

atmospheric conditions, minimizing uncertainty in spectral response over space

and time (Tu et al., 2022).

Figure 4.3: Image acquisition and pre-processing workflow
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4.5.11 Earth Observation Data Downloader (EODataD-

own)

Acquisition of EO data at a national level for a country such as Tanzania requires

automation of the data download and analysis. This is particularly important

when considering the creation of a forest monitoring system where data will need

downloading on a regular basis. For this study, the EODataDown12 open-source

tool was used. EODataDown can automatically download and process EO data

to an analysis-ready data product (Bunting, 2018). It can be applied for batch

downloading Landsat 8 for forest mapping and monitoring in Tanzania. One of the

key advantages of this tool is that it allows user-defined plugins to be constructed

for data analysis (e.g., change detection), allowing a full workflow to be automated.

The software is written as a Python module and is built on top of a PostgreSQL

database with dependencies on RSGISLib and ARCSI.

The PostgreSQL database keeps track of the images acquired for the study and

their processing stage, i.e., processed to ARD and application of plugins for the

change analysis. ARSCI provides the processing chain for the optical ARD genera-

tion where outputs include: FMask cloud masks, valid masks, topographic shadow,

footprint vector, view angle, and finally standardised surface reflectance, which

corrects for solar and local geometry (i.e., Bidirectional Reflection Distribution

Function (BRDF) and topographic correction).

12https://eodatadown.remotesensing.info/
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4.5.12 High-Performance Computing (HPC)

Establishing a National Forest Monitoring System (NFMS) requires a large volume

of EO data to be processed and, therefore, a large amount of computational power

and storage that exceed conventional processing from desktop computers (Kalluri

et al., 2000). Therefore, HPC has emerged as a promising solution to process

efficiently large datasets and generate ARD for forest classification and change

analysis for scientific understanding over a large geographical area (e.g., Bunting

et al., 2018, 2022).

This study implemented the acquisition and analysis of remotely sensed (Landsat

8) data for Tanzania through Super Computing Wales (SCW)13, with high-speed

memory and storage. Hence, this was achieved by utilising the RSGISLib re-

mote sensing data processing algorithm (Bunting et al., 2014) through a massively

parallel multi-processor from the SCW platform to expedite generating of forest

information for Tanzania. The SCW environment’s utilisation focused on improv-

ing the processing time and computational load. Typically, around 100 cores were

used at each processing stage.

Therefore, the forest baseline for forest/non-forest, forest types classification, and

forest change analysis for Tanzania was developed using multispectral data from

the Landsat 8 Operational Land Imager (OLI) images (2013 to 2018) for May

to November with cloud cover threshold of > 80%. A total of 3200 Landsat 8

OLI images were downloaded using the Google Cloud API and deployed on the

SuperComputing Wales (SCW) high-performance computing (HPC) infrastruc-

ture.

13https://www.supercomputing.wales/



Chapter 5

Preliminary Study and

Methodology Piloting

5.1 Introduction

This study aims to provide a national-level forest monitoring system for Tanzania

(approximately 945,100 km2). However, this chapter focuses on developing and

experimenting with methods for a smaller spatial area, the Rufiji basin. This al-

lowed for an understanding of data volume and constraints associated with storage

and processing time. Similarly, data acquisition limitations could be understood,

such as cloud cover, and limited data availability. Therefore, this chapter aims

to generate forest extent and forest type maps for 2017, using Landsat 8 for the

Rufiji basin in Tanzania. Specifically, this chapter:

i. Examines seasonality separability between different vegetation types based on

vegetation indices (VI)

118
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ii. Explore algorithms for clouds and shadow detection on optical data

iii. Generate image composites based on maximum NDVI

iv. Use the resulting imagery composites (iii) for Forest and Non-forest classifi-

cation. The classification of forest/non-forest and further into forest types; is

based on the existing forest definition, with an area larger than 0.5 ha and

forest cover over 10%. The classification of forest/non-forest and further into

forest types; is based on the existing forest definition, with an area larger than

0.5 ha and forest cover over 10%. Landsat 8 data for 2017 was used together

within a machine learning (Extremely Randomised Tree classifier (ERT). The

classification accuracy was checked using NFI data.

v. Use the image composites and the forest map to create a forest types classifi-

cation

Therefore, the findings will provide a roadmap for expanding to the country

level.

5.2 Study site: Rufiji Basin

The Rufiji River Basin is the largest in East Africa, located between Longitudes

330 55’ E and 390 25’ E and between Latitudes 50 35’ S and 100 45’ S (Figure 5.1).

The elevation rises from 0 meters in the Indian Ocean to nearly 3000 meters in the

Mbeya region. It covers about 183,791 km2 representing approximately 20% of the

Tanzania land surface (Olson et al., 2015). The Rufiji River Basin varies greatly

in climate from tropical humid in the east to temperate in the Southern Highlands

and hydrological conditions, with a humid temperature of about 230C and a hot



CHAPTER 5. PRELIMINARY STUDY ANDMETHODOLOGY PILOTING120

climate of about 390C at the coast. The basin is divided into four sub-basins which

are Great Ruaha (46.5%), Kilombero (21.9%), Luwegu (13.8%), and Lower Rufiji

(17.7%).

The Rufiji basin’s climate varies with a hot and dry climate in the north-western

part. The mountainous regions experience a humid and cold climate, except for

the lower parts, which experience two rainy seasons, the most significant portion of

the basin characterised by unimodal rainfall. Rainfall is high along the mountain

chain in the western Kilombero valley. The annual rainfall in Kilombero ranges

from 1,000 mm to 1,800 mm, with a yearly average of about 1,400 mm. Rain

decreases towards the middle of the Great Ruaha sub-basin, where annual rainfall

ranges from 400 mm to 1,200 mm with an average of about 800 mm. High rainfall

is also experienced around the Mahenge Hills in Morogoro region. The rain in the

Luwegu sub-basin is estimated to range between 800 mm and 1,400 mm annually,

with an average of 1,100 mm. Rainfall is also temporally uneven, with the majority

falling from November to May and the remainder of the year receiving very little

rain.

The variation in climatic conditions has characterised different forest types, with

woodlands covering about 22,900 km2 of the total area, and almost 4,480km2 con-

sisting of 92 protected forest reserves. Mangroves at the Rufiji river delta, which

is the largest in the country, make a unique type of vegetation in the basin to

protect the coastline and support various organisms. Different types of forests and

a high level of the human population of more than 16% of the Tanzania popu-

lation with diverse activities (agriculture, fisheries, tourism, mineral exploration,

hydropower generation over 60%) cause high demand for land resources within the

basin (Mwalyosi, 1990).
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Figure 5.1: Rufiji Basin - preliminary study area. Created with Natural Earth
data

5.2.1 Why Rufiji Basin?

The Rufiji Basin represents most of the climatic zones within Tanzania, includ-

ing the hot-humid coastal plain, the semi-arid zone of the central plateau, and

the temperate highland areas that support various vegetation types. The vegeta-

tion’s seasonal behavior is strongly reflected in the phenological changes necessary

for investigating the separation of forests from shrubs using remote sensing data.

Similarly, the different climatic conditions support habitats for a wide range of
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both plants and animals. It includes most of the ecosystems and land cover found

across Tanzania, such as forests, woodlands, pastures, and agricultural and urban.

Therefore, the basin preserves its unique natural heritage, which supports various

development projects and human activities. Despite its national and international

significance, the Rufiji Basin has received few scientific investigations on the states

and dynamics of forests and their provision of resources.

The forests, woodlands, and wetlands in the Rufiji Basin have come under in-

creasing pressure with numerous unsustainable off-take exploitation rates. These

include the conversion of forests and woodland for dryland agriculture and cash

crops, even the destruction of mangrove forests for agriculture, and over-harvesting

of its woody biomass for other purposes (e.g., firewood) (Ochieng, 2002).

Therefore, as the population continues to increase in the Rufiji Basin, forest lands

are anticipated to be involved in the conversion to other land uses. The conversion

of land will likely include forested areas. Given this context, forest cover maps

are required to assess the available forest resources and support national policies’

formation and policing (Olson et al., 2015).

5.3 Methods

5.3.1 Image Acquisition and Pre-processing

A collection of multispectral Landsat 8 Operational Land Imager (OLI) images

were downloaded from the T1 archives through the Google cloud1 using an auto-

mated downloading process in the ARCSI command line. The downloaded USGS

1https://cloud.google.com/storage/docs/public-datasets/landsat
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Collection 1 images are orthorectified, map-projected (UTM WGS84) images con-

taining radiometrically calibrated data. The images were acquired in the year

2017±1 with a cloud cover threshold of < 70%.

5.3.2 Image Pre-processing

The application of optical imagery requires appropriate pre-processing to derive

surface reflectance (pSUR). Pre-processing to surface reflectance was undertaken

using the ARCSI software, which uses a dark object subtraction in the visible

bands to retrieve Aerosol Option Depth (AOD) (Bunting, 2017) from the image

and then parameterises the 6S radiative transfer model (Vermote et al., 1997) and

applies the resulting correction to the image data (Bunting et al., 2018). Both a bi-

directionally corrected surface reflectance and horizontal surface for the observed

top of atmosphere radiance were estimated using the 6S model (Flood et al., 2013).

The Function of Mask (FMask) algorithm, available in the ARCSI software was

applied for clouds and cloud shadows detection in the Landsat imagery (Zhu et al.,

2015; Zhu and Woodcock, 2012) (Figure 5.2). Therefore, for each image valid

area, cloud and shadow masks are produced alongside the standardised surface

reflectance, which includes the topographic term into the bidirectional reflection

distribution function (BRDF) correction as outlined by Shepherd and Dymond

(2003).

Topographic correction is important, particularly for the mountainous areas, such

as the Eastern Arc Mountains, Mbeya, and Poroto Mountains due to variations in

sun and sensor view angles. Despite the fact that Landsat can point its sensors off-

nadir at ±7.50 viewing angle, the correction improves the elimination of the effect
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of shadows and relief, especially in steep slope areas (Li et al., 2014). Without

topographic correction, it could influence the forest classification results as the

surface reflectance is different with varying solar elevation and azimuth, slope,

and aspect with respect to the location of individual trees and tree clusters (Huang

et al., 2008).

Figure 5.2: Image preprocessing. A Subset of Landsat 8 image p166r66 acquired on
13/08/2017 (dry season) (a) original image with clouds and shadows (b) showing
clouds and shadows detected using the Fmask algorithm in the ARCSI software
(c) final composite image

5.3.3 Forest Baseline Classification

The classification was achieved using the hierarchical approach, first delineating

the forest/non-forest extent and then classifying it into forest types. The forest

type definitions were based on the existing forest definition in Tanzania. The
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non-forest class includes all classes related to bushland, grassland, cultivated land,

settlement, bare land, rock outcrops, barren coastal lands, and ice cap/snow. The

classification process followed the methodology of Clewley et al. (2014) and in-

cluded: image segmentation, populating the raster attribute table (RAT) with

reflectance values, populating the RAT with training, running a machine learning-

based classification, and finally, accuracy and post-classification assessment (Fig-

ure 5.3).

Figure 5.3: Composite image classification and accuracy assessment workflow

5.3.4 Image Segmentation

The segmentation process (Figure 5.4) assigns the image into discrete clumps of

pixels and is implemented within RSGISLib software (Shepherd et al., 2019). The

separation was based on spectral similarities in colour (Clewley et al., 2014). A

K-means clustering was then used to initialise the segmentation creating groups

of similar pixels (Witten et al., 2016). An advantage of K-means is that it reduces

computation time as the image is classified block-by-block (mini-batches) and re-
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duces memory error, especially when working with a large raster (Sculley, 2010).

Similarly, it allows the use of a small amount of training data for each iteration,

which significantly reduces training time (Mai and Park, 2016). Therefore, the

pixels of the segments were predicted to carry the same information class.

Figure 5.4: An example of the image segmentation process. The image is part of
the Kilombero and Udzungwa mountain

The resulting output from the K-Means step was then iteratively eliminated, first

removing isolated pixels and then segments of 2 pixels and so on in one-pixel in-
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crements until the user-defined minimum segment size was met (6 pixels). For this

study, the minimum mapping unit (MMU) was 0.5 ha (approx. six pixels) as per

forest definition in Tanzania. The eliminated segments are merged based on their

colour (closest in Euclidean distance) to their neighboring larger segments.

5.3.5 Populate Raster Attribute Table (RAT)

The Raster Attribute Table (RAT) can be populated with statistics such as the

minimum, maximum, mean, and standard deviation (Figure 5.4) of each band’s

reflectance for each segment. These features are then used to classify each seg-

ment. The use of a RAT requires the use of the KEA file format (Bunting and

Gillingham, 2013; Clewley et al., 2014). This analysis was performed using RS-

GISLib (Bunting et al., 2014). For this study, just the mean reflectance for each

band was populated.

5.3.6 Create Training Samples

An adequate number of representative training samples are a prerequisite for suc-

cessful classification (Lu and Weng, 2007). For this study, the training samples

were generated by interpreting the Landsat 8 image composite and local expert

knowledge. Polygons were drawn using QGIS to define the training samples for

each forest and non-forest type. Expert knowledge of existing vegetation types in

Tanzania was the key to generating the training samples, which were informed by

field knowledge and reference to higher spatial resolution imagery (e.g., Google

Earth) due to the complexity and heterogeneity of the study area landscape.

Higher-resolution Google Earth imagery was particularly useful to identify where
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mixed pixels occurred.

5.3.7 Populate the RAT with Training

RSGISLib provides functions to assign training data, in the form of vector files

(e.g., shapefiles), to the RAT. It rasterises the training data and populates the

segments with the mode of the rasterised training polygons. It updates the table

with information about the classes based on the training dataset.

5.3.8 Apply a Classifier

The choice of a classifier for image classification depends on accuracy, reproducibil-

ity, robustness, ability to utilise data information, uniform applicability, and ob-

jectiveness (Cihlar et al., 1998). Due to different environmental conditions and

datasets used, no one classifier can satisfy all these requirements across all datasets

(Lu and Weng, 2007). The classification process was implemented using machine

learning classifiers which form more advanced statistically supervised classifiers.

Ensemble classifiers have gained more considerable application in pattern recogni-

tion and machine learning because of their superiority to single classifiers in terms

of classification performance. Therefore, an Extremely Randomised Tree classifier

(ERT) from the scikit-learn library was applied for this study.

ERT was selected for this study because it reduces bias in terms of sampling from

the entire dataset during the construction of the trees. Different subsets of the

data may introduce different biases in the results obtained and it prevents this by

sampling the entire dataset (Marée et al., 2013). ERT reduces variance due to the
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randomized splitting of nodes within the decision trees. Hence, the algorithm is

not heavily influenced by certain features or patterns in the dataset. This makes

ERT faster during classification since node splits are random and independent

from the output values of the learning sample (Geurts et al., 2006).

5.3.8.1 Extremely Randomized Tree Classifier (ERT)

Since the ERT is an ensemble technique implemented for both supervised classi-

fication and regression where the randomisation process is robust as the choice of

attributes and cut-points are responsible for a large proportion of variance while

splitting a tree node (Geurts et al., 2006). The selection of this classifier is based

on building randomised trees whose structures are independent of the outputs from

the training samples. It enhanced computational efficiency and provide variance

analysis in terms of geometric and kernel characterisation of the model. There-

fore, the predictive accuracy and control of over-fitting are improved (Manaf et al.,

2018).

During training, the ERT will construct trees over every observation in the dataset

but with different subsets of features (i.e., it does not resample observations when

building a tree). It essentially consists of randomizing strongly both attribute

and cut-point choice while splitting a tree node. In the extreme case, it builds

randomized trees whose structures are independent of the output values of the

learning sample. The strength of the randomization can be tuned to the problem

by the appropriate choice of a parameter (Marée et al., 2013).

ERT has been applied in different fields and found to be effective in high-dimensional

classification problems such as biomedical imaging (Marée et al., 2007), forest cover
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assessment and estimation (Devaney et al., 2015) and stream waters classification

(Hannan and Anmala, 2021). Therefore, the ERT algorithm provides an effec-

tive, efficient, and free approach for information extraction on forest extent and

mapping at the Rufiji delta.

5.3.9 Post-Classification

The post-classification correction was done as a quality check for the initial classi-

fication result by visual comparison with the raw images and high resolution from

Google Earth to ensure a reliable forest map. In inadequately classified areas,

additional training samples were collected and the classification was re-run until

the classification was considered of sufficient quality to move ahead.

5.3.10 Forest Type Classification

Precise forest-type mapping is essential when evaluating forest ecological sys-

tems for environmental management practices. The process focused on classifying

forested areas into more detailed forest types, consisting of seven dominant forest

types according to the actual distribution in the study area. These included mon-

tane, lowland, mangrove, plantation forest, closed woodland, open woodland, and

thicket. Therefore, using the same methodology as the forest / non-forest classifi-

cation (Figure 5.3) and within the forest classification, a forest-type classification

was undertaken for the Rufiji basin.
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5.3.11 Accuracy Assessment

The reference data for forest types were obtained from the NFI collected between

2014 - 2018 (Figure 5.5). Since the field points have different timing except for

2018, with the baseline opted for the year 2017, it was necessary to check against

high-resolution images (3 m) from PlanetLabs data (Planet Team, 2017), Google

Earth, and a sample field survey for 2018 - 2019 using drone capture. The points

found not to represent the current status were eliminated from the assessment.

According to Congalton (1991), factors to consider during the accuracy assessment

process include error sources, sampling design, such as sample scheme, the number

of samples, and sample unit (ground data collection and sample size).

Figure 5.5: Reference data for the forest types distribution from the NFI at the
Rufiji Basin.
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5.3.11.1 Accuracy Assessment Sampling Unit

The sampling unit predicts the spatial location on the classified map and spatial

location on the ground and forms the fundamental unit for the accuracy assessment

process. Areal (such as pixels, polygon, or fixed-area plots) and point sampling

units are applied in the accuracy assessment (Stehman and Czaplewski, 1998).

The accuracy assessment was done using a point sampling unit used from the NFI

in Tanzania (National Forest Resources Monitoring and Assessment (NAFORMA)

(MNRT, 2015).

5.3.11.2 Map Accuracy Estimates

Forest/non-forest accuracy metrics: The accuracy assessment for the forest/non-

forest binary classification was presented using five accuracy metrics: overall ac-

curacy, producer accuracy, user accuracy, F1-score, and Matthews Correlation

Coefficient (MCC). The overall classification accuracy represents the percentage

of pixels classified correctly in the validation dataset (Congalton and Green, 2019).

Producers’ accuracy estimates the omission error for a particular class and presents

the probability that a reference site has been correctly classified. Users’ accuracy

is used to determine the commission error and shows the probability that a pixel

classified on the image means the same class on the ground. F1-score allows a

better evaluation of the forest cover class-wise correctness and merges producer’s

and user’s accuracy into a combined measure (Deus, 2018).

According to Schuster et al. (2012), the F1-score index depicts the harmonic mean

among precision (p) and recall (r) for each class i equation (5.1). The score ranges

between 0 and 1, whereby 0 means the worst results, and 1 is the most reliable.
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Though F1-score is well known chosen accuracy metric in binary classification, it

can severely exaggerate and inflate results, particularly on asymmetrical datasets

(Chicco and Jurman, 2020). Therefore, further accuracy measure was done by

using the MCC, which overcome the class imbalance issue. It ranges between −1

and +1, with extreme values −1 and +1 obtained when perfect misclassification

and perfect classification, respectively, and 0 indicates the classification result

was uncorrelated with the ground truth data (Boughorbel et al., 2017). MCC

is explained in terms of True Positive (TP), True Negative (TN), False Positive

(FP), and False Negative (FN) equation (5.2).

(F1)i =
2piri

(pi + ri)′
= 2×

users accuracy × producers accuracy

users accuracy + producers accuracy
(5.1)

MCC =
(TP × TN)− (FP × FN)

√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(5.2)

Forest types accuracy metrics: The accuracy assessment was conducted based

on (Olofsson et al., 2014, 2013). This approach was found useful for reducing the

uncertainty of the classification results. Three stages were implemented during the

accuracy assessment process. (i) estimate map accuracy based on the ground ref-

erence points, (ii) estimate area proportions adjusted for the map bias based on (i)

above, and (iii) estimate standard errors for the confidence interval for the error-

adjusted estimates from (ii). The map accuracy was presented in the form of an

error matrix, and the accuracy measures derived were users, producers, overall ac-

curacy equations (5.3)–(5.5), allocation disagreement, and quantity disagreement
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(Pontius Jr and Millones, 2011).

Ui =
pii
pi

(5.3)

Pj =
pjj
pj

(5.4)

O =
q

∑

j=1

pjj (5.5)

Where Ui represents users accuracy, Pi denotes producer accuracy, and O denotes

overall accuracy, subscript i represents the map class (rows), and the subscript

represents the reference class (columns) in the error matrix table.

Since the accuracy measurements are based on sample estimates and hence subject

to uncertainty (Olofsson et al., 2013), it is necessary to derive the confidence

intervals (range of values) for all three accuracy measures. According to Olofsson

et al. (2014), the variance estimators for each accuracy measure were obtained

using the equations (5.6)–(5.8). The overall accuracy was evaluated based on the

point counts while also weighted by each class area. It was useful for assessing the

contribution of each class to the overall accuracy assessment.

(i) Overall accuracy

V̂ (Ô) =
q

∑

i=1

W 2
i Ûi(1− Ûi)|ni − 1) (5.6)

(ii) User’s accuracy of map class i

V̂ (Ûi) =
Ûi(1− Ûi)

ni − 1
(5.7)
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(iii) Producer’s accuracy of reference class j=k

V̂ (P̂j) =
1

N̂2
.j

[

N̂2
j.(1− P̂j)

2Ûj(1− Ûj)|nj − 1+ P̂ 2
j

q
∑

i≠j

N̂2
ijnij|ni.(1−nij|ni.|ni.− 1)

]

(5.8)

Where N̂.j =
∑q

i=1
Ni.

ni.
nij represents the measured marginal total number of pixels

of reference class j, Nj. is the marginal total of map class j, and nj is the total

number of sample units in map class j.

5.4 Results

5.4.1 Vegetation Phenological Separability

Seasonality has the most significant impact on the quality of the classification

results as the phenological state, which defines the separation of different vegeta-

tion types, for example, deciduous trees from evergreen trees or shrubs and grasses.

Selecting pixels with the highest NDVI values from the dry season (June to Novem-

ber) enabled the separation of the forest classes from the non-forest land covers.

The NDVI values were extracted from the images (June to November) and used to

identify the optimal time of the year (August to October) for separating grasses,

bushes, and other non-vegetation from the main forest classes (Figure 5.6).
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Figure 5.6: A seasonal pattern vegetation separability based on the NDVI. A red
box for g and h indicates the lowest NDVI for bushland and grassland from August
to October, which supports separation from the forests
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5.4.2 Final Image Composite

The FMASK algorithm adequately detected clouds and their shadows (Figure 5.2)

from Landsat 8 images to automatically generate a composite image for the Rufiji

Basin. The final output images were generated as standardised reflectance and

expressed as a standard set of azimuth and zenith angles for the sun and satellite. It

hence eliminates the further disparity between illumination and viewing geometry

between acquisitions of the image. Only pixels with maximum NDVI values for

different vegetation covers were used to produce the composite output image. A

total of 72 Landsat 8 images were used to generate the final composite for the

Rufiji Basin (Figure 5.7).

Figure 5.7: Final mosaic composite of Landsat 8 image over the Rufiji Basin
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5.4.3 Forest/Non-forest Classification

The forest/non-forest binary classification (Figure 5.8) was evaluated using 6,684

sample points, including 3,706 forest sample points and 2,978 non-forest sample

points. Classification accuracy measures for forest-based on sample units had

high certainty with the producer’s accuracy (PA), and user’s accuracy (UA) of

92.47% and 96.50%, respectively. The accuracy metrics show an overall accuracy

of 93%± 0.02, F1-score of 0.94, and MCC of 0.87 (Table 5.1).

Table 5.1: Classification accuracy measures for the baseline

Cover type UA (%) PA (%)
Forest 96.50± 0.00 92.47± 0.00
Non - forest 90.82± 0.01 95.69± 0.00
Overall accuracy 93.00± 0.02
F1-score 0.94
MCC 0.87

Figure 5.8: Forest/non-forest map of Rufiji Basin
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5.4.4 Forest Types Classification

From the forest extent in the basin, the forested area was classified into seven types

(Figure 5.9) and the mapped area (Table 5.3). Table 7.7 summarised the accuracy

metrics with an overall accuracy of 91%, with a low quantity disagreement of 0.019

and an allocation disagreement of 0.062 between classification and actual ground

points. It indicates a rational level of agreement with the reference field data

(Figure 5.10 and Figure 5.11).

Figure 5.9: Map showing areal proportional of forest types at Rufiji Basin
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Table 5.2: Classification accuracy measures

Forest type UA(%) PA(%)
Montane forest 89± 0.04 87± 0.04
Lowland forest 91± 0.03 75± 0.04
Mangrove forest 83± 0.12 91± 0.09
Closed woodland 73± 0.03 81± 0.02
Open woodland 92± 0.01 90± 0.01
Plantation forest 87± 0.05 78± 0.05
Thicket 72± 0.24 65± 0.08
Non - forest 97± 0.00 98± 0.00
Overall accuracy 91± 0.00
Allocation disagreement 0.062
Quantity disagreement 0.019
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Figure 5.10: An illustration of the detailed samples of classification result for the
forest types with a location of ground field photo at Rufiji Basin
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Figure 5.11: An illustration of the detailed sample of classification result for thicket
woodland at Rufiji Basin

Table 5.3: Map area for each forest class based on the classification result

Forest type Field point Map area (ha) Weight (%)
Montane forest 182 359,383.32 2.00
Lowland forest 206 484,058.88 2.70
Mangrove forest 37 35,678.34 0.20
Closed woodland 785 1904578.02 10.62
Open woodland 2,270 5,633,552.25 31.42
Plantation forest 149 173,927.34 0.97
Thicket 77 52,179 0.29
Non - forest 2978 9,288,447.12 51.80
Total 6,684 17,931,805.02 100.00

5.4.5 Main Causes of the Classification Errors

During the dry months of September to October, leafless deciduous vegetation

in the country’s arid areas was misclassified as bright or dark soil (non-forest)

(Figure 5.12). It was caused by the low near-infrared response and higher visible

reflectance bands compared to the evergreen vegetation and may reduce the forest

area. A visual examination of the sample points occurring on the edge of different
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forest types caused the omission error from one class or commission error.

Figure 5.12: Dry season images comparison. Illustrations of (i) Landsat 8 image
from a semi-arid area captured during the dry season of the year (August - Octo-
ber) with high soil reflectance depict less forest compared with high-resolution (ii)
PlanetScope scene (3 m spatial resolution) captured on 24/06/2019.

5.5 Discussion

5.5.1 Classification Performance

Persistent cloud cover often hinders tropical forest mapping and monitoring with

optical data. The proposed automated cloud and shadow detection using the

FMASK algorithm and NDVImax image composites have successfully allowed the

mapping of the forests within the Rufiji Basin. The overall accuracy for the
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forest/non-forest cover was 93%, with a F1 score of 0.94 and MCC of 0.87 (Table

5.1) with a similar overall accuracy of 91% for the classification of forest types

with a low quantity disagreement of 0.019 (Table 7.7). It indicates a rational level

of agreement with the reference data.

However, in comparing the MCC and F1-score in evaluating binary classification,

MCC reduced the accuracy by 7% compared to F1-score. Yet, MCC could be a

reliable measure of certainty for forest binary classification because its accounts

for the comparative of both positive components and the negative elements in the

dataset (true positives, false negatives, true negatives, and false positives) (Chicco

and Jurman, 2020).

5.5.2 Potential Forest Areas in the Basin

The maps shown in Figures 5.8 and 5.10, present the forested area in Rufiji Basin,

which was mapped as 8,643,358 ha for 2017. The major forested area found in the

eastern part of the basin comprises of the sub-basins of Kilombero, Luwengu, and

lower Rufiji (Figure 5.8). The classification results indicate that the woodland

class (open and closed woodland) constitutes 42.04% of the study area (Table

5.3). It is associated with an ecological niche, primarily associated with climate

and a diverse set of environmental conditions which may occur in a mosaic with

other forest types (Abdallah and Monela, 2007). As such, the availability of the

protected areas network in the basin enhances forest cover and could be important

in protecting the country’s remaining forests (Riggio et al., 2019; Pfeifer et al.,

2012; Brockington, 2007).
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5.5.3 Implications for Informing Conservation Planning

Rufiji Basin harbours the world-famous tropical montane rivers, descending from

the montane forests, including the Eastern Arc Mountains feeding major rivers,

floodplains, and ocean (Encalada et al., 2019). From the classification maps, the

extent of the forest in the Rufiji Basin is about 48.20% of the total area, and

montane forests occupy 2%, providing vital ecosystem services to the livelihood of

the area’s inhabitants.

Similarly, the construction of immense hydropower at Stiegler’s Gorge in the Rufiji

Basin (Duvail et al., 2014) will depend on forest conservation in the catchment,

especially upland forests, to reduce siltation. However, also to the Selous Game

Reserve, is home to a wealth of flora and fauna for the long-term resource sus-

tainability base for the nation at large. Consequently, these forests’ management

demands that management decisions are based on the most reliable scientific infor-

mation possible. Therefore, it is proposed that similar information to that derived

here for the Rufiji Basin should be derived for the whole country of Tanzania as

an operational tool for monitoring forest mapping at wall-to-wall coverage.

Establishing a forest baseline extent provides a road map for the assessment of

forest cover change to be covered in the subsequent chapters. The output maps

developed can be applied to assessing the deforestation in the country and pre-

dicting the location and future deforestation rates. It will inform the design of

government policy and provide a baseline for examining forest conservation pro-

grammes such as REDD+. Similarly, it can also be used to analyse protected area

management effectiveness.



CHAPTER 5. PRELIMINARY STUDY ANDMETHODOLOGY PILOTING146

5.5.4 Limitations

Although a high level of accuracy was attained for both binary forest/non-forest

and forest type classification, there were errors in the classification results due to

season variability (Figure 5.12). For example, this study’s images were sourced

from the dry period, and Rufiji Basin consists of different climatic zones influ-

encing both forests and woodlands. Therefore, the selection of images should be

considered differently among climatic zones. For instance, images from semi-arid

areas (Figure 5.12) should be selected around June - July (Table 4.1) before the

complete shedding of leaves to reduce high soil reflectance and minimise forest

areas’ underestimation.

5.5.5 Direction for National Forest Mapping and Monitor-

ing

5.5.5.1 Image Composite and Individual Scene Classification

The image mosaic composite has the advantage of reducing data volume and there-

fore processing time for the classification process with small area coverage. How-

ever, in some cases, this also reduces the variability between the classes which are

present within individual scenes. Moreover, creating just a single output image

means that any errors within that composite (e.g., missed clouds or cloud shadows)

directly result in errors in the final classification. Therefore, it is proposed that

an individual scene-based approach is considered where the scenes are classified

independently, and the resulting classification is merged or composited rather than

compositing the reflectance data.
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5.5.5.2 Image Segmentation versus Pixel-Based Classification

Within the literature, the number of studies making use of segmentation-based

approaches versus pixel-based approaches is mixed with no clear consensus as to

the optimal solution. Segmentation-based approaches in effect compress the image

data, therefore, resulting in fewer classification decisions. However, the segmenta-

tion has also predefined the class boundaries between classes, and without clearly

defined and spectrally distinct boundaries can result in classification error. For

example, the boundary definition between open and closed woodlands was poorly

defined by the segmentation. Additionally, classes with a small geographic extent

(e.g., mangroves or montane forests) within the area to be classified might only

result in a small number of segments available to train a classifier and due to the

need to balance the number of training samples between the classes provided to the

classifier can result in an overall reduction in the classifier performance. Therefore,

a pixel-based approach rather than a segmentation-based approach might also be

considered when producing the national map.

5.5.5.3 Choice of Classifier

The Extremely Randomized Tree Classifier was used, and it achieved high-quality

results across the basin for both the forest/non-forest and forest-type classifica-

tions. However, the classifier is limited in the amount and variability of the training

data which can be provided and used by the classifier. Alternative approaches,

such as the XGBoost classifier, can use much larger training datasets. Larger

training datasets could easily be generated if the analysis was performed on an

individual scene basis using a per-pixel-based approach.
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5.5.5.4 Forest Habitat Suitability Analysis

For the forest type classification, reducing the number of classes the classifier is

comparing to make a decision will result in an increase in classification accuracy

and avoid extreme errors such as mangroves being classified on top of a mountain,

for example. The forest types in Tanzania have defined ecological niches. Iden-

tifying and mapping those niches could significantly improve the resulting forest

types classification when scaled nationally.

Establishing the areas which are potentially suitable habitats for the different

forest types is also useful for biodiversity conservation, policy-making, and climate

change mitigation (Bonan, 2008; Gibbs et al., 2010). Forest habitat suitability

models are increasingly used as planning tools for highlighting potential forest

conservation areas. It is, therefore, useful to complement remote sensing data on

forest mapping and monitoring with information about suitable forest habitats.

For example, forest restoration efforts (Seidl et al., 2017; Tobón et al., 2017) will

require habitat suitability models considering the requirement of forest species

across the landscape in the context of current and future climates.

5.6 Conclusions

The method described in this study presents an initial technique for generating

forest / non-forest and forest types mapping in a robust manner using data and

software which is affordable and scaleable across the Rufiji Basin. The progress

of remote sensing technologies can provide periodic observations for inconsistent

forest statistics, fill critical data gaps, and ensure data availability. Utilising the



CHAPTER 5. PRELIMINARY STUDY ANDMETHODOLOGY PILOTING149

open-source approach for processing and analysis will enable users, such as land

management agencies in forestry, to benefit from freely available software products

and access to source code as new algorithms can be integrated and managed.

The method has been implemented on Landsat 8 data but is entirely compatible

with different Landsat TM and ETM+ and Sentinel-2 images. The high accuracy

achieved (91 - 93%) demonstrates the potentiality of the proposed method in dis-

tinguishing between the dominant forest cover types in areas with limited Earth

Observation data due to frequent cloud cover. However, areas for improvement

include testing other machine learning classifiers such as extreme gradient boost-

ing (XGBoost) and Light Gradient Boosting Machine (LightGBM) (Chen and

Guestrin, 2016; Ke et al., 2017) since a limited number of studies have used these

classifiers in tropical forest mapping with few focused on crops mapping (Ustuner

and Balik Sanli, 2019). Additionally, moving away from image composites might

also provide an advantage, where errors in the cloud and cloud shadow masking re-

sult in areas of composites having poor image quality. While processing individual

scenes might provide an option for avoiding the generation of image composites,

it will require significantly more data processing. Finally, while a segmentation-

based approach was used for this study, some of the open forest boundaries were

relatively poorly defined by the segmentation. Therefore pixel-based approaches

might be considered.
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6.1 Introduction

Tropical forests form the most abundant terrestrial reservoir of carbon storage

and biodiversity (Newmark, 2006), but have experienced climate change impact,

deforestation, and habitat fragmentation (Bonan, 2008; Gibbs et al., 2010). The

projected increase in global mean temperature of 4.3 ± 0.7 0C by 2100 for RCP8.5

is likely to further affect the geographic distribution, composition, and productivity

of tropical forest ecosystems (IPCC, 2014) adversely affecting vital ecosystem ser-

vices. Sub-Saharan Africa has been identified as one of the most vulnerable parts

of the world to the effects of climate change (Serdeczny et al., 2017; Chidumayo

et al., 2011). Climate change is predicted to increase hazards such as flood and

fire hazards, disease, food insecurity, and habitat degradation (Serdeczny et al.,

2017).

The effects of climate change on African tropical forest habitats mostly result

from changes in precipitation patterns (particularly the influence of the El Niño-

Southern Oscillation (ENSO)) (Butt et al., 2015) and the Subtropical Indian Ocean

Dipole (SIOD) and subsequent effects on soils and groundwater availability (Müller

et al., 2014), alongside increases in atmospheric availability of CO2 concentration

and nitrogen deposition (Serdeczny et al., 2017). Even though the effect of climate

change has already been felt, its impact on the tropical forests remains relatively

understudied (Pacifici et al., 2015; Delire et al., 2008; Markham, 1998), especially

in resource-poor sub-Saharan Africa where data is scarcely creating a barrier to

incorporating climate change scenarios into land management and conservation

planning (Lee and Jetz, 2008).
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Increasingly, global initiatives and commitments are considering African tropical

forests as critical components of climate change mitigation strategies such as the

Bonn Challenge on Forest Landscape Restoration (FLR) (Seidl et al., 2017), the

UNFCCC on REDD+(Romijn et al., 2012), the Rio+20 land degradation neutral-

ity (Grainger, 2015), Aichi Target 15 on the restoration of degraded ecosystems

(Tobón et al., 2017), and the 2030 agenda of the United Nations for Sustain-

able development goals (SDGs) 13 and 15 (Swamy et al., 2017). To ensure that

these strategies are successful and enable effective conservation it is essential to

establish a baseline in terms of forest habitat extent and resilience to climate

change pressures (Verdone and Seidl, 2017; Clark et al., 2014). This should be

determined in a scalable and tractable manner, including modelling projections of

future distributions to bridge the gap of data deficiency regarding Sub-Saharan

forests (Montagnini et al., 2005).

Habitat Suitability Modelling (hereafter referred to as HSM) or Species Distri-

bution Modelling is widely applied in estimating changes in habitat suitability

and counteracting negative impacts of climate change (Lim et al., 2018; Title and

Bemmels, 2017; Edenius and Mikusiński, 2006). It represents a valuable tool for in-

forming policy-makers about the effects of climate change on the forest community

(Seidl et al., 2017). HSM focuses on identifying both the most influential envi-

ronmental and climatic variables describing the presence/absence, abundances, or

even growing conditions of forest species and the optimal relationships between

their distributions and these explanatory variables (Jiménez-Alfaro et al., 2018).

The provision of environmental and climatic variables from globally, often freely,

available Earth Observation (EO) datasets, enables simulations and subsequent

information to be determined over scales that are suitable for national, regional,
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and even global decision-making (Edenius and Mikusiński, 2006).

Maximum Entropy (MaxEnt) modelling (Phillips et al., 2006; Renner and Warton,

2013) has been used to successfully predict forest species habitat suitability un-

der current and future climate scenarios for a range of sites across the world.

For example, climate change impacts on forest habitat suitability and diversity in

the Korean Peninsula (Lim et al., 2018); how much does climate change threaten

European forest tree species distributions (Dyderski et al., 2018); climate change

impact on the distribution of Dipterocarp trees in Asia (Deb et al., 2017); in-

duced range shift in miombo woodland due to climate change in Southern Africa

(Pienaar et al., 2015). However, most of these studies are limited to a single-tree

species, lacking multiple tree species (such as Jiménez-Alfaro et al., 2018; Edenius

and Mikusiński, 2006; Rondinini et al., 2005). In contrast, modelling multiple-

tree species tend to yield better results (Edenius and Mikusiński, 2006) as this

approach relies on detecting the shared pattern of the environment response for

sparsely recorded species, thereby simplifying intricate species-specific patterns. It

also enables direct interpretation by decision-makers (Ferrier and Guisan, 2006)

that would typically be at the community level, except for studies into particular

threatened species (Brummitt et al., 2015).

Approaches like MaxEnt rely on the availability of species or habitat presence

data, typically based on field observations of a particular species or habitat. In

the United Republic of Tanzania, the National Forest Inventory (NFI) provides

a comprehensive dataset that includes over 19 thousand observations of forest

types with over 50 thousand points for dominant forest types in overall ecological

zones across the country (Tomppo et al., 2014; Minunno et al., 2019; Storch et al.,

2018) providing an exciting opportunity to provide baseline maps of forests and
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woodlands extent and the subsequent influence of climate change (Lim et al.,

2018).

This study uses MaxEnt to map the distribution of forest types in Tanzania cen-

tered on two climate Representative Concentration Pathways (RCPs) scenarios

(RCP4.5 and RCP8.5) and the future period of 2055 and 2085. Specifically, this

chapter addresses the following research questions:

1. What are the vital climatic factors that affect the distribution of forest types

based on dominant tree species in Tanzania?

2. What are the impacts of climate change on the distribution of the prevalent

tree species habitats?

3. What are the implications for changes in the distribution of forest habitats

on the conservation of globally significant indigenous flora and fauna?

6.2 Methods

A piece of detailed information on the study area is discussed in Chapter 3 and

Figure 6.1 for the distribution of the presence points for dominant tree species

from natural forest types in Tanzania (Figure 6.2).
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Figure 6.1: Distribution of the presence points for dominant forest types in Tan-
zania. EPSG: 4326, WGS84 projection

.
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Table 6.1: Descriptions and main characteristics of the natural forest types in
Tanzania

Level 1 Level 2 Description Altitude(m) Crown cover(%) Height (m)

Forest Montane Catchment forests
found in mountainous
areas and changes with
elevation

1400 – 1850 ≥ 40 > 5

Lowland Include groundwater
forest and mainly lo-
cated near the coast of
the Indian ocean and
in small portion of the
mixture with wood-
lands and montane
forest

540 – 810 > 40 > 5

Mangrove Grow on the upper
part of the inter-tidal
zone of the sheltered
shores of the delta,
alongside the river es-
tuaries and the creeks,
mainly along the In-
dian Ocean. May oc-
cur with other wooded
land vegetation

≤ 25 > 40 ≥ 5

Woodland Closed Dominated with peren-
nial C4-grasses which
induce regular fire oc-
currences in the month
of May to November
before rain season

100 – 1400 > 40 > 5

Open The same description
as closed woodland
with the difference in
canopy cover

100 – 1400 10 – 40 ≥ 5

Thicket Thicket Dense evergreen or de-
ciduous thorn wood-
land. Grow interlocked
and make impassable
community

1244 – 1300 5 – 10 < 5
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Figure 6.2: Aerial photographs for the natural forest types in Tanzania based on
drone capture (height ≈ 60 m), October 2019: (a) montane forest, (b) lowland
forest (c) mangrove forest, (d) closed woodland, (e) open woodland and (f) thicket
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6.2.1 Datasets

6.2.1.1 Forest occurrence data

A piece of detailed information on forest occurrence records is discussed in Chapter

4. The dominant forest types (59,208 points) were selected as proxy indicators of

habitat types for different existing forest types and dependent species (e.g., epi-

phytes of montane forests). Therefore, when dominant species change, this may

impact connected species in the ecosystem. Hence, they provide long-term for-

est monitoring of habitat in response to climate change (Dyderski et al., 2018).

The presence-only records were chosen based on abundance from the plot mea-

surements for each forest type (Figure 6.2 and Table 6.1). The selection included

both percentage frequency (occurrence) and abundance (proportional of individ-

uals). This implies that only the most frequent and abundant species from each

forest type were selected. The Plantation forest was excluded from the analysis as

their habitat changes are mainly the result of different non-climatic anthropogenic

drivers such as land management decisions (e.g., Bodin et al., 2013).

6.2.1.2 Spatial rarefaction

Geographical bias in the habitat or species occurrence data is likely to result

in model overfitting and artificial inflation of model performance (Boria et al.,

2014; Veloz, 2009). Therefore, the original 59,208 dominant forest-type points

underwent a step-wise spatial rarefaction process, based on the random selection

of a single location within grids of increasing size (Brown et al., 2014). Specifically,

a 5 x 5 km fishnet grid was created over the entire extent, to produce a single
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distribution point selected in each grid, with at least the distribution points be at 5

km apart. It was performed for each forest category separately to avoid eliminating

too many observations from less extensive forest types, such as mangrove and

montane. This procedure resulted in the selection of 1,307 occurrence points (n

= 103 montane, n = 276 lowland, n = 168 mangrove, n = 378 closed woodland,

n = 301 open woodland, and n = 81 thicket) that were considered to be spatially

independent.

6.2.1.3 Environmental variables

The selection of environmental variables was based on a conceptual model that

encompasses factors deemed to control the presence, or in some cases, absence, of

a particular species (Jiménez-Alfaro et al., 2018). In this instance, the variable

selection was based on the parameters that control the physically-based forest

growth model 3-PG (Physiological Principle in Predicting Growth) (Landsberg and

Waring, 1997; White et al., 2006). The use of the 3-PG model provides a robust

approach to understanding the growth dynamics of forests based on an ecosystem’s

physiological processes (White et al., 2006). It incorporates the dimension of

climatic changes in the growth and productivity prediction to understand the

impact of climatic variations on the forest’s ecosystem (Franklin et al., 2016).

This can be used to evaluate site potential and analyze the probable effects of

varying growing distribution under changing climatic conditions. The 3-PG model

performs well for a diverse range of conditions for many forest types and species

and can be integrated with other models and approaches in order to widen its

functions and applications (Gupta and Sharma, 2019). The model includes a large

number of parameters, but the selection was limited to those parameters listed in
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Table 6.2.

Table 6.2: Environmental variables are based on the 3-PG model and bold abbre-
viated variables are used in the final model after testing for collinearity using a
pairwise Pearson correlation.

Variable name Explanation Unit

PET seasonality (PETseason) Monthly variability in potential evap-
otranspiration

mm/month

PET Warmest Quarter (PETWarmQ) Mean monthly PET of warmest quar-
ter

mm/month

PET wettest quarter (PETWetQ) Mean monthly PET of wettest quarter mm/month
Thermicity index (ThermicitI) Sum of mean annual temp., min.

temp. of the coldest month, max.
temp. of the coldest month, x 10, with
compensations for better comparabil-
ity across the globe

0C

Elevation (Elv) Height above or below sea level m
Terrain ruggedness index (Tri) Calculates the difference in elevation

values from a center cell and the eight
cells immediately surrounding it

m

Topographic wetness index (TopoWet) This quantifies topographic control on
the hydrological process

-

Soil water availability capacity (SoilwaterA) Plant available water holding capacity
(v%) of the soil

mm

Soil types (ST) Characterised by a variety of textures
and nutrients

-

Potential evapotranspiration (PET) Amount of evaporation taking place
when sufficient water is available

mm

Mean annual temperature (Bio1) The average temperature for each
month

0C

Mean annual rainfall (Bio12) This is the sum of all total monthly
precipitation values

mm

Rainfall wettest month (Bio13) This index identifies the total rainfall
that prevails during the wettest month

mm

Rainfall driest month (Bio14) This index determines the total precip-
itation that prevails during the driest
month

mm

Annual moisture index (Mi) Mean annual rainfall/Potential evapo-
transpiration

-

Current and future bioclimatic variables were obtained from the KITE dataset

(AFRICLIM)1 (Platts et al., 2015). Future climate data were ensemble mean

downscaled to the resolutions (≈ 1 km) using 18 pairwise combinations of five

regional climate models (RCMs) driven by 10 general circulation models (GCMs).

A detailed explanation of data downscaling is found in Platts et al. (2015). The

1https://webfiles.york.ac.uk/KITE/AfriClim/ByCountry/Tanzania/
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ensembles were projected under two RCPs (RCP4.5 and RCP8.5) based on the

Fifth Assessment Report (AR5) of the United Nations Intergovernmental Panel

on Climate Change (IPCC). It represents independent trajectories on emissions,

socioeconomic, and policy (Moss et al., 2010). RCP4.5 is an intermediate stabi-

lizing pathway of the average 2041–2070 referred to as RCP4.5–2055, and it is the

optimistic pathway without an overshoot scenario at 4.5W/m2 (≈ 650 ppm CO2

eq.) by 2100 (Wise et al., 2009). It supports climate policies on reducing emissions,

with moderate population and economic growth with reforestation programmes,

and increases areas of natural vegetation (Van Vuuren et al., 2011b). RCP8.5 as

a long term was the average of 2071–2100 referred to as RCP8.5–2085, and it is a

pessimistic pathway with rising radiative forcing pathway leading to 8.5W/m2 (≈

1370 ppm CO2 eq.) by 2100 (Moss et al., 2010). This scenario assumes no policy

change to reduce emissions, with high population growth, low income, increased

energy demand, and deforestation, especially in the least developed countries (Ri-

ahi et al., 2011; Hurtt et al., 2011).

Other variables selected included those related to terrain and soil characteristics.

The Shuttle Radar Topography Mission (SRTM) 1-arc second elevation data were

obtained from the USGS Earth Explorer to generate a terrain ruggedness index,

a proxy measure of topographic heterogeneity (Riley et al., 1999). Soil character-

istic variables were obtained from the World Soil Information (ISRIC)2 included

soil type (see Appendix 1 as Table A.1) (Hengl et al., 2015). Pairwise Pearson

correlation (r) was used to test for collinearity between predicting variables, tak-

ing a relationship r > 0.7 or < -0.7 as highly correlated (Dormann et al., 2012;

Braunisch et al., 2013) (see Appendix 1 as Table A.2). Table 6.3 summarizes the

2https://www.isric.org
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general statistics of the selected bioclimatic and topographic profiles of dominant

forest types under current conditions based on the occurrence data used in this

study.

Table 6.3: Summary statistical information for major bioclimatic profiles of dom-
inant forest types based on the occurrence data used in this study. Bio1: Mean
annual temperature; Bio12: Mean annual rainfall; Bio14: Rainfall driest month;
Elv: Elevation; Tri: Terrain ruggedness index

Forest type Dominant tree Code Unit Mean SD Min. Max.
Montane Ekerbergis capensis,

Olea capensis, Albizia
gummifera, Ocotea
usambaraensis,
Newtonia buchananni

Bio1 0C 17.01 0.10 10.40 26.10
Bio12 mm 1247.61 10.72 850.00 2686.00
Bio14 mm 14.80 0.64 0.00 66.00
Elv m 1760 19 235 3039
Tri m 92.11 1.94 8.38 229.88

Lowland Antiaris toxicaria,
Scorodophloeus
fischeri, Soriendea
madagascariensis,
Milletia stuhlmannii,
Milicia excelsa

Bio1 0C 24.72 0.04 15.00 27.30
Bio12 mm 1219.44 6.47 610.00 2735.00
Bio14 mm 11.20 0.33 0.00 56.00
Elv m 363.32 7.34 9.00 2377.00
Tri m 36.40 1.20 1.12 279.25

Mangrove
Avicennia marina, ,
Sonneratia alba,
Rhizophora mucronata

Bio1 0C 26.69 0.04 25.90 27.50
Bio12 mm 1342.84 4.46 992.00 1869.00
Bio14 mm 17.00 0.15 7.00 49.00
Elv m 8.82 0.08 1.00 22.00
Tri m 2.60 0.06 0.12 2479.80

Closed woodland Brachystegia speciformis,
Julbernardia globiflora,
Brachystegia microphylla,
Erythrophleum africanum,
Burkea africana

Bio1 0C 22.56 0.01 13.7 27.20
Bio12 mm 1139.84 1.16 556.00 2377.00
Bio14 mm 1.64 0.01 0.00 35.00
Elv m 1040.06 2.00 14.00 2039.00
Tri m 29.96 0.16 0.38 248.12

Open woodland Combretum spp,
Acacia spp,
Commiphora spp,
Lonchocarpus sp,
Lannea spp,
Terminalia spp

Bio1 0C 22.97 0.01 13.90 27.30
Bio12 mm 1021.89 1.86 519.00 2715.00
Bio14 mm 3.59 0.04 0.00 48.00
Elv m 942.05 3.54 10.00 2276.00
Tri m 22.88 0.21 0.25 231.12

Thicket
Pseudoprosopis fischeri,
Combretum celastroids,
Dicrostachys cinerea

Bio1 0C 22.19 0.10 20.10 25.60
Bio12 mm 766.08 11.45 566.00 1243.00
Bio14 mm 3.27 0.80 0.00 38.00
Elv m 1160.47 28.57 106.00 1516.00
Tri m 8.78 0.67 2.38 45.38

6.2.2 Forest modelling

The modelling process focused on forest types (Table 6.1, Figure 6.2) based only

on dominant tree species (Table 6.3). The inventory data adequately presented the

distribution of forest types at different compositional gradients to predict suitable
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habitats for both current and future climates. The approach involves modelling

forest types independently and then ensemble the results (Ferrier and Guisan,

2006). In this manner, the distribution of forest types can be predicted in a

grouped way based on the trait characters (D’Amen et al., 2017). The method

follows the assumption that similar populations group have the same response to

the environmental gradients based on the relative importance of environmental-

predictors (Rose et al., 2016).

6.2.2.1 MaxEnt modelling and calibration

MaxEnt software version 3.4.1 (Phillips et al., 2017) was used to model forest and

woodland types at the national scale. The data (occurrence and environmental

data) were prepared using QGIS 3.6 version3 and the Remote Sensing and GIS

software library (RSGISLib; (Bunting et al., 2014)4.

MaxEnt simulations were performed for each forest type using 50 replicates with

10,000 randomly sampled pseudo-absence points. The maximum number of iter-

ations was set to 1000, while the convergence threshold was defined at 0.001, to

enable each replicate to converge within an acceptable time frame. Cross-validation

was used to partition the 1,307 occurrence records for model calibration and eval-

uation purposes, whereby 75% of the occurrence records were used for model cal-

ibration while the remaining 25% were retained for model validation.

A regularisation multiplier of one was used to limit model overfitting and enable

the formulation of smooth response curves (Merow et al., 2013). The log-log (clog

log) output format was selected based on a sampling design that typically reflects

3https://www.qgis.org
4https://www.rsgislib.org/
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the presence of localities and abundance of each dominant tree specie (each forest

type) per quadrant at the presence probability of 0.63 (Phillips et al., 2005) and

the location of occurrence is well estimated (Phillips et al., 2017). A jackknife

approach was used to examine the importance of each variable contribution to the

potential distribution of vegetation types (Olivier et al., 2013).

6.2.3 Construction of baseline and change maps

The final habitat suitability maps were generated by transforming the continu-

ous probability values, ranging from 0 to 1 representing low and high probability,

respectively, to discrete values of being either suitable or not suitable for the base-

line. Following Spiers et al. (2018), the 10th-percentile training presence threshold

was used to define suitable and unsuitable habitats for current and future projec-

tions. The future predicted habitat is calculated, for each forest type and taken

as the difference between the baseline model and the future models to generate

change maps (Maharaj and New, 2013) at RCP4.5 and RCP8.5, respectively, and

presented with four predicted habitats of unsuitable, suitable, expansion and con-

traction (Table 6.4).
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Table 6.4: Summary of predicted habitat suitability changes for the forest types

Pixel value
Baseline Future Predicted habitat

suitability change
Description

0 0 Unsuitable (no
change)

Not suitable habitat at the
current and future climate

0 1 Expansion (gain) Not suitable habitat at the
current climate but may be
suitable in the future cli-
mate

1 0 Contraction (loss) Suitable habitat at present
but not in the future climate

1 1 Suitable (stable, no
change)

Suitable habitat at both,
current and future climate

6.2.4 Model performance evaluation

The models were evaluated using the qualitative statistic for the Area Under the

Curve (AUC) of the Receiver Operating Characteristic (ROC) curves of the test

data for the predicted mean accuracy model output for each forest type (Merow

et al., 2013; Fielding and Bell, 1997). Model over-fitting was quantified using

AUCDIFF = AUCtraining - AUCtesting (Warren and Seifert, 2011) with excellent

model performance when AUCDIFF is close to 0 (Bosso et al., 2016).

6.2.4.1 Baseline model accuracy assessment

AUC values have received criticism as they are vulnerable to overinflation of model

performance where spatial autocorrelation exists within the model variables and

where a modelled habitat niche is small relative to the extent of the modelled area

(Williams et al., 2015). To alleviate these issues, an independent measure of model
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accuracy using the forest tree species data was conducted, removed during the

spatial rarefication process, including a total of 57,901 points. The agreement was

quantified using three metrics: 1) Overall % accuracy and associated confidence

interval (CI) (Olofsson et al., 2014; Pontius Jr and Millones, 2011), 2) F1 score

index which depicts the harmonic mean among precision (p) and recall (r) for each

class (Sofaer et al., 2019) and 3) Matthews Correlation Coefficient (MCC), which

is explained in terms of True Positive (TP), True Negative (TN), False Positive

(FP) and False Negative (FN) (Boughorbel et al., 2017).

6.3 Results

6.3.1 Model performance and habitat suitability estima-

tion

Mean test AUC score demonstrated a high degree of accuracy (AUC > 0.9) for

modelling the suitability of montane, lowland, mangrove forests and thicket (Table

6.5, Figure 6.3a-c, Figure 6.5). Closed woodland also showed a good level of

accuracy (AUC = 0.72) (Table 6.5, Figure 6.4a). The relatively low standard

deviation in AUC (ranging from 0.005 to 0.082) demonstrated a degree of model

stability (Table 6.5). The models for open woodland calibrated inadequately (AUC

= 0.6) (Table 6.5, Figure 6.4b). This result was expected since open woodlands are

dynamic with an unconstrained habitat niche, leading to a great deal of overlap

with other forest communities, especially closed woodland, lowland, and thicket.

The results of the accuracy assessment using an independent dataset also indicated

a good level of agreement. A mean overall accuracy of 90% ranging from 85% to
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97%, F1 score of 0.9 (range of 0.84 to 0.98) and an MCC mean value of 0.83

ranging from 0.75 to 0.95 (Table 6.6) were attained. Therefore, the accuracy

metrics indicated that the models are reliable to explain the potential habitats of

the dominant tree species and can effectively reflect the distribution of the forest

types in Tanzania in the present and future time. The main source of confusion

occurred along the boundaries between forest types. These transitional zones

rarely occur as sharp boundaries and are therefore likely to include a mix of forest

types.

Table 6.5: Model performance evaluation under AUC for the potential distribution
of forests and woodlands

Forest type AUCtest AUCDIFF AUCSD Cloglog threshold
Closed woodland 0.72 0.056 0.082 0.425
Open woodland 0.60 0.068 0.079 0.479
Montane 0.96 0.003 0.014 0.245
Lowland 0.93 0.007 0.021 0.325
Mangrove 0.97 0.000 0.005 0.521
Thicket 0.92 0.012 0.039 0.183
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Figure 6.3: Predicted potential suitable habitat distribution area for (a) montane,
(b) lowland forest and (c) thicket under current and future climate scenarios in
Tanzania. EPSG: 4326, WGS84 projection
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Figure 6.4: Predicted potential suitable habitat distribution area for (a) Closed
woodland, (b) Open woodland and under current and future climate scenarios in
Tanzania. EPSG: 4326, WGS84 projection
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Figure 6.5: Predicted potential suitable habitat distribution area for mangrove
forest under current and future climate scenarios in Tanzania (a) northern coastline
of Tanzania (b) southern coastline of Tanzania. EPSG: 4326, WGS84 projection
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Table 6.6: Summary of the accuracy metrics: overall accuracy, F1 score, and MCC

Forest type Overall Accuracy F1 score MCC
Montane 0.943±0.014 0.93 0.88
Lowland 0.925±0.010 0.92 0.85
Mangrove 0.976±0.006 0.98 0.95
Closed woodland 0.879±0.002 0.88 0.75
Open woodland 0.852±0.003 0.84 0.77
Thicket 0.894±0.039 0.89 0.78

6.3.2 Variables importance to each model

Precipitation and temperature (Mean annual precipitation, rainfall driest month

and mean annual temperature) (Table 6.7) were the main determinants for ex-

plaining the current and future distribution of the six forest types based on the

candidate tree species in Tanzania. However, non-climatic variables, reflecting the

topographic (elevation and terrain ruggedness) and soil constrain the distribution

of these forest types, especially mangrove forests on the flat coastal plains. For

example, removing elevation from the mangrove model resulted in a shift from the

known areas of mangrove occurrences to inland lakes and rivers.

6.3.3 Predicted Forest Habitat Distribution

The climate change scenarios indicate a projected change of suitable habitat for

most forest communities (Table 6.8 and Table 6.9). Montane forests, located at

moderate to high altitudes, are predicted to suffer a loss of more than 47% in

suitable habitat extent by 2085 under even the most optimistic emission scenario

(RCP4.5), and losses of 64% under a high emission scenario (RCP8.5). Thicket

forests are predicted to lose more than 70% of their habitat under the high emission
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Table 6.7: Independent variables and their explanatory contributions to the dis-
tribution of the six forest types. It indicates habitat suitability changes within the
range of the predictor variables. See Appendix 1 as Table 1 for a definition of the
soil types.

Forest type Variable name Unit % Mean SD Min. Max.
Montane Rainfall driest month mm 59.8 14.80 0.64 0.00 66.00

Terrain ruggedness m 14.1 92.11 1.94 8.38 229.88
Soil type (Nitisols, His-
tosols)

- 8.6 - - - -

Potential evapotranspira-
tion

mm 8.1 1387.70 127.69 1051.00 1791.00

Mean annual temperature 0C 6.2 17.01 0.10 10.40 26.10
Annual moisture index - 1.2 90.74 22.51 47.00 209.00
Mean annual rainfall mm 1.0 1247.61 10.72 850.00 2686.00
Elevation m 0.5 1760 19 235 3039
Rainfall wettest month mm 0.4 232.18 65.15 143 514.00

Lowland Rainfall driest month mm 49.8 11.20 0.33 0.00 56.00
Elevation m 21.7 363.32 7.34 9.00 2377.00
Terrain ruggedness m 12.5 36.40 1.20 1.12 279.25
Soil type (Arenosols, Flu-
visols)

- 4.6 - - - -

Mean annual rainfall mm 4.3 1219.44 6.47 610.00 2735.00
Potential evapotranspira-
tion

mm 3.3 1606.03 111.83 1385 1787

Annual moisture index - 1.5 76.46 19.83 48.00 130.00
Mean annual temperature 0C 1.2 24.72 0.04 15.00 27.30
Rainfall wettest month mm 1.1 223.05 58.65 150.00 405

Mangrove Mean annual temperature 0C 21.0 26.69 0.04 25.90 27.50
Elevation m 72.0 8.82 0.08 1.00 22.00
Soil type (Solonchanks,
Arenosols)

- 2.8 - - - -

Terrain ruggedness m 2.5 2.60 0.06 0.12 2479.80
Potential evapotranspira-
tion

mm 1.3 1502.64 67.23 1388.00 1791.00

Rainfall wettest month mm 0.3 297.59 66.62 154.00 467.00
Mean annual precipitation mm 0.1 1342.84 4.46 992.00 1869.00
Annual moisture index - 0.0 89.93 13.77 56.00 135.00
Rainfall driest month mm 0.0 17.00 0.15 7.00 49.00

Closed woodland Mean annual precipitation mm 40.0 1139.84 1.16 556.00 2377.00
Terrain ruggedness m 14.2 29.96 1.16 0.38 248.12
Rainfall wettest month mm 11.7 215.98 48.38 111.00 359.00
Mean annual temperature 0C 9.0 22.56 0.01 13.7 27.20
Elevation m 7.1 1040.06 2.00 14.00 2039.00
Soil type (Acrisols, Ferral-
sols)

- 7.1 - - - -

Rainfall driest month mm 6.8 1.64 0.01 0.00 35.00
Potential evapotranspira-
tion

mm 2.5 1626.70 14.65 1365 1869

Annual moisture index - 1.6 71.87 17.65 40 126
Open woodland Rainfall driest month mm 41.7 3.59 0.04 0.00 48.00

Terrain ruggedness m 27.0 22.88 0.21 0.25 231.12
Soil type (Ferralsols,
Gleysols)

- 18.2 - - - -

Mean annual precipitation mm 8.3 766.08 11.45 566.00 1243.00
Annual moisture index - 1.7 62.44 15.87 24.00 114.00
Elevation m 1.3 942.05 3.54 10.00 2276.00
Rainfall wettest month mm 0.9 187.25 44.80 66.00 308.00
Potential evapotranspira-
tion

mm 0.5 1657.27 101.82 1409.00 1890.00

Mean annual temperature 0C 0.3 22.97 0.01 13.90 27.30
Thicket Mean annual precipitation mm 32.5 766.08 11.45 566.00 1243.00

Soil type (Acrisols and
Arenosols)

- 27.3 - - - -

Terrain ruggedness m 13.1 8.78 0.67 2.38 45.38
Rainfall driest month mm 12.3 3.27 0.80 0.00 38.00
Rainfall wettest month mm 7.4 144.09 17.03 114.00 219.00
Annual moisture index - 6.2 44.93 7.91 32.00 75.00
Potential evapotranspira-
tion

mm 0.9 1707.40 55.27 1580.00 1891.00

Elevation m 0.1 1160.47 28.57 106.00 1516.00
Mean annual temperature 0C 0.1 22.19 0.10 20.10 25.60
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scenario (RCP8.5) by 2085. Mangrove forests are predicted to increase by 40% in

both emission scenarios (RCP4.5 and RCP8.5). Lowland forest habitat, occurring

in a mosaic of montane and woodland is predicted to have lost a suitable habitat of

more than 10% by 2085 (RCP8.5). Woodland vegetation, the most geographically

extensive forest type in Tanzania, is predicted to lose approximately 5% of its

suitable habitat by 2085. Projected change maps (Figure 6.6, Figure 6.7 and

Figure 6.8) present the anticipated changes in the forest suitable habitats from the

projected baseline to the future climate in Tanzania.
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Figure 6.6: Predicted spatial changes in the potential habitat distribution area
based on the thresholds provided in Table 4 for (a) montane (b) lowland forest (c)
thicket under current and future climate scenarios. EPSG: 4326, WGS84 projec-
tion
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Figure 6.7: Predicted spatial changes in the potential habitat distribution area
based on the thresholds provided in Table 4 for (a) closed woodland (b) open
woodland under current and future climate scenarios. EPSG: 4326, WGS84 pro-
jection
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Figure 6.8: Predicted spatial changes in the potential habitat distribution area
of mangrove under current and future climate scenarios based on the thresholds
provided in Table 4: (a) northern coastline of Tanzania (b) southern coastline of
Tanzania. EPSG: 4326, WGS84 projection
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6.4 Discussion

6.4.1 Predicted Forests Habitat Change

The impact of climate change on forest extent in Tanzania was assessed using the

national forest inventory data (Tomppo et al., 2014). The results indicate that cli-

mate changes will affect all forest habitats’ suitability across Tanzania. Similarly,

the results reveal that climate change will threaten forests at various scales: forests

with a narrow geographical range occurring at high altitudes (i.e., montane forests)

will experience more loss of their current habitat in the future. This may be asso-

ciated with fragmented strips of montane forests, and particularly high endemism

has increased a great sensitivity to climate change (Foster, 2001). Moreover, fu-

ture climate change will extensively threaten microhabitat forests (i.e., thickets)

occurring in a semi-arid climate (Moncrieff et al., 2015). These projections indi-

cate that climate change, especially temperature rise, will accelerate habitat loss

of already vulnerable forests such as thickets (Chidumayo et al., 2011). Mangrove

forests are predicted to expand their current range as a response to climate change

(Godoy and Lacerda, 2015), although the future extent shift is more likely to be

driven by sea-level rise, which was not factored, into the present study (Alongi,

2008). Similarly, climate extremes such as drought, storms, cyclones, and wildfires

(Deb et al., 2017) are expected to alter the forest types’ distribution, composition,

phenology, and structure (e.g., through increased tree mortality).
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6.4.2 Potential Suitable Habitat Impacted

The loss of suitable habitat for the montane forest is projected to be extensive,

with losses exceeding 40% even under the optimistic RCP4.5 scenario by 2055

(Table 6.8 and Table 6.9). This predicted loss is particularly pronounced in the

high biodiversity areas of the Eastern Arc Mountains, a foothill of Rungwe and

Livingstone mountain range along Lake Nyasa (Figure 6.6a). A projected reduc-

tion in rainfall results in a contraction of montane forests to higher elevations,

illustrated by the projected loss of montane forest communities at lower elevations

around Mount Kilimanjaro. The isolated nature of these montane habitats some-

times termed “forest islands” (Fjelds̊a, 1999), form essential refugia for several

species including 15 mammal species identified as vulnerable or high-risk status

within the Udzungwa Mountains (Rovero et al., 2006). Forest loss in montane

regions has severe implications for wildlife migration as these forests provide vital

corridors linking reserves in Ruaha to the Selous Game Reserve via the montane

forests of the Udzungwa Mountains (Jones et al., 2012). Additionally, the loss

of suitable habitat for forests in these regions is likely to increase sediment sup-

ply within the Rufiji basin, affecting downstream wetlands dynamics and water

resources (Ochieng, 2002).

Rising temperatures and reduced rainfall during the dry season are projected to

result in the loss of suitable lowland forest habitats above 10% by 2085 (Table

6.9). Given the extent of lowland forest in Tanzania, the effects of this loss have

broad-reaching implications, including reduced landscape connectivity impacting

wildlife migrations (Ntongani et al., 2010). Projected losses are particularly pro-

nounced in the southeast of the country in the regions of Ruvuma, Mtwara, and
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Lindi (Figure 6.6b), which provides an extensive transboundary wildlife corridor

between the Selous and Niassa (Mozambique) game reserves. Lowland forest com-

munities in this area mosaic with one of the World’s largest miombo woodland

ecosystems with a projected decline of above 4% (Table 6.8 and Table 6.9) provid-

ing migratory routes for a number of species including the largest populations of

elephants, as well as globally significant populations of Roosevelt’s sable antelope,

Liechtenstein’s hartebeest, Nyasa wildebeest, eland, greater kudu and carnivores

including African wild dog, lion, and leopard (Hofer et al., 2004). Conversely, a

small degree of expansion of woodlands (closed and open) is projected into wetter

areas, for instance, into the Lake Tanganyika, Victoria, and Pangani basin (Fig-

ure 6.7). However, there are predicted severe losses (over 40% by 2085 even under

optimistic conditions) (Table 6.9) in suitable habitats for thickets in central and

north-eastern Tanzania in the regions around Singida, Dodoma, and Manyara (Fig-

ure 6.6c). Habitat fragmentation and reduced ecological resilience are anticipated,

impacting the vital ecosystem for several game reserves and national parks with re-

gionals and even global significance, including Mkungunero, Swagaswaga, Muhezi,

Rungwa, Maswa, Mkomazi, Saadani, the Serengeti national park ecosystem and

bee reserves in Manyoni district. These forest communities represent vital habi-

tats for fauna such as birds, small browsers, and larger animals such as rhinoceros,

particularly in dry regions where thickets represent the only closed-canopy habitat

(Medley, 1996; Sharam et al., 2006).

Mangrove forests represent a valuable economic resource for local communities as

well as maintaining the seascape. Importantly, mangrove forests play an essential

role in carbon storage (natural carbon sinks), capturing CO2 from the atmosphere

and storing it in their biomass than terrestrial trees (Ray and Jana, 2017; Alongi,
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2012). Under projected climate change scenarios, habitats suitable for mangrove

forests are predicted to expand their range by 40% (Table 6.8 and Table 6.9) at

both low and high emissions (Figure 6.8). It is chiefly due to rising temperatures

and subsequent evaporation, coupled with reduced annual rainfall totals leading

to increased salinity, a favorable condition for the mangrove ecosystem (Alongi,

2015). Therefore, an increase in temperature would be positive for the mangrove

ecosystem as more accelerated growth, changes in community composition, diver-

sity, and latitudinal expansion (Hanebuth et al., 2013; Alongi, 2015). Similarly,

a rise in sea level influenced by future climate change is expected to alter man-

grove forests significantly as they are susceptible to any shift in sea level (Crase

et al., 2015; Alongi, 2008). The relative sea-level rise may cause landward retreat

in mangrove forests supported by sediment composition on the upland habitat

(Godoy and Lacerda, 2015). However, the ability of mangroves to migrate inland

may be constrained by local conditions, such as infrastructure (e.g., roads, agricul-

tural fields, dikes, urbanization, seawalls, and shipping channels) and topography

(e.g., steep slopes) (McLeod et al., 2006). For example, the construction of coastal

engineering structures along the coast of Tanzania obstructs the natural inland

migration of mangroves even when the sea level rises.

6.4.3 Implications for Forests Conservation Planning

A dramatic decline in the projected extent of Tanzanian forests over the next

50 years is expected to be driven by regional and national climatic factors. The

study, therefore, identifies a tractable method of using existing forest inventory

data to predict the distribution of future habitats capable of sustaining forest

ecosystems in spite of the challenges posed by future climate change. Information
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on forest extent and change of this nature can directly inform schemes such as the

Clean Development Mechanism (CDM) and REDD+ (Pelletier and Goetz, 2015)

as an incentive and alternative plans to reduce pressure on the remaining suitable

forest habitats and enhance forest conservation, sustainable forest management

and enhanced of forest carbon stocks and payment of ecosystem services (Romijn

et al., 2012).

The habitat modelling procedure demonstrated that climate has a substantial con-

trol on the distribution of Tanzanian forest communities. As a result, even under

an optimistic climate change scenario (RCP4.5), forest communities in Tanzania

are projected to decrease in an immense range. Notably, the montane forests of

Tanzania are globally significant in terms of biodiversity (Fjelds̊a, 1999; Rovero

et al., 2006; Jones et al., 2012), yet they are projected to halve in extent by 2085.

Whereas forest communities like closed, open woodland and mangrove forests may

expand into other regions in response to climate change, montane forests are con-

strained by elevation and therefore show particular vulnerability to changes in

temperature. As such, montane species may well act as a barometer for regional

climate change (e.g., Kimball et al., 2000). Focusing on monitoring efforts in these

regions may be vital in identifying changes in forest composition and biodiversity

in response to climate change, in the hope that this can steer policy before a cru-

cial tipping point is reached. For instance, through efforts like the African Forest

Landscape Restoration initiatives (FLR) with a target of restoring 100 million

hectares of deforested and degraded landscape across Africa by 2030 (Mills et al.,

2015).

Other more direct anthropogenic factors compound the threat from climate change

as these forest communities undergo extensive felling for building material and
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charcoal production, as well as increasing frequency of forest fires (Sharam et al.,

2006). These forest habitats extend across approximately half of Tanzania, and

habitat degradation or loss of this magnitude can have serious implications, par-

ticularly in terms of loss of carbon sink (Makundi and Okiting’ati, 1995) and their

role in wildlife migratory patterns: projected losses coincide with wildlife corri-

dors with regional significance such as the Selous-Niassa, Udzungwa-Ruaha and

Muhezi-Swagaswaga migratory routes (Hofer et al., 2004; Medley, 1996; Sharam

et al., 2006).

6.4.4 Relevance of Habitat Suitability Models for Image

Classification

The baseline habitat suitability maps (Figure 6.6, Figure 6.7 and Figure 6.8) pro-

vided the basis for the forest types’ identified habitat preferences in Tanzania.

They can be an essential model for training data selection in future image clas-

sification for the forest types. Collecting adequate and representative training

samples at a country level may be challenging, impacting classification results.

Therefore, to improve the classification result at a country scale, it is proposed

to include habitat suitability models for the forest types as suitable habitats, and

identify forest types with higher location specialisation that suitably characterise

the class being mapped (Foody and Mathur, 2004).
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6.4.5 Limitations of the study

This study adopted a widely accepted methodology (e.g., Merow et al., 2013;

Elith et al., 2006; Lim et al., 2018) that facilitates the mapping of forests’ habitat

suitability and their alteration due to climate change; however, it suffers from

the same limitations associated with known uncertainties of the data and climate

models (e.g., Watling et al., 2013). Similarly, the forest habitats prediction focused

at a county level, and therefore, the results should be interpreted at the national

scale rather than a regional or small local scale.

6.4.6 Future research perspectives

Future simulations should consider using the information on the spatial pattern

of change, such as proximity (distance rasters) to urban centers and road net-

works, and density rasters of projected population growth (population data sur-

face). Construction of road networks across forests is likely to trigger increased

forest degradation and fire incidences that in turn are expected to alter regional

climate (Nepstad et al., 2001; Fonseca et al., 2019). Future work also should

explicitly consider the impact of sea-level rise and geomorphology on Tanzanian

mangroves to fully understand how these essential habitats might change as a

result of climate change.
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6.5 Conclusions

Climate change will alter Tanzanian forests by accelerating habitat loss, and frag-

mentation and hence reducing ecological connectivity. The effect of forest frag-

mentation will compromise the potential plant pollinators’ movement and seed

dispersal. The induced fragmentation is especially severe when essential wildlife

corridors, such as riparian zones that connect different areas of the landscape, are

impacted. The optimal management solution in this regard is to increase ecological

connectivity in current forest planning and management. Ecological connectivity

should be maintained in habitats that are predicted not to change and expand

under future climate change by preserving native forests and, where possible, pro-

tecting the remaining forest areas from other anthropogenic disturbances. Improv-

ing ecological connectivity would significantly enhance not only sustainable forest

management but also improve the design and implementation of forest projects and

programmes. For example, ecological connectivity in forests will improve wildlife

movement. This is more prominent for the dispersed population of large mammals

(e.g., elephants) (Ntongani et al., 2010), when enclosed, increases the destructions

of the highly diverse forest habitats (Ripple et al., 2015). Therefore, increasing

forest connectivity will enhance the natural resilience of the remaining forests to

the predicted effects of climate change. Consequently, the findings call for conser-

vation planning in different dimensions: improving the management of the existing

protected areas which can absorb the impact of climate change, but also expand-

ing to newly suitable areas with effective land-use planning, conservation, and land

reclamation.
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7.1 Introduction

Reliable and current information on the status (extent, location, and type) of forest

resources can promote effective conservation for sustainable forest management in

Tanzania, supporting transparent National Forest Monitoring Systems (NFMS),

REDD+ payments, more efficient allocation of scarce conservation resources, and

an improved understanding of the significance of forest conservation investments.

The establishment of a reliable forest baseline considering trees in forests (TIFs)

and trees outside forests (TOFs), such as those located on farmland and in built-

up areas (rural and urban) (Chakravarty et al., 2019) is a key first step. Including

TOFs in forests, monitoring is essential due to their economic, ecological, and

climatic role and contributes substantially to national biomass and carbon stocks

and to the livelihood of people (Jain et al., 2020). Therefore, this chapter explores

a novel method for generating wall-to-wall forest mapping across Tanzania with

the application of a machine-learning classifier using Landsat 8 OLI images. The

methodology builds on the lessons learned from Chapter 5.

7.2 Methods

7.2.1 Image Acquisition and Pre-processing

As outlined in Chapter 5, issues due to clouds and cloud shadows, particularly in

the eastern coastal areas, provide a challenge when using optical imagery. There-

fore, at a national scale, Landsat 8 OLI-TIRS data from collection 1 archive from

2013 to 2018 for the months of May to November with a cloud cover threshold of
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> 80% were downloaded for analysis. The pre-processing was undertaken using

the ARCSI software as described in Chapters 4 and 5 (Figure 4.3).

The whole process was implemented on the SuperComputing Wales (SCW1) plat-

form, as discussed in Chapter 4. This was important for handling the large data

volume, amounting to 3,200 Landsat 8 OLI images, by reducing the computational

processing time, as up to 100 cores were simultaneously used for the analysis. Fol-

lowing the steps outlined in Chapter 5, an image composite was also created to

visualise and compare the classified products but was not used for the classifica-

tion.

7.2.2 Overview of Classification Methodology

The classification followed a hierarchical approach, first delineating the forest as

one class (level 1) and then classifying the forest pixels into forest types (level

2) (Figure 7.1), generating the forest baseline for Tanzania. Level 1 focused on

producing general forest extent information, whilst level 2 classified forested ar-

eas (level 1) into more detailed forest types distribution, effectively supporting

monitoring and management. The XGBoost classifier (Section 4.5.5) was used for

the analysis where the training data were split into 100 sets creating 100 training

classifiers. The 100 trained XGBoost classifiers were applied to each of the 3,200

scenes, resulting in 320,000 individual classifications. The analysis was carried out

on a per-pixel and individual-scene basis. The 100 classifications for the scene

were first merged by thresholding the number of times a pixel had been classified

to an individual class, resulting in 3,200 hard classifications. The resulting 3,200

1https://portal.supercomputing.wales/
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scene-by-scene classifications were then merged using the same process, creating

the final national map.

Figure 7.1: Classification hierarchical scheme

7.2.3 Forest/Non-forest Classification

7.2.3.1 Defining Training Data

The training polygon regions of interest (ROIs) for the forest/non-forest classifica-

tion were generated with reference to the composite image and higher resolution

Google Earth imagery by identifying pure forest and non-forest areas. Due to the
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higher spatial resolution of Google Earth aerial imagery (Connette et al., 2016), it

is much easier to distinguish forests and forest types from other vegetation classes

(i.e., bushes, grasses, and crops) and hence improve classification results. This

minimised the potential of misclassification influenced by other land covers. A to-

tal of 46,176 training polygons were collected (forest, n = 22,440 and non-forest, n

= 23,736). These samples were then rasterised onto each of the 3,200 images and

the associated image pixels were extracted, creating 435,808,135 forest samples

and 1,423,875,598 non-forest samples.

Training with this number of samples would create an XGBoost classifier with

many levels and large trees, which might be very slow to apply. To use this large

training dataset, the data were split into 100 sets by randomly selecting 500 scenes

(of the 3,200), merging the associated training samples, and then balancing the

number of non-forest samples by randomly selecting a subset of non-forest samples

to match the number of forest samples. The number of samples for each class used

for each of the 100 classifiers varied, but the minimum was 60,874,216, the max-

imum was 78,833,485, the mean was 68,118,012, and the standard deviation was

35,37,652. The resulting data was split by taking random non-overlapping samples

to create training (50%), validation (25%), and testing (25%) datasets.

7.2.3.2 Optimising the XGBoost Parameters

The XGBoost algorithm (Section 4.5.5) has a large number of hyperparameters

to optimise. For this study, a Bayesian optimisation was used, as implemented

within the RSGISLib software. The full training and validation datasets could not

be used for the parameter optimisation as it would have taken a very long time

(many months) to perform the optimisation. Therefore, subsets of the training
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and validation data were randomly extracted for each of the 100 sample sets. For

the optimisation, 60,000 training samples of forest and non-forest were used (i.e.,

120,000 in total) and 20,000 for the validation dataset.

7.2.3.3 Training the XGBoost Classifiers

Once the parameters had been optimised, the 100 classifiers could be trained using

the full training dataset. Therefore, generating 100 classifiers trained with different

datasets and hyperparameters. Given the large number of training samples used

to train these classifiers, training was conducted using multiple cores with 40 cores

used to train each model. The training was therefore conducted consecutively, with

each classifier trained in turn. It took 35 days for all 100 models to be trained.

Using the testing datasets, the average accuracy of the classifiers was 99%.

7.2.3.4 Creating the Final Forest Extent Map

As described in Section 7.2.2, the 100 classifiers were applied to each of the 3200

scenes. The 100 classifications were summarised on a per-pixel basis providing

a percentage for the number of times a pixel was classified as forest. The scene

was then thresholded using at 30%, 50%, and 80%. The thresholds were selected

based on a visual inspection of the subsample of scenes and chosen to capture the

probability of pixels classified as a forest at the three different levels. For example,

if a threshold is > 80% of pixels (on a per-scene basis) classified as forest, then the

pixel will be assigned as forest.

To merge the scene-based classifications, and to create a national forest mask, 100

km tiling was used with this allowing parallel processing. The percentage of times
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a pixel was classified as the forest was calculated for each pixel, resulting in three

output images for each scene-based threshold (i.e., 30%, 50%, and 80%). Those

outputs were subsequently thresholded using the same 30%, 50%, and 80% levels,

creating 9 forest extent maps for Tanzania (e.g., scene threshold of 50% and na-

tional threshold of 80%). However, a further refinement of the threshold selection

can be made in future studies. Finally, an independent accuracy assessment was

undertaken to identify the optimal forest extent map.

7.2.4 Forest Types Classification

The second step in the hierarchy (Level 2) (Figure 7.1) of forest classification

was to classify the forested pixels into forest types (montane, lowland, mangrove,

plantation forest, closed woodland, open woodland, and thicket). Forest types

classification is necessary for generating detailed forest distribution for evaluating

forest ecological systems and supporting monitoring and management practices.

To constrain this analysis, each forest type’s habitat suitability from Chapter 6

was used in Figures 6.3, 6.5 and 6.4. This novel approach was selected to minimise

the classification error such that a pixel was only considered for the forest types

that the habitat suitability analysis had identified. Therefore, it constrained the

classification of forest types based on their adaptation and corresponding biocli-

matic patterns, minimising misclassification and reducing the time for the classifier

for searching similar pixels outside the suitable habitat of the given forest type.

For example, mangroves would not be classified around freshwater lakes and at

altitudes above high tide levels.
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7.2.4.1 Forest Types Mask

The habitat suitability extent maps were intersected to merge the individual forest

type suitability maps, identifying 34 combinations (Figure 7.2b). For a small

number of areas, the habitat suitability result provided suitability for only a single

class (e.g., open woodland) (Table 7.1). However, this would not allow the classifier

to perform classification, so a second class was added in these cases. For example,

for the areas which only had suitability for open woodland, then closed woodland

was added (Table 7.1). Therefore, for the first time, the study proposes a novel

technique, exemplified by the case of combining forest habitat suitability models as

input data to constrain the classification of forest types based on their adaptation

and corresponding bioclimatic patterns, minimising misclassification. It aimed at

improving the overall forest classification over a large area and a complex forest

landscape.
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Table 7.1: A sample of predicted combined forest types suitability depicting single
class occurrences. Therefore, a second class was added in these situations to enable
the classifier to perform classification.

Predicted combination
Value Habitat type predicted Yes = 1/ No = 0 Added class

2 Montane forest 1 Lowland forest, plantation forest
Lowland forest 0
Mangrove forest 0
Plantation forest 0
Closed woodland 0
Open woodland 0
Thicket 0

4 Montane forest 0
Lowland forest 0
Mangrove forest 0
Plantation forest 0
Closed woodland 0
Open woodland 0
Thicket 1 Open woodland, closed woodland

8 Montane forest 0
Lowland forest 0
Mangrove forest 0
Plantation forest 1 Montane, lowland forest
Closed woodland 0
Open woodland 0
Thicket 0

16 Montane forest 0
Lowland forest 0
Mangrove forest 0
Plantation forest 0
Closed woodland 0
Open woodland 1 Closed woodland, lowland forest
Thicket 0

32 Montane forest 0
Lowland forest 0
Mangrove forest 0
Plantation forest 0
Closed woodland 1 Open woodland, lowland forest
Open woodland 0
Thicket 0

64 Montane forest 0
Lowland forest 1 Montane forest, closed woodland
Mangrove forest 0
Plantation forest 0
Closed woodland 0
Open woodland 0
Thicket 0

128 Montane forest 0
Lowland forest 0
Mangrove forest 1 Lowland forest, closed woodland
Plantation forest 0
Closed woodland 0
Open woodland 0
Thicket 0
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Figure 7.2: A sample of forest habitat formation combination: a) Combined habi-
tat map b) JavaScript Object Notation (JSON) file indicating possible forest types
combination

The habitat suitability analysis was undertaken at a pixel resolution of 1 km to

capture local environmental variability (Hijmans et al., 2005; Fick and Hijmans,

2017) at a country scale, and corresponding bioclimatic patterns enable inferring

of relationships between different forest types’ habitats. Therefore, the nearest

neighbour resampling was used to create a 30 m resolution product required for

the Landsat classification. However, due to this resolution change, there were 30

m pixels that were within the forest mask but did not have habitat suitability. For

example, along the coast and other forests/non-forest boundaries present at 1 km

(e.g., wetlands and lakes). The k -NN is a non-parametric model which does not

require a normal distribution and homoscedasticity of data and was used to fill

these pixels where an unknown pixel was filled with the mode of the k spatially
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nearest pixels. Therefore, the model is effective as it searches for the k nearest

pixels based on the greatest similarities of each un-observed location to all sample

pixels in a feature space consisting of predictors and then generates an estimate

of the location by weighting the observations from k nearest pixels (Jiang et al.,

2020). For this analysis k = 5. The algorithm was found to be efficient and is

suited for the samples across multiple classes (Cortijo and De La Blanca, 1997).

Therefore, the resulting map (Figure 7.2a) was used to define the classes considered

for each pixel during the classification.

7.2.4.2 Defining the Training Dataset

Similar to the forest/non-forest classification, the training polygons were defined

for each forest type and extracted from all the Landsat scenes. A total of 20,370

sample polygons were defined for the forest types (montane, n = 1, 272, lowland,

n = 2, 053, mangrove, n = 1, 407, plantation forest, n = 794, closed woodland,

n = 3, 264, open woodland, n = 11, 070 and thicket, n = 510). This resulted in

the following number of pixel samples:

Montane Forest n = 7, 638, 017

Lowland Forest n = 19, 192, 926

Mangroves n = 2, 225, 183

Plantation Forest n = 2, 118, 903

Closed Woodland n = 34, 636, 347

Open Woodland n = 165, 439, 923

Thicket n = 18, 051, 337
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To define the number of samples for each of the 34 class combinations, the data

were combined, and if one class had more samples than the others in the combina-

tion, then a random subsample was generated. However, if the minimum number

of samples was over 10,000,000, then all classes were limited to 10,000,000 samples

to balance the training samples across a landscape and ensure that they are repre-

sentative of each forest class proportions. It aimed at maximising the accuracy of

all forest types and avoiding bias towards the majority class, compared to forest

types with small geographical area coverage. For example, for a combination of

Mangroves, Lowland Forest, and Closed Woodland, then the Lowland Forest and

Closed Woodland samples were subset to 2,225,183 (i.e., the number of samples of

mangroves as this was the smallest of the three classes). However, if the combi-

nation were Closed Woodland and Open Woodland, then the number of samples

would have been limited to 10,000,000.

7.2.4.3 Training the Classifiers

For this analysis, just a single classifier was trained for each combination where

the samples were split into training (50%), validation (25%), and testing (25%)

sets (Figure 7.3). A 10% sample of the training and validation datasets was ran-

domly extracted to optimise the XGBoost hyperparameters using Bayesian opti-

misation.

Bayesian optimization trains a machine-learning model to predict the best hyper-

parameters. For each set of hyperparameters, a different model performance is

produced and thus a different result under the performance metric. Grid search

was used in searching the whole parameters space. But for models with a large

parameter space, such as XGBoost, are slow and inefficient. Thus, an iterative pro-
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cess was undertaken to train the model within this resulting in a more accurate

estimation. The XGBoost model had the following hyperparameters, eta, gamma,

max depth, min child weight, max delta step, subsample, nthread, eval metric,

objective, and num class. A dictionary of class information, such as ClassInfoObj

objects, is defined with the training and validation data. The training data in-

putted into this function might well be a smaller subset of the whole training

dataset to speed up processing. Therefore, Bayesian optimisation builds a model

for the optimization function and explores the parameter space systematically,

which improves the classification results.

The XGBoost classifiers were trained using the optimised hyperparameters and

full training and validation datasets. Using the independent testing dataset, the

average classifier accuracy was 99%.

Figure 7.3: Workflow of collecting training dataset

7.2.4.4 Final Forest Types Map

As with the forest/non-forest classification, the classification was applied on an

individual scene basis. The habitat suitability-derived mask was used to define

the pixel combination and the associated classifier was applied. Therefore, each

pixel was only considered for the classes defined by the habitat suitability analysis.
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To summarise the scene-based forest type classifications, creating a national map,

the mode of each pixel was taken, with the analysis undertaken using 100 km

tiles.

7.2.5 Accuracy Assessment

7.2.5.1 Forest/Non-forest

The National Forest Inventory (NFI; NAFORMA) collected by Tanzania Forest

Services from 2011 – 2014 (MNRT, 2015) and other local forest inventories for

2016 – 2018 were considered for this assessment of accuracy, but the temporal and

spatial scale differences in defining the forest extent from these data were found to

be difficult. Therefore, the NFI data was not considered as reliable reference data

to assess the forest extent map against.

Therefore, accuracy assessment was conducted using a point-based sampling with

reference to freely available virtual globe web-based maps (ESRI Satellite, Bing

Satellite, and Google Satellite) available on QuickMapServices in QGIS 3.10. The

satellite imagery accessible within these references originates from different data

providers and is usually 65 cm resolution with a span range of dates for image

acquisition (Connette et al., 2016). The three base-map layers (Figure 7.4) were

used to check the sample points for positional accuracy, inconsistent quality of

images, image acquisition date, and different temporal frequencies (Yu and Gong,

2012). Therefore, the high-resolution images in base-map layers were found to

be adequate for validation (Yu and Gong, 2012), which is challenging to acquire

and accomplish the requirement of ground truth points on a country-level map-

ping.
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Figure 7.4: Sample virtual globes web-based map comparison: (a) Google Satellite
(b) Bing Satellite (c) ESRI Satellite (d) ground field photo; red polygon indicating
timing variation on image updates, especially for Bing Satellite.

The accuracy assessment points were generated using a stratified random sam-

pling approach (Olofsson et al., 2013, 2014) from the classified images and visually

interpreted using the virtual globes web-based maps (Figure 7.4). A proportional-

to-class allocation was used to minimise standard errors in accuracy estimation

(Myroniuk et al., 2020). Therefore, at least 1,000 sample points would fall into

each class (forest/non-forest), and a total of 2,000 points were used for each sample

area (185 km by 180 km) within nine sampled sites over the country (Figure 7.5).
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Hence, a total of 18,000 sample points were used for accuracy assessment using

the classification accuracy QGIS plugin2 (Bunting et al., 2018) with a buffer of

45 m around each sample-point on the base-map layer ( about 3 pixels on Land-

sat image) (Figure 7.6). This followed the characterisation method, whereby if

half of the buffer area has reached the absolute majority of the cover inside the

sample unit, then assigned to the majority class. The tool extends the possibility

of panning all samples, specifying cover class using a drop-down menu with an

overlay on virtual globes web-based maps (Figure 7.4) to understand each cover

class better.

2https://www.remotesensing.info/tag/accuracy-assessment.html
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Figure 7.5: Accuracy assessment sample areas for binary forest/non-forest classi-
fication on Google satellite base-map

Further sample validation was done using high-resolution images from PlanetScope

(3 m) and drone images across the classified forest and non-forest boundaries. The

product accuracy metrics are summarised with an overall accuracy (OA), user and

producer accuracy (UA and PA), allocation disagreement (AD), quantity disagree-

ment (QD), proportional correct, total disagreement (Olofsson et al., 2014; Pon-

tius Jr and Millones, 2011), F1-score, precision, recall, omission, commission error,

and Matthews Correlation Coefficient (MCC) allowing the users to understand the

distribution of error in the products (Boughorbel et al., 2017). The error distribu-



CHAPTER 7. FOREST BASELINE CLASSIFICATIONS OF TANZANIA 203

tion will not be equal throughout the classification as more uncertainty is found on

the class boundaries (Foody, 2002). Explicitly considering these ensures a robust

approach is followed reliably informing the community of the map quality.

Figure 7.6: Illustrates the application of accuracy assessment tool used in verifica-
tion of validation points for ground truth purposes on Google satellite base-map.
Sample point buffered with 45 m (yellow circle).

7.2.5.2 Forest Types

To assess the forest type map, the National Forest Inventory (NFI; NAFORMA;

(MNRT, 2015)) (Figure 7.7) was used where it was masked using the forest mask

from forest/non-forest. Any remaining points within the NFI defined as being
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outside of a forested area were then removed and the points for 2011 – 2014 were

checked for validity using virtual globe web-based maps in QGIS (e.g., Google

Earth data). While the temporal differences prevented the use of this data for

assessing the forest extent map for the forest types masking to the forested extent

defined in this analysis removing the majority of the temporal change from the

dataset. If a pixel was defined as a forest in the 2013 – 2018 baseline mapping

and with the NFI data (2011 – 2014), then it was very unlikely that the forest

type could have changed. Forest types are also more difficult to assess through the

analysis of high spatial resolution remotely sensed data, particularly the differences

between classes such as open and closed woodlands, and therefore access to a

field-derived dataset is strongly preferred. For further information and the field

collection process of NAFORMA data, see Chapters 4, 5, and 6.

Therefore, a final total of 13,200 field points for the forest types were used for

the accuracy assessment (n = 3,895 closed woodland, n = 1,708 lowland forest,

n= 57 mangrove forest, n= 401 montane forest, n= 6,721 open woodland, n= 216

plantation forest and n= 202 thicket). Thematic accuracy measures of the forest

types classification were summarised as overall accuracy, user and producer accu-

racy, F1-score, quantity disagreement, allocation disagreement, total disagreement,

proportion correct, precision, recall, commission, and omissions error (Pontius Jr

and Millones, 2011).
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Figure 7.7: NFI accuracy assessment points distribution for the seven forest types

7.3 Results

7.3.1 Summary of results

The individual scene classification with the XGBoost algorithm had the advantage

of reducing seasonality’s effects on images captured at different times of the year,

but it had the disadvantage of being time-consuming to execute. However, it

could use the large training datasets available by following the individual scene
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approach. Since the final outputs were free from seasonality disparity, the method

was suitable for Tanzania’s forest baseline classification.

7.3.2 Forest/Non-forest Classification

The binary forest/non-forest analysis produced 9 forest/non-forest maps of Tan-

zania (Table 7.2). The accuracy assessment was used to identify the map to take

forward for further analysis.

7.3.2.1 Accuracy Assessment and Model Selection

The accuracy reported with this method for the nine models exhibited a satis-

factory level of overall accuracy ranging from 68.46 ± 0.50% to 89.66 ± 0.40%

(Table 7.2). The best three models were further evaluated to select the final

model. Therefore, the final chosen model (Figure 7.10) with a single-scene thresh-

old of 80% and multi-scene threshold of 50% when combining the results from the

different scenes which depicted an overall accuracy of 89.66 ± 0.40%, F1-score of

0.87 and MCC value of 0.78 (Table 7.3), sufficiently separated primary forests from

non-forest classes (Figure 7.8 and Figure 7.9).
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Table 7.2: Evaluating classification models performance using accuracy assessment
metrics for binary classification (forest/non-forest). The highlighted (coloured) in-
dicates the three classification models with high accuracy. OA: Overall Accuracy;
AD: allocation disagreement; QD: Quantity Disagreement; PC: Proportional Cor-
rect; TD: Total Disagreement; MCC: Matthews Correlation Coefficient

Classification model
Single-scene (%) Multi-scene (%) OA % AD QD PC TD MCC

30 30 68.46 ± 0.50 0.009 0.202 0.787 0.212 0.50
30 50 81.77 ± 0.50 0.029 0.123 0.847 0.152 0.67
30 80 88.17 ± 0.40 0.065 0.047 0.887 0.112 0.75
50 30 73.16 ± 0.50 0.016 0.181 0.802 0.197 0.56
50 50 88.11 ± 0.40 0.049 0.061 0.889 0.110 0.77
50 80 85.93 ± 0.40 0.039 0.080 0.879 0.120 0.72
80 30 80.84 ± 0.50 0.034 0.127 0.838 0.161 0.66
80 50 89.66 ± 0.40 0.100 0.003 0.896 0.103 0.78
80 80 81.24 ± 0.40 0.014 0.111 0.873 0.126 0.64

Table 7.3: A detailed accuracy metrics for the three classification models with high
accuracy highlighted on Table 7.2: UA: User Accuracy; PA: Producer Accuracy

Classification model
Single-scene (%) Multi-scene (%) Cover type UA % PA % F1 Precission Recall Commission Ommision

80 50 Forest 87.69 ± 0.70 87.86 ± 0.60 0.87 0.87 0.87 0.053 0.050
Non-forest 91.11 ± 0.50 90.98 ± 0.40 0.91 0.90 0.91 0.050 0.051

30 80 Forest 79.35 ± 0.90 91.59 ± 0.60 0.85 0.91 0.79 0.080 0.032
Non-forest 94.65 ± 0.40 86.20 ± 0.50 0.90 0.86 0.94 0.032 0.080

50 50 Forest 95.02 ± 0.40 80.43 ± 0.60 0.87 0.80 0.95 0.024 0.085
Non-forest 83.04 ± 0.70 95.79 ± 0.40 0.88 0.95 0.83 0.085 0.024

Figure 7.8: A detailed sample visual comparison of classification result at Ngu-
lakula forest reserve-Rufiji based on field survey, November 2018: (a) Classification
output (b) Drone orthomosaic (c) Bing Satellite (d) Field photo. Photo acquired
by the author
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Figure 7.9: A detailed sample visual comparison of classification result on forest
area cleared for farming at Lihanje forest reserve-Songea based on field survey,
November 2018: (a) Classification output (b) Drone orthomosaic (c) Bing Satellite
(d) Ground field photo. Photo acquired by the author
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Figure 7.10: Map showing areal proportional of forest/non-forest cover from clas-
sification result in Tanzania

7.3.2.2 Source of Classification Error

The classification result was generated by isolating the generic forest class, and

other vegetation types such as grassland and bushland, and this resulted in a high

overall accuracy of 89.66 ± 0.40%. However, this still resulted in 10% error in

the classification. From a visual assessment of the map, the likely sources of er-

ror were ascertained to be forest intermixed with edaphic areas and disturbances

often by frequent fire, especially in woodland areas. Similarly, wetland areas (Fig-

ure 7.11) (yellow circle) and forest-grassland mosaic (Figure 7.12) remain evergreen
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throughout the year.

The wetland classification is often challenging due to the seasonal vegetation dy-

namics and hydrological change following vegetation phenological differences in

its growth period. Also, the complexity of the mountain terrain, such as those

found at Mt. Kilimanjaro, Meru, and the Eastern Arc Mountains due to differ-

ences in the surface illumination between shaded and illuminated areas, impacts

the classification accuracy results.

Figure 7.11: A detailed sample of classification error (yellow circle) on wetland area
at Rufiji river- Selous Game Reserve: (a) Classification output (b) ESRI Satellite
(c) PlanetScope image (pixel size = 3 m) (d) Ground field photo. Photo acquired
by the author
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Figure 7.12: A detailed sample of classification error on mountain area with dense
grassland, part of Uzungwa Scarp Nature Forest Reserve: (a) Classification output
(b) ESRI Satellite (c) PlanetScope image (pixel size = 3 m) (d) Ground field photo.
Photo acquired by the author

7.3.2.3 Forest Area Estimates

Table 7.4 presents the forest cover extent for Tanzania, as generated from the

nine classification models. The results were compared with the previous national

field inventory (NAFORMA) on a national scale. As shown in Table 7.4, the

classification identified as being the best resulted in forest area estimates close

to the NFI. Table 7.4 also demonstrates a relationship between the forest area

mapped and the single-scene and multi-scene thresholds. As seen, the steps in

the area mapped between the thresholds are also quite large. This might imply
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that an improvement in the classification accuracy might be possible with further

refinement of the threshold selection and is an area for further study.

Table 7.4: Estimated forest area from the classification results for the nine mod-
els compared with national forest inventory (NFI) - NAFORMA, with a relative
sampling error of 8.89% on forests and woodlands, estimated at a total land area
of 883,000 km2 (MNRT, 2015). The highlighted (coloured) indicates the three
classification models with high accuracy from Table 7.2.

Classification model
Single-scene (%) Multi-scenes (%) Cover type Estimated area (km2) Area (%) NFI area (km2) Area (%)

30 30 Forest 756,686 84.87
Non-forest 134,913 15.13

30 50 Forest 612,041 68.65
Non-forest 279,558 31.35

30 80 Forest 321,124 36.02
Non-forest 570,476 63.98

50 30 Forest 708,875 79.51
Non-forest 182,725 20.49

50 50 Forest 521,238 58.46
Non-forest 370,361 41.54

50 80 Forest 249,171 27.95
Non-forest 642,428 72.05

80 30 Forest 614,830 68.96
Non-forest 276,770 31.04

80 50 Forest 407,976 45.76 481,000 54.4
Non-forest 483,624 54.24 402,000 45.6

80 80 Forest 156,134 17.51
Non-forest 735,466 82.49

7.3.2.4 Forest Area Estimates Ranked by Region

Country-level forest statistics provide information on forest resource status and

trends for policy formulation and progress in complying with regional and in-

ternational commitments. However, it is also necessary to report forest extent

(Figure 7.10) based on the regional administrative areas and streamline forest-

related reporting to increase its usefulness and relevance at the local level. Table

7.5 summarises forest extent by region in Tanzania.



CHAPTER 7. FOREST BASELINE CLASSIFICATIONS OF TANZANIA 213

Table 7.5: Forest extent summarised using a map ranked by regions

Rank Region Area (ha) Percentage (%)

1 Lindi 5,526,955 13.55
2 Ruvuma 5,059,867 12.40
3 Morogoro 4,295,711 10.53
4 Katavi 3,478,155 8.53
5 Tabora 3,054,801 7.49
6 Mbeya 2,163,746 5.30
7 Kigoma 1,988,670 4.87
8 Iringa 1,803,936 4.42
9 Pwani 1,739,369 4.26
10 Singida 1,689,458 4.14
11 Njombe 1,427,548 3.50
12 Songwe 1,220,258 2.99
13 Mtwara 1,203,790 2.95
14 Kagera 1,105,736 2.71
15 Tanga 951,165 2.33
16 Manyara 861,542 2.11
17 Rukwa 768,848 1.88
18 Geita 736,440 1.81
19 Dodoma 644,469 1.58
20 Kilimanjaro 377,028 0.92
21 Arusha 265,288 0.65
22 Shinyanga 177,709 0.44
23 Mara 92,345 0.23
24 Mwanza 89,022 0.22
25 Dar Es Salaam 43,970 0.11
26 Simiyu 31, 773 0.08

7.3.2.5 Forests in Protected Areas

The forest cover of in-situ conservation strategies such as protected areas is neces-

sary for biodiversity and ecosystem protection in Tanzania. Therefore, this study

also provides systematic information on how different protected areas (forest re-
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serves and wildlife-managed areas) support critical forest cover extent as an eco-

logical parameter required to produce desired conservation outcomes. Table 7.6

provides the forest extent in forest reserves and wildlife management areas in Tan-

zania. See Appendix 4 (Tables A.3, A.5, and A.6) for detailed forest extent in the

individual protected area category.

Table 7.6: A summary of forest extent (ha) in protected areas

Protected area category
Cover Forest reserve Percentage (%) Wildlife area Percentage (%)

Forest 6,911,300 17 11,339,583 28

7.3.2.6 Trees Outside the Forest in Urban and Agroforestry Systems

Figure 7.13 shows a detailed sample result for the TOFs in an urban area (Dar

Es Salaam). Similarly, Figure 7.14 displays an example area of the agroforestry

system, which has vast potential in affording multiple advantages to individual

farmers and communities. The performance of the classification algorithm proved

to be suitable for mapping TOFs. However, not every single tree can be depicted,

considering the spatial resolution of 30 m, and liable to exclude young trees due

to their small and scattered canopies and moderate height.
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Figure 7.13: A detailed sample of classification result for the TOF (Dar es Salaam
city). The spatial distribution and extent of TOF were not well understood earlier
due to the complexity involved in accurately mapping in mixed tree/crop/ human
settlements. This mapping includes all lands predominantly under urban use with
trees and/or shrubs whatever their spatial pattern (in lines or strips, in discrete
stands or scattered): (a) Classification output (b) Ground field photo (c) ESRI
Satellite (d) PlanetScope image (pixel size = 3 m). Photo acquired by the author
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Figure 7.14: A detailed sample of classification result for agroforestry system: (a)
Classification output (b) ESRI Satellite (c) PlanetScope image (pixel size = 3 m)
(d) Ground field photo. Photo acquired by the author

7.3.2.7 Post Disturbance Forest Regeneration

The classification result also identified areas recovering from anthropogenic distur-

bance as a noticeable measure of forest ecosystem resilience. However, there is a

limited forest recovery in unmanaged compared to managed forests derived from

the Landsat. Long-term post-disturbance recovery on unmanaged forests is limited

to the short fallow period due to human-induced perturbations and dependency

that hampers forest recovery capacity. Therefore, capturing forest regeneration
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in unmanaged forests remains a challenge as it rarely occurs. Hence monitoring

forest recovery in managed forests is necessary for enhancing the management of

the remaining forests. Figure 7.15 presents a sample area at Mohoro forest reserve

in the Rufiji district that was highly deforested. Accordingly, the result provides

quantitative evidence for using a Landsat sensor to monitor forest recovery from

anthropogenic and natural disturbance events.

Figure 7.15: A detailed sample of classification results for forest recovering from
human disturbances at Mohoro forest reserve. The classification result demon-
strated that remote sensing can i) provide spatially meaningful recovery baselines
on the nature of disturbance-recovery dynamics in forested ecosystems in Tanzania
and ii) retrospectively quantify and characterise historic forest recovery trends that
have implications for forest management, climate change mitigation, and restora-
tion initiatives in the near term: (a) Classification output (b) Drone orthomosaic
of October 2019 (c) Bing Satellite (d) Ground field photo. Photo acquired by the
author
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7.3.3 Forest Type Classification

The application of forest habitat suitability for constraining the forest types clas-

sification at a national scale was the challenge of differentiating the forest types

by their spectral differences into distinct forest types, such as open and closed sa-

vanna woodlands that occur due to seasonal abscission (leaf-on/leaf-off) cycles of

the year. Therefore, the approach adequately separated a range of distinct forest

types and contributed important information on the current status of unique forest

ecosystems and patterns in Tanzania (Figure 7.16).

Figure 7.16: Map showing areal proportional of forest types in Tanzania
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7.3.3.1 Accuracy Assessment

The forest types classification map’s overall accuracy was 85%, with F1 scores

ranging from 0.77 to 0.99. The areas distinguished as the different forest types

can also be considered accurate due to the low quantity disagreement of 0.02

(Table 7.7). Therefore, the proposed method has produced a desirable classification

result in a complex forest landscape with varying climatic conditions, from dry

savanna to moist montane forest (Figure 7.18 and Figure 7.17). It showed an

adequate level of agreement with the forest status on the ground.

Table 7.7: Thematic accuracy measures of the forest types classification: UA =
User accuracy, PA= Producer accuracy

Forest type UA(%) PA(%) F1 score Precision Recall Commission Ommision

Montane forest 88.53 ± 3.10 89.65 ± 2.80 0.89 0.89 0.88 0.002 0.003
Lowland forest 96.02 ± 0.90 88.55± 1.30 0.92 0.88 0.96 0.005 0.015
Mangrove forest 98.24 ± 0.34 100 ± 0.00 0.99 1 0.98 0.000 0.000
Closed woodland 72.35 ± 1.40 82.76 ± 1.10 0.77 0.83 0.72 0.067 0.049
Open woodland 89.73 ± 0.70 85.23 ± 0.60 0.87 0.85 0.89 0.057 0.068
Plantation forest 77.78 ± 5.5 90.32 ± 4.00 0.84 0.90 0.77 0.004 0.001
Thicket 89.60 ± 4.20 79.04 ± 4.00 0.84 0.79 0.89 0.001 0.003

Overall accuracy (OA) 85.22 ± 0.50
Allocation disagreement (AD) 0.11
Quantity disagreement (QD) 0.02
Proportion Correct (PC) 0.86
Total Disagreement (TD) 0.13
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Figure 7.17: An illustration of a detailed sample of classification result of thicket
woodland with a location of ground field photo. Photo acquired by the author
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Figure 7.18: An illustration of a detailed sample of classification result for the
forest types with a location of ground field photo. Photo acquired by the author
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7.3.3.2 Sources of Classification Error

The main confusion within the error matrix lies among the deciduous forest types

(closed and open woodland) (Table 7.8) as about 25% of closed woodland points

were classified as open woodland, and 8% of open woodland points were classified as

closed woodland. It remains a challenge to obtain a definite boundary between the

two classes (Figure 7.19) as the difference is related to tree cover rather than species

composition. Therefore, the spectral difference is associated with the percentage of

background soil and/or grassland reflectance versus canopy leaf reflectance. This

is associated with a broad overlap between an open and closed woodland and other

forest communities (Figure 7.21). For example, the possibility of habitat overlap

between closed and open woodland is estimated at 80%, and closed woodland and

lowland is about 40% (Figure 7.21) and often results in misclassification.

Likewise, in the country’s arid regions (Dodoma, Singida, Shinyanga, Simiyu, and

parts of the Manyara region) (Figure 7.16), forests are primarily limited by the

lack of water. They typically have low vegetation cover (Figure 7.20), which has

led to significant hurdles to accurate retrieval of forest cover in these areas using

remote sensing compared to humid regions. It remained with a sparse covering

of vegetation (leafless drought-deciduous plants), with increased soil brightness.

However, it is feasible to retrieve quantitative information about forest types in

a heterogeneous landscape across a national level, necessary for forest monitoring

despite these challenges.

Nevertheless, to minimize these classification errors, future studies could include

mapping direct measures of canopy openness allowing the identification of spa-

tial patterns of forest structure including discerning boundaries of forest structure
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across gradients. Classifying the openness of the canopy of dry tropical forests

remains a challenge when only using optical sensors and could benefit from a com-

bination of other EO data such as from Sentinel-1 (S1) SAR or higher resolution

Sentinel-2 (S2) optical sensors to capture and measure canopy openness (Verheg-

ghen et al., 2022).

Similarly, canopy height is a fundamental parameter for determining forest ecosys-

tem functions such as biodiversity and above-ground biomass in Tanzania. The

availability of Global Ecosystem Dynamic Investigation (GEDI), has provided sam-

pled observations of the forest vertical structure at a near-global scale allowing for

examining the vertical structure of vegetation spatially and temporally (Adrah

et al., 2022). Using these data would help better comprehend the variation in

canopy height in tropical forests, thereby supporting forest management practices,

and monitoring forest response to climatic changes.

Figure 7.19: An illustration of a detailed sample of woodland landscape with a
mosaic of closed and open woodland a) Classification result b) ESRI satellite image
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Figure 7.20: Example of the sparse woodland area from the semi-arid region of
the country. Semi-arid woodlands are eco-sensitive with minimal water resources
and experience fluctuations in plant biomass. Soil brightness can interfere with
signals for green vegetation classes due to both the comparatively low concentra-
tion of green vegetation in these areas and the physiological factors of the plants
themselves leading to less pronounced spectral curves than related forests in wetter
areas. Thus, given the sparseness and patchiness of vegetation in the landscape,
the use of Landsat data at 30 m resolution may increase the possibility of ex-
cluding the spectral contribution of vegetation within individual pixels leading to
classification error. High-resolution images such as Sentinel 2 imagery may pro-
vide a better solution for classifying these forest types in semi-arid areas. (Source:
NAFORMA 2013)
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Table 7.8: A contingency table for the forest types classification accuracy assess-
ment. The highlighted points (red) for closed and open woodland indicated more
mixing among the two classes. Cw=Closed woodland, Lo= Lowland, Ma= Man-
grove, Mo= Montane, Ow= Open woodland, Pf= Plantation forest, Th= Thicket

NFI field data
Cw Lo Ma Mo Ow Pf Th

C
la
ss
ifi
ca
ti
on

CW 2818 67 0 5 987 0 18
Lo 33 1640 0 17 18 0 0
Ma 1 0 56 0 0 0 0
Mo 1 35 0 355 4 6 0
Ow 547 94 0 7 6031 12 30
Pf 5 16 0 12 15 168 0
Th 0 0 0 0 21 0 181

Figure 7.21: Estimated probability of forest types overlap (mosaic) in Tanzania
based on national forest inventory measurements. The mosaic pattern tends to
increase on the woodland landscape as compared to other forest types. This has
a challenge on separability and hence accuracy assessment.
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7.3.3.3 Forest Types Area Estimates

The forest type classification model produced compatible areal estimates com-

pared with the national forest inventory (NAFORMA) with some minor differ-

ences among the forest types (Table 7.9), mostly open woodland with difficulty

distinguishing from other related forest types such as closed woodland and lowland

forest. The largest forest type by area is open woodland presenting 57%, followed

by closed woodland with 22%. Therefore, woodlands occupy around 79% of the

forest types, spreading from the central to the western part of the country and with

a mosaic of lowland forest along the coast and southern Tanzania (Figure 7.16).

The observed differences for the lowland forests are due to the challenges of differ-

entiating lowland from the montane forest and open and closed woodland during

inventory. The majority of the lowland forests were categorised as closed and open

woodland.

Table 7.9: Estimated area for the forest types classification as compared with
National Forest Inventory (NFI)-NAFORMA assessment

Forest types Map area (km2) Percentage (%) NFI area (km2) Percentage (%)

Montane forest 9,716 2.35 9,953 2.03
Lowland forest 60,670 14.65 16,565 3.38
Mangrove forest 767 0.19 1,581 0.32
Closed woodland 93,004 22.45 87,290 17.79
Open woodland 237,052 57.22 359,973 73.37
Plantation forest 6,695 1.62 5,545 1.13
Thicket 6,368 1.54 9,719 1.90

7.3.3.4 Forest Types Area Estimates Ranked by Region

The generated forest types (Figure 7.16) spatial distribution has also summarised

by regions (Table 7.10) potentially important for production forestry, conservation
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and planning.

Table 7.10: Forest types extent ranked by region

Forest type (area (ha))
Rank Region Montane Lowland Mangrove Closed woodland Open woodland Plantation forest Thicket

1 Lindi - 1,377,894 7,691 2,057,557 2, 082,704 1,046 -
2 Ruvuma 12,125 332,343 - 2,009,182 2,699,130 7,088 -
3 Morogoro 186,449 1,561,300 - 1,606,680 926,625 14, 353 303
4 Katavi - 3,101 - 1,022,021 2,452,964 - -
5 Tabora - - - 182,788 2,801,021 - 70,992
6 Mbeya 54,322 15,047 - 150, 698 1,903,027 38,881 -
7 Kigoma 771 36,955 - 1,023,376 920,846 6,722 -
8 Iringa 172,536 210,891 - 128,863 1072,248 210, 092 9,305
9 Pwani 276 971,532 36,433 342,745 387,265 1116 -
10 Singida - - - 4,324 1,379,695 - 307,215
11 Njombe 76,484 204,612 178,271 652,490 315,705 -
12 Songwe 7,022 73,34 - 117,659 1,075,793 12,450 -
13 Mtwara - 321,153 1,717 191,003 689,912 - -
14 Kagera 1,522 65,396 - 191,273 841,122 6,422 -
15 Tanga 109,982 376,893 2,194 121,568 318,368 22,724 77
16 Manyara 41,316 6234 - 53,565 633,332 11,490 115,604
17 Rukwa 2,062 330 - 277,576 488,638 376 -
18 Geita - 14,400 - 254,730 466,922 373 -
19 Dodoma 8,626 232 - 39,694 563,069 - 32,719
20 Kilimanjaro 137,233 13797 - 33,472 172,667 19,493 365
21 Arusha 121,967 4,346 - 16,547 116,442 5963 23
22 Shinyanga - - - 25,980 151,725 - -
23 Mara - 7520 - 13,700 51,877 18,768 -
24 Mwanza 12,902 - 6,984 65,886 3248 -
25 Dar Es Salaam - 8,909 584 4,929 29,451 97 -
26 Simiyu - - - 465 31,272 - -

7.3.3.5 Estimated Area of Forest Types in Protected Areas

The study also presented a forest baseline under different forest management

regimes regarding the forest cover amount within each protection category based

on the forest types (Table 7.11) as an essential component in enhancing the pro-

tection of distinct species assemblages. See Appendix 4 as Tables A.3, A.5 and

A.6 for detailed forest types in the individual protected area category.
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Table 7.11: Forest types in protected areas

Forest type (area (ha))
Protected area Montane Lowland Mangrove Closed woodland Open woodland Plantation forest Thicket

Forest reserve 379,626 643,797 58,336 1,254,700 4,426,201 127,952 20,686
Wildlife area 268,842 1,171,620 - 3,551,964 6,201,071 - 146,087

7.4 Discussion

7.4.1 Classification Results

This study has demonstrated the application of a machine learning classifier (XG-

Boost) and EO data on forest and forest types classification for Tanzania. The

evaluation of independent nine classification models for the forest/non-forest (Ta-

ble 7.2) presented the model with a single-scene threshold of 80%, and a multi-

scene threshold of 50% showed the highest overall accuracy of 89.22% with an

F1-score of 0.87 sufficient for reporting of forest extent in Tanzania. However,

future studies could try to optimise these thresholds further. The overall accuracy

for forest types classification was slightly lower at 85%, with an F1-score ranging

from 0.77 - 0.99. However, the unique introduction of habitat suitability modelling

constrained the classification such that a forest type was only considered for clas-

sification in appropriate geographic regions (Figure 7.16). A particular challenge

for the classification of forest types was differentiating closed and open woodland

areas, as the boundary between these classes is based on the tree cover rather

than the species composition of the woodlands. Future studies could also consider

approaches that aim to retrieve associated biophysical parameters such as canopy

cover. However, the result is considered the best mapping of Tanzania currently
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available and could be applied to other neighbouring countries (e.g., Kenya and

Mozambique) which have similar ecosystems.

The available training data played an important role in the classification and was a

determining factor in terms of the accuracy of the thematic classifications. Three

aspects were considered during training data collection: sample size, proportions

of the training data to be representative of the actual class in the landscape, and

minimal spatial autocorrelation. Therefore, the quality of the training data set was

a determining factor for the accuracy of the classification thematic maps.

These maps will help to establish a structure and long-term forest monitoring

system in Tanzania. Forest cover information is needed to support the national

forest policy to manage sustainably, conserve, restore and utilise forests and as-

sociated resources for Tanzania’s socio-economic growth and climate resilience.

Importantly for addressing issues of REDD+ and GHG as international reporting

commitments and the 2030 Agenda for SDGs over fighting deforestation (Anderson

et al., 2017).

A further consideration is that the study used imagery over a 5-year period (2013

– 2018) to mitigate the issue of sufficient data availability given the high level of

cloud cover, particularly in the coastal areas. However, change will have occurred

in the forest extent during this period. Therefore the forest extent and type maps

represent the forest cover for the majority of the scenes within the period. Within

Chapter 8, the maps are updated to be up to date for the end of 2018.
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7.4.2 Forest Area Estimates

Given the increasing trend in Tanzanian population growth (Figure 3.9) (World

Bank, 2019), the need for food, water, and other products will increase pressure

on the remaining forest resources. Therefore, it is timely to update forest cover

mapping with the aim of enhancing forest cover and climate change mitigation

and adaptation at a national level. The forest cover extent over the country was

estimated with an area of 407,976 km2, which accounts for 45.76% (Table 7.4) of

the country landmass area.

From the forest types classification, the woodlands (closed, open woodland, and

thickets) are the most prominent class and an important ecosystem of great signif-

icance to human economies (Mitchard and Flintrop, 2013; Campbell et al., 2007),

estimated to cover about 336,405 km2 which makeup 81.20% of the forested land

in Tanzania and mainly covering the central and western part of the country. The

montane forest as a biodiversity hotspot along a chain of isolated mountain ranges

(Figure 7.16) supports a diversity of endemic species (Fjelds̊a, 1999) and was es-

timated at 9,717 km2 representing 2.35% of the forest cover (Table 7.9). The

lowland forest habitat overlapping with montane forest and woodlands with the

most significant biological value and source of water supply for wildlife and people;

was estimated to cover 60,718 km2, presenting 14.16% of the forest cover, next to

closed woodland (Table 7.9).

Compared to previous forest assessment results in Tanzania from the national

forest inventory, this analysis’s output is comparable with some differences, espe-

cially for the delineated woodlands (Table 7.8). The National Forest Inventory

(NAFORMA) conducted from May 2011 to June 2014 estimated the total forested
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land in Tanzania at 481,000 km2 of land, equivalent to 54.4% of the total land

area of 883,000 km2, with a detailed of forest types extent summarised on Ta-

ble 7.9.

The differences between forest inventory and this result can be explained as dif-

ferent timing between the two analyses. The field inventory data were collected

at the sampling plot level and typically aggregated to the forest stand level at

a country size (Hości#lo and Lewandowska, 2019). It is mainly associated with

challenges of reaching some areas with traditional forest inventory and pushing in

sampling intensity reduction and focused sampling effort with few samples/plots

selected from these areas (Mitchell et al., 2017) particularly in the mountains. For

example, from the national forest inventory (NAFORMA), the number of plots in

a cluster varies from six to ten, depending on the determined challenge to reach the

plots (Vesa et al., 2010) resulting in a relative sampling error of 6.87% for forests,

2.02% woodlands and 6.91% for thickets (bushlands) (MNRT, 2015).

7.4.3 Potential Forested Areas in Tanzania

Analysis of the distribution of forests in Tanzania indicates that the coastal, south-

ern highlands and western parts of the country are mostly covered with forests

(Figure 7.10 and Figure 7.16). These areas occupy a significant portion of the

designated areas for forest reserves and wildlife-managed areas in Tanzania (see

Appendix 3 and 4 as Figure A.1 and Tables A.3, A.5 and A.6). Management

of protected areas highlights an efficient management approach for forest conser-

vation efforts (Rosa et al., 2018). With the economy’s progress, industrial forest

plantations have grown enormously in Tanzania. The increase in plantation forests



CHAPTER 7. FOREST BASELINE CLASSIFICATIONS OF TANZANIA 232

from government, community, and individual farmers with most of the planted area

situated in the southern highlands (Figure 7.16), supports this part of the country

mapped with high forest extent (Kimambo and Naughton-Treves, 2019).

Future expansion of forest plantations in Tanzania will significantly improve landscape-

scale restoration and can bring degraded land back into production, and improve

the provision of ecosystem services in enhancing the ecological integrity and tack-

ling climate and environmental challenges. If managed effectively, forest planta-

tions provide the potential to sustainably supply a substantial proportion of the

goods and services required by the communities, and therefore allow other for-

est areas to be managed for conservation and protection objectives in mitigating

climate change impacts. Plantation forestry also is also likely to change from

large-scale investments to those that are small or medium-scale in which local

households and communities are owners or co-owners or be employed in forestry

and wood processing. This is anticipated to new livelihood opportunities for Tan-

zanian communities.

7.4.4 Implications for Forest Management

Application of EO data will enhance timely sustainable forests and forest types

management on the status, extent, and location, and forms an essential component

of implementing the 2030 Agenda for achieving the Sustainable Development Goals

(SDGs), particularly SDG15 (Sayer et al., 2019) in developing countries. Manage-

ment of forests in Tanzania is mainly challenged by rapid population growth and

ongoing climate change and hence remains a matter of debate. Consequently,

the updated forest classification results will also promote the management of the
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TOFs (Figure 7.13 and Figure 7.14) as an essential component, contributing to

the scenic value of the landscape and carbon storage functions (Chakravarty et al.,

2019). Therefore, information on TOFs is relevant as a basis for improving forest

monitoring and land management decisions to help sustain tree cover and reduce

pressure on TIFs in Tanzania.

Similarly, the classification method also captured the regenerating forests (Fig-

ure 7.15), which is essential for attaining the current and future forest manage-

ment aimed at ensuring forest sustainability (Ligate et al., 2019). Monitoring

forest recovery is a fundamental determinant in understanding forest status, ex-

tent, location, and dynamics, as functional conservation and forest management.

The information from regenerating forests is crucial, especially for measuring con-

servation efforts necessary for environmental policy intervention and protection to

mitigate biodiversity losses (Crouzeilles et al., 2017).

Therefore, the development of a baseline for forest recovery will subsequently pro-

vide trends and a framework to complement and integrate existing information on

forest recovery from disturbance, including ground measurements. Such baseline

information is essential for identifying spatial and temporal trends regarding forest

disturbance and recovery that can be used to inform and bound questions related

to forest management and climate change and support policy development. These

are essential measures associated with the return of vegetation and trees to the

land.

However, future analysis will require the use and application of airborne laser

scanning (ALS) data that provide robust canopy height and cover measures to

enable assessments that should provide insights into the return of forest structure

(White et al., 2022).
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This study’s outcomes describe the ability to provide a reliable, comprehensive,

and up-to-date forest map over a large area on a national scale. This information is

essential to improve forest management, monitoring changes, habitat and biodiver-

sity assessment, and forest carbon estimation. The spatial distribution and areas

of forests in Tanzania gained immense attention to reduce the environmental and

social impacts of forest exploitation. This information can help identify and plan

for conservation efforts and opportunities to minimize the effects on biodiversity

and livelihoods. Hence, the methodology developed is transparent, transferable,

and presents a timely national forest and forest-type extent.

7.5 Conclusions

The establishment of a forest baseline is an important step towards creating a forest

tract and related changes for future monitoring in support of decision-making. The

changes in Tanzanian forest cover are still alarming; for example, according to the

FAO report of 2020, Tanzania is placed among the countries with large forest

area declines since the 1980s. The rate of changes based on the compound annual

change rate indicates the increase in forest loss from 1990 - 2020 for about 0.88%

representing 420,500 ha of forests deforested annually (FAO, 2020).

Therefore, advancements in remote and close-range sensing techniques are essen-

tial in attaining scientific output and improving forest monitoring in Tanzania for

future development. This study’s method produces the first consistent and robust

estimates of forests and forest types covered in Tanzania using machine learn-

ing classification and EO data. These results reduce the uncertainty concerning

forests and forest types extent as previous studies provided inadequate coverage.
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This study has also contributed essential information for both science and forest

management in Tanzania. However, clouds and shadows remain a critical chal-

lenge for the number of observations with free pixels, especially along the coast of

Tanzania. To overcome this problem, the algorithms generated in this study could

be implemented and further enhanced with the fusion of both optical and SAR

imagery. Sentinel-2 images are ideal for large-scale analysis due to an extensive

swath and dense series (Hości#lo and Lewandowska, 2019). The methods developed

in this study could be directly transferred to these data, allowing up-to-date forest

cover and forest-type maps with an increased spatial resolution of 10 m to be gen-

erated. SAR images from Sentinel-1 and PALSAR-2 could be used to offset the

impacts of clouds, haze, and dust, which are freely accessible to map forest cover

in Tanzania. Similarly, single-scene and multi-scene thresholds were arbitrarily

selected to maintain computational viability, but future work can experiment with

other thresholds to improve large-scale classification results and obtain an optimal

value.
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8.1 Introduction

This chapter aims to create a forest change and monitoring framework for Tanzania

centered on reporting change estimates derived from Earth Observation (EO) data.

Consideration is needed for the availability of imagery, production of analysis-

ready data products, the management of computational resources (compute and

storage), and appropriate image processing and change detection approaches. The

changes within forested regions result in two types of responses, abrupt changes

(e.g., deforestation or fire) or gradual changes (e.g., disease, pests, or climatic).

Natural changes within the system are often gradual or cyclic, such as fire burning,

a key part of the savanna ecosystem. However, anthropogenic changes usually

result in abrupt deforestation events that also result in long-term land use changes.

Therefore, this monitoring system’s primary focus is to identify abrupt changes,

which are likely to result in long-term changes in land cover and use.

Therefore, the forest monitoring system should provide the capability for observ-

ing changes in forest resource extent, understanding the volume and frequency of

unplanned deforestation, restoring degraded forest landscapes, and evaluating the

vital function of carbon sequestration by forests and wooded lands. This provides

the opportunity to develop a sound forest resource information system based on

up-to-date and reliable information and to create national forest policies, planning,

and sustainable development (Romijn et al., 2015).

Large-scale forest monitoring by remote sensing has been widely reported from

global forest change datasets and gives reasonable initial forest loss estimates (Gali-

atsatos et al., 2020; Chen et al., 2020). The Hansen et al dataset1 version 1.7 at

1http://earthenginepartners.appspot.com/science-2013-global-forest
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the resolution of 30 m that provides a global forest loss estimate from 2001 - 2020

(Hansen et al., 2013). As a global and freely available dataset offers extensive

forest change analysis, the accuracy of which should be assessed for Tanzania and

a comparison made with the results of this study.

Therefore, this chapter provides a practical quantification of forest monitoring in

Tanzania and uses long-term datasets to capture occurrences and trends linked to

forest changes. The change analysis is based on the forest baseline developed in

Chapter 7. It is focused on explaining the changes in forest extent and assessing

the potential effectiveness of the system in forming the basis for and enhancing the

national forest monitoring system in Tanzania. A further consideration is that the

system should be as automated as possible, requiring little or no operator input

while scalable to provide national coverage of Tanzania.

8.2 Method

8.2.1 Datasets

8.2.1.1 Benchmark Forest Mask

The forest/non-forest map from Chapter 7 (Figure 7.10) was utilised for forest

change analysis at a country level (Figure 3.1), where only deforestation changes

within the forest/non-forest mask were considered (Figure 8.1).
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Figure 8.1: Forest monitoring system design for change detection in Tanzania

8.2.1.2 Satellite Images (Landsat 8)

The Landsat 8 (OLI-TIRS) images from the collection 1 archive were used for

this analysis and processed to the same ARD produced as detailed in the earlier

chapters (see Chapter 4 for details). Data were downloaded and processed for the

period of May to October 2018, 2019, and 2020. The FMask detection algorithm
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(Zhu et al., 2015; Foga et al., 2017) was used for cloud masking, but an addition

‘clear-sky’ produced was also derived through the RSGISLib software (Bunting

et al., 2014).

Following clouds and cloud shadows masking, it is common to get many small

areas of imagery between the clouds left over. In many cases, those small regions

of imagery are either not useful for a given application and/or atmospheric cor-

rection of the regions is of poor quality due to adjacency effects from the clouds

and atmosphere associated with a cloudy environment. The clouds and cloud

shadows omissions are also commonly found in these regions around the identified

clouds.

A solution to this problem is to select only the areas of the scene above a particular

size threshold as being ‘useful’, discarding the rest. Within RSGISLib, this is

referred to as a ‘clear-sky’ mask. The generation of the ‘clear-sky’ product is a

two-step process. The first step is to buffer the identified cloud by 30 km. Those

regions outside of the resulting mask were clumped, and only those with a size

greater than 3,000 pixels were selected. They were grown, so they were not within

10 km (30 Landsat TM pixels) of an FMask cloud or cloud shadow object.

The application of the ‘clear-sky’ analysis results in a reduction in the available

data, with useful data being lost. However, it also reduces errors in the following

change analysis associated with omissions in the cloud masking.
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8.2.2 Software System

At the core of the monitoring system is the EODataDown2 software (Bunting,

2018). EODataDown can be configured to automatically download and process

Landsat, Sentinel-2, and Sentinel-1 data to an analysis-ready data product. The

analysis is executed in date order with the oldest image first. Following the gener-

ation of an analysis-ready data product, EODataDown can execute a set of user-

defined plugins that perform a set of data analysis tasks. Each time the system is

executed, the latest imagery is downloaded and analysed. However, by using a tool

such as cron3, the system can be automated to execute independently at a set time

interval (e.g., daily or weekly) and therefore create a monitoring system.

For this study, EODataDown was configured to download, and process Landsat

8 imagery for Tanzania with a set of user-defined plugs implemented to create

a monitoring system for forest change in Tanzania. The plugins implemented

were:

1. Generate the clear-sky mask

2. Generate initial per-scene change masks

3. Apply XGBoost classifiers to generate the final change product for the scene

The advantage of the EODataDown system is that it allows the end-user to focus

on their data analysis while the EODataDown architecture manages the system

data storage and processing, creating a monitoring system.

2https://eodatadown.remotesensing.info/, https://github.com/remotesensinginfo/eodatadown
3https://en.wikipedia.org/wiki/Cron
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8.2.3 Mapping Forest Change

8.2.3.1 Forest Change Definition

Changes in forest cover can start with modification or direct conversion. For-

est modification results in changes in the structure, composition, and function of

forests causing the reduction of many ecosystem benefits, including loss of connec-

tivity. It is often also a precursor to outright deforestation (Grantham et al., 2020).

However, the conversion of forests consists in clearing natural forests (deforesta-

tion) to use the land for other purposes, often agricultural (crops or creation of

pastures for livestock), but also for mining, infrastructure, or urbanisation.

Therefore, forest change is described as the complete or partial removal of forest

cover (Figure 8.2) that causes changes in forest structure (Reiche et al., 2021). In

the context of remote sensing, this needs to consider the resolution of the imagery

being used. For this study, it is considered that at least three pixels (30× 30 m),

an area of about 0.27 ha, were considered the minimum mapping unit. Defining

the minimum mapping unit helps to minimise the number of false-positive changes

due to the complex land surface conditions, especially in the savanna ecosystems,

which are naturally more variable.

Forest change detection is designed to detect and track abrupt forest change events

from anthropogenic and natural catastrophes (Coppin and Bauer, 1996). It aug-

ments the forest information as a novel source of forest change map products in

Tanzania. As a result, changes in forest cover may be attributable to human activ-

ities, such as converting forests to other land uses, such as pastures, settlements,

roads, and infrastructure construction. In addition, illegal and non-sustainable
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logging, firewood extraction, and mining are altering forest cover. Natural phe-

nomena include insect infestations and floods, droughts, desertification, fires, land-

slides, windthrow and tsunamis. A summary of the forest change detection process

is presented in Figure 8.2.

Figure 8.2: A flowchart of forest change detection analysis

8.2.3.2 Masking Burnt Areas

Fire is a vital ecological factor influencing tropical savannas’ composition, struc-

ture, and distribution. Fire has become a part of tropical savannas throughout

recorded history. These savannas burn more frequently and more extensively every

year than any other biome. Therefore, fire occurrences create temporal changes

to the Tanzanian woodlands and were not considered a permanent forest cover

change. It is normal for these ecosystems to have a patchwork of burnt areas and
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rarely produce long-term changes to the ecosystem (Figure 8.3). In the context of

this study, these changes are not considered “real change”. Human-made fires in

Tanzania’s forest areas remain more common than natural fires and occur more

frequently in woodlands than in evergreen forests (Mugasha et al., 2004). Anthro-

pogenic forest fires in Tanzania are often caused by traditional shifting cultivation

or illegal logging. It occurs from May to November with a peak from August to

October (Mugasha et al., 2004). The proper use of fire in woodland (savannas) is

essential for maintaining these ecosystems as early burning is carried out to reduce

more severe fire damage later in the fire season. Similarly, the recruitment of trees

into larger-sized classes is heavily influenced by fire intensity due to the amount

of fuel (grasses), the fuel’s physical and chemical properties, climatic conditions,

soil moisture, and topography (Govender et al., 2006).
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Figure 8.3: A sample of a burnt area in the savanna and the quick recovery from
field survey, October 2019. Therefore, this indicates a partial forest cover change.
Photo acquired by the author

To separate fire from other changes within the analysis, the Normalised Burn Ratio

(NBR) index equation (8.1) and Burn Area Index (BAI) equation (8.2) were used.

The NBR index was used to identify burned areas that use the shortwave-infrared

(SWIR) and near-infrared (NIR) portions of the electromagnetic spectrum (Garćıa

and Caselles, 1991) and BAI highlights the burned area in the red to near-infrared

(NIR) spectrum (Chuvieco et al., 2002). The thresholds of NBR > −0.02 and BAI

< 100 were used to define the unburnt areas, and it was within these areas that

the remaining change analysis was undertaken.

NBR =
NIR− SWIR

NIR + SWIR
(8.1)
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BAI =
1

(0.1 +R)2 + (0.6 +NIR)2
(8.2)

Where for Landsat 8: R = band 4 and NIR = band 5 and SWIR = band 7

8.2.3.3 Plantation Forests

Plantations are heavily managed forests within the landscape and are not consid-

ered in terms of national forest change statistics as they are already considered

‘changed’ due to anthropogenic modification. Change regularly occurs with plan-

tation forests with partial forest loss after harvesting, but replanting occurs shortly

after, and therefore, while the land cover may have temporally changed, the land

use has not. To mask the plantation forest areas, a mask was extracted from the

forest type classification result (Figure 7.16) from Chapter 7.

8.2.3.4 Scene Based Change Detection

The change analysis was undertaken in two steps. The first identifies possible

change pixels within the forest/non-forest mask, defined in Chapter 7, following

masking for burnt areas and plantations, using an NDVI threshold of < 0.35.

Additionally, a threshold (< 30%) for the percentage of pixels identified as a

potential change is applied, where if more than 30% of forested pixels have been

identified as a possible change, then it is assumed that this is a seasonal change

(i.e., loss of leaves due to phenology) and therefore should be ignored. At the scale

of the Landsat scene, even with data removed due to cloud cover, the percentage

of expected change is small. Finally, features of less than 3 pixels are removed

from the layer to reduce noise.
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Using the pixels identified in the first stage, the second identifies the change

through a classification, using the same XGBoost classifiers (Section 4.5.5) trained

in Chapter 7. The 100 classifiers are only applied to the pixels identified in the

first stage, which significantly speeds up the application of the classifiers to the

image as only a small percentage of the total number of pixels within the scene are

being classified. The 100 classifications are merged, and a threshold of 50% was

applied to identify forest and non-forest regions. The resulting non-forest regions

are considered the final change features for the scene.

8.2.3.5 Summarising Forest Changes and Updating Baseline

To update the forest baseline (Figure 8.4) and confirm changes, the noise (i.e.,

false-positives) from the individuals’ scenes needs to be taken into account, which

can be considerable, particularly where the FMask cloud and cloud masking has

performed poorly. Therefore, to confirm a change, it needs to have been identified

several times. Through experimentation, a threshold of 5 was selected to confirm

a change.

For this study, the changes were summarised to provide annual products, as re-

quired for national reporting, where the date of a change was associated with

the date of the first observation of change. However, a scoring system could also

be used within an additional EODataDown plugin to provide alerts of confirmed

changes.

Change occurrence summaries were therefore generated for 2018, 2019, and 2020.

The 2018 change layer included all the changes identified in the forest/non-forest

extent for the 2013 to 2018 period and therefore updated the existing forest base-
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line to the discrete date of January 1st, 2019. The change alerts for 2019 were

identified and applied to generate a baseline for January 1st, 2020. Finally, while

the Landsat imagery was processed for 2020, few change regions were confirmed as

the requirement to confirm changes with 5 observations means that many changes

are only confirmed once the following years’ data (i.e., 2021) is available. Lower-

ing the threshold to 3 observations increased the amount of change identified for

2020, which looks to be at a similar level as 2019. However, there was also an

increase in the number of false positives. Therefore, the focus will be on reporting

on the changes identified for 2019. The detected forest changes intend to provide

an early indication of deforestation occurrences so that law enforcement officers,

local communities, advocacy organisations, and other responders can take action

including visiting the location in the field.

Figure 8.4: Flowchart for updating forest baseline following change detection anal-
ysis
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8.2.4 Forest Change Accuracy Assessment

Assessing change detection accuracy is difficult as change is rare, with only a

small percent of pixels changing within a given period (e.g., one year). Therefore,

to assess the accuracy of the changes identified by this study, relatively small but

intensively assessed plots were used. A single plot was defined as a 1 × 1 km

area, corresponding to 1 km2. The extent was observed as the most suitable

trade-off, providing sufficient area for a representative assessment but being viable

to interpret accuracy points intensively. A total of 16 sample plots (Figure 8.5)

were selected in areas where changes were known to have occurred and stratified

across the different forest types. For each 1 × 1 km plot, 1,000 randomly located

points, with a minimum spacing of 30 m between points, were generated. The

minimum distance constraint was designed to ensure a pixel was only assessed

once. In total, 16,000 verification points were used for the accuracy assessment.

The verification points were not stratified using the generated change layer to

avoid bias in the location of the points, but the densely allocated points should

enable the estimation of change omissions, a significant challenge when assessing

the accuracy of a change product (Olofsson et al., 2020).

The evaluation of forest change was assessed using precision, recall, F1 score, user

and producer accuracy, and overall accuracy metrics, which match binary classifi-

cation and are widely applied in remote sensing classification methods (Pitkänen

et al., 2020; Matton et al., 2015). Therefore, the evaluation focused on generat-

ing forest change information based on true positive, true negative, false positive,

and false negative. The final forest loss accuracy assessment was compared (e.g.,

Galiatsatos et al., 2020) with available global forest change dataset from Hansen
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et al. (2013) version 1.7 available online4 and clipped to Tanzania’s national bound-

ary.

Figure 8.5: Distribution of sample accuracy assessment plots

8.2.4.1 Visual Validation of Forest Changes

The validation points were visually examined using the available Landsat 8 and

PlanetScope images (3 m spatial resolution) for the presence of change using the

Class Accuracy assessment tool in QGIS5 (Bunting et al., 2018). The images

were acquired in October or November between the two target years to minimise

seasonal variation and temporally false changes (Table 4.1). For example, the

validation was undertaken by observing the earlier image from the year 2018 and

was confirmed using the later image of the year 2019, whether “real” or “false”

4http://earthenginepartners.appspot.com/science-2013-global-forest
5https://github.com/remotesensinginfo/classaccuracy
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forest change. Utilising the images as the reference data to evaluate forest change

result ensures more reliability than that applied to produce the information (Olof-

sson et al., 2014). The application of PlanetScope images (high spatial resolu-

tion) reduces uncertainty in evaluating detected forest loss results (Vargas et al.,

2019).

8.3 Results

8.3.1 Forest Change Result

The accuracy assessment focused on the 2019 change product as this is the only

complete year. As detailed, the 2018 change (Figure 8.6) contains the product of

changes that occurred between 2013 and the end of 2018. While 2020 has not had

sufficient observations to confirm the changes.
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Figure 8.6: Forest change extent in Tanzania for the year 2018

The 2019 result demonstrates a countrywide wall-to-wall map of forest cover

change over Tanzania (Figures 8.7–8.8 and Figure 8.9) adequately detected for-

est changes from the baseline map and could be used for reporting annual forest

change statistics. The forest loss area estimates for 2019 from this study were

compared with the global forest change analysis of Hansen et al. (2013) version

1.7, Table 8.1 and found to be comparable. A further comparison quantitative

accuracy comparison is provided below.
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Table 8.1: Forest loss area for the year 2019 (this study) compared with global
forest cover loss from Hansen et al. (2013) version 1.7

Forest cover loss area (ha) and Percentage (%)
Class This study % Hansen et al. (2013) %

Forest change 157,204 0.39 142,773 0.36

Figure 8.7: An example of forest cover loss area for 2019 from forest cover change
analysis with detailed sample areas (a-d) as derived from Landsat 8. These areas
are consistently experiencing increases in deforestation, and this information allows
for rapid and consistent identification of priority forest areas in need of better
protection, valuable insight for decision-makers, and law enforcement: i) Western
and ii) Southern Highland of Tanzania
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Figure 8.8: An example of forest cover loss area for 2019 from forest cover change
analysis as derived from Landsat 8 with detailed sample areas (a-d) for i) Southern
and ii) Eastern Tanzania
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Figure 8.9: An example of forest cover loss area for 2019 from forest cover change
analysis as derived from Landsat 8 with detailed sample areas (a-d) for i) Lake
and ii) Central part of Tanzania
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8.3.2 Accuracy Assessment

Table 8.2 summarises the accuracy assessment results for the changes identified in

2019. The accuracy was found to be good with an F1 score of 0.82 compared to

the global forest change assessment of Hansen et al. (2013) with an F1 score of

0.45, highlighting that the Hansen et al. (2013) product is not capturing the full

extent of forest change with Tanzania. The reasons for not picking up change to the

same extent may be caused by the dissimilarity between datasets timing, including

classification errors, and different treatment of mixed pixels due to phenological

differences caused by image acquisition dates. For example, many canopy species

in the woodlands lose their leaves during the dry season. Similarly, plantation

harvesting and management as well as fire damage are interpreted as forest losses

within the dataset, which is not the case in Tanzania.

For the no-change class, the accuracy was similar with an F1 score of 0.96 for

this study and 0.89 for Hansen et al. (2013). It would be expected that the no-

change results will be similar, with change only representing a few percent of

the landscape. Therefore, the majority of the accuracy assessment points will be

in no-change regions, and even significant errors within the change result would

only result in small changes to the no-change class extent. This difference in the

accuracy of the change product also demonstrates an improvement in the quality

of forest change data available and highlights the importance of locally optimised

analysis methods versus being reliant on global datasets.
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Table 8.2: Model performance evaluation metrics for potential forest changes in
2019 at 95% confidence interval, compared to global forest change analysis version
1.7 of 2019 (Hansen et al., 2013)

Class Measure This study Hansen et al. (2013)

Change Producer accuracy (%) 96.13 ± 0.74 65.98 ± 2.04
No-change 92.74 ± 0.36 84.21 ± 0.33
Change User accuracy (%) 71.42 ± 1.52 34.25± 1.59
No-change 99.22 ± 0.15 95.20 ± 0.37
Change Precision 0.96 0.65
No-change 0.92 0.84
Change Recall 0.71 0.34
No-change 0.99 0.95
Change F1 score 0.82 0.45
No-change 0.96 0.89

Overall accuracy (%) 93.28 ± 0.38 82.19 ± 0.59

Figure 8.10 illustrates an example of detected forest change by comparing two

Landsat 8 images of 24/10/2018 (before) and 27/10/2019 (after) and a high-

resolution image (PlanetScope), overlaid with a sample change area. It indicates

the accuracy and capability of the model to detect forest loss.
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Figure 8.10: An example of forest loss for 2019 demonstrates that the model
using Landsat 8 data captured the forest loss. The result was evaluated to a
high-resolution image (PlanetScope image with a resolution of about 5 m) which
indicated a similar forest loss over the two periods 24/10/2018 and 27/10/2019 for
(a - b) Landsat 8 and c) PlanetScope image
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8.3.2.1 Comparison with Hansen Product

Figure 8.11 demonstrates a detailed visualisation of the spatial distribution of

forest loss comparing this study and to that of Hansen et al. (2013) for 2019.

The changes identified by both products are correct (highlighted with a yellow

circle), but Hansen et al. (2013) has underestimated the true area of change for

this region.

Figure 8.11: A detailed forest loss visual comparison with global forest change
analysis from Hansen et al. (2013) version 1.7 for 2019 and overlap areas where
both reported changes are highlighted (yellow circle).
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8.3.2.2 False-Negative Forest Loss (omission error)

Despite the model attaining adequate forest loss detection, some false-negative

forest loss also occurred (Figure 8.12). A false negative emerged when the model

failed to identify an area of loss. Anomalies have been associated with pixel edge

effects and seasonal fluctuations, particularly in semi-arid areas of the country

and a small number of clear sky images. Similarly, inaccuracy has occurred in

areas with low forest cover and forest changes in the form of numerous small-scale

clearings.

However, these results highlight the fact that the system provides accurate detec-

tions with few false-negatives and can thus be used as an alert system (fast forest

change detection from optical data) and for identifying losses of forest in Tanza-

nia. These can then be used, for example, to compute national forest extent and

change statistics.
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Figure 8.12: A detailed false-negative forest loss as compared to global forest
change analysis (Hansen et al., 2013) version 1.7. This demonstrates forest areas
that had forest loss but were not detected by the model

8.3.2.3 False-Positive Forest Loss (commission error)

The false-positive forest loss was also detected on the global dataset (Hansen et al.,

2013) version 1.7 of 2019 in some areas that were not identified by this study. For



CHAPTER 8. FOREST CHANGE EXTENT ANDMONITORINGOF TANZANIA262

example, in forest nature reserves under category Ib (Wilderness Area) of the

International Union for Conservation of Nature (IUCN) (Leberger et al., 2020)

with importance biodiversity protection, and with no previous records related to

anthropogenic disturbances (Figures 8.13–8.14).

Figure 8.13: A detailed false-positive forest loss from global forest change analysis
(Hansen et al., 2013) version 1.7 for 2019 as this study did not capture the false-
positive change at Minziro Nature Forest Reserve. Forests in the nature reserve
are reclaimed as deforestation occurs while the forest remains intact. Since it is
a wet forest, these areas’ signature constantly resembles that of the closed forest
(lowland forest). As a result, when a pixel is continuously forested, the algorithm
has trouble identifying a change from a forest to a non-forest. As a result, the
algorithm becomes confused when detecting a transition from forest to non-forest
when the pixel is forested throughout time.
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Figure 8.14: A detailed false-positive forest loss from global forest change analysis
(Hansen et al., 2013) version 1.7 for 2019 as this study did not capture the false-
positive change at Mkingu Nature Forest Reserve. Forests in the nature reserve are
reclaimed as deforestation, while the forest is intact. The signature of these areas
resembles that of the forest all the time as it is a mountainous forest (montane
forest). In this way, the algorithm is confused in detecting a transition from forest
to non-forest when the pixel is forested throughout time
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8.3.3 Estimated Forest Change by Regions

The forest change results were also summarised at a localised level to indicate

areas affected by deforestation (Table 8.3).

Table 8.3: Forest change extent summarised using a map by regions in Tanzania

Area (ha), year
Region 2018 2019 2020

Tabora 211,412 31,587 5,332
Katavi 120,629 23,171 2,030
Rukwa 74,957 13378 1,360
Mtwara 30,431 12,633 2,227
Mbeya 84,983 10,582 4,185
Lindi 35,004 10,223 780
Singida 32,096 10,175 4,268
Kigoma 76,750 8,926 893
Songwe 72,716 7,020 2,945
Iringa 22,470 6,033 664
Ruvuma 30,246 5,991 638
Morogoro 16,674 5,745 92
Geita 33,318 3,630 338
Pwani 8,120 1,769 57
Shinyanga 10,449 1,646 125
Njombe 5,529 1,384 111
Dodoma 5,233 759 1,054
Kagera 5,823 411 57
Mwanza 3,455 374 38
Kilimanjaro 27 28 -
Tanga 689 18 10
Mara 1,453 18 10
Simiyu 91 10 6
Manyara 456 9 3
Dar Es Salaam 10 2 -
Arusha 19 1 -
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8.3.4 Change in Forest Types by Region

Changes can also be broken down by the forest types (Tables 8.4, 8.5 and 8.6). It

can be seen that the majority of changes identified are within the open woodlands,

primarily due to shifting cultivation. Closed woodlands and lowland forests have

also witnessed significant change. However, it should also be noted that the volume

of change within each type corresponds with the area of that type (i.e., Open

woodland, Closed woodland, and lowland forest) are the 3 largest forest types by

area in Tanzania.

Table 8.4: Forest types change by region

Forest type change (area (ha))-2018
Region Montane Lowland Mangrove Closed woodland Open woodland Plantation forest Thicket

Tabora - - - 406 199,969 - 1,122
Katavi 19 - 4,208 105,367 - -
Mbeya 72 64 - 962 69,470 - -
Songwe 57 15 - 845 67,283 - -
Rukwa 21 14 - 3,699 66,912 - -
Kigoma - 85 - 6,613 61,048 - -
Geita - 5 - 593 32,686 - -
Singida - - - 280 27,460 3,274
Ruvuma 51 250 2,119 24,958 - -
Iringa - 250 - 239 19,998 - -
Lindi - 9,777 38 3,346 19,277 - -
Mtwara - 9,381 1,354 15,569 - -
Shinyanga - - - 82 10,316 - 2
Morogoro 39 3,106 - 4,490 6,848 - -
Kagera 2 21 - 134 5,618 - -
Dodoma - - - 315 4,418 - 55
Njombe 40 276 - 142 4,371 - -
Mwanza - 491 - 215 2,646 - -
Pwani - 3,231 27 2,255 1,541 - -
Manyara - - - 10 336 - -
Mara - 161 - 1,041 221 - -
Tanga 88 178 6 173 103 - -
Simiyu 1 82 - -
Kilimanjaro - - - 2 23 - -
Arusha - - - 1 12 - -
Dar Es Salaam - - 1 5 - -
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Table 8.5: Forest types change by region

Forest type change (area (ha))-2019
Region Montane Lowland Mangrove Closed woodland Open woodland Plantation forest Thicket

Tabora - - - 212 30,815 - 416
Katavi - 2 - 687 21,256 - -
Rukwa 8 2 - 1,765 11,225 - -
Mbeya 8 10 - 267 9,860 - -
Singida - - - 40 7,677 - 2,441
Kigoma 11 20 - 1,003 7,432 - -
Songwe 11 13 - 113 6,689 - -
Iringa 5 11 131 5,382 - -
Lindi - 3,599 3 1,221 4,921 - -
Mtwara - 5,891 - 869 4,893 - -
Ruvuma 7 154 - 843 4,766 - -
Geita - 1 - 106 3,519 - -
Morogoro 13 1,116 - 2,582 1,669 - -
Shinyanga - - - 13 1,633 - -
Njombe 9 151 - 53 709 - -
Dodoma - - - 83 630 - 16
Pwani - 688 - 562 421 - -
Kagera - 1 - 18 390 - -
Mwanza - 81 - 48 239 - -
Kilimanjaro - - - 2 25 - -
Simiyu - - - - 10 - -
Tanga 3 7 - 5 8 - -
Manyara - - - - 5 - 3
Mara - - - 10 4 - -
Dar Es Salaam - - - - 1 - -
Arusha - - - - - - -
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Table 8.6: Forest types change by region

Forest type change (area (ha))-2020
Region Montane Lowland Mangrove Closed woodland Open woodland Plantation forest Thicket

Tabora - - - 84 4,936 - 291
Mbeya 1 1 - 176 3,943 - -
Songwe - 1 - 108 2,821 - -
Singida - 27 2,628 - 1,606
Katavi - 1 - 156 1,819 - -
Dodoma - - - 17 985 - 16
Rukwa 2 1 - 492 848 - -
Kigoma - 4 - 172 695 - -
Iringa - 1 - 40 599 - -
Ruvuma 1 15 - 137 477 - -
Mtwara - 1,504 - 176 442 - -
Geita - - - 23 314 - -
Lindi - 463 - 87 209 - -
Shinyanga - - - 2 122 - -
Njombe - 6 - 4 61 - -
Kagera - 1 - 5 51 - -
Pwani - 3 - 6 48 - -
Morogoro - 14 - 41 34 - -
Mwanza - 13 - 3 21 - -
Tanga - 3 - 3 21 - -
Simiyu - - - - 6 - -
Mara - 2 - 4 3 - -
Manyara - - 1 - 1
Arusha - - - - - - -
Kilimanjaro
Dar Es Salaam - - - - - - -

8.3.5 Forest Cover Change in Protected Areas

Although forest loss is more pronounced outside the protected areas, the result also

highlights forest loss is also occurring in protected areas (forest reserves and wildlife

managed areas) (Table 8.7, 8.8 and 8.9). See Appendix 4 as Tables A.3, A.5, and

A.6 for detailed forest change in the individual protected area category. These

protected areas are designed to protect and support the country’s biodiversity,

and therefore changes within these areas are particularly significant. An example

is shown in Figure 8.15, where deforestation in the protected area is occurring
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due to encroachment at the boundaries, with changes occurring up to 500 m from

the protected area boundary. This is particularly concerning as unchecked. These

protected areas could witness further encroachment, increasing the vulnerability

of these important habitats and ecosystems.

Figure 8.15: A sample of forest loss in protected areas on the western part of the
country with a buffer of 500 m: a) Msaginia forest reserve, b) Ugalla North forest
reserve, c) Loasi river forest reserve, d) Lugufu and Mkuti forest reserve

Table 8.7: Estimated forest cover change in protected areas

Area (ha), year
Category 2018 2019 2020

Forest reserve 126,925 24,869 3,600
Wildlife protected area 72,153 13,587 2,842
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Table 8.8: Estimated forest type cover change in forest reserves

Area (ha), year
Forest type 2018 2019 2020

Montane 56 10 1
Lowland 1,793 352 31
Mangrove 49 3 -
Closed woodland 3,322 1,438 382
Open woodland 115,599 22,536 3,145
Thicket 48 38
Plantation - - -

Table 8.9: Estimated forest type cover change in wildlife areas

Area (ha), year
Forest type 2018 2019 2020

Montane 7 2 -
Lowland 593 191 1
Mangrove - - -
Closed woodland 965 445 60
Open woodland 65,760 12,459 2,518
Thicket 404 236 -
Plantation - - -

8.3.6 Updating Earlier Forest Baseline

The confirmed forest changes for 2018 and 2019 were used to update the forest

baseline from Chapter 7 (Figure 7.10) to generate a country forest baseline for 2019

(Figure 8.16). Table 8.10 presents the comparison of forest loss from this study as

compared to the global dataset of Hansen et al. (2013) version 1.7 over six years

(2013 - 2019). It should be noted that these studies are not directly comparable

for the period 2013 - 2019 as while the Hansen et al. (2013) product is producing
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an annual change product for each year, this study is using a baseline forest mask

which is the product of imagery from 2013 to 2018 and not a 2013 map of forest

extent. Therefore, while the accuracy assessment of 2019 suggests that Hansen

et al. (2013) is underestimating the true extent of change in Tanzania, this study

has a lower value as it is against a different baseline, and only the 2019 annual

change is directly comparable to the Hansen et al. (2013) product.

Table 8.11 summarises the updated baseline forest extent from the forest loss

detected from the earlier baseline.

Table 8.10: Forest loss extent comparison with Hansen et al. (2013) version 1.7 for
2013 - 2019

Forest cover loss area (km2 )
Class This study Hansen et al. (2013)

Forest change 10,462.37 11,539.11

Table 8.11: Update of forest baseline extent from the detected forest loss for 2013
- 2019

Forest area (km2) for earlier baseline, updated baseline and Percentage (%)
Class Earlier baseline extent % Estimate forest loss % Updated baseline extent %

Forest 407,976 45.76 10,462.37 2.56 397,514 43.20
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Figure 8.16: Map showing areal proportional of the updated forest cover in Tan-
zania for 2019

8.4 Discussion

The wall-to-wall application of the XGBoost classification approach for mapping

forest change at a national scale using Landsat 8 imagery was found to be successful

with the areas of forest changes generally correctly identified with an accuracy of

F1 score value of 0.82 (Figures 8.7–8.8 and Figure 8.9), compared to 0.45 for the

change analysis from the global dataset of Hansen et al. (2013) version 1.7 for 2019
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(Table 8.2). However, some false-positive errors (Figure 8.12) were associated with

the savanna ecosystem’s complex nature and low availability of Landsat cloud-free

observations (Hansen et al., 2016).

The developed deforestation monitoring methodology aimed to support forest pol-

icy enforcement and carbon accounting in Tanzania by giving the most up-to-date

deforestation alerts possible. For example, providing the ability to respond imme-

diately to reduce or stop the newly-detected illegal deforestation situation from

further expanding (Reiche et al., 2021). However, the monitoring system’s ap-

plication should be considered in the forest change scores selection to minimise

false-positive detection. For early warning, a score value of 2 and visually check-

ing the image once a change is identified is recommended for forest guardians

working in areas of high importance, such as protected areas under pressure from

deforestation. Additionally, ESA Sentinel-2 data should be integrated into the

system, increasing the frequency of observations. The methodology should be di-

rectly transferable to the ESA Sentinel-2 data. However, for the annual reporting

of forest loss for policy-makers, as presented in this chapter, a score of 5 has been

demonstrated to produce reliable results which are fit for this purpose.

The result will support forest monitoring in policy formulation and implementa-

tion in protecting forests with better decision-making in government programs

and other forest protection fiscal incentive projects (Neeff and Piazza, 2020).

For reporting carbon, accounting requires estimation of activity data as an in-

put for monitoring, reporting, and verification (MRV) (Olofsson et al., 2020), as

needed for reducing emissions from deforestation and forest degradation (REDD+)

(Krasovskii et al., 2018). Therefore, the proposed methodology is transparent and

reproducible, enhancing the reliability and applicability based on machine learn-
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ing with the application of an established forest baseline as a reference emissions

level and assessing future emissions level (Romijn et al., 2012). A forest change

was evaluated based on existing and incoming Landsat images. The developed

methodology can be readily transferred to other local tropical regions in the sub-

Saharan areas and beyond.

8.4.1 Forest Change Area Estimates

The forest change area estimates provide essential information to guide current

and future conservation for sustainable forest management, especially in tropical

Africa with high dependence on forest resources (Aleman et al., 2018). The result

identified 157,204 ha of forest loss in Tanzania for 2019, presenting 0.39% loss of

intact forest, close to the global forest change analysis of Hansen et al. (2013)

(version 1.7), which mapped 142,773 ha in the same period. However, this study’s

forest change analysis presented a methodology that was optimised for Tanzania

and therefore had a high degree of accuracy (Figures 8.13–8.14) and given that

change is infrequent, even large changes in the accuracy of the change detection

algorithm can result in relatively small changes in the area estimated. However,

these relatively small geographic areas can be significant if found to occur in areas

of importance (e.g., protected areas).

Therefore, it can be considered that global forest change datasets remain suitable

for providing an indicative trend of forest loss at a national scale (Galiatsatos

et al., 2020; Chen et al., 2020). However, this study’s forest change area estimates

provide an essential reference point in the region to which the Hansen et al. (2013)

product can be compared as few countries have established a wall-to-wall forest
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change map or methods for long-term national-scale forest monitoring.

8.4.2 Forest Management Outlook

The critical actions to prioritise climate change mitigation requires halting defor-

estation, enhancing forest restoration, and promoting sustainable forest manage-

ment production (Mackey et al., 2020). Therefore, forest cover change mapping

and monitoring information respond to a pressing need to support policy formu-

lation and implementation of national and international commitments on forest

protection and restoration (Bodart et al., 2013) whereby Tanzania is part of these

obligations.

However, the situation is becoming critical, as highlighted by the forest change

result of this study has demonstrated that deforestation in protected areas (Fig-

ure 8.15 and Tables A.3, A.5 and A.6) is still occurring, and these have been the

dominant tools for conserving forests (Herrera et al., 2019) in Tanzania. This will

impact biodiversity, as many of the protected areas preserve some of the region’s

last remnants of important tropical forests. Therefore, it provides a warning for en-

hancing protection and forest cover conservation for its biological resources.

If the situation remains unchecked, these protected areas will lose all of their pro-

tected statuses, leading to conversion to other land uses. Similarly, forest loss

will increase the isolation (patches) of the protected areas (DeFries et al., 2005)

impacting wildlife corridors (Ntongani et al., 2010). Figure 8.15 at Msaginia for-

est reserve supports wildlife movement between Katavi National Park and other

protected areas, but the ongoing forest loss will limit this corridor. Moreover,

the detected forest loss in the western part of the country around/near the river
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and lake will disrupt water flow and increase soil erosion (Figure 8.15b and c).

Therefore, ongoing deforestation will threaten the river Malagarasi that supports

the Malagarasi-Muyovozi Ramsar site and increases siltation to Lake Tanganyika

(Figure 8.15c), raising flood severity, which has already been happening in the

country and disrupting livelihoods (Anande et al., 2019).

8.4.3 Updating Earlier Forest Baseline

The updated forest baseline extent from the detected forest changes increases the

spatial accuracy of forest statistics, minimises the application of outdated datasets

for policy-making (Bunting et al., 2018), and supports forest managers in forest

monitoring and conservation plans (Koskikala et al., 2020). Therefore, the earlier

baseline map with forest extent 407,976 km2 (Table 7.4) was updated to 397,514

km2 for 2019, showing a reduction of at least 2.6% (Table 8.11) of the forest cover

in Tanzania over six years (2013 - 2019). The updated forest baseline presented is

also consistent with national and international requirements for forest monitoring

in terms of forest change trends over time.

8.4.4 Limitations

Apart from offering consistent and repeatable procedures for forest change detec-

tion, the method falls short by not providing the forest change direction “from” and

“to” classes since the process focused only on two classes of change and no change.

It implies that only primary vegetated (forest) and primary non-vegetated (non-

forest) classes were considered during forest baseline establishment (Figure 7.1)

with no detailed spatial information about other land covers and land use on the
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thematic map. Similarly, persistent cloud cover remains a challenge along Tanza-

nia’s coastline, reducing clear-sky image availability.

8.5 Conclusions

The study demonstrated a thorough forest change, and the monitoring system

method on a national scale is an essential component in policy-making. The results

presented that monitoring efforts to overcome forest loss accounted for about 0.39%

of intact forests in 2019 to help the country progress towards national sustainable

development goals (Swamy et al., 2017; Neeff and Piazza, 2020). The developed

forest monitoring system is intended to link forest conservation and protection

policy-making to meet national forest data requirements but is also integrated

into national institutions. However, this can be achieved holistically, intersectoral,

interactive, and consistently with policies and national and local strategies. It

should involve all stakeholders, promote secure land tenure, and integrate forest

resource conservation and sustainable use.

Therefore, The mapping approach described in this study provided a highly ac-

curate and effective means to monitor forest cover changes in regions prone to

deforestation and degradation, with promise for application to improved monitor-

ing of tropical and other forests in Tanzania. For instance, thickets have been

identified as susceptible to deforestation. The government used this result to de-

velop a thicket conservation mechanism by establishing a thicket reserve aimed at

minimizing future loss of this critical vegetation through anthropogenic activities,

such as agriculture and expansion of built-up areas. As a result, approximately

25,000 hectares of thickets were turned into a fully protected reserve.



Chapter 9

Discussion and Conclusions

This chapter revisits the thesis’s main findings regarding the scientific questions

established in Chapter 1 (Section 1.7) on the application of Earth Observation

(EO) data on forest mapping and monitoring in Tanzania. The research project’s

general limitations are also addressed, and suggestions for further research and

opportunities are provided.

9.1 Was the Aim Met?

The potential of remote sensing for tropical forest monitoring remains a vital tool

as the loss of tropical forests is one of the world’s most complex environmental

problems (Lewis, 2006; Sayer, 1992). Timely tropical forest monitoring is required

to provide information about forests’ extent and changes over time, reducing data

gaps and, consequently, supporting policy-making processes. It is necessary for

forest conservation, management, responding to climate change, and supporting

277
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sustainable development (Baumgartner, 2019). Therefore, this research aimed

to create the basis for a long-term national forest monitoring system for Tanza-

nia.

Additionally, the analysis focused on open-free software, freely available satellite

data, and advanced remote sensing techniques to provide a cost-effective method

of obtaining wall-to-wall information on the forest extent and associated changes

in Tanzania. The aim was achieved by establishing four research questions in

Section 1.7, and each question is addressed and presented through a series of

chapters (Figure 9.1), ending in specific findings for each question. The overall aim

has been achieved in that the components of a monitoring system for Tanzania

have been demonstrated and these could be run as a national system for forest

monitoring. However, as with all research, further improvements could also be

made and a significant step in the understanding of the application of remote

sensing over Tanzania’s forests has also been achieved. A summary of the main

research findings for each question is discussed below.
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Figure 9.1: A conceptual plan of the structure of the thesis chapters

9.1.1 Forest Distribution and Impacts of Climate Change

The impact of climate change on forests in Tanzania was unknown or documented.

Although the effects are already apparent and are anticipated to intensify in the
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coming decades, through changes in temperature, precipitation, and indirectly

via fire, pests, and pathogen pressure. A predicted change in climate is likely to

induce changes in the distribution pattern of forests in Tanzania, causing changes

in the environmental range of the different forest types, with a loss of habitat in

some areas and an expanded range in others, depending on climatic preferences,

tolerance limits and optimum for growth for each forest type. A Maximum Entropy

model was used to predict different forest types’ responses to climate change at a

national scale using national forest inventory records and environmental data, as

described in Chapter 6.

The results indicate that the climate changes are likely to be much more extreme

in higher altitudes than in lower altitudes, and therefore the montane forests rich

in biodiversity will be placed under more significant climatic stress with losses

exceeding 40% even under the optimistic RCP4.5 scenario by 2055 than the other

forest types. Likewise, climate change is predicted to threaten microhabitat forests

(i.e., thickets), with losses exceeding 70% by 2085 (RCP8.5). Therefore, forest

species with minimal distribution range will be at risk from changing conditions

because there are no alternative sources for reinvasion with changing climate.

Tanzania is the world’s tenth-largest country for the total number of endangered

species on the IUCN Red List (Stévart et al., 2019). According to the 2021 clas-

sification, it is home to 1,422 critically endangered, endangered, and vulnerable

species - the most endangered biodiversity of the African continent (Harfoot et al.,

2021). Species face a variety of threats, including habitat loss and fragmentation,

conflicts between humans and wildlife, hunting and other unsustainable natural re-

source management activities, poaching, and collecting for wildlife trade. Climate

change is increasingly negatively affecting Tanzanian biodiversity.
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The increase in temperature will probably lead to an expansion in sea volume and

salinity conditions, causing mangrove forests to expand by more than 40% in both

scenarios. It is a positive change for mangroves, providing a valuable economic

resource for local communities and maintaining the seascape. Mangrove forests

play an essential role in carbon storage (natural carbon sinks), capturing CO2 from

the atmosphere and storing it in their biomass than terrestrial trees. Therefore, sea

level rise will result in increased flooding and potential redistribution of mangrove

species and may replace part of the coastal forests of Tanzania adjacent to the

mangrove forest which are characterised by a mosaic of vegetation types including

evergreen forest, Brachystegia woodland, scrub forest, wooded grassland, and dry

forest.

The predicted increase in temperature and reduced rainfall will increase further

stress from a fire on savanna woodlands (miombo woodland), which represents es-

sential ecological networks for wildlife ecosystems and can result in the permanent

loss of suitable habitat or the creation of forests with a changed composition.

The replacement of forest with grassland is anticipated, causing a significant al-

teration of Tanzania’s local climate. It will increase the fragmentation of the

forested ecosystem, reducing corridors for wildlife and plant-pollinator movement,

which may well contribute to the substantial extinction of important biodiver-

sity. Human-wildlife conflict will intensify for the remaining suitable habitat for

agriculture and grazing.

Therefore, the model predictions indicate that the rising temperature and de-

creased rainfall expected in the next 50 years could require an optimal manage-

ment solution to increase ecological connectivity in current forest planning and

management. Ecological connectivity should be maintained in habitats that are
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predicted not to change and expand under future climate change by preserving na-

tive forests, and where possible, protecting the remaining forest areas from other

anthropogenic disturbances. Improving ecological connectivity would significantly

enhance sustainable forest management and improve forest projects and programs

to reduce forest species turnover.

9.1.2 Current Forest Baseline for Tanzania

The future of the forests in Tanzania depends on conservation and sustainable

harvesting that will minimise this precious resource’s loss. The forest information is

vital for developing practical, long-term plans to conserve and manage biodiversity,

which requires understanding forest status, extent, location, type, and composition

in Tanzania.

Therefore, the forest cover information for forests was generated as a baseline

(reference level) representative of the extent (intact) of the forest area against forest

cover change in Tanzania can be observed (Chapter 8). It focused on satellite data

availability, the robustness of methods, and area coverage. Clouds have hindered

the regular observations of EO data in generating forest information development

over a large-scale (national level) (Mitchell et al., 2017). Consequently, a subset of a

country (Rufiji basin) was used to experiment with the method, data availability,

storage, and analysis (Chapter 5) which generated adequate forest extent with

an accuracy of 93% enabled scale-up for national forest mapping (Chapter 7).

Establishing forest baseline extent using EO data was achieved with an accuracy

of 89.66% for forest/non-forest and bridges the information gap and knowledge

concerning remote sensing in forest monitoring over a larger area (national level)
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(Hości#lo and Lewandowska, 2019).

The analysis presented, estimated a forest area of 407,976 km2 representing 45.76%

of the country landmass (Table 7.4), compared to the previous national forest

inventory (NAFORMA) conducted between May 2011 to June 2014 and released in

2015, estimated about 481,000 km2 representing 54% of the total land area (MNRT,

2015). Arguably, the main observational gap between these analyses should not

be considered forest loss in Tanzania, but due to different methodology and levels

of accuracy, i.e., wall-to-wall mapping using EO data viz., sample-based forest

inventory plots with a relative sampling error of 8.89% on forests and woodlands

(MNRT, 2015). The area of the forest is unevenly distributed over the country.

Notably, the most forest-rich area includes the western part of the country covering

extensive dry miombo woodlands stretching across Tabora, Katavi, Kigoma, and

parts of Rukwa region (Figure 7.10). The next forested area is in the southeast

part of the country with a mosaic of forest diversity (i.e., wet miombo woodlands,

lowland and mangrove forest, upland forest zone). It spreads all over Pwani,

Morogoro, Iringa, Njombe, Lindi, Mtwara, Ruvuma, Mbeya and Songwe regions

(Table 7.5).

Overall, these areas occupy essential protected areas (Figure A.1) in the country

and hence are the cornerstone of forest and biodiversity conservation in Tanzania.

Therefore, increasing and maintaining well-connected systems of protected areas

is a viable conservation strategy as a natural solution to global challenges, includ-

ing climate change, deforestation or forest degradation. Accordingly, the result

provides a consistent forest extent at a national level, whereby conservation policy

actions can be planned.
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9.1.3 Distribution of Forest Types in Tanzania

The forest type classification using the XGBoost classifier (Section 4.5.5) and the

forest habitat suitability model (from Chapter 6) to characterise tropical forest

distribution yielded an accuracy of 85%. The result provides an essential under-

standing of forest composition to develop sustainable forest management plans, as

increasing human uses are anticipated to impact these ecosystems.

The largest forest type by area is open woodland, presenting 57% followed by

closed woodland with 22%. Therefore, woodlands occupy around 79% of the for-

est types, spreading from the central to the western parts of the country and with

a mosaic of lowland forests along the coast and southern areas of the country

(Figure 7.16). The top three regions with extensive woodland areas include Lindi,

Ruvuma, and Morogoro (Table 7.10). Providing forest-type information for pro-

tected areas (Table 7.11) is essential to safeguarding distinct species assemblages

and national biodiversity.

Therefore, the utility of the classification result could support the estimation of

forest structure in Tanzania which is a necessary first step toward quantifying

above-ground biomass and developing a program for monitoring forest degrada-

tion. Forest structure is among the factors, that can largely influence forest pro-

ductivity and carbon sequestration potential. Similarly, the classifications provide

information about tree species distribution, with this informing forest management

and potential impacts of climate change (e.g., John et al., 2020).

Therefore, timely and accurate forest-type mapping in Tanzania is imperative

for forest management and monitoring necessary for conservation that advances

the national forest monitoring system. Classifying forest-type distribution also
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supports decision-makers by providing reliable information on the unique forest

resources that play an essential role in the country’s economy including benefits to

many crucial sectors. For example, following their relative importance, montane

forests occupying only 2.35% are vital for hydrological cycles supporting people’s

livelihood. While mangrove forests only occupy 0.19% of the national forest area

but are important for coastal protection by creating a buffer zone, fisheries, and

carbon storage.

The result will help the Tanzanian government develop forest-type conservation

policies that may require different conservation states for different forest types

that minimise overexploitation, especially on fragile sites. Similarly, the forest

type map developed presents a baseline for evaluating future forest changes and

carbon storage assessment (e.g., Suarez et al., 2021) and ecological systems for

environmental management necessary for regional and international commitments

of protecting forest habitats and the biodiversity therein.

9.1.4 Mapping Forest Change for Monitoring

This study focused on developing a national scale, automated, and systematic

wall-to-wall forest cover change and monitoring system for Tanzania (Figure 8.1).

Earth Observation (EO) datasets were used to characterise forest cover dynamics

as advances in high-performance computing and machine learning classifier (XG-

Boost) supported the analysis at a national scale. The method discriminated forest

change based on forest/non-forest baseline, masked to remove fires and plantations.

An NDVI threshold was defined to identify potential change regions, and then the

XGBoost forest/non-forest classifiers from Chapter 7 were applied to identify the
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final scene-based change features. To identify ‘True Change’ a change had to be

identified within 5 images. While the change analysis was applied to all Landsat-8

imagery from the beginning of 2018 to the end of 2020, the changes identified for

2018 were used to update the baseline forest/non-forest map to a discrete date

(i.e., the end of 2018). While changes occurring in 2020 lacked sufficient obser-

vations to confirm them as changes and therefore the 2019 changes were the only

confirmed annual changes (Figures 8.7–8.8 and Figure 8.9).

The need for more than 5 images was considered because an image is acquired

every 16 days. Still, with the cloud cover, the number of available scenes is much

lower, and therefore obtaining 5 observations of a change to confirm the change

takes several months. Moreover, by only using images from May to November

(avoiding images from the wet season), the maximum would be approximately 12

scenes during this period. If the change occurred in April or earlier, this will be

captured in the following year. Probably only about 1 in 4 scenes could be useful,

so for most areas, there might only be 4 observations in a year. Therefore, the

following years’ observations are needed to confirm the change.

The forest change analysis for the year 2019 achieved an accuracy of 82% compared

to 45% from the global forest change analysis of Hansen et al. (2013) (version 1.7)

(Table 8.2). Therefore, this study mapped a forest loss of 157,204 ha for 2019,

amounting to 0.39% of the intact forest loss (Table 8.1) for the country. The

monitoring system also updated the forest baseline map (Chapter 7). Therefore,

the baseline map (forest mask) was updated from 407,976 km2 to 397,514 km2 by

2019, indicating a decrease of 2.56% of the forest cover in Tanzania compared to

the baseline generated over the five years of 2013 – 2018.

Therefore, the developed methodology focused on supporting numerous national
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and international forest programmes (Seidl et al., 2017; Romijn et al., 2012; Grainger,

2015; Bodart et al., 2013; Tobón et al., 2017; Swamy et al., 2017) on reducing forest

loss and enhancing conservation and restoration. The result will help forest policy

and regulation formulation at a national scale by developing a more comprehensive

country framework for improving forest management. As deforestation is detected

beyond general-use land into protected areas that typically have an explicit forest

conservation status, indicating a threat to the forest ecosystem in Tanzania. Con-

sequently, the forest monitoring system aims to enhance forest law enforcement

and policy formulation in protecting forests with better decision-making.

9.2 Challenges and Limitations

For the first time, this study evaluated the potential of using freely available

medium-resolution (30 m Landsat-8 Operational Land Imager) data for forest

mapping and deforestation monitoring in Tanzania. However, there are some lim-

itations and challenges that remain:

• Availability of Landsat cloud-free observations remains the major limitation

of forest mapping and associated changes in Tanzania, particularly during

the wet season. In particular, there are a lower number of cloud-free obser-

vations in the coastal and high-elevation areas of the Eastern Arc Mountains

and Mt.Kilimanjaro. While a higher number of cloud-free observations ex-

tend from the central part, western and northern parts of the country. This

necessitated generating a product using scenes across a broad period (2013 –

2018) to minimise the clouds and shadow problems but has also limited the

period for which the change analysis could be demonstrated for.
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• The methodology offers advanced opportunities for an in-depth reporting

of forests and associated disturbances by utilising EO data in Tanzania.

However, the lack of adequate ground truth data for accuracy assessment

(e.g., Cohen et al., 2010) over a broad forest area coverage (national scale)

and especially for the forest change analysis.

• The Landsat imagery was found to be limited in its ability to distinguish

some vegetation classes (e.g., emergent marsh), due to the common hetero-

geneity and spectral similarity (mixed pixel problems) which create some

challenges during forest classification and change analysis.

• The environmental variables used for the forest type habitat suitability anal-

ysis are only available at a resolution of 1 km and while this is relevant for

assessing future climate scenarios, it was challenging to resample this to a

30 m resolution for inclusion in the forest type classification.

9.3 Contribution to the State of Knowledge

The research presents a unique approach to characterise forest extent and dis-

turbance using Earth Observation data at a national scale. The research bridges

the gap between complicated remote sensing practices accessing imagery and gen-

erating useful information relevant to the forest and other land managers and

policymakers. The research also pioneered relating the forest-type distributions to

the current climate and using this model for predicting future forest-type distribu-

tion for different climate scenarios. This highlights the risk to forest distributions

and the knock-on effects on wildlife and biodiversity with an uncertain climate in
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sub-Saharan Africa. Importantly for the resource-poor sub-Saharan Africa region

of the globe, where data are scarce, this study has demonstrated what is possible

for forest monitoring and incorporating climate change scenarios into land man-

agement and conservation planning using freely and openly available data and

software. The methodology demonstrated in this study has the potential to be

transferred directly to other areas of sub-Saharan Africa with only minimal extra

training data to optimise the models. The methodology would be transferable to

other regions of the world if sufficient reference data were available.

This study also adds several insights into the existing body of knowledge by pre-

senting a robust, nationally consistent, and automated method for assessing forest

extent and disturbances. It offers new opportunities to tackle the challenges as-

sociated with existing methods for generating forest information and monitoring

deforestation at a national scale. The methodology was undertaken to derive more

precise information about the forest extent and disturbance patterns in Tanzania

than previous forest mapping products could offer due to their regional or global

approaches. Hence, the methods and results presented illustrate Earth observa-

tion satellites’ ability to extend wall-to-wall coverage (national scale) even with

the challenges associated with high levels of cloud cover, adding immense value to

the forest monitoring, reporting, and verification (MRV) system.

Specifically, the added contributions of this research to the body of scientific knowl-

edge are:

• The first to demonstrate the potential impact of climate change on Tanzanian

forests and woodlands. This is vital information for policy development and

future conservation efforts.
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• Production of the most reliable and up-to-date mapping of Tanzania’s forests

and woodlands, providing wall-to-wall coverage and forest-type distribution

using a regionally applicable methodology.

• Demonstration of the application of forest habitat suitability models as input

data to constrain the classification of forest types based on their adaptation

and corresponding bioclimatic patterns, minimising misclassification. It im-

proved the overall forest classification over a large area and a complex forest

landscape.

• Provision of a methodology and demonstration for providing annual change

information for Tanzania, which is more accurate than previously available

datasets.

• Demonstration of a software system that can be freely used to provide a

national monitoring system that automates the change analysis application,

including EO data download and ARD production.

9.4 Contributions to Policy

Based on these findings, the implementation of a national forest mapping and

monitoring system in Tanzania serves as a fundamental foundation for forest-

related policies and laws, guidance, and review processes for enhancing forest-and-

trees landscape management. Thereby guiding more effective decisions aimed at

preventing all forms of forest loss arising from unplanned activities and mitigating

climate change. It will improve forest management purposes by understanding

forest status, its extent, and location based on consent amongst the general public,
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and top-level decision-makers on the comprehensive direction and support among

experts on forest ecosystem dynamics and harmonised with the legislation of other

related sectors.

The forest monitoring system will assist law enforcement when urgent action is

needed to stop the newly detected illegal deforestation case from expanding around

the forest areas. It also forms a basis for forest management plans by forest man-

agers whereby they need forest management inputs with extensive coverage across

all the ecological zones to sustain forest production capacity. Similarly, forest cover

monitoring information responds to a pressing need internationally in support of

policy formulation and implementation. In particular, the UNFCCC process for

the Reduction of Emissions from Deforestation and Forest Degradation (REDD+)

(Romijn et al., 2012) and the protection of habitat for biodiversity conservation,

as specified in the Convention on Biodiversity (CBD) Aichi Biodiversity Targets

(especially Targets 5, 15, and 19) (O’Connor et al., 2015) of which Tanzania has

been part of these commitments. Therefore, it is envisaged that attaining the

2030 agenda of the United Nations for Sustainable development goals (SDGs) 13

and 15 (Swamy et al., 2017) in developing countries like Tanzania will be pursued

with effective national forest policies reversing current adverse trends in the loss of

forest resources, consolidating the potential role of EO as a tool to support forest

monitoring.

9.5 Direction for Future Research

Future work needs to investigate the utility of a larger number of image datasets

from recent developments in satellite data provisions (Figure 1.3). Integrating



CHAPTER 9. DISCUSSION AND CONCLUSIONS 292

multi-sensor remote sensing data such as Sentinel-2A and Sentinel-2B data from

the European Space Agency and increasing the number of observations and there-

fore reducing the period required to confirm a change. Similarly, the application

of SAR which penetrates through clouds can supplement optical-based tropical

forest monitoring systems. For example, long-wavelength L-band SAR data has

been used to monitor tropical deforestation at larger scales (Shimada et al., 2014;

Whittle et al., 2012). Also, Sentinel-1A and 1B C-band SAR satellites (Torres

et al., 2012) overcome the problem of clouds to support tracking forest distur-

bances/deforestation of which its potential has yet utilised over a large scale.

Similarly, canopy height is a fundamental parameter for determining forest ecosys-

tem functions such as biodiversity and above-ground biomass in Tanzania. The

availability of Global Ecosystem Dynamic Investigation (GEDI), has provided sam-

pled observations of the forest vertical structure at a near-global scale allowing for

examining the vertical structure of vegetation spatially and temporally (Adrah

et al., 2022). This will help better comprehend the variation in canopy height in

tropical forests based on GEDI measurements, thereby supporting forest manage-

ment practices, and monitoring forest response to climatic changes.

The ground validation data sets could be obtained through community-based mon-

itoring (e.g., Pratihast et al., 2014; DeVries et al., 2016) in collecting more data

from the forest with recent developments in the use of mobile apps. The local com-

munities have regular access to forest areas, saving time and resources compared

to surveys carried out by external experts. Therefore, enhancing the application

of mobile data acquisition tools, such as Earth Track Wales1 would support lo-

cal communities’ participation in forest monitoring. Hence, communities’ effective

1https://wales.livingearth.online/data/ground-measurements/data-access/field-data/mobile-app/
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engagement in the forest monitoring process may intensify the long-term sustain-

ability of the REDD+ program in Tanzania.

Reducing highly mixed vegetated wetlands and other inundation areas (Figure 7.11)

should explicitly be identified and mapped with tools like TropWet (Hardy et al.,

2020) and masked to minimise mixed pixels with forest class.
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2020. A novel deep learning method to identify single tree species in UAV-based

hyperspectral images. Remote Sensing 12 (8), 1294.

Mlingano Agricultural Research Institute, 2006. Soils of Tanzania and their po-

tential for agriculture development.

MNRT, 2015. National Forest Resources Monitoring and Assessment

(NAFORMA) main results, Dar Es Salaam, Tanzania. Tech. rep., Tanza-

nia Forest Services (TFS) Agency.

Moncrieff, G., Scheiter, S., Slingsby, J., Higgins, S., 2015. Understanding global

change impacts on South African biomes using Dynamic Vegetation Models.

South African Journal of Botany 101, 16–23.

Montagnini, F., Jordan, C. F., et al., 2005. Tropical forest ecology: the basis for

conservation and management. Springer Science & Business Media.

Moore, P. D., 2008. Tropical forests. Infobase Publishing.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,

Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., et al.,

2010. The next generation of scenarios for climate change research and assess-

ment. Nature 463 (7282), 747–756.

Mountrakis, G., Im, J., Ogole, C., 2011. Support vector machines in remote sens-

ing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 66 (3),

247–259.

Mugasha, A., 1996. Silviculture in the tropical natural forests with special reference

to tanzania, a compendium. Faculty of Forestry, 98–115.

Mugasha, A., Chamshama, S., Gerald, V., 2004. Indicators and tools for restora-

tion and sustainable management of forests in east Africa. State of Forests and

Forestry Research in Tanzania paper 3, 66.

Müller, C., Waha, K., Bondeau, A., Heinke, J., 2014. Hotspots of climate change

impacts in sub-Saharan Africa and implications for adaptation and development.

Global change biology 20 (8), 2505–2517.



BIBLIOGRAPHY 333

Mustalahti, I., Bolin, A., Boyd, E., Paavola, J., 2012. Can REDD+ reconcile local

priorities and needs with global mitigation benefits? Lessons from Angai Forest,

Tanzania. Ecology and Society 17 (1).

Mwalyosi, R. B., 1990. Resource potentials of the Rufiji River basin, Tanzania.

Ambio, 16–20.

Mwampamba, T. H., Schwartz, M. W., 2011. The effects of cultivation history on

forest recovery in fallows in the Eastern Arc Mountain, Tanzania. Forest Ecology

and Management 261 (6), 1042–1052.

Myers, N., 1993. Tropical forests: the main deforestation fronts. Environmental

conservation 20 (1), 9–16.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., Kent, J.,

2000. Biodiversity hotspots for conservation priorities. Nature 403 (6772), 853.

Myroniuk, V., Kutia, M., J Sarkissian, A., Bilous, A., Liu, S., 2020. Regional-Scale

Forest Mapping over Fragmented Landscapes Using Global Forest Products and

Landsat Time Series Classification. Remote Sensing 12 (1), 187.

Nackaerts, K., Vaesen, K., Muys, B., Coppin, P., 2005. Comparative performance

of a modified change vector analysis in forest change detection. International

Journal of Remote Sensing 26 (5), 839–852.

Næsset, E., Ørka, H. O., Solberg, S., Bollands̊as, O. M., Hansen, E. H., Mauya,

E., Zahabu, E., Malimbwi, R., Chamuya, N., Olsson, H., et al., 2016. Mapping

and estimating forest area and aboveground biomass in miombo woodlands in

Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and

global forest maps: A comparison of estimated precision. Remote Sensing of

Environment 175, 282–300.

Nair, C., Tieguhong, J., 2004. African forests and forestry: An overview. A report

prepared for the project. Lessons Learnt on Sustainable Forest Management in

Africa. Royal Swedish Academy of Sciences, African Forest Research Network

(AFORNET) and FAO.

National Bureau of Statistics, 2017. National Environmental Statistics Report,

(NESR, 2017). National Bureau of Statistics (NBS).



BIBLIOGRAPHY 334

Neeff, T., Piazza, M., 2020. How countries link forest monitoring into policy-

making. Forest Policy and Economics 118, 102248.

Negassa, M. D., Mallie, D. T., Gemeda, D. O., 2020. Forest cover change detection

using Geographic Information Systems and remote sensing techniques: a spatio-

temporal study on Komto Protected forest priority area, East Wollega Zone,

Ethiopia. Environmental Systems Research 9 (1), 1–14.

Nelson, P. R., Maguire, A. J., Pierrat, Z., Orcutt, E. L., Yang, D., Serbin, S.,

Frost, G. V., Macander, M. J., Magney, T. S., Thompson, D. R., et al., 2022.

Remote sensing of tundra ecosystems using high spectral resolution reflectance:

opportunities and challenges. Journal of Geophysical Research: Biogeosciences

127 (2), e2021JG006697.

Nepstad, D., Carvalho, G., Barros, A. C., Alencar, A., Capobianco, J. P., Bishop,

J., Moutinho, P., Lefebvre, P., Silva Jr, U. L., Prins, E., 2001. Road paving,

fire regime feedbacks, and the future of Amazon forests. Forest ecology and

management 154 (3), 395–407.

Newmark, W. D., 2006. A 16-year study of forest disturbance and understory bird

community structure and composition in Tanzania. Conservation Biology 20 (1),

122–134.

Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S.,

Cardoso, M., 2016. Land-use and climate change risks in the Amazon and the

need of a novel sustainable development paradigm. Proceedings of the National

Academy of Sciences 113 (39), 10759–10768.

Nobre, C. A., Sellers, P. J., Shukla, J., 1991. Amazonian deforestation and regional

climate change. Journal of climate 4 (10), 957–988.

Ntongani, W. A., Munishi, P. K., Mbilinyi, B. P., 2010. Land use changes and

conservation threats in the eastern Selous–Niassa wildlife corridor, Nachingwea,

Tanzania. African journal of ecology 48 (4), 880–887.

Ochieng, C. A., 2002. Research masterplan for the Rufiji floodplain and delta

2003–2013. Rufiji Environment Management Project Technical Report 28.

O’Connor, B., Secades, C., Penner, J., Sonnenschein, R., Skidmore, A., Burgess,



BIBLIOGRAPHY 335

N. D., Hutton, J. M., 2015. Earth observation as a tool for tracking progress

towards the Aichi Biodiversity Targets. Remote sensing in ecology and conser-

vation 1 (1), 19–28.

Olander, L. P., Gibbs, H. K., Steininger, M., Swenson, J. J., Murray, B. C., 2008.

Reference scenarios for deforestation and forest degradation in support of REDD:

a review of data and methods. Environmental Research Letters 3 (2), 025011.

Olivier, P. I., van Aarde, R. J., Lombard, A. T., 2013. The use of habitat suitabil-

ity models and species–area relationships to predict extinction debts in coastal

forests, South Africa. Diversity and distributions 19 (11), 1353–1365.

Olofsson, P., Arévalo, P., Espejo, A. B., Green, C., Lindquist, E., McRoberts,

R. E., Sanz, M. J., 2020. Mitigating the effects of omission errors on area and

area change estimates. Remote Sensing of Environment 236, 111492.

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., Wulder,

M. A., 2014. Good practices for estimating area and assessing accuracy of land

change. Remote Sensing of Environment 148, 42–57.

Olofsson, P., Foody, G. M., Stehman, S. V., Woodcock, C. E., 2013. Making

better use of accuracy data in land change studies: Estimating accuracy and

area and quantifying uncertainty using stratified estimation. Remote Sensing of

Environment 129, 122–131.

Olson, J., Moore, N., Andresen, J., Alagarswamy, G., 2015. Analysis of the Im-

pact of Climate Change on Crop and Water Availability, and Consideration of

Potential Adaptation Practices for the Rufiji River Basin, Tanzania. Tech. rep.

Olthof, I., King, D. J., Lautenschlager, R., 2004. Mapping deciduous forest ice

storm damage using Landsat and environmental data. Remote Sensing of Envi-

ronment 89 (4), 484–496.

Omer, G., Mutanga, O., Abdel-Rahman, E. M., Adam, E., 2015. Performance of

support vector machines and artificial neural network for mapping endangered

tree species using WorldView-2 data in Dukuduku forest, South Africa. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing

8 (10), 4825–4840.



BIBLIOGRAPHY 336

Osorio, J. A., Wingfield, M. J., Roux, J., 2016. A review of factors associated with

decline and death of mangroves, with particular reference to fungal pathogens.

South African Journal of Botany 103, 295–301.

Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E., Butchart, S. H., Kovacs,

K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akçakaya, H. R., et al.,
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transboundary biosphere reserve. Remote Sensing 13 (13), 2581.

Zanchetta, A., Bitelli, G., 2017. A combined change detection procedure to study

desertification using opensource tools. Open Geospatial Data, Software and

Standards 2 (1), 1–12.

Zanchetta, A., Bitelli, G., Karnieli, A., 2015. Tasselled Cap transform for change

detection in the drylands: findings for SPOT and Landsat satellites with FOSS

tools. In: Third International Conference on Remote Sensing and Geoinforma-

tion of the Environment (RSCy2015). Vol. 9535. pp. 330–338.

Zhan, X., Defries, R., Townshend, J., Dimiceli, C., Hansen, M., Huang, C.,

Sohlberg, R., 2000. The 250 m global land cover change product from the Moder-

ate Resolution Imaging Spectroradiometer of NASA’s Earth Observing System.

International Journal of Remote Sensing 21 (6-7), 1433–1460.

Zhang, H., Eziz, A., Xiao, J., Tao, S., Wang, S., Tang, Z., Zhu, J., Fang, J., 2019.

High-Resolution Vegetation Mapping Using eXtreme Gradient Boosting Based

on Extensive Features. Remote Sensing 11 (12), 1505.

Zhang, K., Sun, L., Tao, J., 2020. Impact of Climate Change on the Distribution

of Euscaphis japonica (Staphyleaceae) Trees. Forests 11 (5), 525.

Zhao, J., Wang, Y., Zhang, H., 2011. Automated batch processing of mass remote

sensing and geospatial data to meet the needs of end users. In: 2011 IEEE

International Geoscience and Remote Sensing Symposium. pp. 3464–3467.

Zhu, Z., Wang, S., Woodcock, C. E., 2015. Improvement and expansion of the



BIBLIOGRAPHY 354

Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7,

8, and Sentinel 2 images. Remote Sensing of Environment 159, 269–277.

Zhu, Z., Woodcock, C. E., 2012. Object-based cloud and cloud shadow detection

in Landsat imagery. Remote sensing of environment 118, 83–94.

Zhuravleva, I., Turubanova, S., Potapov, P., Hansen, M., Tyukavina, A., Min-

nemeyer, S., Laporte, N., Goetz, S., Verbelen, F., Thies, C., 2013. Satellite-

based primary forest degradation assessment in the Democratic Republic of the

Congo, 2000–2010. Environmental Research Letters 8 (2), 024034.

Zimmermann, J.-B., Jullien, N., 2007. Free/Libre/Open Source Software (FLOSS):

lessons for intellectual property rights management in a knowledge-based econ-

omy. The Icfai Journal of Cyber Law 6 (3), 19–36.



Appendix A

A.1 Soil groups in Tanzania

A.2 Correlation matrix between environmental

predictors

355



APPENDIX A. 356

Table A.1: Summary of dominant soil groups in Tanzania

(Batjes, 2004)
Code Major soil group Descriptions

1 Acrisols Strongly weathered acid soils, with low base
saturation

2 Andosols Black soils of volcanic landscapes, rich in or-
ganic matters

3 Arenosols Sandy soils with limited soil development, un-
der scattered (mostly grassy) vegetation to
very old plateaus of light forest

4 Cambisols Weakly to moderately developed soil soils oc-
curring from seal level to the highlands and
under all kind of vegetation (savanna wood-
land and forests)

5 Chernozems Black soil rich in organic matter, occurring in
flat to undulating plains with forest and tall
grass vegetation

6 Ferralsols Deep, strongly weathered, physically stable
but chemically depleted

7 Fluvisols Associated with important river plains, peri-
odically flooded areas

8 Gleysols Temporary or permanent wetness near soil
surface, support swamp forests or permanent
grass cover

9 Histosols Peat and muck soils with incompletely decom-
posed plant remains

10 Leptosols Shallow soils over hard rock/gravel, at medium
to high altitude landscapes, suitable for
forestry and nature conservation

11 Lixisols Strongly weathered and leached, finely tex-
tured materials support natural savanna or
open woodland vegetation

12 Luvisols Common in flat or gently sloping land with
unconsolidated alluvial, colluvial, aeolian de-
posits in cooler environments and young sur-
face

13 Nitisols Deep, red, well-drained tropical soils with a
clayey, well defined nut-shaped peds with shiny
surface. Found in level to highland under trop-
ical rain forest or savanna vegetation

14 Phaeozems Dark soils, rich in organic matter. Occur on
flat to undulating land in a warm to cool (trop-
ical highland). Support natural vegetation
with tall grass steppe and or/forest

15 Planosols Clayey alluvial and colluvial deposits and sup-
port light forest or grass vegetation

16 Regosols Contain gravelly lateritic materials (murrum)
with low suitability for plant growth

17 Solonchanks Occur in seasonally or permanently water
logged areas with grasses and /or halophytic
herbs

18 Solonetz Associated with flat lands in a hot climate, dry
summers, coastal deposit. Contain a high pro-
portional of sodium ions

19 Vertisols Contain sediments with a high proportion of
smectite clay, high swelling and shrinking of
results in deep cracks during dry season. Cli-
max vegetation is savanna, natural grass and
/ or woodland

20 Water body -
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A.3 Forest extent in the protected area

Figure A.1: Relationship of the protected area and forest extent

A.4 Forest extent and changes in protected ar-

eas

Table A.3: A summary of forest types extent in the forest nature reserves, un-
der category Ib (Wilderness Area) of the International Union for Conservation of
Nature (IUCN)
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Forest type (ha)

Name Baseline Montane Lowland Closed Open Plantation Thicket Mangrove

Woodland Woodland

Itulu Hill 323,641 - - 4,427 319,100 - 115

Kilombero 124,754 51,944 56,367 13,041 3,357 15 - -

Mwambesi 107,484 - 556 39,624 67,303 - - -

Kalambo

River

34,853 - - 28,075 6,779 - - -

Uzungwa

Scarp

34,470 26,975 6,871 439 42 143 - -

Uluguru 22,147 20,453 1,283 245 79 87 - -

Mkingu 20,831 16,970 2,725 556 570 - - -

Minziro 20,598 11 19,601 705 280 - - -

Mount

Rungwe

13,586 11,162 349 146 411 1,518 - -

Chome 13,125 10,722 1,527 125 176 574 - -

Pindiro 11,934 - 10,489 607 838 - - -

Rondo 11,602 - 11,210 262 107 24 - -

Magamba 9,150 7,330 1,108 222 118 373 - -

Amani 7,749 7,423 221 40 7 60 - -

Nilo 5,193 5,141 30 11 2 8 - -

Mount

Hanang

4,967 3,479 396 523 569 - - -

Magombera 2,067 - 1,525 512 31 - - -

Pugu 1,442 - 1,434 6 3 - - -

Table A.4: An overview of forest extent and change (ha) in the nature reserve

Forest extent Forest change

Name Baseline 2018 2019 2020 2018 2019 2020

Itulu Hill 323,641 323,508 323,497 323,494 133 11 3

Kilombero 124,754 124,752 124,750 124,750 2 2 -

Mwambesi 107,484 107,480 107,480 107,480 4 - -

Kalambo River 34,853 34,433 34,321 34,284 420 113 37

Uzungwa Scarp 34,470 34,470 34,468 34,468 - 2 -

Uluguru 22,147 22,147 22,147 22,147 - - -
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Mkingu 20,831 20,831 20,831 20,831 - - -

Minziro 20,598 20,598 20,598 20,598 3 - -

Mount Rungwe 13,586 13,586 13,586 13,586 - - -

Chome 13,125 13,125 13,125 13,125 - - -

Pindiro 11,934 11,924 11,921 11,921 10 3 -

Rondo 11,602 11,602 11,602 11,602 - - -

Magamba 9,150 9,150 9,150 9,150 - - -

Amani 7,749 7,749 7,749 7,749 - - -

Nilo 5,193 5,193 5,193 5,193 - - -

Mount Hanang 4,967 4,967 4,967 4,967 - - -

Magombera 2,067 2,067 2,067 2,067 - - -

Pugu 1,442 1,442 1,442 1,442 - - -

Table A.5: Forest reserves: Forest extent and change (ha)

Forest extent Forest change

No. Name Baseline 2018 2019 2020 2018 2019 2020

1 Nyahua Mbuga 465,749 457,836 456,243 455,500 10,553 1,672 751

2 Mpanda North East 413,574 405,815 403,433 403,373 11,039 2,849 65

3 Inyonga 403,348 392,905 392,017 391,573 10,475 890 443

4 Ugalla River 317,781 317,669 317,612 317,607 112 57 5

5 Mpanda Line 301,505 294,850 292,031 291,611 7,249 2,882 422

6 North East Undendeule 263,787 263,787 263,787 263,787 - - -

7 Lukwati 195,324 195,324 195,324 195,324 - - -

8 Rukwa 163,155 159,886 159,800 159,707 3,269 87 92

9 Muhuwesi 153,359 152,839 152,784 152,783 547 56 1

10 Ugalla North 151,379 150,040 149,117 148,855 1,362 934 261

11 Lungonya 136,651 136,590 136,569 136,569 99 24 -

12 Muipa 114,665 114,665 114,665 114665 - - -

13 Biharamulo 94,049 90,187 89,754 89,696 4,953 488 61

14 Wala River 91,449 91,240 91,238 91,238 270 2 -

15 Ruiga River 89,400 89,276 89,243 89,239 123 33 4

16 Nyera/Kiperere 82,763 82,754 82,751 82,751 9 3 -

17 Igombe River 75,484 62,183 61,200 60,934 13,300 983 266

18 Ruhoi River 71,295 70,818 70,660 70,660 609 168 -
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19 Coastal mangrove 70,155 70,083 70,076 70076 103 8 -

20 Mulele Hills 68,054 63,799 61,754 61,700 4,382 2,080 55

21 Ukanga 63,946 63,809 63,782 63,781 147 30 2

22 North Makere 62,782 61,848 61,577 61,534 1,008 273 43

23 Mkuti 60,958 55,703 55,194 55,133 5,296 5,11 61

24 Mtarure 55,451 55,447 55,446 55,446 11 2 -

25 Mkulazi 50,116 50,088 50,087 50,088 28 - -

26 Makere South 44,165 42,551 42,330 42,319 1,911 238 11

27 Ngarama North 42,940 42,881 42,875 42,875 62 5 -

28 Sasawara 39,198 39,174 39,172 39,172 32 2 -

29 Lohombero/Luwengu 39,169 39,076 39,025 39,025 104 51 -

30 Mamboto 38,064 38,058 38,058 38,058 6 - -

31 Malehi 37,627 37,594 37,589 37,589 40 5

32 Mbagala 32,038 31,9723 31,946 31,946 108 33 -

33 Geita 31,994 29,526 29,108 29,077 3,118 452 33

34 Ukwiva 30,122 30,122 30,122 30,122 - - -

35 Ushetu Ubagwe 29,897 29,885 29,882 29,882 12 3 -

36 Songa 29,074 29,039 29,034 29,034 36 5 -

37 Nou 29,059 29,059 29,059 29,059 - - -

38 Uyui-Kigwa 29,033 26,431 26,423 26,414 3,689 9 9

39 Loasi river 28,408 26,642 25,691 25,427 2,439 1,039 271

40 Nyantakara 25,368 25,358 25,357 25,358 17 1 -

41 Ruvu South 22,173 22173 22173 22173 - - -

42 Chinene West 22,039 22,034 22,033 22,033 13 2 -

43 Nampekeso 21,820 21,814 21,812 21,812 7 2 -

44 Livingstone 21,786 21,788 21,785 21,785 5 - -

45 Karitu 21,286 19,799 19,707 19,620 1,487 92 87

46 Lionja 20,846 20,843 20,843 20,843 5 - -

47 Ruamagazi 19,196 15,114 14,557 14,483 4,849 569 75

48 Chenene East 17,936 17,862 17,848 17,847 96 15 1

49 Unyambiu North 17,570 17,536 17,535 17,534 50 1 1

50 Kisinga Lugaro 17,216 17,216 17,216 17,216 - - -

51 Rungo 16,999 16,981 16,975 16,975 23 8 -

52 Mgololo 16,588 16,588 16,588 16,588 1 - -

53 Ngindo 16,393 16,393 16,393 16,393 - - -

54 Matapwa 15,785 15,607 15,584 15,584 183 23 -

55 Uvinza 15,672 15,643 15,638 15,638 38 5 -
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56 Mufindi Scarp 15,255 15,255 15,255 15,255 - - -

57 Goweko 15,209 13,453 13,424 13,414 2,196 32 11

58 Uzigua 14,948 14,948 14,948 14,948 - - -

59 Nyaganje 14,615 14,613 14,611 14,611 3 1 -

60 Kichi Hills 14,581 14,581 14,581 14,581 - - -

61 Runzewe 13,929 13,419 13,296 13,269 697 133 28

62 Nguru North 11,479 11,479 11,479 11,479 - - -

63 Ilomero Hill 11,056 10,368 10,301 10,274 693 68 27

64 Chimala Scarp 10,961 10,883 10,878 10,877 123 5 1

65 Isalala 10,762 10,583 10,577 10,576 216 7 -

66 Urumwa 9,893 9,839 9,836 9,835 54 3 -

67 Lyambo Hill 9,764 9,313 8,986 8,966 451 327 19

68 Maisome 9,419 8,649 8,527 8,513 770 123 13

69 Chumwa Range 9,264 9,259 9,259 9,259 11 - -

70 Poroto Ridge 8,977 8,977 8,977 8,977 - - -

71 Kipengere Range 8,687 8,671 8,670 8,670 22 1 -

72 Pala Mountains 8,444 8,444 8,444 8,444 - - -

73 Mitundumbea 8,388 8,353 8,352 8,352 44 2 -

74 Image 8,012 8,012 8,012 8,012 - - -

75 North Mamiwa Kisara 7,916 7,916 7,916 7,916 - - -

76 Matogoro East 7,624 7,619 7,618 7,618 6 1 -

77 Pagale 7,405 7,405 7,405 7,405 - - -

78 Ivuna North 6,479 6,357 6,356 6,359 175 1 -

79 Kanga 6,353 6,353 6,353 6,353 - - -

80 Salanga 6,302 6,302 6,302 6,302 - - -

81 Ilunde 6,035 5,979 5,965 5,955 70 15 10

82 Lugufu 5,984 3,180 2,926 2,903 2,955 264 24

83 Monduli 5,878 5,878 5,878 5,878 - - -

84 Mamiwa Kisara South 5,628 5,628 5,628 5,628 - - -

85 Mbogwe Bukombe 5,591 5,572 5,569 5569 31 3 -

86 Mienze 5,450 4,987 4,844 4,832 620 150 12

87 Mangalisa 5,274 5,274 5,274 5,274 - - -

88 Mlali 5,001 5,000 4,999 4,999 2 - 1

89 Tambulu 4,972 4,972 4,972 4,972 - - -

90 Ndechela 4,968 4,966 4,966 4,966 2 - -

91 Bereku 4,863 4,862 4,862 4,862 - - -

92 Mlola 4,819 4,710 4,705 4,705 117 5 -
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93 Loliondo II 4,774 4,774 4,774 4,774 - - -

94 Kungwe Bay 4,737 4,560 4,545 4,543 226 15 3

95 Kitonbeine 4,620 4,620 4,620 4,620 - - -

96 Namakutwa/Namade 4,495 4,493 4,493 4,493 3 - -

97 Ufiome 4,431 4,431 4,431 4,431 - - -

98 Ngogwa Busangi 4,316 4,025 3,963 3,961 385 67 3

99 Nandembo 4,167 4,166 4,166 4,166 2 - -

100 Essimingor 4,130 4,130 4,130 4,130 - - -

101 Mdando 4,124 4,124 4,124 4,124 - - -

102 Katundu 4,093 4,047 3,976 3,976 62 79 -

103 Mafwomero 3,987 3,987 3,987 3,987 - - -

104 Mkusu 3,926 3,926 3,926 3,926 - - -

105 Changandu 3,826 3,826 3,826 3,826 - - -

106 Umalila 3,777 3,710 3,705 3,704 81 5 1

107 Dabaga New 3,731 3,730 3,730 3,730 1 - -

108 Mtanza 3,721 3,704 3,696 3,696 23 9 -

109 Kitope Hill 3,692 3,692 3,692 3,692 - - -

110 Kiwengoma 3,618 3,618 3,617 3,617 - 1 -

111 Makonde Scarp II 3,504 3,372 3,314 3,303 190 68 12

112 Igombe Dam 3,499 3,485 3,485 3,485 14 - -

113 Nyumburuni 3,495 3,291 3,269 3,269 230 23 -

114 Kikuru 3,479 3,479 3,479 3,479 - - -

115 Baga I (Mzinga) 3,456 3,456 3,456 3,456 - - -

116 Mafi Hill 3,441 3,441 3,441 3,441 - - -

117 Mkungwe 3,326 3,324 3,324 3,324 2 - -

118 Gulosilo 3,305 3,305 3,305 3,305 - - -

119 Hassama Hill 3,281 3,281 3,281 3,281 - - -

120 Ruvu 3,271 3,270 3,270 3,270 1 - -

121 Derema 3,256 3,256 3,256 3,256 - - -

122 Kitapilimwa 3,170 3,170 3,170 3,170 - - -

123 Makonde Scarp I 3,081 3,027 2,991 2,989 70 42 3

124 Ndimba 3,004 3,004 3,004 3,004 - - -

125 Mtai 3,001 2,998 2,998 2,998 4 - -

126 Chambogo 2,893 2,893 2,893 2,893 - - -

127 Mamboto 2,764 2,762 2,761 2,761 2 1 -

128 Kabulo 2,763 2,762 2,760 2,760 2 2 -

129 Mtita 2,763 2,763 2,763 2,763 - - -
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130 Tongomba New 2,742 2,739 2,739 2,739 5 - -

131 Gwami 2,720 2,720 2,720 2,720 - - -

132 Kipembawe 2,690 2,435 2,338 2,235 282 97 104

133 Kitulanghalo 2,651 2,651 2,651 2,651 - - -

134 Msumbugwe 2,593 2,593 2,593 2,593 - - -

135 Kilindi 2,586 2,586 2,586 2,586 - - -

136 Kigogo 2,577 2,577 2,577 2,577 - - -

137 Ruande 2,570 1,977 1,932 1,924 610 45 8

138 Mpunze 2,567 2,547 2,543 2,542 20 4 -

139 Mkuli Extension 2,232 2,232 2,232 2,232 - - -

140 Rupiage 2,227 2,226 2,226 2,226 1 - -

141 Mtunguru 2,225 2,225 2,225 2,225 - - -

142 Kwizu 2,209 2,209 2,209 2,209 - - -

143 Ruawa 2,188 2,085 2,078 2,077 106 8 1

144 Ngulakula 2,139 2,139 2,139 2,139 - - -

145 Loliondo I 2,130 2,130 2,130 2,130 - - -

146 Lwenza 2,124 2,094 2,092 2,092 44 3 -

147 Isabe 2,121 2,121 2,121 2,121 - - -

148 Ndumbi Valley 2,090 2,085 2,085 2,085 6 - -

149 Kwasumba 2,055 2,055 2,055 2,055 - - -

150 Bombo West 1,940 1,936 1,936 1,936 6 - -

151 Kazimzumbwi 1,887 1,887 1,887 1,887 - - -

152 Kome 1,874 1,874 1,874 1,874 - - -

153 Kome Island 1,809 1,809 1,809 1,809 - - -

154 Ngogwa 1,807 1,524 1,522 1,521 422 2 1

155 Bondo 1,710 1,710 1,710 1,710 - - -

156 North Makere 1,705 1,660 1,656 1,655 44 4 1

157 Uyovu 1,703 1,372 1,351 1,349 504 24 2

158 Mbinga Kimaji / Kimate 1,698 1,697 1,697 1,697 1 - -

159 Ndukunduku 1,697 1,691 1,691 1,691 5 - -

160 Ilamba 1,681 1,479 1,468 1,463 266 12 6

161 Masagati 1,639 1,639 1,639 1,639 - - -

162 Ukune 1,638 1,454 1,418 1,412 184 36 6

163 Chilangala 1,634 1,629 1,625 1,625 7 4 1

164 Longido 1,620 1,620 1,620 1,620 - - -

165 Nagaga 1,602 1,602 1,601 1,601 1 1 -

166 Mohoro 1,535 1,468 1,468 1,468 87 - -
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167 Ivuna South 1,459 1,456 1,456 1,456 6 - -

168 South Gendagenda 1,441 1,441 1,441 1,441 - - -

169 Nambinga 1,439 1,430 1,430 1,430 14 - -

170 Lupa North 1,436 1,354 1,352 1,352 116 3 1

171 Kisima Gonja 1,428 1,428 1,428 1,428 - - -

172 Ndekemai 1,405 1,405 1,405 1,405 - - -

173 Mkangala 1,382 1,374 1,373 1,373 8 - -

174 Mbagala 32,038 31,9723 31,946 31,946 108 33 -

175 Vikindu 1,375 1,375 1,375 1,375 - - -

176 Manga 1,356 1,355 1,355 1,355 1 - -

176 Mramba 1,307 1,307 1,307 1,307 - - -

177 Sengoma 1,294 1,292 1,292 1,292 2 - -

178 Namikupa 1,292 1,264 1,254 1,251 45 14 3

179 Vumari 1,280 1,280 1,280 1,280 - - -

180 Kiverenge 1,279 1,279 1,279 1,279 - - -

181 Ihanga 1,248 1,238 1,238 1,238 11 - -

182 Kwamgumi 1,232 1,231 1,231 1,231 2 - -

183 Gelai 1,231 1,231 1,231 1,231 - - -

184 Liteho 1,229 1,214 1,209 1,208 15 5 2

185 Nandimba 1,211 1,199 1,197 1,197 15 2 -

186 Masanganya 1,100 1,100 1,100 1,100 - - -

187 Sima 1,099 1,074 1,072 1,072 26 2 -

188 Kiranzi Kitunguu 1,068 1,068 1,068 1,068 - - -

189 Matogoro West 1,067 1,067 1,067 1,067 - - -

190 Mtandi 1,067 1,063 1,063 1,063 5 1 -

191 Kwani 1,064 1,064 1,064 1,064 - - -

192 Mgambo 1,063 1,062 1,062 1,062 2 - -

193 Sali 1,045 1,045 1,045 1,045 - - -

194 Ngwasi 1,037 1,037 1,037 1,037 - - -

195 Mahuta 1,021 948 938 932 105 11 6

196 Litipo 1,021 1,021 1,021 1,021 - - -

197 Bamba Ridge 1,017 1,017 1,017 1,017 - - -

198 Milindo 1,005 1,004 1,004 1,004 1 - -

199 Kalangai 997 885 878 878 158 7 -

200 Irangi Escarpment 996 996 996 996 - - -

201 Mpara 992 992 992 992 - - -

202 Wotta 981 981 981 981 - - -
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203 Irungu 970 968 968 968 9 - -

204 Balangai West 958 958 958 958 - - -

205 Kwamrimba 933 932 932 932 1 - -

206 Bombo East I 932 890 889 875 49 1 16

207 Ndasha Hill 930 929 929 929 - - -

208 Pumula 914 914 914 914 - - -

209 Kambai 892 892 892 892 - - -

210 Semdoe/Msige 874 873 872 872 2 - -

211 Magoroto 867 867 867 867 - - -

212 Ukamba 854 823 816 816 31 7 -

213 Iyonda 826 826 826 826 - - -

214 Kikoka 817 817 817 817 - - -

215 Mwenga 811 811 811 811 - - -

216 Ilongafipa 798 798 798 798 - - -

217 Sawago 791 791 791 791 1 - -

218 Chitoa 786 786 786 786 - -

219 Liwili/Kiteza/Lwekea 763 763 763 763 - - -

220 Ndolwa 742 742 742 742 - - -

221 Chitoa 740 735 732 732 5 3 -

222 Kipo 735 728 719 719 13 11 -

223 Dindili 696 696 696 696 - - -

224 Mswima 685 685 685 685 - - -

225 Kyosa 676 676 676 676 - -

226 Nguru ya Ndege 660 660 660 660 - -

227 Ikwamba 655 655 655 655 - -

228 Lusungulu 655 655 655 655 - -

229 Sisu 654 654 654 654 - -

230 Mkundi 645 645 645 645 1 - -

231 Kitara Ridge 628 628 628 628 - - -

232 Magambazi 627 627 627 627 - - -

233 Talagwe 590 590 590 590 - - -

234 Kindoroko 580 580 580 580 - - -

235 Mvuha 561 561 561 561 - - -

236 Kyejo 561 561 561 561 - - -

237 Tongwe 552 552 552 552 - - -

238 Mfumbia 551 551 551 551 - - -

239 Kingoma 537 537 537 537 - - -
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240 Makonde Scarp III 530 486 473 470 62 15 3

241 Masukulu 518 518 518 518 - - -

242 Ziwani 509 508 507 507 1 1 -

243 Mtama 506 462 457 457 52 5 -

244 Haraa 499 499 499 499 - - -

245 Mlinga 497 497 497 497 - - -

246 Rau 492 492 492 492 - - -

247 Ntazu 483 483 483 483 - - -

248 Kalambo falls 477 477 477 477 - - -

249 Chala Hills 460 408 396 395 51 12 1

250 Simbo-Bagamoyo 456 456 456 456 - - -

251 Kiranga Hengae 441 441 441 441 - - -

252 Mhulu 433 433 433 433 - - -

253 Chamanyani 428 428 428 428 - - -

254 Iditima 428 426 426 426 3 - -

255 Minja 422 422 422 422 - - -

256 Njogi 421 421 421 421 - - -

257 Kimboza 399 398 398 398 - - -

258 Irenga 396 396 396 396 2 - -

259 Mhalo 392 392 392 392 - - -

260 Handeni Hill 365 365 365 365 - - -

261 Burko 357 357 357 357 - - -

262 Mselezi 352 351 350 350 2 1 -

263 Pongwe 344 344 344 344 - - -

264 Mamani 334 334 334 334 - - -

265 Nagaliendele 331 328 328 328 4 - -

266 Rudewa South 310 310 310 310 - - -

267 Bagai 305 305 305 305 - - -

268 Mbwegere 300 300 300 300 - - -

269 Ihoho 298 298 298 298 4 - -

270 Kamwalla II 296 296 296 296 - - -

271 Negoma 295 295 295 295 - - -

272 Ijogo 292 292 292 292 - - 1

273 Mkongo 292 292 292 292 - - -

274 Idewa 290 290 290 290 - - -

275 Chuvwi 284 283 283 283 2 - -

276 Mahenge Scarp 283 283 283 283 - - -



APPENDIX A. 368

277 Irunda 278 278 278 278 - - -

278 Mahezangulu 276 276 276 276 - - -

279 Ikuru 268 266 265 265 3 - -

280 Kwangola 267 267 267 267 - - -

281 Mindu 255 255 255 255 - - -

282 Mtumbi 252 252 252 252 - - -

283 Simbo 242 237 237 237 7 - -

284 Puge North 232 231 231 231 1 - -

285 Shinkurufumi 229 229 229 229 - - -

286 Kyanyari 223 223 223 223 - - -

287 Kikongoloi 221 221 221 221 - - -

288 Vigoregore 220 177 161 161 45 15 -

289 Gumbiro 217 217 217 217 - - -

290 Vugiri 211 211 211 211 - - -

291 Irunga 206 206 206 206 1 - -

292 Pangawe East 196 194 194 194 2 - -

293 Mwantini Hill 194 158 158 158 62 - -

294 Kiamawe 192 192 192 192 - - -

295 Kurwirwi 191 191 191 191 - - -

296 Mrema Kingarussina 188 186 186 186 2 - -

297 Ngalijembe 186 186 186 186 - - -

298 Kitweli 185 185 185 185 - - -

299 Uponera 181 181 181 181 - - -

300 Kabingo 175 175 175 175 - - -

301 Kasanga 170 170 170 170 - - -

302 Lukoka Hill 169 169 169 169 - - -

303 Mninga 159 159 159 159 - - -

304 Mamboto 158 158 158 158 - - -

305 Kwamarukanga 149 149 149 149 - - -

306 Mlungui 148 148 148 148 - - -

307 Mkewe 147 145 145 145 5 - -

308 Usindikwe 143 141 141 141 4 - -

309 Mamboya 142 142 142 142 - - -

310 Marenda 137 137 137 137 - - -

311 Bombo East II 132 132 132 132 1 - -

312 Kihiriri 129 129 129 129 - - -

313 Bulongwa Madehani 126 121 120 120 6 1 -
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314 Mzogoti 125 125 125 125 - - -

315 Manka 122 122 122 122 - - -

316 Myoe 116 116 116 116 - - -

317 Kamwalla I 114 114 114 114 - - -

318 Long’isont 114 114 114 114 - - -

319 Mafleta 108 108 108 108 - - -

320 Litoni 107 107 107 107 - - -

321 Kibao 103 103 103 103 - - -

322 Kiriguru 103 103 103 103 - - -

323 Kabungu 102 63 49 49 62 16 -

324 Kambona 91 89 89 89 3 1 -

325 Igoma Logala 86 86 86 86 - - -

326 Isililo 86 86 86 86 - - -

327 Sasajila 85 85 85 85 - - -

328 Gonja 83 83 83 83 - - -

329 Mpagalalu 82 82 82 82 - - -

330 Ikonde 80 80 80 80 - - -

331 Garafuno 80 80 80 80 - - -

332 Rushwezi 77 77 77 77 - - -

333 Idunda 76 76 76 76 - - -

334 Ngukumo 75 75 75 74 - - -

335 Mwanhala 74 74 72 72 2 1 1

336 Kitulio 73 73 73 73 - - -

337 Ito 71 70 70 70 1 - -

338 Mkigagi 69 69 69 69 - - -

339 Kankoma 63 63 63 63 - - -

340 Mfulikilo 63 63 63 63 - - -

341 Kitivo North 61 61 61 61 - - -

342 Fonera 59 58 58 58 1 - -

343 Mpala 59 59 59 59 - - -

344 Chongweni 57 57 57 57 - - -

345 Nguluka 56 56 56 56 - - -

346 Malenga 54 53 53 53 5 - -

347 Kwekanda 52 52 52 52 - - -

348 Ndugumia 51 51 51 51 - - -

349 Msingeho Hill 49 49 49 49 - - -

350 Mabundi Mtwange 49 49 49 49 - - -
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351 Puge South 48 47 47 47 1 - -

352 Mkoro 48 48 48 48 - - -

353 Mamboto 48 48 48 48 - - -

354 Jasini 47 47 47 47 - - -

355 Ilonganjaula 43 43 43 43 - - -

356 Sakila 43 43 43 43 - - -

357 Mafifi 41 41 41 41 - - -

358 Kantale 39 39 39 39 - - -

359 Kisiwani 37 37 37 37 - - -

360 Kitivo South 35 35 35 35 - - -

361 Mamboto 35 35 35 35 - - -

362 Kigongkwe 34 33 32 32 3 - -

363 Idamba 33 33 33 33 - - -

364 Ligamba 32 32 32 32 - - -

365 Igwata 28 28 28 28 - - -

366 Maganda 25 25 25 25 - - -

367 Hebangwe 24 24 24 24 - - -

368 Kihanga 24 24 24 24 - - -

369 Nindo 24 21 21 21 11 - -

370 Lake Duluti 22 22 22 22 - - -

371 Hupanga 21 21 21 21 - - -

372 Nyandira 21 21 21 21 - - -

373 Kyarano 19 19 19 19 - - -

374 Mzashai 19 19 19 19 - - -

375 Shambalai 19 19 19 19 - - -

376 Milawilila 18 18 18 18 - - -

377 Pangawe West 17 17 17 17 - - -

378 Mohoro River 17 17 17 17 1 - -

379 Manongho Hill 17 15 15 15 3 - -

380 Kiav Island 17 17 17 17 - - -

381 Kibwezi 16 16 16 16 - - -

382 Nyandiduma 15 15 15 15 - - -

383 Mangala 15 15 15 15 - - -

384 Mbuga ya Goima 15 14 13 13 4 1 -

385 Kilengwe 14 14 14 14 - 1 -

386 Disalasala 13 13 13 13 - - -

387 Kiamawe 8 8 8 8 - - -
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388 Vigoza 7 7 7 7 - - -

389 Zinge 6 6 6 6 - - -

390 Kwembago 5 5 5 5 - - -

391 Mkangala 3 3 3 3 - - -

392 Kahe II 3 3 3 3 - - -

393 Koko Hill 3 3 3 3 - - -

394 Mbeya fuel 2 2 2 2 - - -

395 Bassi 2 2 2 2 - - -

396 Kagongho 2 2 2 2 - - -

397 Kahe I 1 1 1 1 - - -

388 Mombo 1 1 1 1 - - -

399 Kingongoro 1 1 1 1 - - -

400 Bunduki 3 - - - - - - -

401 Kiutu - - - - - - -

402 Mbogo - - - - - - -

403 Chemi chemi - - - - - - -

404 Dodoma Reservoir - - - - - - -

405 Ibondo - - - - - - -

406 Igwata - - - - - - -

407 Kakora - - - - - - -

408 Kileo East - - - - - - -

409 Konga - - - - - - -

410 Lubaga - - - - - - -

411 Mwakulu - - - - - - -

412 Mwatunge Hill - - - - - - -

413 Sayaka - - - - - - -

Table A.6: Wildlife Protected Areas: Forest extent and change (ha)

Forest extent Forest change

Name Designation Baseline 2018 2019 2020 2018 2019 2020

Ruaha National Park 937,210 937,020 936,911 936,851 367 125 64

Kigosi National Park 641,746 641,631 641,622 641,622 132 9 -

Mikumi National Park 249,875 249,833 249,825 249,825 47 8 -

Katavi National Park 178,691 178,658 178,631 178,637 41 22 2
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Udzungwa Mountains National Park 169,365 169,346 169,346 169,346 20 - -

Mkomazi National Park 108,802 108,800 108,800 108,800 3 - -

Mahale National Park 105,917 105,812 105,806 105,805 152 7 1

Kilimanjaro National Park 90,384 90,384 90,384 90,384 - - -

Ugalla National Park 86,370 86,370 86,370 86,370 - - -

Burigi-Chato National Park 78,982 78,982 78,982 78,982 - - -

Lake Manyara National Park 25,695 25,695 25,695 25,695 - - -

Arusha National Park 24,002 24,002 24,002 24,002 - - -

Rumanyika National Park 20,732 20,732 20,732 20,732 - - -

Rubondo National Park 19,194 19,194 19,194 19,194 - - -

Tarangire National Park 8,951 8,951 8,951 8,951 - - -

Ibanda National Park 4,265 4,265 4,265 4,265 - - -

Serengeti National Park 3,631 3,623 3,622 3,621 8 1 -

Gombe National Park 3,052 3,052 3,052 3,052 - - -

Kitulo Plateau National Park 2,243 2,243 2,243 2,243 - - -

Ngorongoro Conservation Area 91,061 91,061 91,061 91,061 - - -

Selous Game Reserve 3,103,500 3,103,453 3,103,442 3,103,366 56 11 76

Moyowosi Game Reserve 688,689 688,511 688,491 688,491 209 21 -

Rungwa Game Reserve 607,792 605,064 604,885 604,782 3,280 189 105

Rukwa Game Reserve 354,163 354,138 354,137 354,137 25 1 -

Kizigo Game Reserve 350,513 350,445 350,430 350,418 80 16 13

Muhezi Game Reserve 197,649 196,813 196,627 196,506 1,289 215 133

Lwafi-Nkamba Game reserve 166,958 165,774 165,459 165,445 1,494 343 14

Piti O.A.(E) Game reserve 164,176 154,417 153,895 153,588 11,344 530 308

Limparamba Game Reserve 56,254 56,195 56,173 56,172 102 25 -

Lukwika-Lumesule Game Reserve 38,690 38,672 38,670 38,670 27 2 -

Swangaswanga Game Reserve 24,280 24,278 24,278 24,278 2 - -

Msanjesi Game Reserve 14,768 14,693 14,686 14,686 78 7 -

Kimisi Game Reserve 9,131 9,131 9,131 9,131 - - -

Mkungunero Game Reserve 5,962 5,962 5,962 5,962 - - -

Maswa Game Reserve 3,695 3,695 3,695 3,695 1 - -

Pande Game Reserve 1,218 1,218 1,218 1,218 - - -

Ikorongo Game Reserve 260 260 260 260 - - -

Grumeti Game Reserve 142 140 140 140 2 - -

Lunda-Mkwabi Game Controlled Area 209,350 208,495 208,388 208,269 934 108 128

Mlele Game controlled area 202,283 199,936 198,907 198,790 2,346 1,029 117

Kitwai Game controlled area 148,525 148,524 148,524 148,524 - - -
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Mlele Game controlled area 119,158 119,158 119,158 119,158 - - -

Gombe Game controlled area 98,897 67,068 58,638 57,764 32,965 8,517 878

Wembere Game controlled area 88,436 83,334 81,921 81,051 7,790 1,535 911

Handeni Game controlled area 78,605 78,602 78,595 78,595 3 7 -

Kilombero Game controlled area 51,127 50,369 50,027 50,027 1,561 465 -

Lunda Nkwambi Game controlled area 48,000 47,954 47,951 47,929 47 2 22

Loliondo Game controlled area 38,729 38,719 38,719 38,719 12 - -

Ruvu Masai Game controlled area 28,274 28,274 28,274 28,274 - - -

Lake Natron Game controlled area 20,154 20,152 20,152 20,152 3 - -

Simanjiro Game controlled area 12,338 12,338 12,338 12,338 - - -

Landanai Game controlled area 3,485 3,485 3,485 3,485 - - -

Mlela Game Controlled Area 2,626 2,626 2,626 2,626 - - -

Lolkisale Game controlled area 2,622 2,622 2,622 2,622 - - -

Mto wa Mbu Game controlled area 562 562 562 562 - - -

Mlele Game controlled area 263 263 263 263 - - -

Liwale Wildlife management area 338,274 338,250 338,246 338,246 26 4 -

Mbarang’andu Wildlife management area 263,151 263,035 263,017 263,016 190 21 1

Ipole Wildlife management area 185,162 180,804 180,737 180,706 6,167 71 31

Makame Wildlife management area 184,947 184,919 184,919 184,919 31 - -

Pawaga-Idodi Wildlife management area 125,050 124,995 124,990 124,980 58 5 11

Wami Mbiki Wildlife management area 122,960 122,960 122,959 122,959 2 1 -

Tunduru Wildlife management area 119,051 118,792 118,737 118,729 322 57 9

Uyumbu Wildlife management area 79,031 78,839 78,775 78,757 193 64 17

Ngarambe-Tapika Wildlife management area 69,334 69,305 69,295 69,295 65 12 -

Ukutu Wildlife management area 62,213 61,637 61,495 61,495 592 146 -

Enduimet Wildlife management area 1,473 1,473 1,473 1,473 - - -

Burunge Wildlife management area 1,208 1,202 1,202 1,202 9 - -

Ikona Wildlife management area 727 727 727 727 1 - -
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