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Purpose: The use of supplementary light in regions with low natural 
sunlight is necessary to fulfill the increasing consumer requests for 
fresh vegetables. This study aimed to investigate the effect of 
different combinations of red and blue LEDs on yield and quality of 
greenhouse-grown sweet pepper (Capsicum annuum L.) fruits during 
the growth period. Research method: The experiments were 
conducted in Rasht, Iran as split plots in the form of a completely 
randomized design in three repetitions (four plants per plot) on two 
cultivars of sweet pepper (Padra and Shadlin). With the appearance 
of the first flower buds, plants were exposed to different light 
treatments including: three combinations of red (R) and blue (B) LEDs 
(T1:R8B1, T2:R7B2, and T3:R6B3), with a same intensity of 200 
μmolm-2s-1 as supplement light to the natural light, together with 
natural light as control treatment (CT). Sweet pepper fruits were 
harvested weekly over 27 weeks and fruit yield and quality were 
assessed. Findings: Supplemental light using LEDs significantly 
increased yield and fruit quality parameters (except titratable acidity 
and maturity index) compared to the control. Marketable yield was 
differed among the light treatments and plants exposed to T3 
showed the highest marketable yield (14.58 kg/m2). The effect of 
supplemental light on total yield was more detectable when the 
average daily light integral was the lowest (for example, the 
difference between T3 and the control treatment in January was 1.27 
kg/m2, while this difference was 0.68 kg/m2 in June). No significant 
difference was observed between cultivars and T3 was the best 
treatment in most parameters. Research limitations: No limitations 
were found. Originality/Value: In the northern regions of Iran, even 
in the months that do not seem to have light limitations, the use of 
supplementary light is recommended to increase the yield of sweet 
peppers in the greenhouse. 
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http://creativecommons.org/licenses/by/4.0/
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INTRODUCTION 

 

Sweet pepper is a widely cultivated greenhouse crop, which is considered as one of the most 

consumed vegetables worldwide for fresh consumption or ready-to-eat foods, due to its taste, 

physicochemical compounds and various antioxidants (Guo et al., 2016; Jokinen et al., 2012; 

Kim & Son, 2022; Naznin et al., 2019). During the winter months in northern temperate 

climate, light is a limiting factor for yield and fruit quality of greenhouse vegetables (Lanoue 

et al., 2022). In the northern regions of Iran, the average daily light integral (DLI) is below 

10 molm−2day−1duringthe autumn and winter seasons (obtained from the Rasht agricultural 

meteorological station). At this low DLI, flower abortion occurs in sweet peppers, which 

leads to a decrease in fruit production (Lanoue et al., 2022). As a countermeasure, artificial 

supplemental light sources are used to promote photosynthesis and yield and to improve fruit 

quality of year-round fresh greenhouse crop production, especially in the days with low 

intensity of natural light (Jokinen et al., 2012). 

Traditionally, the commercial greenhouses increase DLI using high-pressure sodium 

(HPS) lamps as a supplemental lighting source above crop canopy. However, HPS lamps 

have fixed spectral compositions and may have adverse effects on greenhouse crops due to 

the conversion of a large portion of the input energy into heat (Klamkowski et al., 2014). 

Among different types of supplemental lights, light emitting diodes (LEDs) offer many 

benefits, such as reduced electricity consumption, safety and longevity (Dąbrowski et al., 

2015). In addition, the low surface temperature and possibility of manipulation of light 

spectrum introduced the LEDs as a suitable alternative to HPS lamps (Pattison et al., 2018). 

The low surface temperature make LEDs feasible to use in close proximity to plant tissue, and 

the possibility of manipulating the spectral composition of LEDs can lead to biochemical, 

physiological, and photomorphogenic changes and subsequently improve yield (Guo et al., 

2016). 

Plants have certain responses to different light wavebands. Red (R) and blue (B) have 

been highly recommended by the scientific and greenhouse production communities because 

they are in the chlorophyll absorption region and bring higher photosynthetic and quantum 

efficiency (Hao et al., 2017; Lin & Jolliffe, 1996). It has been found that blue light plays an 

important role in pigment accumulation, stomatal opening, photomorphogenesis, leaf 

expansion and plant growth, and red light controls the function of the reproductive system, 

chloroplast, as well as petiole and stem growth (Li, et al., 2012). Moreover, the highest 

photosynthetic photon efficiency (PPE) among LEDs is related to these two wavebands 

(Hernández & Kubota, 2016). Usually a combination of R and B are used in controlled 

environment agriculture (CEA) for growth and production of different crops (Esmaeili et al., 

2022; Javadi Asayesh et al., 2021). According to the mentioned contents, the suitable light 

spectra of LEDs are of great importance for the horticulture industry. Although R and B light 

spectra are proposed as the main spectra absorbed by chlorophyll a and b pigments, however 

there are scarce of information regarding their effects as the supplemental light for the main 

fruity greenhouse crops needing supplemental light for keeping economic yielding during 

seasons with light intensity limitations. In the regions with high precipitation such as Guilan 

province in North of Iran, at least in half of the year, average of DLI in late autumn and early 

winter times is lower than 15 molm−2day−1 and the amount of light transmitting into the 

greenhouse is less than 10 molm−2day−1. So, the objective of this study was to investigate the 

effect of different combinations of R and B LED supplemental lighting on the yield and fruit 

quality of two greenhouse sweet pepper cultivars during two consecutive growing periods in 

Rasht, Iran, finally, introducing the best light combination for greenhouse production of sweet 

pepper. 



 
Adibian et al./J. HORTIC. POSTHARVEST RES., 6(3), SEPTEMBER 2023                                  

 

319 
 

MATERIALS AND METHODS 

 

Location 

The experiments were conducted in the research greenhouse of the Faculty of Agricultural 

Sciences of Guilan University, Rasht, Iran (longitude 37° N, latitude 49° E, and 7 m above sea 

level (Fig. 1) during 2019-2021. The information about the number of sunny hours and 

photosynthetically active radiation in the 40-year statistical period (1970-2010) was obtained 

from the Rasht Agricultural Meteorological Station (Table 1). 

 

Plant materials and growth conditions 

This research was carried out as split plots in the form of a completely randomized design in 3 

repetitions (fourplants per plot) on two cultivars of greenhouse sweet pepper (Capsicum 

annum L.) including red (Padra) and yellow (Shadlin). Seeds (purchased from Meridiem 

seeds. Co, Iran) were planted in 45-cell trays (4 × 4 × 8 cm) containing a mixture of 50% 

perlite and 50% cocopeat at the depth of 0.5 cm. At two-cotyledon stage, healthy, strong, 

identical and same-sized seedlings were transferred to 1 L plastic pots. With the appearance of 

the first flower buds, the seedlings were transferred to the main pots with a diameter of 23 cm 

and a depth of 21.5 cm (7 L). At this stage, the plants were exposed to four light treatments 

(in total 96 plants). Drip irrigation was done with a modified nutrient solution (Papadopoulos, 

1994) based on the plant's water needs on an average of once a day (Fig. 2, Table 2). Stem, 

flower and fruit pruning were done regularly from the beginning of growth until harvest time. 

 

 

 
                  

                    Fig 1. Location map of the research greenhouse of the Faculty of Agricultural Sciences, 

                    Guilan University, Rasht, Iran. 
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                        Table 1. Number of sunny hours and photosynthetically active radiation in Guilan 

                        (1970-2010). † 

Season Average of total  

sunny hours (h) 

Average of daily  

sunny hours (h) 

Average of daily light  

integral (molm-2d-1) 

Spring 489 5.26 20.82 

Summer 598 6.43 28.93 

Autumn 295 3.28 9.45 

Winter 268 2.98 7.52 

Yearly 1650 4.52 15.01 

                        † (Rasht Agricultural Meteorological Station) 
 
  Table 2. Nutrient solutions used during the growth period of sweet pepper plants. 

Stock Fertilizer The month after germination 

First  Second  Third  Fourth The beginning of the harvest - 

the end of the period 

Stock A Calcium nitrate  150 g 160 g 170 g 170 g 170 g 

 Potassium nitrate 44 g 44 g 44 44 g 44 g 

Stock B Potassium nitrate 34 g 44 g 44 44 g 44 g 

 Magnesium Sulphate 40 g 45 g 50 56 g 62 g 

 Potassium 

monophosphate 

60 g 60 g 50 50 g  50 g 

Stock C Manganese sulfate 1 g 1 g 1 1 g 1 g 

 Zinc sulfate 0.5 g 0.5 g  0.5 0.5 g 0.5 g 

 Copper sulfate 0.2 g 0.2 g 0.2 0.2 g 0.2 g 

 Sodium molybdate 0.1 g 0.1 g 0.1 0.1 g 0.1 g 

Stock D Borax 2.4 g 2.4 g 2.4 g 2.4 g 2.4 g 

Stock E Sequestrene Fe 10 g 10 g 10 g 10 g 10 g 

 

 

 

 

                              Fig 2. Sweet pepper plants used in the present study in the fruiting stage. 
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                            Table 3. Lighting treatments based on red (R) and blue (B) spectra and the  

                            contribution of each light spectrum in the overall light composition. † 

Treatment Description 

T1 R:B (8:1) 

T2 R:B (7:2) 

T3 R:B (6:3) 

CT Control treatment (without supplemental light) 

† Peak wavelength λp was 660 nm for red LED and 460nm for blue LED. 

 

Supplemental light application  

LED modules (36 W, with an exposure area of 50 × 100 cm) were purchased from Iran 

Growlight Company, Tehran, Iran. The lamps were installed with a distance of 20 cm above 

the plants canopy (the lamps were movable and were moved based on the plant's height to 

maintain the distance). The light intensity of 200 μmol m2s1, was applied for all light 

treatments (Hikosaka et al., 2013; Naznin et al., 2019; Nederhoff & Marcelis, 2010). 24 wall 

washer lamps of one-meter length were used, and 36 LEDs were installed in each lamp. The 

LEDs were divided into 4 groups of 9. Out of 9 LEDs, 1, 2 and 3 of them were blue and the 

rest were red in treatments 1, 2 and 3, respectively (Table 3). In order to avoid overlapping of 

lamps and light diffusion among the treatments, each lamp was installed in the center of each 

plot. A photoperiod of 14 hours (5 am to 7 pm) was applied to the treatments, and according 

to the literature (Guo et al., 2016; Maureira et al., 2022) when the intensity of solar radiation 

was above 400 μmolm2s1 (10 am - 3 pm on completely sunny days), supplemental lights 

were turned off. Photosynthetic photon flux density on the plant surface was measured with a 

photometer (SKP 200, Skye Instruments Ltd). 

 

Data collection 

Fruit yield 

Fruits at maturity stage (85 days after transferring the seedlings to the main pots) were 

harvested weekly for 189 days and measurements were taken every week. Fruits weight was 

measured with an electronic scale and the total yield, marketable yield (fruits weighing more 

than 100 grams and without blossom-end-rot) and the number of marketable fruits was 

calculated. The length and diameter of fruits were measured using Vernier calipers. 

 

Fruit quality 
Fruits were cut into two halves and flesh thickness was measured at two different points of 

each half. Soluble solid content was determined from filtered pepper fruit extract using a 

refractometer (CETI-BELGUM). Titratable acidity (TA) was recorded by titration of 10 mL 

filtered fruit extract with 0.1N NaOH to pH 8.1 and the quantity (mL) of NaOH was 

converted into citric acidity (Ghasemnezhad, et al., 2011). Maturity index (MI) was obtained 

using the following equation (1) (Martínez-Zamora, et al., 2021): 

 

MI =
TSS

TA
                                                      (1) 

 

Where, TSS is total soluble solids and TA is titratable acidity. The measurement of 

vitamin C in filtered pepper fruit extract was done by titration against 2,6-dichlorophenol-

indophenol solution (Zayed, 2012). The samples were placed in a 65 °C dryer for 72 h, and 

then the dry matter (DM) was obtained using the equation (2) (Lanoue, et al., 2022): 

 

DM = 
Dry weight

Fresh weight
 × 100                               (2) 
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Statistical analysis 

Comparison of normality tests under skewness and kurtosis coefficients in the range of -2 to 2 

was performed using Statistical Product and Service Solutions for Windows, (SPSS, version 

16.0) (Ghasemi & Zahediasl, 2012). Analysis of variance was run on yield indices and fruit 

quality indices using Statistical Analysis Software (SAS, version 9.1) (Littell, 1989) to 

investigate whether theses indices have a significant relationship with light, pepper cultivars, 

and also with interactive effects of light × cultivar. Tukey's multiple comparison test (P<0.01 

and P<0.05) was used to check the difference between means. 

 

RESULTS 

 

Fruit yield  

The results of variance analysis indicated that total yield, marketable yield, number of fruit, 

average fruit weight, fruit length and fruit diameter were significantly (P < 0.01) influenced 

by light treatments, but the individual effect of cultivar as well as the interactive effects of 

light × cultivar were not statistically significant (Table 4). Differences between the means at 

the 1% level showed that the total yield, marketable yield, number of fruits, average fruit 

weight, fruit length and fruit diameter of sweet peppers under all levels of supplemental light 

were significantly higher than their values in control treatment (Table 5). 

As shown in Table 5, marketable yield was differed among the light treatments and 

increased with additional blue light levels, so that T3 (R6B3) had the highest marketable yield 

(14.58 kg/m2) and statistically, there was a significant difference between T3 and two other 

treatments. This is while, study of the differences between the means of total yield, number of 

fruit, average fruit weight and fruit size (P < 0.05) showed that there was no statistical 

difference among T1, T2, and T3 plants. 

Figure 3 compares the average of total yield under four light treatments in different fruit 

harvested month. With the increase of natural light, an increase in the yield of the control 

treatment is observed (0.45 kg/m2 in January vs 2.86 kg/m2 in June), which makes the 

difference between the control treatment and the light treatments to be less in months with 

higher light intensity. For example, the difference between T3 and the control treatment in 

January was 1.27 kg/m2, while this difference was 0.68 kg/m2 in June; however, this 

difference was still significant. 

 
Table 4. Variance analysis for yield parameters of sweet pepper plants grown under different qualities of 

supplemental light. 

Source Df Mean Square (MS)† 

Total  

yield  

Marketable  

yield 

Number of 

Fruit 

Average 

fruit weight 

Fruit 

length 

Fruit 

diameter 

Light 3 69.71** 70.88** 2145** 0.001** 314** 102** 

Light Error 8 0.137 0.04 4 0.001 8.59 11.13 

Cultivar 1 0.02 ns 0.01 ns 0.17 ns 0.001ns 20.17 ns 57.1 ns 

Light × 

Cultivar 

3 0.02 ns 0.02 ns 1.62 ns 0.001 ns 24.62 ns 8.49 ns 

Residual 

Error 
 0.27 0.05 8.75 0.001 5.75 3.62 

Coefficient of 

variation 

- 4.09 1.77 3.71 3.37 2.79 2.55 

  † ns, **: Non significant and significant at 1% probability level, respectively. 

 

 

 



 
Adibian et al./J. HORTIC. POSTHARVEST RES., 6(3), SEPTEMBER 2023                                  

 

323 
 

  

 
Fig 3. Total yield of sweet pepper under four light treatments during different dates of study. 

 
  Table 5. Effect of light treatment on yield parameters of sweet pepper plants. 

Light 

treatment 

Yield indices† 

Total yield  

(kgm-2) 

Marketable  

yield (kgm-2) 

Number of 

fruit  

Average fruit 

weight (kgm-2) 

Fruit length 

(mm)  

Fruit diameter 

(mm) 

T1 14.28b 14.06 b 88.17 a 0.161 a 90.32 a 75.83 ab 

T2 14.35ab 14.18 b 89.33 a 0.160 a 88.00 a 84.83 ab 

T3 14.99a 14.58 a 90.33 a 0.166 a 89.67 a 78.83 a 

CK 7.75c 7.41 c 51.50 b 0.151 b 75.00 b 69.00 b 

   † Data are shown as treatment average of three replicates.  

   Mean values followed by different letters in the same column indicate significant differences by the Tukey's          

test at p ≤ 0.01.  

 

 

Table 6. Variance analysis for fruit quality parameters of sweet pepper fruits under different qualities of 

supplemental light. 

Source Df Mean Square (MS) † 

Flesh 

thickness 
Dry 

matter 

 

Vitamin 

C 

Total 

Soluble 

Solids 

Titratable 

acidity 

Maturity 

index 

Light 3 2.15** 0.001** 69.15** 0.66** 0.01 ns 0.03* 

Light Error 8 0.015 0.001 3.00 0.047 0.01 0.01 

Cultivar 1 0.91 ns 0.001ns 1.05ns 0.02 ns 0.01 ns 0.01 ns 

Light × Cultivar 3 0.02 ns 0.001 ns 6.94 ns 0.01 ns 0.2 ns 0.01 ns 

Residual Error  0.06 0.001 8.33 0.06 0.3 0.01 

Coefficient of 

variation 

- 3.78 3.03 3.78 3.52 5.12 4.62 

  † ns, *, **: Non significant and significant at 5% and 1% probability level, respectively. 

 

 Table 7. Effect of supplemental light with different spectra of red and blue light on fruit quality parameters of   

sweet pepper plants. 

Light 

treatment 

Yield indices† 

Flesh 

thickness 

(mm) 

Dry 

matter 

(%) 

Vitamin C 

(mg/100gFW) 

Total 

Soluble 

Solids (%) 

Titratable 

acidity(%) 

Maturity index 

T1 6.58 a 13.7 a 78.83 a 7.17 a 3.08 a 2.32 a 

T2 6.72 a 13.4 ab 77.67 a 7.15 a 3.10 a 2.31 a 

T3 6.83 a 13.2 ab 78.17 a 7.28 a 3.12 a 2.33 a 

CK 5.53 b 12.2 b 71.50 b 6.55 b 3.07 a 2.16 a 

† Data are shown as treatment average of three replicates; mean values followed by different letters in the same 

column indicate significant differences by the Tukey's test at p ≤ 0.01. 
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Fruit quality 

As can be seen in Table 6, light treatment significantly affected the fruit quality parameters 

except for the titratable acidity and maturity index. However, no significant differences in 

fruit quality parameters were found between red and yellow fruits. Also, the interactive effects 

of light × cultivar were not statistically significant. Tukey's multiple comparison test at the 

1% level showed that with a higher ratio of light B, flesh thickness and total soluble solids of 

fruits increased, while vitamin C decreased (78.17 mg in T3 vs. 78.83 mg in T1). However, 

these differences were not statistically significant (Table 7). Dry matter showed a significant 

difference among T1 and CK plants, so that T1 (R8B1) had the highest dry matter (13.7%). 

 

DISCUSSION 

Fruit yield  

Light limitation or uneven light distribution impose restriction on photosynthesis system, 

which can cause a decrease in plant yield and fruit quality (Yamori et al., 2016). As shown in 

Table 5, differences between the means of total yield at all levels of supplemental light were 

significantly greater than control treatment. This is consistent with other reports which 

showed that LED supplemental lighting improves yield in different crops (Jokinen et al., 

2012; Takahashi et al., 2020). It has been found that applying LED lighting on the leaves, 

elevates carbon dioxide fixation, decrease flower and fruit abortion, improves fruit growth 

(González-Real et al., 2009), and accelerate fruit maturation, consequently leading to yield 

improvement (Jokinen et al., 2012). 

During low light intensity seasons, cloudy days, or in high latitudes when the average 

DLI is lower than a threshold level required for induction of flowering or fruit growth, the use 

of supplemental light is of vital importance to keep yield in many crop species (Fig. 3). 

Jokinen et al. (2012) showed that mean fruit weight increased due to LED supplemental light 

as the natural DLI decreased, which led to an increase in total yield (Jokinen et al., 2012). In 

addition, the results of the present study showed that with the increase of natural light, LED 

supplemental lighting still has a significant effect on increasing yield. Therefore, using LED 

supplemental lighting is a promising approach to increase fruit yield in areas that are not 

necessarily light-limited (at least on the below part of the plant canopy). This finding is in 

agreement with the report of Joshi et al. (2019). 

Malformed fruits, fruits with blossom-end-rot, and small fruits were classified as fruits 

with low marketable yield. A decrease in blossom-end-rot and as a result an increase in 

marketable yield was observed in the presence of LED supplemental lighting in the present 

study (Table 5). This is exactly the opposite of the result reported in the presence of HPS light 

(Stadler, 2011). The increase in occurrences of blossom-end-rot in the presence of HPS lamp 

has been considered to be related to the high thermal radiation of HPS compared to LED 

(Prinzenberg et al., 2021).  

There was significant difference among three supplemental light spectra for production of 

marketable yield. The results showed that a high proportion of B light increases the total 

yield; thus, the highest marketable yield (14.58 kg/m2) was observed in T3 plants (R6B3), 

which is in agreement with the findings of Javadi Asayesh on Guzmania and Vriesea (Javadi 

Asayesh et al., 2021), and Aalifar on Carnation (Aalifar et al., 2020a; Aalifar et al., 2020b). 

As shown in Table 5, differences between the means of number of fruit at all levels of 

supplemental light were significantly greater than the control treatment. The fruit load of 

sweet pepper is high and it has been found that at low DLI (less than 10 molm−2day−1), due to 

insufficient photosynthesis, sweet peppers tend to flower drop, which reduces fruit production 

(Lanoue et al., 2022; Takahashi et al., 2020). Maximum photosynthetic efficiency can be 

achieved by increasing the incident light level through using supplemental light. It has been 
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found that the spectral energy distribution of R and B lights corresponds to chlorophyll 

pigment absorption, which causes high photosynthetic activity. Therefore, increase in number 

of fruit in plants grown under red and blue lights may be as the result of enhanced 

carbohydrate production due to improvement in photosynthetic capacity, followed by a 

reduction in fruit drop (Javadi Asayesh et al., 2021). Previous studies have also reported an 

increase in the number of sweet pepper fruits under LED light treatments (Jokinen et al., 

2012; Naznin et al., 2019). Of course, it has been found that red light alone increases starch 

content by inhibiting the transfer of photosynthates out of the leaves, which may have a 

negative effect on fruit production (Sæbø et al., 1995). In the present study, increasing the 

number of fruit under supplementary light led to an increase in total yield, which is in 

agreement with the results of other studies (Guo et al., 2016; Takahashi et al., 2020). 

Fruits with an standard and unique size are more marketable than small - and diversified 

fruits, which is a criterion for price determination of the product (Lanoue et al., 2022). The 

results obtained from the fruit length data in the present study showed that the differences 

between the means of fruit length at all levels of supplementary artificial light were 

significantly higher than the control treatment. Previous studies also showed that fruit yield 

parameters such as fruit size and number were highest in plants grown under Rand BLEDs 

(Gómez & Mitchell, 2016; Pepin et al., 2013). However, in another research that used 

supplemental intra-canopy LED illumination for sweet pepper, the fruit yield increased in the 

spring season only by affecting the number of fruit, without affecting the fruit size or weight 

(Joshi et al., 2019). 

 

Fruit quality  
Fresh sweet pepper is rich in biologically active substances, including chlorophyll, 

carotenoids and vitamin C, which can effectively scavenge active oxygen free radicals in the 

human body and reduce the risk of Brain and cardiovascular diseases as well as cancer 

(Blekkenhorst et al., 2018; de Sá Mendes & de Andrade Gonçalves, 2020; Olatunji & 

Afolayan, 2018). In the present study, all levels of supplementary artificial light significantly 

increased amount of vitamin C in the fruit compared to the control treatment. Increase in the 

proportion of blue light in overall spectrum, induced accumulation of vitamin C in fruits, 

although there was not a statistically significant difference among T1, T2, and T3 plants. 

Increase of vitamin C content by B light has been reported in tomato and strawberry 

(Javanmardi & Emami, 2013; Kim et al., 2011). It has been found that there is a significant 

relationship between the vitamin C content and soluble sugars in leaves of lamb's lettuce, so it 

seems that blue light plays a role in regulating vitamin C synthesis not only through its effect 

on blue light receptors, but also through increasing the rate of photosynthesis and the 

formation of sugars (Wojciechowska et al., 2015). However, Liu et al., who investigated the 

effects of different LED spectra lightings on the post-harvest nutritional quality of chili 

peppers, stated that blue light has a negative effect on vitamin C content in several cultivars 

(Liu et al., 2022a). 

Soluble solids and titratable acidity are essential physicochemical factors that can 

determine the taste of sweet pepper fruits (Ghasemnezhad et al., 2011). In the present study, 

all LED light treatments significantly increased soluble solids and titratable acidity compared 

to the control treatment. These results are in consistent with the findings of Kim et al. (2022) 

who showed that blue and red light increased the content of soluble solids in peppers 

compared to soluble solid content of fruits obtained from plants grown under natural light 

(Kim & Son, 2022). 

All supplementary light treatments significantly increased the maturity index compared to 

the control treatment (Tukey's test at p ≤ 0.05). Maturity index is a reliable index to determine 
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the pepper fruits harvesting time (Navarro et al., 2002). To offer high-quality sweet peppers to 

the market, the fruits should be harvested at their optimal maturity stage to meet the needs of 

consumers. At the optimal maturity stage, the fruits must show a variety-specific color, shape, 

size, acidity and total soluble solids content, but the maturity of the fruit should not be 

excessive (Ignat et al., 2013). 

Higher fruit dry matter content means more nutrients per unit of fresh fruit (Lanoue et al., 

2022). Reports have shown that increasing red light can increase the dry matter content of 

fruit (Liu et al., 2022a; Liu et al., 2022b). In the current study, by increase in the proportion of 

R light in overall spectrum, the percentage of dry matter increased. This result is in agreement 

with previous study in pepper (Lan et al., 2022), which showed the increase in red light 

increased the dry matter content of the fruit compared to its content in the plants grown under 

natural light, while increase in blue light did not influenced the fruit dry matter content. 

 

CONCLUSION 

 

In conclusion, using combination of red and blue light spectra as supplemental lighting 

increased total yield of greenhouse-grown red and yellow sweet pepper fruits due to increase 

in number of fruits and fruit size, compared the fruits produced under natural light conditions. 

The blue light addition from 10% to 30% to the growing light spectrum improved fruit yield 

parameters. Therefore, the results showed that T3 (R6B3) was the best treatment. 

Furthermore, our results showed that LED supplemental lighting by increasing flesh 

thickness, fruit dry matter, vitamin C, and total soluble solids is a promising approach to 

improve fruit quality. 
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