
1 
 

Heritability of sleep quality in a middle-aged twin sample from Spain 

(Published in Sleep. 2018 Sep 1;41(9). doi: 10.1093/sleep/zsy110. PMID: 29800350) 
 

 

Juan J. Madrid-Valero1,2, Juan F. Sánchez-Romera1,2, Alice M. Gregory3, José M. 

Martínez-Selva1,2, Juan R. Ordoñana1, 2* 

1Department of Human Anatomy and Psychobiology, University of Murcia, Spain* 

2Murcia Institute of Biomedical Research, IMIB-Arrixaca, Spain 

3 Department of Psychology, Goldsmiths, University of London, UK 

*The study was performed at the University of Murcia 

Corresponding authors: 

Juan Ramón Ordoñana Martín - Faculty of Psychology, The University of Murcia, 

Campus de Espinardo 30100 Murcia. Spain Telephone: +34 868887791/ Email: 

ordonana@um.es 

Juan José Madrid Valero - Faculty of Psychology, The University of Murcia, Campus 

de Espinardo 30100 Murcia. Spain Telephone: +34 868884113/ Email: 

juanjose.madrid1@um.es 

  



2 
 

Abstract 

Study objectives: Sleep quality is associated with health throughout the life span, 

which is particularly salient in middle-age and older adulthood. Sleep quality appears to 

be influenced by both genetic and environmental factors. However, there is still limited 

information about genetic influences on sleep quality in middle-aged adults, and 

particularly in those from certain geographical locations. We estimated the magnitude of 

genetic and environmental influences on sleep quality in a representative sample of 

middle-aged Spanish twins.  

Methods: The sample comprised 2150 individuals born between 1939 and 1966, who 

participate in the Murcia Twin Registry. In order to estimate the heritability of sleep 

quality variables we performed univariate analyses for the global score on the 

Pittsburgh sleep quality index and for each of its components.  

Results: We found moderate but significant heritability (34%) for sleep quality. The 

genetic variance of the components of the Pittsburgh index ranged from 30% to 45%, 

except for sleep efficiency for which no genetic influence could be detected. In 

summary, there was a moderate genetic influence on most dimensions of sleep quality 

in a sample of adult male and female twins. Shared environment influences were not 

found.  

Conclusions: This study adds new information regarding the underlying determinants 

of sleep quality by providing heritability estimates in a middle-aged population-based 

representative sample from a geographical location that has not been included in studies 

of this type previously. This could provide a reference point for future research 

regarding sleep research in middle-age. 

Keywords: adult, dizygotic, heritability, monozygotic, sleep duration, sleep quality, 

twins. 
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Statement of significance: Twin studies indicate that both genetic and environmental 

factors are important in explaining individual differences in sleep quality. However, 

heritability is a population statistic, meaning that the magnitude of genetic influences 

may vary depending on the specific population under investigation. There is a paucity 

of information focusing on middle aged twins, and those from Southern Europe (where 

cultural habits concerning sleep differ from those in countries typically focused on in 

twin studies). This study examines the role of genetic and environmental influences in 

sleep quality in a sample of middle-aged Spanish twins of both sexes; thus, allowing for 

sex comparison and providing estimates for an age period when poor sleep quality is 

common. We found no evidence of sex differences and report similar estimates to those 

found when focusing on samples from other locations. 

Introduction 

Sleep quality is a concept that incorporates different aspects of our sleep, including total 

sleep time, sleep latency, sleep efficiency, or sleep disturbances.1 It is well known that 

poor sleep quality is associated with general health and wellbeing.2 Sleeping poorly has 

been associated with a wide array of problems including psychological disorders, 

chronic pain and higher BMI.3-6 Sleep quality often worsens with age7 and shows a 

gender disequilibrium. Thus, middle-aged women as compared to men have a higher 

predisposition to suffer sleep problems, like insomnia8 and poorer sleep quality8,9. 

Moreover, age contributes progressively to poorer sleep quality in men and women.7,9 

Altogether, middle-age adulthood seems to be a sensitive period in which to develop 

sleep problems for both, women and men. 

Sleep parameters are influenced by both genetic and environmental factors.10,11 There is 

a wealth of literature on twin studies estimating genetic and environmental influences 

on sleep. However, most of it focuses on sleep duration, which is just one of the 
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components of sleep quality and heritability estimates of sleep duration between .17 to 

.63 have been reported.11-17 These estimates, however, have been inconsistent. Thus, 

Butkovic et al.16 reported a heritability of .63 in a sample of young adults, while Barclay 

et al.18 did not find genetic influence for sleep duration in those aged 18-27 years. 

Other aspects of sleep have also been investigated using twin studies. For example, 

heritability estimates have been reported between .29 and .38 for sleepiness, .39 for 

daytime sleep duration (i.e. siesta), and .22 for bedtime.12,15,19  

A similar picture appears related to insomnia, the most common sleep disorder with a 

prevalence between 6% and 33% depending on the criterion used.20-23 Heritability 

values for insomnia vary from .14 to .55.10,24-26  

All of the aforementioned papers focus on a specific aspect of sleep. On the other hand, 

sleep quality, as a global index, encompasses different aspects of sleep providing a more 

complete and valid image of the subjective experience of sleep. Such an index has also 

been studied from a quantitative genetics perspective. For example, a  pioneering study 

by Partinen and colleagues13 found a heritability for sleep quality of .44. In another 

study, using a large sample of twins measured at 2 different time points, reported 

heritabilities were .33 and .39 for men and .53 and .39 for women.2 Similarly, Heath et 

al.27 found a heritability of .33. A limitation of all of these studies is that they used a 

very simple measure (i.e. one question) to assess sleep quality. More recent studies have 

used psychometrically adequate measures, like the Pittsburgh Sleep Quality Index 

(PSQI), and have reported a heritability of .43 in young adults28 or .34 in middle-aged 

males,17 with a wide variation between specific components of the PSQI questionnaire 

in both studies. For example Barclay et al.18 did not find genetic influences on sleep 

duration while Genderson et al.17 reported a heritability of .29. Such discrepancies 

reinforce the need to consider specific features of the population under investigation, 



5 
 

such as age and sex, and cultural environment as well, when we are estimating the 

heritability of sleep quality and its components. 

To the best of our knowledge, no study to date has analyzed the genetic architecture of 

the PSQI index and its components in a sample including middle-aged women. Given 

that they seem to be a group at risk of poor sleep quality, this information has the 

potential to be of great value. It allows a better understanding of the genetic 

underpinnings of sleep difficulties and increases knowledge about possible age and 

gender effects on the heritability of sleep quality. Additionally, heritability is a 

population statistic.  

Therefore, it seemed important to analyze data from a southern European country where 

several social characteristics and cultural habits differ from those of previously reported 

twin samples. In particular, the use of Central European Time in Spain, means that 

sunset is at a later hour than would be expected according to its geographical location, 

the practice of daytime naps or siestas, late bedtimes, commercial opening hours, and 

prime time television hours create a specific milieu in Spain which could influence the 

relative impact of genetic and environmental underpinnings of sleep. We conducted a 

classical twin study of the PSQI index and its components in a population-based sample 

of middle-aged Spanish twins of both sexes. 

 

Method 

Participants 

The sample comprised 2150 subjects from a population-based registry in the Region of 

Murcia, South East of Spain (Murcia Twin Registry, MTR). Description about MTR, 

recruitment procedures and data collection is provided elsewhere.29,30 There were 975 

males (45.3%) and 1175 females (54.7%). The sample comprised twins that were 32.7% 
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monozygotic (MZ), 31% same-sex dizygotic (DZ-SS) and 31.7% opposite sex dizygotic 

(DZ-OS). Mean age was 53.7 (SD=7.4; Range: 41-73) (table 1). Altogether the sample 

is representative of the general population in the region.30 

The MTR protocols and instruments, as well as the data collection procedures and the 

analysis derivatives thereof, have been approved by the Research Ethics Committee of 

the University of Murcia and meet the legal requirements of confidentiality and 

protection of personal data. Participants provided written informed consent when 

interviewed in person or oral consent when a telephone interview was used. 

Measures 

Zygosity assessment 

Twin zygosity was assessed by DNA in 338 pairs of twins. When this was not possible, 

a 12-item questionnaire focusing on the degree of similarity and mistaken identity 

between twins was used. This questionnaire-based zygosity corresponds well with 

zygosity as determined by DNA testing with an agreement in nearly 96% of the cases.29 

Sleep quality 

Sleep quality was measured through the Spanish version of the PSQI .The PSQI is a 

widely used self-report questionnaire, comprising 7 subscales 1) subjective sleep 

quality, 2) sleep latency, 3) sleep duration, 4) habitual sleep efficiency, 5) sleep 

disturbances, 6) use of sleeping medication and 7) daytime dysfunction.31 The 

components scores range from 0 to 3 (where a higher score represents poorer sleep 

quality). These seven partial scores add up to a global index ranging from 0 to 21. The 

questionnaire has been validated in its Spanish version32 and has also shown adequate 

reliability and validity.33 In the current sample Cronbach’s alpha for the global score 

was 0.73. Additionally, the questionnaire allows for an estimation of average sleep 
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hours during the last month based on self-report of usual time to go to bed and 

awakening. 

Data analysis 

The global PSQI score was log-transformed because of positive skewness (0.92 before 

and -0.34 after log transformation) and treated as a continuous variable in the analyses. 

Since scores of the PSQI components range from 0 to 3, they were treated as ordinal 

variables. 

Data from the MZ and DZ twin pairs were analyzed using structural equation 

modelling, with the Open MX software package in R,34 to estimate the contribution of 

genetic and environmental factors to phenotypic variability. The ordinal variables were 

analyzed using a liability threshold model. In order to apply variance component genetic 

models to categorical twin data, it is assumed that the categories reflect an imprecise 

measurement of an underlying normal distribution of liability, which would have one or 

more thresholds to discriminate between the categories.35 This liability may be 

influenced by genetic and environmental factors and is normally distributed with a 

mean value of zero and a variance of one. Twins’ similarity can be estimated by the 

correlation for the liability scale, called a polychoric correlation. 

Assumptions of the twin design (i.e., equal variances and means for MZ and DZ twins 

as well as for co-twins) and possible age effects were tested by comparing twin models 

to saturated models. Next, we tested whether MZ twin intra-pair correlations were 

higher than DZ twin correlations for each of the phenotypes, which would suggest a 

genetic influence on individual differences for such trait. Genetic influences found in 

the measured parameters were estimated by fitting genetic structural equation models in 

which the observed phenotypic variance is decomposed into genetic and environmental 

components.36 Observed MZ and DZ twin correlations generally show a combination of 
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additive (A; i.e., summed allelic effects across multiple genes) and non-additive (D; i.e., 

genetic dominance, possibly including epistasis) genetic factors, as well as shared (C; 

i.e., environmental influences that act so as to make family members more alike) and 

individual (E; i.e., environmental influences that make those within a family less alike, 

including measurement error) environmental factors. It is not possible to estimate C and 

D simultaneously, because C and D are negatively correlated and the choice of 

modelling C or D depends on the pattern of MZ and DZ correlations; usually C is 

estimated if the DZ twin correlation is greater than half of the MZ twin correlation, and 

D is estimated if the DZ twin correlation is less than half of the MZ correlation.37,38 

Structural equation modelling determines the combination that best matches the 

observed data.39 We fitted both ACE and ADE models to the data. Since the goodness-

of-fit of a model is distributed as a chi-square (χ2), by testing the change in chi-square 

(∆χ2) against the change in degrees of freedom (∆df), we can test whether dropping or 

equating specific model parameters significantly worsens the model fit, and following 

the principle of parsimony, select the simplest model among those that are not 

statistically different.	The best-fitting model was chosen in each case by deducting the 

residual deviance of the compared models and by comparing Akaike’s information 

criterion (AIC).   

In addition, as a checking analysis, possible sex differences in the distribution of 

variance were explored through the comparison of the magnitude of the DZ-SS and DZ-

OS twin pair correlations. Higher DZ-SS correlations than DZ-OS correlations, would 

suggest that different genes or shared environmental factors could influence individual 

differences in the trait.40 A saturated model was used to estimate means and variances 

(for men and women separately) as well as five twin correlations (MZm and DZm for 

males; MZf and DZf for females; and DZ-OS for opposite-sex pairs) for the PSQI 
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global score. The subsequent models tested were 1-variances; 2-correlations of DZm 

and DZf pairs; and 3-correlations of DZ-SS and DZ-OS pairs, were constrained to be 

equal. If the constraints in the nested models do not cause a significant deterioration in 

model fit, correlation difference is non-significant and no suggestion of sex differences 

in the genetic or common-environment architecture is implied. 

Results 

Mean PSQI index was 5.14 (SD=3.96). Females reported greater sleep problems than 

males [=5.74 (SD=4.15) and =4.37 (SD=3.57) respectively].  This pattern was 

similar for all the components of the questionnaire except for average sleep hours, 

where the mean scores were almost identical, 6.43 (SD=1.41) for women and 6.42 

(SD=1.37) for men. 

Testing for sex differences 

Correlations for the global PSQI score in the different zygosity groups were, as 

expected, higher for MZ twins than for DZ twins (rMZM=0.28, 95%CI 0.08, 0.46; 

rMZF=0.39, 95%CI 0.26, 0.50; rDZM=0.09, 95%CI 0.0, 0.26; rDZF=0.21, 95%CI 0.06, 

0.36; rDZ-OS=0.07, 95%CI 0.0, 0.22). No suggestion of sex differences was found since 

correlations for male, female and opposite-sex DZ pairs could be equated without 

significant deterioration of fit (p>.05). Consequently, we proceeded with the univariate 

analyses taking the complete sample as a whole. 

Heritability PSQI global score and its components 

The univariate analysis for the global PSQI score showed an important contribution of 

genetic factors and non-shared environmental effects. When we compared the ADE 

model versus more restricted models, an AE model was selected as the best fitting 

model. Estimated parameters were .34 for genetic influences and .66 for non-shared 

environmental influences (table 3). 
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Regarding the PSQI components, all correlations ranged from 0.17 to 0.47 for MZ and 

.0 to .26 for DZ twins (table 2). Six of the seven components showed an important 

genetic influence, regardless of whether an ACE or ADE model was fitted according to 

the correlations structure. AE models showed the best fit for subjective sleep quality, 

sleep latency, sleep duration, sleep disturbances and use of sleeping medication, with 

estimates of heritability ranging from .30 to .40 (table 3). However, nested models 

showed a significantly worse fit in the case of daytime dysfunction, probably due to the 

low frequency of problems in this dimension. Additionally, the best fitting model for 

sleep efficiency was a CE model, where E represented an important percentage of 

variance (.80).  

Sensitivity analyses were conducted, whereby we fitted models for raw data rather than 

for the ordinal PSQI scales for those dimensions in which quantitative data were 

available (i.e. duration, latency and efficiency). So, for example, for sleep efficiency 

scores we focused on scores which could theoretically range from 0-100 (rather than the 

scaled scores of 0-3). Heritability estimates obtained from the raw data were similar to 

those of the scales, albeit of a lesser magnitude, in two of these dimensions. Thus, 

heritability lowered from 0.30 to 0.25 (duration) and from 0.20 to 0.16 (efficiency). For 

latency, the best fitting model changed to a CE model in this case. 

Discussion 

The objective of this study was to analyze the relative genetic and environmental 

contributions to sleep quality and its components, in a sample of middle-age twins. We 

focused on both sexes from a geographical location (Southern Europe) which has not 

been explored previously. We expected to shed light on the genetic architecture of sleep 

quality during a time of life when sleep can deteriorate and within a specific 

environment with distinct cultural habits regarding sleep.  
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We first showed that DZ correlations from same-sex and opposite-sex pairs were not 

significantly different, suggesting that the same genes related to sleep quality seem to be 

operating in middle-aged men and women. In our sample, the heritability of sleep 

quality was estimated at .34. This result is consistent with previous studies with more 

limited samples. For example, Genderson et al.17 found exactly the same heritability 

estimate, although their sample comprised only male adults twins (mean age =55.4). 

Heritability estimates appear to be roughly similar regardless of age or measurement 

method, as other studies have reported values ranging from .33 to .53. 2,13,27,28 

Interestingly, our estimate is at the lower end of the range meaning that the largest part 

of the variance is due to unique environmental factors. While in this study, we 

partitioned genetic and environmental influences (as is standard in twin analyses) in 

reality, there was likely gene-environment interplay, whereby exposure or sensitivity to 

the environment is based in part on genetic propensities. Middle-age men and women, 

can have specific age-related circumstances that produce difficulties and interruptions of 

sleep. For instance, among those in our current sample reporting sleep disturbances, 

men usually mentioned shift working (32.6%) or the emergence of age-related diseases 

(e.g. respiratory or prostatic) (26.8%) as sleep disrupters. In turn, women, mentioned 

partner snoring/noises (7.4%) or a care-giver role (children or elder people) (13.6%) as 

important sources of sleep disturbance. Moreover, worries or anxiety were present in 

46.3% of those females, but only in 16.3% of males. There are other age-related factors 

that could affect sleep differently between sexes. Menopause has been repeatedly 

mentioned in the literature as related to sleep disruption41 however not all work supports 

this, and a previous analysis with the current sample showed that age, and not 

menopausal status, was associated to a decline in sleep quality.9 In spite of all this, we 

have not been able to detect significant sex-related differences in common 



12 
 

environmental factors, which is likely due to lack of power in our sample for this 

analysis. Larger samples and longitudinal studies are needed to better determine the age 

and other covariate effects, if any, on the heritability of sleep quality. 

Genetic influences on the PSQI components were also analyzed. The genetic variance 

estimates of 6 of the 7 PSQI components in our study ranged from .30 to .45. These 

results are also consistent with findings of other studies that reported heritability for 

PSQI components ranging from .21 to .4718 and from .23 to .34.17 In contrast, we did 

not find genetic influences for sleep efficiency, while a heritability of .30 and .34 

respectively was estimated in the above cited studies. Sample differences or power 

issues might be behind this discrepancy and these results need to be replicated before 

we can be confident that environmental influences are key in explaining sleep efficiency 

in this age group and cultural context. An additional difference relates to “use of 

sleeping medication”, which fitted an AE model in our sample, whilst a CE model fitted 

best in Genderson et al.17 study. A possible explanation for this discrepancy could be 

the sex of the sample, for ours includes males and females, and the prevalence for using 

sleeping medication was higher in women (24.9%) than men (9.4%). Again, replication 

is necessary before strong conclusions should be drawn about this point.  

Our estimates are, in general, consistent with those in the literature, despite the 

differences in the sleep-related social and cultural habits in Spain in comparison to 

countries from Northern Europe and North America, where most of the previously 

reported samples come from. Spain uses Central European Time, which involves a 

delayed schedule (due to later sunset) as compared to what might be expected based on 

geographical location. This results in a delay in commercial hours, with closing times of 

malls usually later than 21:00, late evening meals, and with a TV prime time between 

21:00 and 00:00. It has been suggested that societal factors may trump biological cues 
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around the end of the day resulting in a late bedtime 42 and, in fact, in a Spanish sample 

heritability has been reported to be higher for traits earlier on in the day than for those 

later on in the day.15 All in all, these factors result in a late bedtime in Spain as 

compared to other countries which predicts shorter sleep duration.42  Indeed, our sample 

reported an average night-time sleep duration of 6.43 hours, which is shorter than that 

noted in other samples of European origin,43,44  but largely consistent with the results of 

the Spanish National Health Survey (2011-12) of ≈7.15 hours (which included time 

spent sleeping during the day), for same age subsamples.45 Short night-time sleep 

duration has also been related to the practice of midday naps, which might be a method 

to compensate for insufficient sleep at night. However, this compensatory hypothesis 

appears too simple to explain this phenomenon as both homeostatic pressure and 

circadian rhythmicity are important in understanding night-time and nap sleep 

architecture.46 Actually, siesta is less common in Spain than is sometimes assumed to be 

the case (about 40- 60% of the Spanish population never takes siesta). 47,48 Furthermore, 

siesta has been found to be more frequent among people sleeping 7-8 hours at night than 

among those sleeping <5 hours.48 It has been suggested that siesta might be associated 

with some of the parameters of sleep quality (e.g., daytime sleepiness), but not others 

(e.g., sleep duration).49,50 Moreover, a recent twin study in a subsample of the Spanish 

twins participating in the MTR, found a 45% heritability for siesta even after controlling 

for night-time sleep duration.15 The results of the current study might imply that all of 

these variations between countries/samples regarding duration and timing of sleep do 

not have a strong impact on the genetic architecture of sleep quality. However, the 

complexity of the factors involved means that further research is required to elucidate 

possible interactions between genetic influences and the social environment. 
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These results provide valuable information about the etiological influences on overall 

sleep quality and its components, and highlight the need for multivariate and 

longitudinal studies to characterize the changing relative impact of genetics and the 

environment on the experience of sleep. This might be particularly useful when 

focusing on global sleep quality, which is a broader measure of sleep that just sleep 

duration and may be better able to capture certain associations.51 

Additionally, quantitative genetic twin studies can guide future genetic molecular 

studies to identify specific genes.52 Molecular studies have already shown that sleep is 

genetically related to depression, schizophrenia and other health variables.53-56 Future 

research in this area will be informative regarding more precise diagnostic and treatment 

alternatives and there has already been a pilot/ feasibility study conducted with the aim 

of understanding more about genetic and environmental predictors of outcome to 

treatment aimed at reducing insomnia symptoms.57 

This study has several strengths. For example, our sample is quite large, representative 

of the general population in the region30 and comprises middle-aged males and females. 

The inclusion of females of this age is critical because they usually have poorer sleep 

quality as compared to males or to participants of other age groups. Despite strengths 

there are also limitations. Besides the classical assumptions (e.g., equal environment) 

required for the twin method, there are other issues that advise for caution in 

interpreting our results. For example, conclusions are limited by the use of self-report 

measures of sleep. Objective measures such as polysomnography or actigraphy would 

provide valuable additional information. However, the PSQI questionnaire has 

repeatedly show adequate psychometric properties and sleep quality is a subjective 

phenotype with specific interest per se. Moreover, a large proportion of twins were 

classified as MZ/DZ based on responses to a questionnaire rather than using a DNA 
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test. This could have resulted in misclassification in certain cases. However, our 

questionnaire has been validated with data from our own sample showing a high 

agreement with genetic screening.29 Therefore, the possible impact of this limitation for 

our results is considered negligible. 

In summary, this study adds to the literature by providing heritability estimates of sleep 

quality in middle-aged subjects of both sexes. Its results point to the need for 

longitudinal studies to provide information about the changes in sleep patterns and the 

genetic contribution to such variation. Future research may focus on gene x 

environment studies in order to understand the interplay between genes and the 

environment in bringing about poor sleep quality. Finally, molecular and bivariate 

genetic studies between sleep and other relevant variables may contribute to our 

understanding of the important relations between sleep disruption and health. 

Abbreviations list 

PSQI: Pittsburgh Sleep Quality Index 

MZ: Monozygotic 

DZ: Dizygotic 

MZf: Monozygotic female 

MZm: Monozygotic male 

DZf: Dizygotic female 

DZm: Dizygotic male 

DZ-SS: Dizygotic same-sex 

DZ-OS: Dizygotic opposite-sex 

Disclosure statement 

The authors wish to thank the participants in the Murcia Twin Registry. The Murcia 

Twin Registry is funded by the Fundación Séneca, Regional Agency for Science and 



16 
 

Technology of the Murcia Region (Projects 15302 / PHCS /10; and 19479 / PI / 14) and 

the Ministry of Economy and Competitiveness (PSI2009-11560 and PSI2014-56680-R). 

JJMV is supported by pre-doctoral scholarship (19814/FPI/15) of the Fundación 

Séneca. 

The authors declare that the research was conducted in the absence of any commercial 

or financial relationships that could be construed as a potential conflict of interest. Alice 

M. Gregory is writing a book (Nodding Off) to be published by Bloomsbury Sigma 

(June, 2018). She has provided advice for a freely available website 

(www.babysleep.com) which provides tips to help with sleep in babies and young 

children. This website is partially sponsored by Johnson and Johnson, but they do not 

have any influence over content and do not advertise on it. Alice Gregory also 

contributes to BBC Science Focus magazine. Her current work (although not related to 

that presented here) is sponsored by the Dowager Countess Eleanor Peel Trust.  

  



17 
 

References 

1. Krystal AD, Edinger JD. Measuring sleep quality. Sleep Med. 2008; 9 Suppl 1: 
S10-17. 
2. Paunio T, Korhonen T, Hublin C, et al. Longitudinal study on poor sleep and life 
dissatisfaction in a nationwide cohort of twins. Am J Epidemiol. 2009; 169 (2): 206-
213. 

3. Royuela A, Macías JA. Calidad de sueño en pacientes ansiosos y depresivos. 
Psiquiatría Biológica. 1997; 4 (6): 225-230. 

4. Rahe C, Czira ME, Teismann H, Berger K. Associations between poor sleep 
quality and different measures of obesity. Sleep Med. 2015; 16 (10): 1225-1228. 

5. Alsaadi SM, McAuley JH, Hush JM, Maher CG. Erratum to: Prevalence of sleep 
disturbance in patients with low back pain. Eur Spine J. 2012; 21 (3): 554-560. 

6. Pinheiro MB, Morosoli JJ, Ferreira ML, et al. Genetic and environmental 
contributions to sleep quality and low back pain: a population-based twin study. 
Psychosom Med. 2017. 
7. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of 
quantitative sleep parameters from childhood to old age in healthy individuals: 
developing normative sleep values across the human lifespan. Sleep. 2004; 27 (7): 
1255-1273. 
8. Zhang B, Wing YK. Sex differences in insomnia: a meta-analysis. Sleep. 2006; 
29 (1): 85-93. 
9. Madrid-Valero JJ, Martínez-Selva JM, Ribeiro do Couto B, Sánchez-Romera JF, 
Ordoñana JR. Age and gender effects on the prevalence of poor sleep quality in the 
adult population. Gac Sanit. 2017; 31 (1): 18-22. 

10. Hublin C, Partinen M, Koskenvuo M, Kaprio J. Heritability and mortality risk of 
insomnia-related symptoms: a genetic epidemiologic study in a population-based twin 
cohort. Sleep. 2011; 34 (7): 957-964. 
11. Hublin C, Partinen M, Koskenvuo M, Kaprio J. Genetic factors in evolution of 
sleep length--a longitudinal twin study in Finnish adults. J Sleep Res. 2013; 22 (5): 513-
518. 

12. Gottlieb DJ, O'Connor GT, Wilk JB. Genome-wide association of sleep and 
circadian phenotypes. BMC Med Genet. 2007; 8 Suppl 1: S9. 

13. Partinen M, Kaprio J, Koskenvuo M, Putkonen P, Langinvainio H. Genetic and 
environmental determination of human sleep. Sleep. 1983; 6 (3): 179-185. 

14. Watson NF, Buchwald D, Vitiello MV, Noonan C, Goldberg J. A twin study of 
sleep duration and body mass index. J Clin Sleep Med. 2010; 6 (1): 11-17. 

15. Lopez-Minguez J, Morosoli JJ, Madrid JA, Garaulet M, Ordoñana JR. 
Heritability of siesta and night-time sleep as continuously assessed by a circadian-
related integrated measure. Sci Rep. 2017; 7 (1): 12340. 
16. Butkovic A, Vukasovic T, Bratko D. Sleep duration and personality in Croatian 
twins. J Sleep Res. 2014; 23 (2): 153-158. 



18 
 

17. Genderson MR, Rana BK, Panizzon MS, et al. Genetic and environmental 
influences on sleep quality in middle-aged men: a twin study. J Sleep Res. 2013; 22 (5): 
519-526. 

18. Barclay NL, Eley TC, Buysse DJ, Rijsdijk FV, Gregory AM. Genetic and 
environmental influences on different components of the Pittsburgh Sleep Quality Index 
and their overlap. Sleep. 2010; 33 (5): 659-668. 
19. Watson NF, Goldberg J, Arguelles L, Buchwald D. Genetic and environmental 
influences on insomnia, daytime sleepiness, and obesity in twins. Sleep. 2006; 29 (5): 
645-649. 

20. Benbir G, Demir AU, Aksu M, et al. Prevalence of insomnia and its clinical 
correlates in a general population in Turkey. Psychiatry Clin Neurosci. 2015; 69 (9): 
543-552. 
21. Morin CM, LeBlanc M, Bélanger L, Ivers H, Mérette C, Savard J. Prevalence of 
insomnia and its treatment in Canada. Can J Psychiatry. 2011; 56 (9): 540-548. 
22. Uhlig BL, Sand T, Odegård SS, Hagen K. Prevalence and associated factors of 
DSM-V insomnia in Norway: the Nord-Trøndelag Health Study (HUNT 3). Sleep Med. 
2014; 15 (6): 708-713. 

23. Ohayon MM. Epidemiology of insomnia: what we know and what we still need 
to learn. Sleep Med Rev. 2002; 6 (2): 97-111. 

24. Barclay NL, Gehrman PR, Gregory AM, Eaves LJ, Silberg JL. The heritability 
of insomnia progression during childhood/adolescence: results from a longitudinal twin 
study. Sleep. 2015; 38 (1): 109-118. 
25. Drake CL, Friedman NP, Wright KP, Roth T. Sleep reactivity and insomnia: 
genetic and environmental influences. Sleep. 2011; 34 (9): 1179-1188. 
26. Gregory AM, Rijsdijk FV, Eley TC, et al. A Longitudinal Twin and Sibling 
Study of Associations between Insomnia and Depression Symptoms in Young Adults. 
Sleep. 2016; 39 (11): 1985-1992. 

27. Heath AC, Kendler KS, Eaves LJ, Martin NG. Evidence for genetic influences 
on sleep disturbance and sleep pattern in twins. Sleep. 1990; 13 (4): 318-335. 

28. Barclay NL, Eley TC, Buysse DJ, Archer SN, Gregory AM. Diurnal preference 
and sleep quality: same genes? A study of young adult twins. Chronobiol Int. 2010; 27 
(2): 278-296. 
29. Ordoñana JR, Rebollo-Mesa I, Carrillo E, et al. The Murcia Twin Registry: a 
population-based registry of adult multiples in Spain. Twin Res Hum Genet. 2013; 16 
(1): 302-306. 

30. Ordoñana JR, Sánchez Romera JF, Colodro-Conde L, et al. [The Murcia Twin 
Registry. A resource for research on health-related behaviour]. Gac Sanit. 2018; 32 (1): 
92-95. 
31. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh 
Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry 
Res. 1989; 28 (2): 193-213. 

32. Royuela A, Macías JA. Propiedades clinimétricas de la versión castellana del 
cuestionario de Pittsburgh. Vigilia-Sueño. 1997; 9 (2): 81-94. 



19 
 

33. Carpenter JS, Andrykowski MA. Psychometric evaluation of the Pittsburgh 
Sleep Quality Index. J Psychosom Res. 1998; 45 (1): 5-13. 
34. Boker S, Neale M, Maes H, et al. OpenMx: An Open Source Extended 
Structural Equation Modeling Framework. Psychometrika. 2011; 76 (2): 306-317. 
35. Rijsdijk FV, Sham PC. Analytic approaches to twin data using structural 
equation models. Brief Bioinform. 2002; 3 (2): 119-133. 
36. Falconer DS, Mackay TF. Introduction to Quantitative Genetics. Harlow, Essex, 
UK.: Longmans Green; 1996. 
37. Verweij KJ, Mosing MA, Zietsch BP, Medland SE. Estimating heritability from 
twin studies. Methods Mol Biol. 2012; 850: 151-170. 
38. Neale MC, Cardon LR. Methodology for geneticstudies of twins and families. 
Dordrecht, The netherlands: Kluwer Academic Publishers; 1992. 
39. Posthuma D, Beem AL, de Geus EJ, et al. Theory and practice in quantitative 
genetics. Twin Res. 2003; 6 (5): 361-376. 
40. Vink JM, Bartels M, van Beijsterveldt TC, et al. Sex differences in genetic 
architecture of complex phenotypes? PLoS One. 2012; 7 (12): e47371. 
41. Xu M, Bélanger L, Ivers H, Guay B, Zhang J, Morin CM. Comparison of 
subjective and objective sleep quality in menopausal and non-menopausal women with 
insomnia. Sleep Med. 2011; 12 (1): 65-69. 

42. Walch OJ, Cochran A, Forger DB. A global quantification of "normal" sleep 
schedules using smartphone data. Sci Adv. 2016; 2 (5): e1501705. 

43. Allebrandt KV, Amin N, Müller-Myhsok B, et al. A K(ATP) channel gene effect 
on sleep duration: from genome-wide association studies to function in Drosophila. Mol 
Psychiatry. 2013; 18 (1): 122-132. 
44. Gottlieb DJ, Hek K, Chen TH, et al. Novel loci associated with usual sleep 
duration: the CHARGE Consortium Genome-Wide Association Study. Mol Psychiatry. 
2015; 20 (10): 1232-1239. 

45. Instituto Nacional de Estadística. Encuesta Nacional de Salud 2011– 2012. 
Metodología. INE, Madrid, 2012. 

46. Mantua J, Spencer RMC. Exploring the nap paradox: are mid-day sleep bouts a 
friend or foe? Sleep Med. 2017; 37: 88-97. 

47. Fundación de Educación Para la Salud . Primer estudio sobre salud y descanso. 
Accessed April 25, 2018, 2009. 
https://www.fundadeps.org/recursos/documentos/45/estudio-salud-descanso.ppt 
48. Sayón-Orea C, Bes-Rastrollo M, Carlos S, Beunza JJ, Basterra-Gortari FJ, 
Martínez-González MA. Association between sleeping hours and siesta and the risk of 
obesity: the SUN Mediterranean Cohort. Obes Facts. 2013; 6 (4): 337-347. 

49. Valencia-Flores M, Castano VA, Campos RM, et al. The siesta culture concept 
is not supported by the sleep habits of urban Mexican students. J Sleep Res. 1998; 7 (1): 
21-29. 
50. Paraskakis E, Ntouros T, Ntokos M, Siavana O, Bitsori M, Galanakis E. Siesta 
and sleep patterns in a sample of adolescents in Greece. Pediatr Int. 2008; 50 (5): 690-
693. 



20 
 

51. Jarrin DC, McGrath JJ, Drake CL. Beyond sleep duration: distinct sleep 
dimensions are associated with obesity in children and adolescents. Int J Obes (Lond). 
2013; 37 (4): 552-558. 

52. Barclay NL, Gregory AM. Quantitative genetic research on sleep: a review of 
normal sleep, sleep disturbances and associated emotional, behavioural, and health-
related difficulties. Sleep Med Rev. 2013; 17 (1): 29-40. 
53. Lane JM, Vlasac I, Anderson SG, et al. Genome-wide association analysis 
identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat 
Commun. 2016; 7: 10889. 

54. Parsons MJ, Lester KJ, Barclay NL, Nolan PM, Eley TC, Gregory AM. 
Replication of Genome-Wide Association Studies (GWAS) loci for sleep in the British 
G1219 cohort. Am J Med Genet B Neuropsychiatr Genet. 2013; 162B (5): 431-438. 
55. Hammerschlag AR, Stringer S, de Leeuw CA, et al. Genome-wide association 
analysis of insomnia complaints identifies risk genes and genetic overlap with 
psychiatric and metabolic traits. Nat Genet. 2017; 49 (11): 1584-1592. 

56. Lane JM, Liang J, Vlasac I, et al. Genome-wide association analyses of sleep 
disturbance traits identify new loci and highlight shared genetics with neuropsychiatric 
and metabolic traits. Nat Genet. 2017; 49 (2): 274-281. 
57. Denis D, Eley TC, Rijsdijk F, et al. Sleep Treatment Outcome Predictors 
(STOP) Pilot Study: a protocol for a randomised controlled trial examining predictors of 
change of insomnia symptoms and associated traits following cognitive-behavioural 
therapy for insomnia in an unselected sample. BMJ Open. 2017; 7 (11): e017177. 

 


