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ABSTRACT 

In the United States, the total confirmed and probable cases of Lyme disease have 

more than doubled in the past decade. The increase in human incidence has been 

attributed, in part, to the range expansion of the principal vector of the bacterial pathogen, 

the black-legged tick (Ixodes scapularis). The tick life cycle includes three distinct 

hematophagous stages, each with different temporal and spatial influence on tick 

infection and human exposure. Therefore, a model that accurately predicts the dynamics 

of all life stages would be more accurate in describing the risk of encountering a tick-

borne disease (TBD).  

To this end, I sought out to develop process-based models grounded in ecological 

theory and community ecology to make quantitative predictions of questing tick 

populations. Furthermore, the ultimate goal was to produce iterative, short (< 31 days) to 

intermediate (6 month - 1 year) forecasts on a daily basis in areas of the United States 

where Lyme disease is endemic.  

In Chapter 1, I built stage-structured population models in a data fusion 
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framework that incorporates environmental variables such as the host population, relative 

humidity, and temperature, to predict the questing population of each life stage. I found 

that a four-stage model that includes the ecologically relevant dormant overwintering 

nymph state outperforms other models. The interplay between weather and host 

populations was also predictive.   

In Chapter 2, I describe a data-assimilation scheme developed to update the tick 

population model iteratively and evaluate forecast uncertainty and sensitivities. Larval 

abundances were spatially heterogeneous, likely due to their limited dispersal capacity, 

and sampling efforts at this stage were less likely to reduce forecast uncertainty than 

efforts at later stages. 

Chapter 3 evaluates the transferability and the structural components of this 

model for I. scapularis and Amblyomma americanum populations at NEON. A. 

americanum is arguably the second-most medically important tick species in the US. In 

general, forecasts were biased and tended to overpredict both species, this trend was on a 

latitudinal gradient, and forecasts for I. scapularis were more skillful than for A. 

americanum. Given the model framework, it appears that mouse abundance is less 

predictive of ticks at NEON than at Cary. 

In Chapter 4, I estimated tick density at NEON sites and is used these estimates to 

constrain the parasitism state of mice through time, which has important implications for 

TBD management. Knowing when mice are parasitized could lead to management 

actions for mice removal and is another proxy for disease risk as this information tells us 

when ticks are active. 
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Overall, this dissertation focused on building mechanistic ecological forecasts 

from the ground up. I started with model calibration, then built a data assimilation 

scheme, and tested it at sites across the US. Therefore, this work represents the first of its 

kind pipeline from ecological model calibration to forecast implementation. 
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Introduction 

 
Human incidence of tick-borne disease have more than doubled in the past decade 

(Eisen et al., 2016), which is mostly attributed to Lyme disease (LD). From its endemic 

regions in the Northeast and upper Midwest United States, LD has crawled its way into 

Canada, Michigan, Virginia, and Iowa (Hamer et al., 2010; Khatchikian et al., 2015; 

Oliver et al., 2017; Lantos et al., 2021). The rapid increase in tick-borne disease 

incidence warrants the need for iterative near-term forecasts of tick-borne disease risk, as 

they have the potential to relieve some of the public health burden while also providing 

valuable insights to researchers.  

What follows is a brief overview of LD ecology, which is similar to other tick-

borne diseases in the United States and will serve as a template for the chapters outlined 

ahead. By leveraging what we know about the tick-host-pathogen relationship, we can 

construct process-based, Bayesian state-space statistical models to provide inference on 

this system, which provide the foundation for iterative forecasts.  

The Ecology of Lyme Disease 

LD, caused by the bacterium Borrelia burgdorferi  (Burgdorfer et al., 1982) is 

vectored by the black-legged tick (Ixodes scapularis), which has three post-egg life 

stages: larvae, nymph, and adult. For the tick to transition from one life stage to the next 

it must take a blood meal from a vertebrate host. Once the tick reaches adulthood, a 

female tick will take a third blood meal so that it can produce eggs, while male adults 

usually do not feed (Sonenshine, 2018).  
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The process of looking for a host is called “questing”, and the time of year, or 

phenology, that this occurs is different for each life stage (Lindsay et al., 1999; Levi et 

al., 2015). After hatching in the summer, I. scapularis larval ticks quest for and feed on 

hosts, after which they enter diapause to overwinter. Newly molted nymphs then quest 

the following spring/early summer and, if successful, molt into adults in the fall of the 

same year. Adults quest in fall/winter, laying their eggs in the spring, completing the 

cycle (Sonenshine, 2018).  

Ticks would not vector disease if the landscape were without pathogens. B. 

burgdorferi is an obligate bacterial pathogen of small vertebrates, otherwise known as 

hosts (Tilly et al., 2008). Hosts serve two roles in this system, hosts for ticks and 

reservoirs for B. burgdorferi. Host species vary in how likely a tick successfully takes a 

blood meal from them (Brunner et al., 2011), and also how well they maintain and 

transmit B. burgdorferi to uninfected ticks. The white-footed mouse (Peromyscus 

leucopus) is an excellent reservoir host. They are ubiquitous on the landscape, can have 

high tick body burdens and feeding success, and can maintain B. burgdorferi infection 

(Donahue et al., 1987). Furthermore, none of these factors affect their mortality (Hersh et 

al., 2014).  

While a blood meal is required for the tick to move from one life stage to the next, 

ticks spend roughly 90% of their lives off-host. This means that, as invertebrates, their 

metabolic activity and physiology, and by extension their day-to-day survival, are 

regulated by the environment by factors such as temperature (Bertrand & Wilson, 1996; 

Needham, 1991), precipitation (Hayes et al., 2015), and relative humidity (Berger et al., 
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2014; Ginsberg et al., 2017). 

The goal of this dissertation is to have automated, iterative forecasts of tick and 

small mammal populations running at multiple National Ecological Observatory Network 

(NEON) sites, and this dissertation describes the science to get us there.  

Chapter one discusses building models from what’s known about the ecology of 

tick-borne disease, but also filling gaps in knowledge of the LD system. Specifically, I 

use stage-structured matrix models and a data-fusion framework to build and test 

ecological hypotheses about I. scapularis including the role of instantaneous daily 

weather, host abundance, and how these to biotic and abiotic factors interact. We also 

quantify sources of uncertainty in predictions. 

Chapter two validates these models through ecological forecasting at Cary and 

provides insight into 15 years of the LD system. This chapter also explores the 

effectiveness of a forward only Monte Carlo Markov Chain (MCMC) data assimilation 

technique. Here, we also explore the relative contribution of larvae data as it pertains to 

data assimilation and predictive capacity. 

Chapter three is a true test of these models as I attempt to transfer them to NEON 

sites across the eastern US. Here, we focus on the ability of the stage-structured model 

formulation to describe population dynamics in space and across species. NEON collects 

multiple species of tick, and we focus on the most abundant of them, Amblyomma 

americanum. 

Chapter four shifts the focus from modeling ticks to modeling their hosts. 

Specifically, we are interested in describing spatio-temporal patterns in parasitism, i.e. 
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when and where do mice have ticks attached to them. We use the NEON data again, as it 

provides large spatial coverage and spans multiple tick-borne disease systems. The 

outcomes here have direct implication for tick-borne disease management via host 

management.  
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CHAPTER ONE:  

Instantaneous weather and mouse abundance increase predictability for the 

primary vector of Lyme disease (Ixodes scapularis)  

 
Abstract 

Lyme disease, the most prevalent tick-borne disease in North America, is caused 

by the bacterium Borrelia burgdorferi and is spread to humans by the black-legged tick 

(Ixodes scapularis) in the northeastern US. Of the three questing life stages, nymphs 

represent the largest public health concern, as they are most likely to transmit the bacteria 

to humans. Previous research has shown that the number of questing nymphs can be 

predicted using environmental drivers, but there is little work done on predicting the 

dynamics of the entire questing population at once. This is needed as adults are still 

competent vectors and while larvae are not, after their first blood meal they molt into 

nymphs. Therefore, a model that accurately predicts the dynamics of all life stages would 

be more accurate in describing the risk of encountering an infectious tick. To this end, we 

built stage-structured population models that incorporate environmental variables such as 

the host population, relative humidity, and temperature, to predict the questing population 

of each life stage. We found that a four-stage model that includes the dormant nymph 

state outperforms a three-stage model that only includes the questing states, and that by 

incorporating the host population and weather we reduced the amount of structural 

uncertainty that was present in the null model. We were able to accurately predict all 

three questing states at sites different than where they were calibrated, showing that this 
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model structure is generally transferable. Implications to ecological forecasting are 

discussed. 

 
Introduction 

  

In the United States, the total confirmed and probable cases of Lyme disease have 

more than doubled in the past decade (CDC, 2021). The disease is caused by the 

bacterium Borrelia burgdorferi (Stanek et al., 2012), and the increase in human incidence 

has been attributed, in part, to the range expansion of the principal vector of the bacteria, 

the black-legged tick (Ixodes scapularis) (R. J. Eisen & Eisen, 2018; Sonenshine, 2018).  

I. scapularis has three post-egg life stages (larvae, nymphs, and adults), and of 

these stages, nymphs are the most epidemiologically important as their density is 

predictive of Lyme disease cases (Mather et al., 1996; Nicholson & Mather, 1996; 

Stafford et al., 1998; Pepin et al., 2012; Little et al., 2019). Furthermore, their peak 

questing activity, or phenology, each year coincides with peak human outdoor activity 

(Barbour & Fish, 1993). In the northeastern United States, this is roughly between May 

and June as nymphs emerge from dormancy (Lindsay et al., 1998).  

There have been numerous efforts to build predictive models of I. scapularis 

nymphs using varies modeling techniques and drivers (Ostfeld & Brunner, 2015). Mouse 

abundance, which itself is predicted from acorn abundance, is the most used biotic driver, 

shown to be predictive of I. scapularis nymphs almost two years in advance (Ostfeld, 

Jones, et al., 1996; Ostfeld et al., 2001). Abiotic variables, such as weather, have also 

been used to wide effect. Increasing winter precipitation is positively correlated with 
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nymph density in Connecticut (Jones & Kitron, 2000; Hayes et al., 2015; Kessler et al., 

2019), and annual precipitation in Florida (Kessler et al., 2019). Furthermore, Jones & 

Kitron (2000) showed that cumulative rainfall predicts larval abundance. 

Relative humidity has been shown to predict nymphs questing activity (Perret et 

al., 2004) and is a fundamental factor of their survival (Piesman et al., 1991; Ginsberg et 

al., 2017). Temperature has also been widely used, either untransformed or as cumulative 

growing degree days (CGDD). In Canada, tick survival decreased with decreasing 

temperature (Ogden et al., 2005), and spring temperature predicts nymph phenology 

(Levi et al., 2015). CGDD is positively correlated with tick observations by drag cloth 

(Jones & Kitron, 2000; Ogden et al., 2008) and peak occurrence (Levi et al., 2015). 

Vapor pressure deficit is also associated with immature tick survival and development 

(Lindsay et al., 1999).  

These models are important because they connect life stage processes to climatic 

variables, which will be important to predict ticks into the future under an uncertain 

climate. However, estimating the abundance of future populations will need to take an 

even more mechanistic approach, either by modeling more than one life stage at a time or 

by including specific causal links to developmental, survival, and host processes (LaDeau 

et al., 2011; Ogden et al., 2014; Ostfeld & Brunner, 2015; Kilpatrick et al., 2017). 

The use of hosts, such as mice, in the models above has been justified because of 

the important role mice play in the tick life cycle more generally, and in tick-borne 

disease ecology specifically. Larvae and nymphs require a blood meal to molt into the 

subsequent life stage, and adult female ticks require a blood meal to reproduce (Gray et 
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al., 2002; Stanek et al., 2012). In the northeastern United States, one of the primary hosts 

for larval and nymphal black-legged ticks is the white-footed mouse (Peromyscus 

leucopus) (Ostfeld, Jones, et al., 1996), which is also a competent reservoir species for B. 

burgdorferi (Schmidt & Ostfeld, 2001), and is the host most associated with high larval 

survival (Keesing et al., 2009).  

Like nymphs, larvae and adults have their own phenology. Adults are primarily 

active between September and January (Levi et al., 2015), and are important because they 

are competent vectors of B. burgdorferi (Piesman et al., 1991) and their survival and 

host-finding success influence the number of larvae in the next year (Wilson et al., 1990). 

Larvae are active between July and October (Lindsay et al., 1998), and while not 

competent vectors of B. burgdorferi, as transovarial transmission does not occur (Richter 

et al., 2012; Rollend et al., 2013), they can become infected nymphs after their first blood 

meal if they feed on an infected host (Gray et al., 2002). 

Identifying demographic rates (survival, transition, and fecundity) of an unmarked 

stage-structured population is a challenge (Gross et al., 2002). For example, a high larval 

survival rate and a low larvae-to-nymph transition rate can explain the number of larval 

and nymphal ticks from one-time point to the next equally as well as a low larval survival 

rate paired with a high larvae-to-nymph transition rate. Despite the challenges in 

estimating multiple unobservable transitions across life stages, data fusion and multi-

model approaches have been used to identify demographic parameters in stage-structured 

populations of plants (Evans et al., 2010), salmon (Michielsens et al., 2008), and ticks 

(Dobson et al., 2011), which more than justifies a Bayesian approach. 
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Here we describe a Bayesian modeling approach that assimilates field data and 

mathematical processes contained within a daily stage-structured model. Our goal is to 

better identify critical life history transitions and evaluate the importance of external 

weather and host population drivers on the population dynamics of all three post-egg life 

stages. 

This approach aims to quantify the demographic rates of each life stage to 

estimate abundances of each life stage and population growth through a data fusion 

approach, using a comprehensive and long-term dataset from the Hudson Valley Region 

in New York.  

Specifically, we hypothesize that estimating life-stage specific survival rates with 

abiotic data will improve abundance estimates, as greater than 90% of a ticks life is spent 

off host and their micro-climatic conditions are intrinsically tied to their physiology 

(Needham, 1991) (i.e. estimating nymph survival as a function of weather improves 

nymph tick prediction skill and reduces adult prediction uncertainty) (H1). We also 

hypothesize that incorporating the mouse population will constrain larvae-to-nymph and 

nymph-to-adult transition rates and improve tick population estimates because of their 

outsized role in life stage development (Gray et al., 2002; Keesing et al., 2009) (H2). 

Finally, we expect that including a completely latent state of dormant nymphs will 

improve nymphal predictions (H3), as this more accurately reflects the life history 

transition from larvae to nymph (Randolph, 2004; Dobson et al., 2011). Through our 

modeling approach, we also explore the spatial variability in tick demographic rates and 

analyze the uncertainty in population predictions at the three distinct field sites.  
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Illustration 1 Conceptual framework 

 

Illustration 1: Conceptual framework. Demographic parameters map to the transition 

matrix (Eq. 10). ɸ1-3 represent the daily survival rates of larvae, nymphs, and adults. Θ1-3 

represent the transition rates from larvae to dormant nymph, dormant nymph to questing 

nymph, and questing nymph to adult nymph. λ is reproduction. Solid lines represent 

demographic processes, dashed lines represent where and what information was used as 

covariates (weather on survival (H1), mouse abundance on transition (H2)). Boxes and 

dotted lines represent the data-fusion framework and location of sub-models (building 

informed priors for larvae and nymph survival, estimating mouse abundance). The 

inclusion of the overwintering state represents H3. 
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Methods 

Site Description and Data Collection 

 
Three field sites were located at Cary Institute of Ecosystem (Cary) Studies in 

Millbrook, New York. Tick and mouse observations were collected at each site (Green, 

Henry, Tea), which are more than 100m apart and centered around 41.7851N,                   

-73.7338W. All sites are 2.25 hectares and are post-agricultural oak-dominated stands 

(Ostfeld et al., 2001). 

Tick and Mouse Observations 

 
Tick (I. scapularis) abundances are derived from tick drags. A tick drag consists 

of pulling a 1 square meter cotton cloth along the ground on three randomly chosen 

transects, for a total of 450 square meters sampled per site. Ticks were counted and 

removed from the cloth every 30 meters. Drags were conducted every three to four weeks 

starting in the spring of 1995 through the fall of 2005. Tick drags did not occur in the 

winter.  

Mouse (P. leucopus) population monitoring occurred via mark-recapture 

concurrent with the tick monitoring. The trapping grid was an 11 x 11 array of Sherman 

live traps, with each station spaced 15 meters apart, and two traps at each station. Traps 

were set for two consecutive nights every three to six weeks baited with oats, and mice 

were marked with a numbered ear tag upon the first capture. Mouse captures did not 

occur over the winter. The minimum number of mice alive (MNA) for each site was 
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estimated directly from these data. The three sites we chose to include in this study were 

the control sites of a long-term research program at Cary; mouse populations and 

vegetation were not manipulated at these sites. For more complete descriptions of the 

long-term tick and mouse monitoring at Cary see (Brunner & Ostfeld, 2008; Ostfeld et 

al., 2001; Schauber et al., 2005). 

Meteorology 

 
Meteorology was collected through Cary’s environmental monitoring program 

located on-site at a centralized location (the three Cary field sites used the same 

meteorological data). Precipitation was collected with a Belfort Instrument Universal 

Recording Rain Gauge Series 5-780, located 3m above the ground. Relative humidity 

was collected with a Phys Chem Corp. PCRC-11 or PCRC-55 (years 1995–1997) and a 

Campbell Scientific, Inc. HMP45C (years 1997-2005), and temperature was collected 

with a Campbell Scientific model 107 or 207 (years 1995-1998) and a Campbell 

Scientific, Inc. HMP45C (years 1998-2005). See Kelly (2020) for a complete description 

of Cary’s environmental monitoring program. 

Prior Distribution Identification 

 
 To identify the prior distribution of daily survival of black-legged ticks, 

we used data that were available from a related study (Brunner et al. in prep). Unfed 

larval and nymphal ticks were placed inside mesh bags and exposed to field conditions at 

three military installations distributed across the eastern US (specific coordinates 
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withheld due to funding requirements). The first bags were deployed on May 11, 2017, 

and the last used for this analysis were retrieved on August 23, 2017. Temperature and 

relative humidity were monitored with iButtons at each soil core. 

Statistical Framework 

 
This section describes our statistical framework to improve predictions of tick 

populations, which includes the main tick population model, and two sub-models 

(Illustration 1.1).  

The tick population models we focus on are matrix stage-transition models, which 

use survival, transition, and fecundity rates to estimate the population density through 

time. The two sub-models were employed to help infer some of these demographic 

parameters in our focal model: a prior identification model for building informative priors 

on daily mean survival of larval and nymphal ticks, and a mouse population model where 

we use estimated mouse abundance as a constraint on transition parameters. Below we 

describe the two sub models that we used to parameterize our focal model. 

Models were run until convergence was reached (point scale reduction factor less 

that 1.1). We determined convergence on marginal posterior distributions using the 

Gelman and Rubin’s convergence diagnostic implemented via the coda package in R 

v.4.0.2 (Brooks & Gelman, 1998; Gelman & Rubin, 1992; Plummer et al., 2006; R Core 

Team, 2020). Workflow, data cleaning, and analysis were completed in R, and Bayesian 

models were built in NIMBLE (de Valpine et al., 2017, 2022) 
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Daily tick survival probability was estimated to construct informative priors for 

tick survival used in the tick matrix stage-transition model. We used a binomial process 

model to estimate daily tick survival. 

 

𝑦𝑡  ~ 𝑏𝑖𝑛𝑜𝑚(𝜙, 𝑦0)                                                     [1] 

 

Where yt is the number of ticks alive at the end of the soil core experiment, y0 is 

the total number of ticks that were placed in the soil and 𝜙 is the cumulative survival 

probability over the n days ticks were in the soil. We modeled the survival probability 𝜙 

as  

log(𝜙) = ∑ log (𝜆𝑛)
𝑑
𝑛=1                                                        [2] 

 

𝑙𝑜𝑔𝑖𝑡(𝜆𝑛)  =  𝛽𝑋𝑛                                                           [3] 

 

Where 𝜆 is the daily survival probability, beta is regression coefficients, and X is 

the matrix of daily covariates. To match the weather variables that are collected at Cary, 

we used above-ground daily temperature and relative humidity as covariates in this prior 

identification sub model. All weather variables were centered on their respective means. 

Uninformative priors with a mean of zero were used for regression coefficient 𝛽. 
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Mouse Population Models 

 
To estimate the mouse population density over time, we used a Jolly-Seber (JS) 

model, which was developed specifically for mark-recapture data and estimates 

population-level demographic parameters. We modified the restricted dynamic 

occupancy model parameterization, which uses data augmentation to model the entry of 

not-previously-seen individuals into the population (Kéry & Schaub, 2012). Our 

modification estimates the daily survival of mice as a function of temperature and 

precipitation, then aggregates daily survival probabilities in-between capture events (eq. 

4). We modeled survival on a daily basis because capture events were at irregular 

intervals. 

 

𝑙𝑜𝑔𝑖𝑡(𝜆𝑑)  = 𝛽1 + 𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑑 + 𝛽3 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑑                   [4] 

 

𝑙𝑜𝑔 (𝜙𝑡) = ∑ (𝑙𝑜𝑔 (𝜆𝑑))
𝑡
𝑑=𝛥𝑡                                              [5] 

 

𝜙 is the probability of surviving from one capture occasion to the next. Equation 

four describes daily survival rate, which is a logit transformed linear model of predictors. 

To get the survival rate between trapping occasions, we took the sum of the logged daily 

rates between trapping occasions (Δt), then exponentiated the sum (log link function), as 

shown in equation five. This was necessary to prevent numerical underflow. It is 

important to note that d represents each day in the time series, and t represents each 
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trapping occasion. See supplementary material section S1.1 for a complete description of 

this model. 

Tick Population Models 

 
We fit several models to test the effectiveness of model structure, biotic, and 

abiotic variables on their ability to improve predictions of tick abundance. Informative 

prior distributions for survival, as described above (from equation 2; prior identification 

sub model) were used in each of the models here, and each model was fit to each of the 

three Cary sites independently.  

We first built a three-stage model corresponding to the questing larvae, nymph, 

and adult stages. We tried to fit a range of three-stage models using different 

environmental covariates, but are not presenting them because they performed poorly, 

and about the same as the static three-stage model, which does not include environmental 

covariates. Therefore, the only three-stage we report is the Static version.  

We then built a four-stage model, where the added stage represents dormant 

nymphs. Because the four stage model performed significantly better than the three stage 

model (see Results), we then fit a series of five four-stage models, shown in Table 1, that 

include: a static (no covariates) model, one with daily weather variables to constrain 

questing tick survival, one that uses the raw mouse abundance data to constrain the 

transition rates from larvae to dormant nymph and from questing nymph to adult, one 

with the output of the estimated mouse abundance model instead of the raw mouse data, 

and a full model that uses both weather and estimated mouse abundance (Table 1.1).  
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Table 1.1 List of models and their structures. 

Model Name Model Description 

(stages) 

Covariates Parameters 

Constrained 

Static (3) Three-stage matrix 

model (questing larvae, 

questing nymphs, 

questing adults) 

  

Static (4) (questing larvae, 

dormant nymphs, 

questing nymphs, 

questing adults) 

  

MNA (4) Four-stage matrix 

model 

Mouse abundance 

(Minimum number 

alive [MNA]) from 

data  

Θ1, Θ3 

Mice Estimated (4) Four-stage matrix 

model 

Mouse abundance from 

the level-two mouse 

population model  

Θ1, Θ3 

Weather (4) Four-stage matrix 

model 

Daily maximum 

temperature, daily 

minimum relative 

humidity, daily 

maximum relative 

humidity, daily 

precipitation  

Φ1, Φ2, Φ3 

Weather + Mice (4) Four-stage matrix 

model 

Mouse abundance from 

the level-two mouse 

population model and 

daily maximum 

temperature, daily 

minimum relative 

humidity, daily 

maximum relative 

humidity, daily 

precipitation 

Φ1, Φ2, Φ3, Θ1, Θ3 
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Each transition matrix, At, was estimated daily (Table 2). Parameterization of the 

non-zero elements can be found in S1.2. But briefly, survival and transition rates are logit 

transformed linear models. The models for survival used daily maximum temperature, 

daily minimum and daily maximum relative humidity, and daily precipitation in a 

regularized regression framework. To aggregate across observation days, we permuted 

the matrices as follows: 

 

𝑷𝒕 = 𝐴𝒕𝑨𝒕−𝟏𝑨𝒕−𝟐. . . 𝑨𝟏                                        [6] 

 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∼ 𝑀𝑉𝑁(𝑷𝑡𝑥𝑡⃗⃗  ⃗, 𝛴)              [7] 

 

Where Pt is the permuted transition matrix (eq. 6) that is used to calculate the 

expected demographic transitions between sampling occasions. Then, the predicted latent 

state, x t+1, was drawn from the multivariate normal distribution (eq. 7) based on the 

expected number of ticks, 𝑷𝑡𝑥𝑡⃗⃗  ⃗, and a process error covariance matrix 𝞢. 𝞢 was 

parameterized as a diagonal matrix of variances, assuming that process error across life 

stages is uncorrelated.  

Observed tick counts were assumed to be Poisson distributed, where yj,i is the tick 

count of life stage j at time t, and x is the latent tick abundance: 

 

𝑦𝑗,𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑥𝑗,𝑡)          [9] 
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            [10] 

 

Model Assessment 

 
 The mouse population models were assessed using posterior estimates of the total 

predicted mouse abundance (latent abundance multiplied by capture probability) 

compared to observed values using R2 and bias. Tick population models were assessed by 

posterior predictive checks using one-step-ahead predictions within and across sites, 

where the one-step-ahead predictions iteratively cycle through the time series to predict 

the next observation from the current latent state.  

As these matrix models were fit independently at each site, the within-site 

predictions test goodness-of-fit, while the across-site predictions represent a measure of 

transferability and out-of-sample validation. We evaluated the one-step-ahead predictions 

with the Continuous Ranked Probability Score (CRPS) (Gneiting & Raftery, 2007; 

Simonis et al., 2021), a metric that accounts for the probabilistic nature of our 

predictions, penalizing models not just for mean absolute errors, but also for predictive 

distributions that are under- or over-confident.  
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A perfect forecast is defined when CRPS is equal to zero. Therefore, forecast skill 

increases as CRPS approaches zero; lower scores are better. Moreover, as the magnitude 

of observations varies considerably across life stages, we evaluate model predictions for 

each life stage separately.  

Variance Partitioning  

 
 Uncertainty in model predictions comes from four sources:; (i) initial condition 

(IC) uncertainty, (ii) parameter uncertainty, (iii) driver uncertainty, and (iv) process 

uncertainty. IC, parameter, and process uncertainties were propagated by sampling the 

joint posterior distribution of the matrix population models. Specifically, IC uncertainty 

came from x (eqn. 6), parameter uncertainty came from all the parameters in matrix A 

(Table 2), and process error came from 𝝈2 (eqn. 7). In terms of driver uncertainty, we 

treated the weather as known (without uncertainty), but incorporated uncertainty in 

mouse population estimates, which was derived from the posteriors of the mouse 

population sub model (eqn. S8).  

To determine the contribution of each source of uncertainty, we ran one-step-

ahead predictions under several scenarios, sequentially adding each source of uncertainty. 

The first simulation only samples from the latent state (IC) while holding parameters and 

drivers (estimated mouse abundance) at their posterior means and setting process error to 

zero. We then added parameter uncertainty, then driver uncertainty (where appropriate), 

and finally process uncertainty. The final scenario includes all sources of uncertainty and 

is the simulation that was scored with CRPS, as this scenario represents the full 
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predictive posterior.  

Population growth rate 

 
 Stochastic population growth rates were determined by sequences of the daily 

transition matrices A, under a mover-advancer model where the probability of advancing 

to the next environment is equal to one (Caswell, 2000). We estimated the growth rate for 

each sampling season, represented by the first tick drag to the last tick drag each year. 

Each stochastic population growth rate simulation used 2000 random draws from the 

joint posterior.   

Results 

Prior Identification 

  

Posterior parameter estimates from the survival models are presented in Figure 1.1. To 

ease interpretation, intercepts were converted from the underlying (daily) survival rates to 

be expressed as the mean monthly (30-day) survival rate. In all models, nymphs have a 

higher monthly survival rate than larvae by approximately 5%. Weather variables were 

centered, meaning slope coefficients represent the effect that a given weather variable has 

on larvae or nymph survival as the weather variable departs from its mean. In all cases, 

parameters remained strongly overlapping with zero but tended to suggest higher climate 

sensitivity among nymphs, which responded positively to humidity and negatively to 

temperature, while larvae responded positively to temperature and were insensitive to 

humidity (Figure 1.1).  
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Figure 1.1 Prior identification: survival 

 

 

 

Figure 1.1: Posterior distributions from the stage 1 survival models. The Static model is 

the intercept-only model. The other covariates considered were daily relative humidity, 

daily temperature, and daily vapor pressure deficit. The top row is the intercepts, and the 

bottom row is the effect of each weather variable. Violin and box plots were drawn from 

5000 random samples from the posterior.  

  

  



 

 

23 

Mouse Population Models 

 
 Demographic parameters describing the mouse populations were similar at the 

three Cary sites (Figure S1.1). Mean monthly survival rates were estimated as 0.815, 

0.813, and 0.806 at Green, Henry, and Tea, respectively. While small, precipitation and 

temperature both have negative effects on mouse survival, with temperature having a 

stronger effect and more variable across sites. Capture probabilities were similar across 

sites, with Henry slightly higher at 60% compared to Green and Tea at 57 and 58%, 

respectively.  

 We evaluated the effectiveness of the mouse model by performing the one-step-

ahead predictions described in section 2.4. R-squared values ranged from 0.74 to 0.77 

across the three sites (Figure 1.2). On average, the model underpredicts by roughly 6, 3, 

and 5 mice per 2.25 hectares at Green, Henry, and Tea respectively. This is relative to a 

mean mouse abundance (MNA) of 51, 36, and 43 mice at Green, Henry, and Tea. 

Tick Population Models 

 
 The 4-stage tick population models were able to recover observations in the one-

step-ahead predictions more precisely than the 3-stage model. This was true both within 

and across sites for nymphs (Figure 1.3) and larvae (Figure S1.2), and less so for adults 

(Figure S1.3).  
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Figure 1.2 Mouse model accuracy 

 

Figure 1.2: Model accuracy (the median prediction) with observation error compared to 

observed mice at each trapping occasion. The three sites are displayed independently. R-

squared values are calculated relative to the one-to-one line. Bias represents the average 

number of mice underestimated per plot per trapping occasion. 
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Figure 1.3 Across-site nymph one-step-ahead predictions 

 

Figure 1.3: One-step ahead predictions from an across-site simulation for nymphs. The 

model was calibrated at Henry and simulated at Tea. Showing 1996 - 2000 because peak 

nymphal observations were in 1996 and 2000 at Tea. Displaying output from for models: 

Static (3) (top left), Mice Est. (4) (top right), Weather (4) (bottom left), and Weather and 

Mice (4) (bottom right). Models not displayed (Static (4) and Mice MNA (4)) were 

excluded because they have very similar predictions to the Mice Est. (4) model.  

 

Demographic Parameters 

 
 Intercept terms for the survival equations represent mean daily survival rate 

because weather variables were standardized. We present them as monthly rates for 

easier comparison. The effect of covariates, either weather or mouse abundance, 
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represent the effect that a given variable has on mean survival or transition.  

Survival intercepts 

 
Median monthly larvae survival was mostly consistent across sites and models. At 

the low end, median monthly survival was estimated at 0.36 (90% CI 0.33 - 0.40) at Tea 

for the Static (3) model. The highest survival rate was at Green under the Weather (4) 

model with a median of 0.45 (90% CI 0.42 - 0.48). The models that included weather had 

nearly identical intercepts for larval survival. For nymphs, monthly survival was 

consistent across models where the minimum estimate was at Tea using the Mice MNA 

(4) model with a median of 0.48 (90% CI 0.45 - 0.50). The maximum estimate for 

nymphs was at Green under the Weather (4) model with a median of 0.52 (90% CI 0.49 - 

0.54). Adult survival was less precise and more variable than nymphs and larvae. The 

minimum monthly survival rate for adults was 0.37 (90% CI 0.23 - 0.56) at Tea with the 

Static (4) model, and the maximum was 0.92 (90% CI 0.71 - 0.98) at Green with the 

Weather (4) model. All survival intercepts are in Table S1.1. 

The effect of daily weather (H1) 

 
The weather variable that had the largest impact on larval survival was 

precipitation, which increased survival at all sites (Figure 1.4).  
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Figure 1.4 The effect of weather on daily tick survival 

 

Figure 1.4: Standardized slope estimates for the effect of a given weather variable (rows) 

on the daily survival of a given life stage (columns) from the Weather and Mice (4) 

model. The width of the narrow whiskers represents the 90% CI, wide whiskers are the 

50% CI, for each coefficient. Vertical dotted line to show which effects overlap with 

zero. Colors denote the site where the model was calibrated. 

 

 

The effect of precipitation on larval survival was 4.06 (90% CI 2.01 - 5.97) at 

Green under the Weather and Mice (4) model. The effect of relative humidity (either 

minimum or maximum) was mixed, either increasing survival or having no effect (Figure 

1.4). Daily maximum temperature did not have a significant effect on the survival of 

larval Ixodes ticks. 
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Like larvae, precipitation had the largest positive effect on nymph survival, the 

largest effect for the Weather and Mice (4) model being at Tea with a median of 0.73 

(90% CI -0.22 – 2.02). The effect of relative humidity on nymphal survival was mixed.  

Daily maximum relative humidity had a negative effect on nymph survival, where 

the largest effect was -1.73 (90% CI -2.16 – -1.11) at Green. Daily minimum relative 

humidity had no effect except at Green with a median of 0.5 (90% CI 0.03 – 1.07). The 

effect of temperature was also mixed, where there was no effect at Tea, a positive effect 

at Green (0.46; 90% CI 0.10 - 0.81) and a negative effect on survival at Henry (-0.43; 

90% CI -0.62 – -0.18).  

Daily maximum temperature had the largest positive effect on adult survival, 

where the largest effect was at Green with a median of 3.16 (90% CI 1.44 – 5.01). Daily 

maximum relative humidity reduced adult survival at all sites (Figure 1.4).  

The effect of mouse abundance (H2) 

 
 The effect of mouse abundance on the daily transition rate from larvae to nymph 

or nymph to adult was mostly consistent across sites and model formulations. For the 

larvae-to-nymph (L-N) transition, mice either had a negative or null effect on the 

transition rate. The posterior distribution for effect of mice abundance on L-N transition 

included 0 for all Weather and Mice (4) model runs and in all model runs at Tea site. 

Numbers of mice had a negative association with this transition rate in models where 

mouse abundance (estimated or MNA) was an important effect (Figure S1.5).  
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The effect of mouse abundance on the nymph-to-adult transition was more 

pronounced. There was a positive effect of mice at Tea across all models, and at Henry 

estimated by the Mice Est. (4) and Mice MNA (4) models. There was no effect of mouse 

abundance at Green on the nymph to adult transition (Figure S1.5).   

The effect of including a dormant stage (H3) 

 
Larvae and nymph predictions benefited from the addition of the dormant state, 

and adults were agnostic. For larvae, process error (represented as standard deviations) is 

reduced from the Static (3) model only when daily weather covariates are in the model 

(Figure 1.5). Process error for larvae are estimated at range of 6 larvae/4502m/day at Tea 

to 10 larvae/4502m/day at Henry. The model with the most error was Mice Est. (4) at 

Green with an error of 22 larvae/4502m/day. Model performance for larvae improved 

with the addition of the dormant state, where the three-stage model was the most skillful 

only 15% and 2% of the time for non-zero and zero counts, respectively. 

Including the fourth stage to represent dormant nymphs reduced process error 

over the 3-stage model, and all 4-stage model process errors were similar. For example, 

the Static (3) model applied at the Green site estimated the error in nymph predictions to 

be 3.9 nymphs/4502m/day, whereas all other models at that site had a nearly 10-fold 

decrease in error (0.4 nymphs/4502m/day) (Figure 1.5).  

Dormant nymph error was consistent within sites, where the models with daily 

weather have more error. For example, at Green, the error for the Weather and Mice (4) 

model is 8.5 dormant nymphs/4502m/day, but for the Mice MNA (4) model the error was 
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6.3 dormant nymphs/4502m. The other two sites follow the same pattern, with Tea having 

the most error in dormant nymphs. Adult process error was consistent within sites. All 

models at Henry showed adult process error to be between 1.73-1.87 adults/4502m/day, 

Green was between 2.2-3.1 adults/4502m/day, and Tea at 3.3-35 adults/4502m/day. 

 

Figure 1.5 Model process error 

 

 
 

Figure 1.5: Process error distributions, represented as standard deviations. Facet columns 

are each life stage in the stage-structured matrix, the x-axis is the site a specific model 

(color) was calibrated. Whiskers are the 90% credible interval of the posterior, and points 

are the median value of process error. The dormant stage is not modeled in the Static (3) 

model. 
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Fecundity 

 
We estimated variable fecundity rates among models and across sites (Figure 

S1.6). For example, the Mice MNA (4) model estimated a median fecundity rate 

(larvae/adult/day) of 0.88 (90% CI 0.06 - 5.04) at Green, 23.55 (90% CI 17.67 - 31.27) at 

Tea, and 32.15 (90% CI 24.45 - 41.49) at Henry. In general, the models that use weather 

to drive tick survival estimate a higher reproductive rate than other model formulations. 

For example, the Weather and Mice (4) model estimated a reproductive rate of 41.60 

(90% CI 30.49 - 54.76) at Green, 44.48 (90% CI 33.79 - 57.35) at Tea, and 54.44 (90% 

CI 34.45 - 72.00) at Henry. For reference the prior on fecundity was set to a mean of 30 

and a standard deviation of 10, which translates to a 90% CI between 13.83 and 46.82.  

Population Growth Rate 

 
 Estimates of population growth rates were similar across all models and there was 

significant interannual variation (Figure 1.6). Over the 11 years of the study, population 

growth tends to increase across all three sites. Specifically, the tick population was 

growing (estimated by median population growth rate) in 1999 - 2000, and between 2000 

- 2004. The three sites show similar annual trends in growth rate, except for years 1999 

and 2005. In 1999, Green and Tea have growing tick populations while Henry is 

declining, and in 2005 Green and Tea have declining tick populations while Henry is 

growing.  
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Figure 1.6 Population growth rate 

 

 

Figure 1.6: Population growth simulated during the questing season each year for the 

Weather and Mice (4) model at the three Cary field sites. The horizontal dashed line 

represents the threshold value of one (above the population is growing, below declining). 

Boxplots were drawn with 2000 simulations.  

 

Model Assessment  

 
Models were assessed by running one-step-ahead predictions. First, we need to 

distinguish between predictions made during the phenological period for each life stage 

and predictions made during other periods of the year.  
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Here, we make the simplifying assumption that predictions during the questing 

period are for non-zero counts, while predictions during the dormancy period are for 

zeros. Zero count observations can occur during questing periods, but over the 11-year 

period the distinguishment between zero and non-zero should give us an accurate 

estimate of how well each model predicts during questing and non-questing periods.  

Two of the six models included weather, and they made the best one-step-ahead 

predictions (according to CRPS) for larval abundance 76% of the time for non-zero 

counts and 98% of the time when zero larvae were observed (Figure 1.7). The inclusion 

of daily weather variables made for better nymphal predictions more than half the time 

(51%) for non-zero counts, and for almost (98%) every zero count. Weather did not 

improve predictions of the adult ticks, where these models were the best performing for 

adults only 33% of the time for non-zero counts and 30% of the time for zero adult 

counts. 

The 3-stage model was the most skillful at predicting nymphs only 2% and 0% of 

the time for non-zero and zero counts, respectively (Figure 1.7).  

The effect that mouse abundance has on model performance is different between life 

stages. For larvae the models with mice only (estimated or MNA), made the best non-

zero predictions 6% of the time compared to 26% for nymphs, and 19% for adults (Figure 

1.7). However, if we include the model with that has both mice and weather, the three 

models with mice account for the best non-zero predictions 54%, 78%, and 34% of the 

time for larvae, nymphs, and adults respectively. If all models were equally skillful, we 
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would expect any combination of three (out of a total of six) models to be best roughly 

50% of the time.   

 

Figure 1.7 Model performance summary 

 

 

 

Figure 1.7: The relative performance of each model at predicting non-zero (top row) and 

zero (bottom row) observations for each life stage. Non-zero observations are during each 

life stage’s questing period, and zero observations are during each life stage's dormancy 

period. n is the number of times a specific model had the best skill score, percent values 

are how often a specific model was most skillful relative to others. 
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CRPS scores, in general, scale with observations so that as the number of ticks 

observed increases prediction skill decreases. This pattern is most evident for larvae 

(Figure S1.8) and adults (Figure S1.9), the exception being larvae scores from the 

Weather (4) model, where within-site CRPS is higher than the across-site CRPS, on 

average.  

 The pattern for CRPS as nymph observations increase is different from that of 

larvae and adults. Most notably is that the Static (3) and Weather (4) model scores 

increase (i.e. get worse) faster than the other models (Figure 8). In contrast, the Static (4), 

Mice MNA (4), Mice Est. (4), and Weather and Mice (4) models all have relatively 

similar trends, in that CRPS gets slightly worse as observations increase. Of these last 

four models, the Weather and Mice (4) model has the biggest difference in score between 

across-site and within-site prediction skill, where within-site predictions are better on 

average (Figure 1.8).  

Variance Partitioning 

 We partitioned the variance for each model and each life stage into the component 

parts that make up the total uncertainty (initial conditions, parameter, driver, and process 

error). Each life stage shows the same pattern in relative variance through time, where 

during the questing period the prediction variance is dominated by something other than 

process uncertainty, the total variance is larger during questing periods than during the 

dormant periods, and the relative proportion of uncertainty due to mouse estimates is 

small. 
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Figure 1.8 Nymph prediction skill 

 

 

Figure 1.8: Trends in CRPS as observations increase. Each facet represents the 

performance of a single model. Blue corresponds to the scores for the within-site 

predictions, red to the across-site predictions. Lines are linear trends for each type of 

prediction. 

 
 
 
 

For the larvae, initial condition uncertainty begins to make up about half of the 

total variance during their questing period for all models. In addition, the models that use 

weather have the most parameter uncertainty (Figures 1.9, S1.8, S.19).  
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 Nymphal prediction variance is dominated by process error in the Static (3) 

model, and initial condition uncertainty in all other models (Figure 1.9). Additionally, the 

addition of the dormant stage between questing larvae and questing nymphs reduced the 

relative proportion of process uncertainty in nymph predictions drastically, from being 

dominant (>95%) to negligible (<5%). Excluding the Weather (4) model, total prediction 

variance decreased by a factor of 4 when including dormant nymphs in the model 

structure. Like the larvae, the Weather (4) model has the most parameter uncertainty. 

Additionally, late-season predictions are mostly made up of process uncertainty.  

 Adult prediction variance is low in the mid-season where it is dominated by 

process uncertainty. All models show that the beginning of the season is mostly 

comprised of parameter uncertainty, followed by initial condition uncertainty (Figure 

S1.9). 

Discussion 

 

This study quantitatively explored a series of stage-structured matrix models to 

predict all life stages of Ixodes scapularis, the primary vector of Lyme disease in North 

America. We found that including the dormant stage in the matrix between questing 

larvae and questing nymphs dramatically improved the predictability of nymphs (Figures 

1.7 & 1.8), the life stage most responsible for Lyme disease cases in humans. We showed 

that over the 11 years of this study, the growth rate of the tick populations at Cary was 

variable from year-to-year and generally increasing, with periods of decline followed by 

a prolonged period of growth (Figure 1.6). 
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Figure 1.9 Nymphal prediction variance partitioning 

 

 

Figure 1.9: Variance partitioning for nymph predictions at Tea in 1999. The top row 

shows the relative proportion of the total variance that is made up of either process error 

(model structural uncertainty), driver error (from level 2 mouse population model, only 

present in Mice Est. (4) and Weather and Mice (4) models), parameter uncertainty (from 

parameter distributions), and initial condition uncertainty (errors in the latent state). The 

bottom row shows the total amount of variance in the prediction. 

 

 

Both of these findings are relevant because quantitative predictions for nymphs 

and the trajectory of the population as a whole can aid in our understanding of Lyme 

disease risk (LaDeau et al., 2011; Kilpatrick et al., 2017). Additionally, an estimate of 
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population growth helps provide managers with a target for eradication efforts, an 

important goal of ecological forecasting (Galloway et al., 2021; Davis et al., 2022).  

We also quantified the role of mice in constraining the transitions from larvae-to-

nymph and nymph-to-adult, as well as the importance of key environmental drivers of 

tick survival. For nymphs, the model with both weather and with mice was the most 

skillful at predicting non-zero counts. This concurs with previous studies that show mice 

play a crucial role in the ecology of I. scapularis and can improve predictions of nymphs 

(Ostfeld et al., 2001, 2006). Furthermore, we do this in an ecologically relevant way, 

which has to do with the interplay between the dormant nymph stage and the negative 

effect of instantaneous mouse abundance. Nymphs are essentially held in the dormant 

stage until questing when they emerge as a single cohort, and then mice act as a removal 

mechanism from the questing state. 

This explains the tendency of the Weather (4) model to overestimate nymphal 

predictions, as the most prominent effect of mice was on the nymph to adult transition 

(removing nymphs). Furthermore, incorporating the uncertainty in mouse estimates 

added little to the total variance of tick predictions. 

For larvae and nymphs, weather had a significant effect on survival. Our results 

agree with (Dobson et al., 2011; Brunner et al., 2012) on daily density-independent 

mortality rates (explicit or implicit) of the questing states, with estimated monthly 

survival rates between 0.4-0.45 and 0.48-0.52 for larvae and nymphs. Our results also 

agree with (Ginsberg et al., 2014, 2017) that larvae survival drops as relative humidity 

(RH) decreases, and that average RH is not significant in predicting nymphs (Berger et 
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al., 2014). Out RH results contrast with Ginsberg (2014) which showed that high RH 

increases nymph survival.  This could be due to the discrepancy between monitoring ticks 

from the field and monitoring ticks in the lab. Our model also uses precipitation as a daily 

driver of survival, and nymphs were estimated to have a positive association with 

precipitation (Figure 1.4). The precipitation effect could be overpowering the effect of 

RH, as days with precipitation will have higher RH. 

Our model is similar to that of (Dobson et al., 2011) in that our model runs on a 

daily basis and incorporates biological processes into the model. However, our model is 

different in a few respects. For one, we model survival, transition, development, and 

reproduction within the daily transition matrix, which allowed us to estimate the 

population growth rate. Additionally, we were able to estimate the effect of host 

abundance, which allowed us to recover tick dynamics more effectively at other sites 

using their respective mouse populations. However, the model we present here combines 

host contact rate, feeding success, and development rate into one parameter (i.e. larvae-

to-nymph transition), something that Dobson (2011) partitioned. 

While we were able to recover tick observations of larvae and nymphs, we found 

it more difficult to accurately predict questing adults. All models considered were best 

some of the time (Figure 1.7). One factor contributing to this greater error in adult 

predictions is the lack of a dormant stage between questing nymphs and questing adults. 

While modeling this stage would be developmentally more appropriate (we tried to fit 

such a model but were unable to reach convergence), nymphs do feed, molt, and emerge 

as adults in the same year (Ostfeld, Hazler, et al., 1996). So our model formulation is not 
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unrealistic. Similarly, there is not a dormant stage between questing adults and questing 

larvae (i.e. an egg stage), but we were able to recover the larvae data. Also relevant to the 

adults is the smaller count numbers, and thus the potentially greater impact of sampling 

error and population stochasticity.  

This work shows that a stage-structured model for I. scapularis is an appropriate 

formulation to describe the ecology of this important tick-borne disease vector. 

Especially when it comes to larvae and nymphs. Adult prediction accuracy varied, as 

such, we recommend future work focus on further constraining the adult stage. This 

could be done by using different drivers for survival or incorporating reproductive hosts 

in the fecundity term or adding a latent state in-between questing nymphs and questing 

adults. The penalized regression formulation on survival would make this 

straightforward. 

Lastly, variance partitioning analysis shows interesting trends in both total and 

relative variance. For all life stages, total predictive variance tends to increase during the 

questing period. This was expected, as the model explicitly does not allow for stage 

transitions when not in a life stage’s phenological (questing) window, meaning that the 

model is at stasis for most periods of the year. It was also expected, then, that during 

these non-questing periods most of the variance is comprised of process error because 

transition parameters are set to zero. Interestingly, the relative contribution of process 

error generally decreased during questing periods. This is either because process error is 

constant across all time while the other errors fluctuate, or during questing periods all 

error increases more rapidly than the other sources.  
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This means that the major obstacle to constraining predictions of peak tick 

abundance is mostly due to the uncertainty in the initial state. This has important 

implications for large-scale monitoring programs such as the National Ecological 

Observatory Network (NEON), which might have to make budgetary decisions about 

when and where to sample. We show that for predicting nymphs, the most important life 

stage of this species, sampling efforts should be directed towards monitoring nymphs.
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CHAPTER TWO 

A proof of concept for iterative ecological forecasts for the vector of Lyme disease 

(Ixodes scapularis) 

 

Introduction 

 

 The expansion of black-legged tick (Ixodes scapularis) populations across North 

America (Sonenshine, 2018), coupled with the concurrent rise in Lyme disease incidence 

(Sharareh et al., 2019) necessitates more accurate and timely predictive models to inform 

stakeholders of the risk of Lyme disease (Ogden et al., 2020). There are numerous studies 

that show the relationship between peak density of the nymphal life stage of I. scapularis 

and Lyme disease incidence (Mather et al., 1996; Nicholson & Mather, 1996; Stafford et 

al., 1998; Pepin et al., 2012; Little et al., 2019). Therefore, land managers, public health 

officials, and outdoor recreational users could potentially plan their management actions 

or outdoor activities around the timing of peak tick abundance. 

Unsurprisingly, there is a growing call for forecasts that can predict tick 

populations over space and time (Kilpatrick et al., 2017), with a focus on the nymphal 

stage. The emphasis on nymphal predictions stems from their competence as vectors of 

the etiological agent of Lyme disease (Borrelia burgdorferi) to humans (Stanek et al., 

2012), their phenology is concurrent with peak human outdoor activity (Barbour & Fish, 

1993; Pepin et al., 2012), and their small size makes them hard to identify and remove (L. 

Eisen & Eisen, 2016).  



 

 

44 

Therefore, the focus of this manuscript is to evaluate a proof of concept for 

iteratively forecasting the population dynamics of I. scapularis at the Cary Institute of 

Ecosystem Studies (Cary), located in Millbrook, NY. This evaluation is over a time 

period (2006-2021) where Lyme disease cases have increased dramatically in the US and 

are for a location in the northeastern US where Lyme disease is endemic (Diuk-Wasser et 

al., 2006). Furthermore, we place an emphasis on evaluating nymphal forecasts due to 

their inflated role in Lyme disease ecology.  

For this proof of concept, we use the 4-stage process models that were previously 

calibrated in Chapter 1. The four stages are questing larvae, dormant nymphs, questing 

nymphs, and questing adults. The data provide information on the questing individuals 

only, meaning the dormant nymphs are in a completely latent state. Including dormant 

nymphs in the model drastically reduces model process error and increases the predictive 

capacity of questing nymphs (Chapter 1). We use two of the models from chapter one; 

one where weather drives the daily survival of each life stage with four daily weather 

variables; maximum temperature, maximum relative humidity, minimum relative 

humidity, and precipitation. The second builds from this model to also include the 

minimum number of mice alive (MNA) at each site to constrain the transitions from 

larvae to nymph and nymph to adult. 

Furthermore, we defined phenology by setting transition parameters into the 

questing states to zero during the non-questing periods of the year (equation S1.7). For 

each life stage, the questing period was defined by cumulative growing degree days 

above zero degrees Celsius; i.e. questing only occurs if the cumulative growing degree 
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days were within the appropriate window for a given life stage. Therefore, our 

forecasting model explicitly defines phenology and uses current weather conditions to 

determine tick survival.  

At its core, ecological forecasting is the process a forecaster uses to make 

predictions, and it is within the community standards and best practices of ecological 

forecasting we evaluate our proof of concept. Specifically, we focus on evaluating 

forecast accuracy and uncertainty, identifying end-users, iterative predictions, and using a 

null model (Dietze et al., 2018; Lewis et al., 2022).  

Iterative predictions are central to the ecological forecasting process for several 

reasons. First, we can evaluate how accurate and precise our forecasts are by iteratively 

challenging the model with data, and making out-of-sample predictions (White et al., 

2018; Taylor & White, 2020). This is particularly important for our use case, as we are 

using a process-based model. Our model represents certain hypotheses about how this 

tick-borne disease system works (Chapter 1), which means each iterative prediction 

represents a new quantitative evaluation of our current understanding of the system. 

Furthermore, under the correct data assimilation scheme, the model itself should be able 

to adapt through time, becoming more skillful with each iteration (Niu et al., 2014).  

At each iteration, we evaluate the process model against the performance of a null 

model. Our null model is analogous to a climatology model, except here we use the 

historical mean tick abundance as a basis for the null prediction. This is an appropriate 

null model because of the consistent phenology from year to year in each life stage. For 

example, in the northeast US, nymphs begin questing in the late spring, peak in early 
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summer, and go dormant by late summer (Levi et al., 2015). While this pattern is 

consistent from year to year, the interannual variability in magnitude of questing nymphs 

varies substantially (Ostfeld, Hazler, et al., 1996). Therefore, comparing our models to 

this null model will allow us to determine if our models can predict known phenology 

and out-perform average annual abundance. A skillful forecast is one that has a lower 

continuous ranked probability score (CRPS) or lower root mean squared error (RMSE) 

than the null model. 

As phenology is explicitly defined in our 4-stage process model (Chapter 1), we 

expect to have at least equal forecast accuracy at predicting zero counts (the non-questing 

periods for each life stage) as the null model, and we expect to out-perform the null 

model at forecasting peaks (the maximum count each year for each life stage). We also 

expect the forecast model to have larger forecast variance than the null model, because 

the forecast model propagates uncertainty while the null model does not. This added 

uncertainty may cause our forecasts to be less skillful than the null model, especially at 

dormant periods of the year. In this case, our models may be just as accurate as the null 

model, and the null model will be an overconfident forecast because it does not have 

propagated uncertainty.  

Quantifying and partitioning forecast uncertainty is a pillar of ecological 

forecasting (Dietze, 2017). Additionally, uncertainty (usually paired with accuracy) is a 

key component in many proper scoring rules (Gneiting & Raftery, 2007), which are used 

as a measure of forecast skill. Uncertainty can arise from initial conditions, covariate 

data, parameter distributions, and the model structure itself (Dietze, 2017). Here, we 
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evaluate the role of the initial condition and covariate data uncertainty as it relates to 

forecasting skill.  

The initial conditions for the forecasts are built by blending the observed tick 

density and the forecast for tick density, which occurs during the analysis step of the data 

assimilation (Dietze, 2017). This means the magnitude of initial condition uncertainty is 

in part due to the tick data itself. The tick observations at Cary are generated by 

conducting tick drags during the peak questing period of each life stage each year. Of the 

life stages, it is the larval data that has the most variability.  

This variability is due, in part, to the behavior of adult female ticks, their hosts, 

and their offspring. After an adult female I. scapularis tick successfully feeds and mates, 

she drops off her host and lays eggs. Where this occurs is wherever the host happens to 

be at the time. Adult ticks tend to use larger hosts, such as deer, compared to juvenile 

ticks, who primarily attach to small vertebrates (Gray, J.S., 1998). Larger hosts tend to 

have larger home ranges that are both more heterogenous on the landscape and the 

individuals are more social than hosts for juvenile ticks (McNab, 1963). This means that 

the hosts, and subsequently tick egg sacks laid by female adult ticks, are clustered in 

space randomly (Ostfeld et al., 1996).  

Therefore, successfully capturing larvae during their peak is almost random, as 

the observer has to encounter one or more of these clusters, and then the larvae have to 

attach to the drag cloth. One hypothesis is that removing these observations will have 

little effect on forecast accuracy and precision, as the heterogeneity in larval observations 

is large enough that the observations do not add information.  
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If this hypothesis is correct, future observation efforts could be shifted to more 

intensive sampling during the nymphal peak, which would be more informative as to 

actual disease risk as nymphs are the primary vector of B. burgdorferi. The counter 

hypothesis is that data collected during the larval questing season helps constrain 

forecasts for either abundance or phenology. As such, we set out to quantify the role of 

observations during the larval questing period by running parallel hindcasts with 

observations from the larval questing periods removed (Figure 2.1). 

The other source of uncertainty we explore in this framework is that of covariate, 

or driver, data. Our process-based model uses current daily weather to constrain tick 

survival, which means we need a forecast of daily weather to forecast tick populations. In 

an effort to produce forecasts at both short to intermediate time scales, we quantify the 

impact of using the North American Multi-model Ensemble (NMME) (Kirtman et al., 

2014). NMME is a seasonal weather forecast product with a 365-day horizon across ten 

ensemble members. Incorporating and estimating the uncertainty across ensembles 

enables us to propagate driver uncertainty into the forecast (Dietze, 2017), and to 

quantify the effect that this uncertainty has on the uncertainty in the tick forecast. We can 

quantify this effect by running parallel hindcasts.  

The first of these hindcasts has zero driver uncertainty, using observed weather 

from the Cary meteorological station (Figure 2.1), and the second assimilates NMME. 

We hypothesize that incorporating this product will make the tick forecasts more 

uncertain (i.e. more total forecast variance) because we account for the variance across 

NMME ensembles. Consequently, we hypothesize that the tick forecast skill, as measured  
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Figure 2.1 Forecast timeline 

 

 

Figure 2.1 Timeline and conceptual flowchart for hindcasts. The model was calibrated 

from 1995 to 2005. Hindcasts started in 2006, where we ran the base hindcast (diamond) 

and the hindcast with peak larval data removed (ovals) until 2017, both with weather data 

from Cary (red). In 2018 the hindcasts from 2006 continue, where versions of each with 

NMME (blue) ran from 2018 to 2021. 

 

 

by the Continuous Ranked Probability Score (CRPS) or root mean squared error 

(RMSE), will decay as the horizon increases. However, as the two forecasts differ only in 

their weather data source, patterns in forecast accuracy relative to the forecast horizon 

should be the same. 
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End-users of these forecasts, process-based or otherwise, will need them to be 

made for both short (days to weeks) and intermediate (seasonal to yearly) time horizons. 

The questing period for each life stage can be measured in terms of weeks (Levi et al., 

2015), meaning forecasts could predict the onset, magnitude, and duration of tick activity 

(Ogden et al., 2005). Forecasts could then be used by land managers as part of their 

adaptive management plans to include activities that reduce tick density or tick survival 

such as invasive species removal (Allan et al., 2010), host-specific measures such as 

culling or fencing (Tsao et al., 2021), or prescribed burning (Gleim et al., 2014).  

Within this framework, we set out to validate an iterative Bayesian forecast and 

data assimilation scheme and assess the sensitivity of these forecasts to common data 

limitation issues (e.g., weather forecast uncertainty, field sampling strategies). The two 

aspects of the data assimilation we explore are the effectiveness of the initial condition 

updates, and the second is on tick demographic parameter distributions and how they 

change over time.  

In an appropriately specified model and data assimilation combination, we expect 

to see a weighted averaging of data and forecast distributions, where if the forecast is 

correct, then equal weight is placed on the forecast and data. If the forecast is wrong or 

too uncertain, we expect there to be more weight placed on the data. On the other hand, if 

a model is over-specified, we would expect the data assimilation to place more weight on 

the forecast, even if that forecast is wrong (Niu et al., 2014; Dietze, 2017).  

Another validation of the data assimilation is on parameter distributions after data 

assimilation occurs. For each iteration, the parameter posterior distributions become the 
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priors for the next forecast, and we expect these to update over time and lead to an 

increase in forecast skill.  

 

Methods 

Data and Site description 

 
Three field sites at the Cary Institute of Ecosystem Studies (Green, Henry, Tea) 

were used for tick, mouse, and weather observations. They are more than 100m apart 

centered around 41.7851N, -73.7338W. All sites are 2.25 hectares and are post-

agricultural oak-dominated stands (Ostfeld et al., 2001). 

Tick Data 

Briefly, tick populations (I. scapularis) are derived from tick drags conducted at 

the Cary Institute of Ecosystem Studies in Millbrook, NY. A tick drag consists of pulling 

a 1 square meter cotton cloth along the ground on three randomly chosen transects, for a 

total of 450 square meters sampled per site. Ticks were counted every 30 meters. Drags 

were conducted every three to four weeks. Tick drags did not occur in the winter. For 

more complete descriptions of the long-term tick monitoring at Cary see (Brunner & 

Ostfeld, 2008; Ostfeld et al., 2001; Schauber et al., 2005). 

Cary Meteorology 

 
Meteorology was collected from Cary’s environmental monitoring program. 

Precipitation was collected with a Belfort Instrument Universal Recording Rain Gauge 
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Series 5-780 located three meters above the ground from 1995–July 2007, and using a 

Geonor Precipitation Gauge Model T-200B from July 2007–2021. Relative humidity was 

collected with a Phys Chem Corp. PCRC-11 or PCRC-55 (1995–1997) and a Campbell 

Scientific, Inc. HMP45C (1997–2021), and temperature was collected with a Campbell 

Scientific model 107 or 207 (1995–1998) and a Campbell Scientific, Inc. HMP45C 

(1998–2021). See (Kelly, 2020) for a complete description of Cary’s environmental 

monitoring program. 

 For model calibration in Chapter 1, we centered and standardized the weather 

covariates (daily maximum temperature, daily maximum relative humidity, daily 

minimum relative humidity, daily total precipitation) by their respective means and 

standard deviations during the calibration period (1995–2005). Therefore, coefficients 

estimated in Chapter 1, and used as the initial parameter distributions during the hindcast 

period, represent the magnitude a weather variable has on tick survival as it departs from 

its historical mean. As such, we centered and standardized the observed weather variables 

during the hindcast period to the calibration period historical mean and standard 

deviations.  

 The tick data for this work is a direct continuation of the tick drag data used in 

Chapter 1, and has been described in detail elsewhere (Brunner et al., 2012; Brunner & 

Ostfeld, 2008; Ostfeld et al., 2006).  
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North American Multi-model Ensemble 

 

 As one of our goals with this manuscript is to investigate the feasibility of season-

long forecasts, we chose to assimilate the North American Multi-model Ensemble 

(NMME) as our weather driver. Briefly, NMME is a year-long weather forecasting 

product produced monthly that has a one-degree resolution at a 6-hour time step with 10 

ensemble members. See (Kirtman et al., 2014) for a complete description.  

For each ensemble member on each day, we found the daily maximum 

temperature, maximum and minimum relative humidity, and total precipitation. Before 

data assimilation, each NMME variable was standardized to the historical mean and 

standard deviation as described above. We then applied a bias correction to the historical 

mean for all four weather variables. For temperature and minimum and maximum 

relative humidity, we calculated the mean (annual) for each ensemble of each variable, 

and calculated the difference between this and the calibration period observed means for 

each variable. This bias was added to each day of each variable of each ensemble for 

NMME. An example of the bias correction is in supplementary Figure S2.1. 

The precipitation forecasts needed a different adjustment, as most days were 

predicted to have greater than zero precipitation, forecasting a constant drizzle throughout 

the year. To correct for this, we found the average annual cumulative precipitation at 

Cary over the calibration period (1134.16 mm). NMME has a horizon of a year, so we 

calculated the bias between the cumulative precipitation for each NMME ensemble and 

the Cary average annual cumulative precipitation, divided the bias by 365, and then 
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added this daily bias to each day in the NMME ensemble.  

 For each day of the tick forecast, we used an error in variables approach to 

estimate the true value for each weather variable and their associated uncertainties for 

each day. We used a multivariate censorship model to account for the theoretical bounds 

of relative humidity and precipitation, which are bound between 0 and 1 and bound at 

zero, respectively. Temperature was not censored. 

 

μt  ∼ 𝑀𝑉𝑁(𝜇0 , 𝛴)                                                   [1] 

 

𝛺𝑡  ∼ 𝑤𝑖𝑠ℎ𝑎𝑟𝑡(𝛬 , 𝑘)                                                  [2] 

 

𝑌𝑐𝑡  ∼  𝑀𝑉𝑁(𝜇𝑡 , 𝛺𝑡)                                                   [3] 

 

𝑌𝑖𝑡 ,𝑗  ∼ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑚𝑖𝑛𝑗 ≤ 𝑌𝑐𝑡 ,𝑗 ≤ 𝑚𝑎𝑥𝑗)                                [4] 

 

 Where on day t, μ is the vector of estimated means, 𝛀 is the estimated precision 

matrix, Yc is the data from NMME, where any ensemble member that is censored (i.e. 

outside the theoretical bounds) was set to the boundary, and Yi is the indicator matrix 

indicating which ensemble members are censored. The priors for μt  and 𝛀t were set as 

follows: μ0 is a vector of zeros, 𝝨 and 𝜦 were set to a j x j diagonal matrix with 0.01, and 

k was set to j+1, where j is the number of weather variables). min and max are vectors of 

the theoretical minimum and maximum values for each weather variable. Where there 
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was no constraint (both temperature bounds and precipitation maxima), min and max 

were set to -1E4 and 1E4, respectively.   

 Cumulative growing degree days were calculated for each temperature ensemble 

member with a base of 10°C. We then used the mean (μ) and precision (𝜏) across 

ensemble members to estimate daily cumulative growing degree days with error: 

 

𝑐𝑔𝑑𝑑𝑡  ∼  𝑁(𝜇𝑡 , 𝜏𝑡)                                                   [5] 

 

The hindcasts that use NMME have a horizon that is slightly less than 365 days 

because NMME, which has a one-year horizon, is produced once a month. For example, 

a hindcast starting on April 15th will use the NMME forecast starting on April 1st of that 

year, meaning the end of the hindcast is March 31st of the following year, giving us a 

horizon of 350 days. 

Statistical Framework 

 

The hindcast ran from 2006 to 2021. Data processing and analysis were done in R 

v4.0.2 (R Core Team, 2020), and hindcast simulations were carried out in NIMBLE (de 

Valpine et al., 2017, 2022). When using the observed weather data from Cary, the 

hindcast horizon was 365 days. This process continued throughout the hindcasting period 

(2006 – 2021). Starting with the first state observations of 2018, we initialized a parallel 

hindcast that uses a seasonal forecasting product: the North American Multi-model 

Ensemble (Kirtman et al., 2014).  
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For both ticks and mice, the workflow for the hindcast is as follows: the first 

hindcast in 2006 was initialized using the historical mean abundance from the calibration 

period (1995 – 2005) for the month of May, and ran for 365 days. The next hindcast 

starts on the day of the next observation, assimilating the observation into the model, 

using the hindcasted estimate of ticks on the day of the observation as the initial 

condition. Parameter distributions were also estimated, using the previous hindcast’s 

parameter distributions as priors (or in case of the first hindcast, the parameter 

distributions from the calibrated model). Therefore, the data assimilation scheme does the 

analysis and forecast step together (Dietze, 2017), and is essentially Bayesian updating.  

The tick hindcasts were run in this way within-site, where model parameters were 

used to hindcast ticks at the site the parameters were calibrated, as well as across-site, 

where parameters were used to predict ticks at sites they were not calibrated.  

Tick Forecast Model 

 
We used the four-stage model from chapter one to simulate tick population 

dynamics. There were a few modifications made to the model calibrated in Chapter 1 to 

increase computational efficiency. First, the prediction step is done dynamically, where 

we predict tick populations every day from the day previous, instead of across days as 

done in Chapter 1 : 

 

 𝑒𝑥⃗⃗⃗⃗ 𝑡 = 𝑨𝑡−1𝑥𝑡−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                        [6] 
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 Where on day t-1, A is the daily transition matrix, and x is the estimated latent 

state vector, which are used to predict the next days (t) expected tick population ex. For 

the hindcasts that use NMME, there is the added step of estimating the latent NMME 

variables as described in section 2.1.  

 To estimate shape (ɑ) and rate (β) parameters for the informative inverse gamma 

priors on process error, we used the mean (μ) and variance (σ) from the posterior of the 

previous forecast using the method of moments (Llera & Beckmann, 2016): 

 

𝛼 = 
𝜇2

𝜎
 +  2                         [7] 

𝛽 =  𝜇 ∗ (
𝜇2

𝜎
+ 1)                [8] 

 

All parameters in the model (survival, transition, weather and mouse effect 

coefficients, process error), except reproduction, were updated at each data assimilation 

step. Reproduction was held constant to help with convergence.  

Data Removal Experiments 

 
 For the data removal experiment, we ran the hindcast without any larval data 

included, but predicted larval densities anyway. This means we set the value of all larval 

observations to NA so no information was provided during data assimilation. The other 

two questing states were still present and should help constrain the unknown larvae.  
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Null Model 

 
 Due to the consistent annual questing period of each life stage, we used a 

generalized additive model (GAM) smoothed over day of year for the null forecast. This 

will provide the average tick abundance for any day of year, including days when ticks 

are not sampled.  

 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖 =  𝑔𝑎𝑚(𝑦𝑖 ∼ 𝑠(𝑑𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟), 𝑓𝑎𝑚𝑖𝑙𝑦 =  "𝑝𝑜𝑖𝑠𝑠𝑜𝑛")           [9] 

  

Where the forecast on any given day of year for life stage i is a smoothed function 

over the day of year given the observed counts y for life stage i, using a Poisson 

observation model.  

The null forecast itself was generated iteratively. For every new observation, a 

new null forecast was generated, so the number of observed counts used to smooth over 

increases throughout the hindcasting period.  

 

Results 

 

Removing larval data had little to no effect on forecast skill for nymphs and adults 

(Table 2.1). For larvae, models that assimilated weather from the Cary meteorological 

station had a better CRPS of four points when larval data was included for short term 

forecasts. For the NMME models, including larval data made the forecasts worse by a 

score of 10 when mice where included. For intermediate forecasts, average scores were 
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nearly identical when comparing across the larvae/no-larvae experiments for all life 

stages (Table 2.1).  

 

Table 2.1 Average CRPS for each modeling scenario 

 

Table 2.1 The average CRPS for every modeling scenario, split between short (less than 

31 days) and intermediate (90+ days) time scales. Larvae removal experiments are under 

the column No Larvae. Models that did not include mice are under the No Mice column. 

  

 

The forecasts with NMME, on average, had less forecast variance than models 

that used weather from the Cary meteorological station. This was most apparent for 

nymphs and adults (Figure 2.2). This had interesting outcomes with respect to forecast 

skill.  

For both short and intermediate-term larvae forecasts, the models with NMME 

outperformed the models with Cary data; the long-term forecasts where almost twice as 

skillful using NMME. For nymphs, the NMME models were less skillful for the short-
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term forecasts, but for intermediate forecasts the two models were on parity. Adult 

forecast skill was the same across weather sources and time scale (Table 2.1).  

 

 

Figure 2.2 Forecast variance 

 

Figure 2.2 Forecast variance as it scales with the number of ticks observed on drag 

cloths. Purple lines are the models that used the Cary weather data, red are models that 

used NMME. Dashed lines were the larval removal experiments.  

 

 

 Larvae and nymph forecasts outperformed the null model during active periods of 

the year in all modeling scenarios (Figure 2.3). During the dormant periods of the year, 
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the null model tended outperform the process-based forecasts. Adult process-based 

forecasts were always worse than the null forecast (Figure 2.4, S2.3). 

Larval (Figure S2.2) and nymphal (Figure 2.3) predictions from models that used 

mice and NMME were on average better than models without mice when forecasting 

peak values during the questing period. For intermediate length forecasts, larval and 

nymphal prediction skill benefited from having mice in the model. For example, during 

the nymph questing period and when using NMME, the models that used mouse data had 

a better RMSE compared to models without mice of eight ticks/450m2 (Figure 2.3). Note 

that during the questing period larvae and nymph process-based forecasts were more 

skillful than the null during the questing period, regardless of weather data source, or if 

larval and/or mouse data was included. 

In general, forecast skill increased with time (Figure 2.4). For larvae, average 

forecast skill for the processed-based models was high, about 800 larvae/450m^2. This 

contrasts with the null model error of 550 larvae/450m^2. However, as time progressed, 

larval forecast error was equal the null model in 2014, and by 2020 the process-based 

error had a better prediction error than the null by 250/450m^2; i.e., the rate of model 

performance increase was faster for the process-based models than the null model for 

larvae. Nymphal and adult prediction error also decreased, dropping from 25 

nymphs/450m^2 to 10 nymphs/450m^2 for the process models and from 12 

adults/450m^2 to 5 adults/450m^2 (Figure 2.4). Nymphs were an average always better 

than the null model, while adults were not.  
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Figure 2.3 How does the process model compare to the null model? 

 

 

Figure 2.3 - Loess curves over the root mean square error (RMSE) for nymph forecasts. 

The left panel shows the models that used the Cary meteorological data as weather 

covariates, the right showing the models that used NMME. The black dot-dash line is the 

RMSE from the null model. Red shows RMSE for models that used mice to constrain 

transition rates, blue is those without mice. Solid lines show the RMSE of models that 

assimilates the larvae data, dashed lines those that did not assimilated larval data. The 

shaded region is the expected questing period for nymphs, and when peak counts are 

observed.   
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Figure 2.4 Process model vs Null - predicting peaks 

 

Figure 2.4 - The linear trend RMSE by forecast issue date for the peak observation each 

year for each life stage. The model RMSEs presented are from the models that use the 

Cary meteorological station as weather inputs. The green dashed line is the RMSE from 

the null model. Red shows RMSE for models that used mice to constrain transition rates, 

blue are those without mice. Solid lines show the RMSE of models that assimilated the 

larvae data, dashed lines those that did not assimilate larval data. Panels represent life 

stages, note the different y-axis for each panel.  

 

 

The data assimilation scheme updated states and parameters as expected. When a 

good forecast was made it placed equal weight on forecast and data, and when bad 

forecast was made more weight was placed on the data (Figure 2.5).  
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Figure 2.5 Data assimilation 

 

 

Figure 2.5 - State data assimilation. How the data assimilation works for two nymph 

forecasts. On the left, a good forecast on the left and a bad forecast on the right. The 

forecast distribution (green) is the distribution is what is given as the initial condition for 

the new forecast. The data distribution (blue) is a Poisson distribution with a mean equal 

to the observed number of nymphs. The analysis distribution (orange) is the estimate of 

the latent state on the observation day given both the forecast and data.  
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Figure 2.6 Parameter updates over time 

 

 

 

Figure 2.6 – Parameter distribution updates over time. Width of the 95% CI for weather 

effect parameters after data assimilation. Parameters came from three sites Green, Henry, 

and Tea, which are green, orange, and purple, respectively. Each life stage is a column, 

and each weather variable is a row. 

 
 
 
 

Parameters also updated, becoming more precise over time. The largest change in 

parameter distributions was the effect of precipitation on larval survival, where posteriors 

moved towards a null effect (Figure 2.6). Another large shift was the effect of 
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temperature on adults, which started as a null effect but became more precise and 

negative with a mean effect of -2.2 (-2.02 – -2.4 95% CI) by the end of the forecast 

period. 

 

Discussion  

 

 Our study was essentially a transferability-in-time experiment; we calibrated a 

model and tested it to data outside of the calibration period, and we were able to recover 

season dynamics for two of three life stages. We have shown the effectiveness of a proof 

of concept for iteratively forecasting the I. scapularis population at the Cary Institute of 

Ecosystem Studies and can predict peak nymph abundance once year in advance (Figure 

2.8). 

Larvae and nymph forecasts outperformed the null forecast, while adult forecasts 

did not. Our framework was not only able to recover observed weather dynamics (Figure 

2.7), but also produced forecasts that had less variance on average than forecasts that 

used observed weather data (Figure 2.2). We therefore conclude that this stage-structured 

population model, given the current sampling strategy at Cary, is acceptable for short and 

intermediate forecasts for larval and nymphal ticks.  

We tested two models in the overall framework, one that includes weather as 

covariates, and a more complex model that also includes mouse populations. On average, 

the more complex model with mice was more skillful for nymphs. This result is in 

contrast to (Johnson‐Bice et al., 2021) which showed that more complex models 
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Figure 2.7 estimated latent weather  

 

Figure 2.7 - The estimated values for the NMME variables under our errors in variables 

framework for a forecast issued on May 5, 2019. The orange envelope is what the model 

estimated, and therefore used as covariates in the forecast. The observed values from the 

Cary meteorological station are in black. Top left is daily maximum temperature (°C), top 

right is daily maximum relative humidity (percent), bottom left is daily minimum relative 

humidity (percent), and bottom right is total daily precipitation (mm).  

 

 

performed worse out-of-sample. While we didn’t explicitly test a static version of the 

stage-structure model (no covariates) we did test a complex model with biotic and abiotic 

drivers against the null GAM. As we were able to recover short and intermediate 

population dynamics for two of three life stages, we conclude that this model did not 
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Figure 2.8 Nymph forecast 

 

 

Figure 2.8 - Nymph forecast issued on July 2, 2018 from the model that used mice to 

constrain transition, NMME to constrain survival, and does not assimilate larval data. 

This forecast used parameters originally calibrated at the Henry site, while the forecast is 

at the Tea site. The forecast predictions are in blue (95% PI light, 75% PI dark), with the 

median forecast as the solid line. Orange points are observations with standard error. The 

phenology of nymphs is present in the forecast distribution, peaking in July/August 2018 

and again in May 2019.  

 

 

over-fit the training data. However, this is only true for the transfer-in-time at Cary. How 

this model may perform at other sites, or for other tick species, remains to be seen and 

should be considered for future research. 
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The partial recovery of seasonal dynamics is similar to that of (Kleiven et al., 

2018) who performed a hindcast of their population model of Norwegian lemmings. 

While their issue was the difference between spring and autumn, we had issues between 

life stages. Our inability to predict adults may be do the low densities observed, which 

adds stochasticity to the data itself via sampling error.  

For the larval data removal experiments, we removed larval data to test how this 

would affect forecast skill and found that removing them had remarkably no effect. We 

also tested a statistical framework for assimilating a year-long weather forecast, the North 

American Multi-Model Ensemble (NMME). 

Our data assimilation scheme assimilated new tick observations as expected, and 

updated parameter distributions over time. The three parameter sets updated in similar 

ways, showing the same trends of the hindcasting period (Figure 2.6).  

 Weather effects becoming hyper-precise could be due to the estimated precision 

of NMME under our statistical framework. The four variables were able to match 

seasonal trends in observed values, but were much less variable day-to-day than 

observations (Figure 2.7). Also, the censorship of weather variables to their limits 

between zero and one for relative humidity and zero bound for precipitation, worked. 

Seasonal trends were best estimated for daily maximum temperature, and worse for 

precipitation. The error-in-variables model fails to predict large precipitation events and 

was the least variable day-to-day. It is not surprising, then, that the precipitation effect 

fell to zero for nymphs, and close to zero for larvae (figure 2.6). It is not that nymphs and 

larvae are now less sensitive to precipitation, but less sensitive to this particular 
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precipitation information because there is no variation.  

 The ability of the data assimilation to adapt parameters to make better forecasts 

matches expectations (Niu et al., 2014; Dietze et al., 2018). Our results are similar to 

Randon et al. (2022), which used MCMC methods for nowcasts of animal movements 

and found that their behavior persistence parameter adapted. We extend this further to 

show that a foreword only MCMC data assimilation scheme has the ability to update all 

model parameters when necessary. For example, the effect of temperature on nymph 

survival stays constant throughout the forecasting period while the effect of precipitation 

on larval survival updated constantly (Figure 2.6).  

 The biggest limitation to our framework is the inability to predict adult densities 

and our use of mouse data (in the form of minimum number alive) instead of a mouse 

abundance forecast. Our model was constructed with the instantons effect of mice on 

transition parameters. Therefore, in an actual forecasting scenario, mouse densities would 

also need to be forecasted. We currently do not have a forecast for mouse abundance, 

which is why we used the minimum number alive. A GAM smoothed over day of year, 

week, or month (such as the one used for the null model) is not practical as mouse 

abundance through time is highly variable. The Kleiven et al. (2018) study is a prime 

example of rodent seasonal dynamics being difficult to forecast. An immediate future 

need for this system is the ability to make accurate and precise year-long forecasts for 

mouse density.  

 This work as implications for the management of tick-borne disease risk. As we 

have shown that nymphal tick density can be forecasted at short and intermediate scales, 
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land managers could be more targeted in their mitigation efforts. Short-term forests could 

aid prescribed burning efforts as it is an effective tool for tick population management 

and requires little time or cost (Gleim et al., 2014), or invasive species removal (Allan et 

al., 2010). Other tools that could be used with little lead-time are pesticide applications, 

however the effectiveness of this strategy is mixed (Hinckley et al., 2016; Jordan & 

Schulze, 2019; L. Eisen & Stafford, 2020).  

Intermediate forecasts could aid management strategies that take more planning 

and resources to accomplish. One such strategy is targeting host populations, by either 

removing hosts or using hosts to deliver acaracides to ticks (Tsao et al., 2021). However, 

it will be difficult to get management agencies to use products like these because this 

forecast is specific to Cary, and, less than half of vector-borne disease agencies engage in 

active surveillance (Mader et al., 2020). 

The outsized role of initial condition uncertainty for nymphs during their questing 

period (Figure 1.9) and not needing larva here suggest we could sample nymphs more 

thoroughly. The shift in sampling could also be to sampling adults more intensively, as 

the model is currently not very good at forecasting them.  

The next major step forward needs to be figuring out how to disseminate this 

information to land managers, but more importantly the public. People encounter ticks 

not just on public lands, but through activities around the home and neighborhood such as 

gardening or neighborhood parks. As tick control measures are often the responsibility of 

individuals (Piesman & Eisen, 2008) these forecasts need to be made publicly available. 

Not only will this help individuals, but hopefully it will shift responsibility from 
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individuals to tick-management programs. This is desperately needed to mitigate human 

incidence of tick-borne disease, especially given the effectiveness of mosquito-borne 

disease mitigation efforts by state and local agencies (L. Eisen, 2020).  
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CHAPTER THREE 

Spatio-temporal mismatch in sampling design hinders model transferability 

 

Predictive ecological models (and ecological forecasts) are increasingly used to 

inform adaptive management plans (Addison et al., 2013). However, managing 

ecosystems through the understanding of species dynamics and abundance is a challenge, 

and is dependent on several factors such as species diversity, trophic cascades, 

phenotypic variation, and species ecological function (Stuart-Smith et al., 2013; Atwood 

et al., 2015; Sequeira, Mellin, et al., 2018). Given the increasing pace of climate change, 

and the inherent spatio-temporal variability in ecological systems, ecological forecasts 

with the explicit goal of informing management decisions may have to be made at large 

scales. This means there must be a cohesion between local-scale management at the 

population level, with large-scale predictions at the ecosystem level (Atwood et al., 

2015).  

Data is collected at the population level, often by individual research projects or 

management agencies, making data availability at scale, and therefore large-scale 

forecasts difficult (Pennekamp et al., 2019). These data rich environments are where 

predictive models are calibrated and tested, because building models without sufficient 

data is impractical. However, important management decisions are needed for areas that 

don’t have active research or monitoring programs (Yates et al., 2018).  

 This highlights why model transferability is so important; the ability to make 

reasonably accurate predictions in data-poor environments (Yates et al., 2018). This is 
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particularly useful if the goal is to help inform adaptive management policies or to 

prioritize research objectives (Sequeira, Bouchet, et al., 2018). However, before we can 

transfer a model to a data-poor environment we need to assess the model’s transferability 

skill in an otherwise non-data-limited environment. This is particularly important because 

data are a source of uncertainty (Dietze, 2017), and we don’t want to make bad inference 

that leads to bad outcomes (Hernández-Camacho et al., 2015; Boettiger, 2022). 

The goal of this paper is to explore the transferability of a stage-structured 

population model that was calibrated to a long-term data set at the Cary Institute of 

Ecosystem Studies (Cary), located in eastern New York state. The models were 

developed here because these data are the most comprehensive data available for Ixodes 

scapularis, the primary vector of Lyme disease (Ostfeld et al., 2006).  

While Lyme disease is endemic to the northeastern and midwestern U.S., human 

incidence of the disease has been increasing for more than a decade (Diuk-Wasser et al., 

2020), due in part to the geographic expansion of Ixodes scapularis (Sonenshine, 2018). 

The transferability of these models will be a challenge due to this expansion as we are 

dealing with new tick habitat. 

To assess transferability, we use data from the National Ecological Observatory 

Network (NEON), which samples ticks in the same manner as the long-term study at 

Cary. Therefore, we quantify how well a stage-structured model calibrated to I. 

scapularis transfers to other I. scapularis populations. 

Using NEON also provides an opportunity to transfer the model across species. 

Amblyomma americanum is another Ixodid tick and is the tick species that is most 
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abundant at NEON. Furthermore, it’s of medical importance as it vectors Ehrlichiosis to 

humans. The secondary objective of this manuscript is then to quantify how well a stage-

structured model calibrated to I. scapularis transfers to A. americanum populations. The 

transferability is spatio-temporal; the models were calibrated from 1995-2005 in NY and 

run at several sites across the US in 2018. 

A proiri, the outlook on being able to transfer these models is mixed at best. In 

addition to the potentially suitable tick habitat from expanding populations, we have 

variable habitat within each NEON site.  

Other attempts to transfer abundance models have also been made. A population 

model for the Norwegian lemming (Lemmus lemmus) was transferred in time and able to 

recover summer dynamics (Kleiven et al., 2018) but had trouble predicting winter 

populations. Furthermore, when surrogate data is used in the place of demographic data 

for sea lions, only one of two sites was able to be predicted (Hernández-Camacho et al., 

2015).  

Transferability of fish species abundance by taxonomic family from the Great 

Barrier Reef to Ningaloo Reef was poor (Sequeira, Mellin, et al., 2018) due to high 

variability in population levels across systems. Community models, which incorporate 

environmental variables and co-occurrence to predict community structure transferred 

better than species distribution models (Maguire et al., 2016). In general, mechanistic 

population models tend to overfit training data and therefore do not recover new 

observations, especially in a forecasting and transferability context (Johnson‐Bice et al., 

2021), even when biotic interactions are included (Soininen et al., 2018). 
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 We include biotic interactions in our model through host abundance, as we know 

hosts increase the predictive capacity of I. scapularis nymphs in NY. We don’t know 

how different I. scapularis populations are to each other, or how different I. scapularis 

might be to A. americanum when using the same statistical framework. We can, however, 

quantify the response to different biotic and abiotic interactions, which can further our 

understanding of how climate change may affect these two medically important tick 

species (Van der Putten et al., 2010). 

For abiotic interactions, we use weather to constrain survival and cumulative 

growing degree days (CGDD) to drive phenology, and we can test the extent to which the 

same CGDD thresholds can be used to estimate questing behavior. It is true that multiple 

studies have shown, including ours, that CGDD is a useful estimator of questing 

phenology. For example, at Cary, we have shown that we can predict the phenology of 

questing nymphs up to a year in advance using 400 cumulative degree days with a base of 

0°C starting January 1st each year (Figure 2.8).We can therefore surmise that this 

aggregation correlates to nymphal development and/or diapause because once 

development is over the nymphs emerge and begin questing (Ogden et al., 2018). The 

question, then, is does this aggregation account for the development of all I. scapularis 

populations?  

There is reason to think it could, as there is a latitudinal gradient in questing 

behavior of I. scapularis where they quest earlier in the south (I. M. Arsnoe et al., 2015; 

I. Arsnoe et al., 2019; Ginsberg et al., 2021). As the south gets warmer earlier in the year, 

southern tick populations will experience a quicker aggregation of degree days, reaching 
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the questing threshold of 400 earlier than northern populations.  

As prediction error is expected to decrease as environmental novelty increases 

(Yates et al., 2018), and as abundance data often reflect site suitability, (Matthiopoulos et 

al., 2015; Paton & Matthiopoulos, 2016), we hypothesize that the NEON sites most 

similar to Cary (HARV, TREE, i.e. the northernmost sites) will have better-performing 

forecasts. 

Abundance data has more information about a particular species’ dynamics than 

occupancy data, so in theory, models calibrated with abundance data should transfer 

better than those built on presence/absence data (Howard et al., 2014). Indeed, (Estrada & 

Arroyo, 2012) found that models on abundance data were more favorable for species that 

are heterogenous on the landscape. As I. scapularis are heterogeneous in space, both 

across and within populations (Ripoche et al., 2018), we can expect a degree of 

transferability. Therefore, we also expect forecasts for I. scapularis to be more precise 

and have less error than forecasts for A. americanum because models have greater 

transferability within populations than across populations (Peñalver-Alcázar et al., 2016). 

 Transferring this model using iterative ecological forecasting and uncertainty 

partitioning is an ideal process for this experiment. First, our data assimilation scheme 

can adapt model parameters, including model uncertainty, over time (Figure 2.6), which 

leads to more skillful forecasts (Figure 2.4). If this stage-structured model can predict the 

A. americanum population dynamics, which was parameterized with I. scapularis data, 

then we can infer that these two species are more alike than different.  
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Methods 

  

Tick Data  

 The tick data product used was DP1.10093.001 Ticks sampled using drag cloths 

(National Ecological Observatory Network (NEON), 2022b). Within each NEON site, 

there are six plots where tick sampling occurred. The plots are square at 40 meters to a 

side and spaced at least 500 meters. Tick sampling occurs by dragging a 1m2 cloth along 

the perimeter of the plot for a total of 160m2 of searched area. Tick drags occur during 

the growing season at each site; within two weeks after green-up and two weeks before 

senescence. Frequency of tick collection is either once every three weeks or once every 

six weeks, depending on whether or not more than five ticks are collected at a site within 

a 365 day window (Paull et al., 2022).  

The two most abundant tick species found across NEON sites are Amblyomma 

americanum and Ixodes scapularis, so we filtered the data to include only these species, 

and we used data from the high intensity (sampled every three weeks) plots only.  

From the taxonomic data, we combined the total number of female and adult 

counts from each drag to get the total number of adults collected as adult ticks are the 

only ticks that were identified to sex (Paull et al., 2022). For taxonomic classifications, 

NEON identifies each tick to the lowest taxonomic rank possible for nymphs and adults, 

as such we only used records that were identified to species. The larvae are most often 

identified to either the class or family level, to keep enough larval records in the data we 

filtered out all larvae identifications that were not to the family (Ixodidae) level or below. 
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We next visually inspected time series to identify sites with sufficient ticks of all life 

stages to permit model calibration, which left us with data from 10 NEON sites (Table 

3.1). We removed plots that did not have at least three tick drags each year otherwise 

models did not converge.  

Mice data 

 
The small mammal data product used was DP1.10072.001 Small mammal box 

trapping (National Ecological Observatory Network (NEON), 2022a). Like the ticks, the 

small mammals are identified to taxonomic rank, and we kept all individuals identified to 

the genus Peromyscus, which included P. leucopus and P. maniculatus. We constructed a 

standard capture history matrix at each site where watch individual mouse was a row, and 

trapping day was a column. 

We used the minimum number alive of mice as a covariate for the Weather & 

Mice model. The number of alive is the sum of all alive mice captured on any trapping 

day, and any mice that we can infer are alive an any trapping day. For example, if a 

mouse was captured on trapping occasions one and three, we can infer the mouse was 

alive on trapping occasion two. To keep this data stream relevant to a forecasting context, 

we did not interpolate between trapping occasions. Rather, we kept the minimum number 

alive constant from one occasion to the next to reflect our unknown number of mice alive 

into the “future.” For example, if there are 12 mice alive on day one and 22 mice alive on 

day eight, then days two through seven were assigned a minimum number alive of 12.  
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Daymet 

 
We used the coordinates on table 3.1 to download the gridded product daymet 

(Thornton et al., 2020) for weather meteorology at the site level. We downloaded 

temperature, relative humidity, and precipitation on a daily time step.  

We did not use the weather observed from the NEON metrological towers 

because as of this writing, the NEON product has too many missing values. We did 

however use the NEON data to downscale daymet to match site characteristics.  For 

relative humidity and temperature, we calculated the average value for each day of year 

from both the NEON and daymet data, then calculated the difference (bias) between the 

NEON average and daymet average for every day of year. We then added in the bias 

back to each date in the daymet data with respect to the day of year. Cumulative growing 

degree days were calculated from the downscaled daily maximum temperature with a 

threshold value of zero degrees Celsius.   

The null model was designed much like that of Chapter 2, where we used a 

generalized additive model smoothed over day of year. There was a null model generated 

for each site, and a new null forecast was generated after data assimilation.  

All data intake and cleaning, and statistical and graphical analysis were done in R 

v4.0.2 (R Core Team, 2020). NEON data was downloaded from NEON’s API using the 

neonstore package (Boettiger et al., 2021), Daymet meteorological data was downloaded 

with the daymetr package (Hufkens et al., 2018), and Bayesian modeling was 

implemented in NIMBLE (de Valpine et al., 2017, 2022). 
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Table 3.1 NEON site descriptions 

 

 

Table 3.1: Overview of the NEON sites included in the analysis. Tick species shows 

which tick species are modelled at each site (AA: Amblyomma americanum; IX: Ixodes 

scapularis). # plots is the number of plots at each site for each organism. 

 

 

Forecast workflow  

 

For the first forecast, we used the calibrated posterior of the model validated at 

the Cary Institute of Ecosystem Studies. We had three parameter sets from the calibration 

period, one for each of the three field sites. Here, we used the average parameter values 

across the three sites for initial parameter distributions. We ran the forecast from the first 

observation in 2018 through the last observation in 2019 at the site level. At each site, we 

ran four models; static (no covariates), Weather (daily weather drive survival of each life 
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stage), Mice (mouse abundance driver transition parameters), and Weather and Mice 

(includes weather driving survival and mouse abundance on transition). At each time 

step, each model was run four times to add uncertainty components. 

 We performed the uncertainty partitioning as one-at-a-time, meaning the first 

simulation only included initial condition uncertainty, then we added parameter 

uncertainty, then driver uncertainty, and then finally process uncertainty. For example, if 

parameter (i.e., node 𝛽) uncertainty was included it was given a prior equal to that of the 

last forecast 𝛽 ∼ 𝑁(𝜇, 𝜏), where 𝜇 was the mean and 𝜏 the precision of 𝛽 from the 

previous forecast. If parmeter uncertainty was not included, 𝛽 was treated as 

deterministic, 𝛽 = 𝜇, and therefore no uncertianty was propagated. 

When driver error was included in the simulation, we used a simple error-in-

variables framework to account for the uncertainty in daymet.  

 

𝑡𝑒𝑚𝑝𝑑𝑎𝑦𝑚𝑒𝑡,𝑡 ∼ 𝑁(𝑡𝑒𝑚𝑝̂𝑡 , 𝜏𝑡𝑒𝑚𝑝)                                      [1] 

 

𝑡𝑒𝑚𝑝𝑡̂ ~ 𝑁(0, 1)                                                     [2] 

 

𝜏𝑡𝑒𝑚𝑝 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)                                               [3] 

 

Using temperature as an example, the latent temperature 𝑡𝑒𝑚𝑝̂ at time t was given 

a standard normal prior (inputs were standardized), and then constrained using the 

observed temperature from daymet 𝑡𝑒𝑚𝑝𝑑𝑎𝑦𝑚𝑒𝑡 and an estiamted precison 𝜏𝑡𝑒𝑚𝑝, which 
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represents the error in temperature. 𝜏𝑡𝑒𝑚𝑝 was given an unformative zero-bound prior. 

When driver uncertainty was not included in the simulation the observed temperature 

from daymet was used without error; 𝑡𝑒𝑚𝑝𝑡̂ = 𝑡𝑒𝑚𝑝𝑑𝑎𝑦𝑚𝑒𝑡,𝑡.  

Process error was simulated using the multivariate normal distribution. 

 

𝑥𝒊,𝒕+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∼ 𝑀𝑉𝑁( 𝑥𝒊,𝒕 ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝛴)                                            [4] 

 

Where 𝛴 is a diagonal matrix of variances. When process error was included the 

diagonal terms were estimated by giving them informative inverse gamma priors built by 

moment matching (Llera & Beckmann, 2016) from the last forecast. We set these 

process variance terms to 1e-10 when process uncertainty was not included in the 

simulation. This added a negligible amount of uncertainty, as evidenced by the amount of 

total variance added when simulations included process uncertainty (Figure 3.1).  

The NEON domain is hierarchical, meaning several plots are within a site. To 

take advantage of this, we made forecasts at the site level, and used plots as replicates. 

 

𝑦𝑖,𝑡,𝑝 ~ 𝑃𝑜𝑖𝑠𝑠𝑠𝑜𝑛(
𝑥𝑖,𝑡∗𝑎𝑟𝑒𝑎𝑡,𝑝

450
 )                                           [5] 

 

 𝑥 𝑡 = 𝑨𝑡−1𝑥𝑡−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                          [6] 

 

Where, within a site, the observed number of ticks y for life stage i at time t for 

plot p is Poisson distributed with a mean equal to that of the latent state x of life stage i at 
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time t multiplied by the sampled area (m2) at time t in plot p, scaled by a factor of 450. 

Here, the numerator represents the number of ticks per square meter, but the spatial scale 

of sampling at the Cary Institute is at 450m2. The parameters in the model were thus 

calibrated at this sampling design, so we had to scale the latent states here to match the 

scale of the latent states from model calibration at Cary. 

The actual forecast was made where on day t-1, A is the daily transition matrix, 

and x is the estimated latent state vector, which are used to predict the next days (t) 

expected tick population. 

Results 

 
 To determine the relative skill for each model at a NEON site, we subtracted the 

null model CRPS from the process model CRPS for each forecast at each site (thus a 

positive difference indicated the process model was more skillful), then calculated 

summary statistics from these distributions.  

For the larval Ixodes forecasts with all uncertainty included, the median 

difference between the process models and the null model over the forecasting period 

was negative (worse than the null model) for most models and sites, except at LENO for 

the Weather model (median 7.25, 95% CI -136.37 – 37.45), and the Weather and Mice 

model (5.52, -150.76 – 36.58), both under the constant parameter scenario (Figure S2.1). 

Ixodes larval forecasts that included weather variables performed better at HARV 

than TREE (Figure S2.1). The Weather model’s median difference in CRPS to the null 

model’s CRPS was -5.66 (95% CI -97.03 – 50.56) at HARV and -14.05 (95% CI -202.2 – 
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122.73) at TREE. Similar differences were evident in the Weather and Mice model for 

larval Ixodes forecasts. 

The same was true for the larvae Amblyomma forecasts, were LENO had the best 

relative scores to the null model with the Weather model (6.64, -146.57 – 37.6), and the 

Weather and Mice model (5.98, -174.16 – 36.41), again both under the constant 

parameter scenario (Figure S3.2).  

The nymphal Ixodes forecasts with all uncertainty were, at the median, always 

worse than the null model (Figure 3.1). In contrast, the Amblyomma nymph forecasts on 

average outperformed the null model with updated parameters at SERC, TALL, and 

UKFS, and with constant parameters at UKFS (Figure S3.3).  

The adult forecasts for both Ixodes scapularis (Figure S3.4) and Amblyomma 

americanum (Figure S3.5) were on average worse than the null forecasts at all sites.  

For the two NEON sites that closely match the environment and tick species 

composition of Cary (HARV and TREE), nymph process model forecasts were more 

skillful at TREE than HARV. For example, the Weather and Mice model forecasts that 

updated parameters, the CRPS difference to the null at TREE was -0.8 (95% CI -43.76 – 

33.86), while the difference at HARV was -1.49 (95% CI -12.54 – 10.77). The higher 

median difference (and higher 95% CI) at TREE compared to HARV for nymphs was 

evident across forecast scenarios (Figure 3.1).  
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Figure 3.1 Average difference in CRPS for Ixodes scapularis forecasts relative to the null 

model  

 

 

 

Figure 3.1 - The distribution of the difference in CRPS over the entire forecasting period 

for I. scapularis nymphs. For each forecast, the difference between the null model score 

and the process model score was calculated, values are the average of these differences 

with 95% CI. Colors represent forecasts as uncertainty is added, starting with initial 

condition uncertainty (IC, red), then parameter uncertainty was added (blue), followed by 

adding driver uncertainty (green), and the forecast with all uncertainty included (Process, 

yellow). Models are shown on the x-axis as the Static model (S), Mouse model (M), 

Weather model (W), and the model with both weather and mice (WM). Negative values 

indicate the process model was worse than the null, positive values when the process 

model was better. The null model is a GAM smoothed over day of year for each life stage 

at each site.  
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Figure 3.2 Median prediction vs. observed for nymph forecasts 

 

 

Figure 3.2 - The median forecast (ticks on drag cloths) from the simulations that include 

all uncertainty at the four sites (columns) where both species (rows) were modeled. Color 

represents the line of best fit for each model, individual forecasts are not plotted to reduce 

noise. The black line is the 1:1 line.  

 

 

At the NEON sites where both I. scapularis and A. americanum are present, 

relative model performance was mixed (Figure 3.2). In general, I. scapularis forecasts 

were more skillful or on parity with A. americanum, especially for larvae. For nymphs, 

the model that included weather but not mice were more skillful at forecasting A. 
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americanum than I. scapularis at three of the four sites where these two species overlap. 

All models and life stages were dominated by process error, even during the questing 

period (Figure S3.1). 

In general, forecasts for nymphs improved over time, except for the parameter and 

driver uncertainty forecast scenarios at BLAN (Figure 3.3). Furthermore, the data 

assimilation updated model parameters throughout the forecasting period. The most 

dramatic of these changes was to the process variance terms (Figure 3.4), which in some 

cases dropped by an order of magnitude from their initial distribution. For example, the 

starting distribution for process variance (units are (ticks/450m2)2) for Ixodes adults at the 

Henry Cary site had a 95% CI range of 2.05 – 3.56. This dropped to 0.127 – 0.155 at the 

end of the transferability experiment (Figure 3.4). However, larval process variance 

increased from a starting 95% CI range of 30.8 – 55.7 (at Cary) and ending with a 95% 

CI range of 161.63 – 355.79 (at HARV). 

The other change in parameters worth noting is the effect of mice on state 

transitions (Figure 3.5). Compared to the starting parameter distributions, the effect of the 

mouse population on the larvae-to-nymph transition increased for both species. For 

example, the 95% credible intervals of the posterior distribution from model calibration 

overlapped zero at all three Cary sites for the larvae-to-nymph transition, while this effect 

was positive at five sites and negative at one site for Ixodes scapularis (intervals are 95% 

CI range): 0.624 – 0.922 at BLAN, 0.953 – 1.13 at HARV, 1.79 – 2.12 at SCBI, 0.817 – 

1.07 at SERC, and 0.378 – 0.583 at TREE, -0.258 – -0.067 at LENO.  
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Figure 3.3 Change in nymphal CRPS over time 

 
 
 
Figure 3.3 - Linear trend in CRPS with respect to forecast start date for nymphs at the 

four sites where both species were modeled. Color represents one-at-a-time uncertainty 

scenarios where the first forecast only included initial condition (IC, red) uncertainty, 

then parameter (+ Parameter, blue) uncertainty was added, followed by driver (+ Driver, 

green) uncertainty, and the forecast with all uncertainty (+ Process, yellow).  
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Figure 3.4 Change in process variance terms 

 

Figure 3.4 - The change in process variance terms for I. scapularis. X-axis units are 

(ticks/m2)2. The forecasts started with informative priors on process variance for each 

state, represented by the blue dashed 95% interval. The red intervals are posterior widths 

for each state after the last forecast of 2019 at NEON sites (transfer-in-space). For 

comparison, the solid blue interval is the posterior after the last forecast from chapter 2 

(transfer-in-time) experiments. The four states are adult (A) , dormant nymphs (D), larvae 

(L), and nymph (N). 
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Discussion 

 Here, we tested the effectiveness of a stage-structured population model by 

transferring the model in space and across species. Model transferability was better than 

expected, especially to the NEON sites that were most like Cary (HARV and TREE) due 

their environmental characteristics such as climate and habitat type (Figure 3.6). 

Furthermore, scaling the latent state to match the spatial effort of the NEON data (m2) to 

the effort used at Cary (450 m2) increased transferability, which was expected (Sequeira 

et al., 2016).  

However, forecasts at NEON were biased, either over- or under-predicting 

depending on the site (Figure 3.2). This suggests the correction we applied to the latent 

state, while helpful, was not enough to account for the difference in magnitude of 

observed abundance between NEON and Cary. This difference has been shown to lead to 

biased estimates (Sequeira, Bouchet, et al., 2018). Forecast bias could also be attributed 

to the difference in habitat structure between Cary and NEON. The Cary sites sit in an 

oak dominated forest, which NEON would classify as deciduous forest. We transferred 

the models into other habitat types such as evergreen forest, pasture, wetlands, crops, and 

grasslands. While forecasts were biased in all land cover types, the deciduous forest 

forecasts had the most even distribution in bias, whereas the other land cover types were 

heavily weighted as consistently under- or over-predicting (Figures S3.7, S3.8, and S3.9 

for larvae, nymphs and adults, respectively). As transferability is expected to be low 

when moving into more novel environments (Yates et al., 2018), it is not surprising that 

our forecasts were more biased in non-deciduous forests.  
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Figure 3.5 Change in Mouse effect 

 

Figure 3.5 - The change in effect of mice on state transitions for A. americanum and I. 

scapularis. The forecasts started with informative priors for each effect, represented by 

the blue dashed 95% interval. The red intervals are posterior widths for each effect after 

the last forecast of 2019 at NEON sites (transfer-in-space). For comparison, the solid blue 

interval is the posterior after the last forecast from chapter 2 (transfer-in-time) 

experiments. The effects are the transition from larvae to nymph (L-N) and nymph to 

adult (N-A). 

 

 

Further evidence that the NEON sites contain more novel environments, we can 

look at the difference between that last parameter distributions from this experiment 

(transferring the models in space) to the last distributions from the hindcast experiments 

(transferring the models in time) from chapter 2. Parameter distributions were allowed to 
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update after each data assimilation step, which means the last posterior from each 

experiment represents the most realistic demographic parameters for each site. We can 

justify this reasoning because in both chapters, forecast skill increased through time with 

parameter updating (Figure 3.3).   

When comparing the forecasts, we see that process variance terms updated 

relative to the chapter 2 parameters. The process variance term represents the 

unexplained demographic stochasticity at each site. For adults and dormant nymphs both 

species, process variance fell substantially at the NEON sites compared to the Cary sites 

(Figure 3.4). This could be explained by one of two reasons. The first is that demographic 

parameters at NEON more accurately describe population trends at NEON compared to 

Cary, and therefore less stochastic error is needed. The second is that the data itself is less 

variable. We argue for the latter, as forecast bias was substantial and adult forecasts were 

almost never better than the null forecast, regardless of uncertainty scenario (Figures S3.4 

and S3.5). 

On average the best performing process model for A. americanum larvae and 

nymphs included weather but not mice. For adult ticks, it was the model that had both 

weather and mice included. This result matches other studies in that mouse abundance 

does not explain  A. americanum populations because they are host generalists (Kollars et 

al., 2000; Hroobi et al., 2021). 
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Figure 3.6 Ixodes scapularis forecast at HARV 

 

 

Figure 3.6 - Forecast issued at HARV for I. scapularis nymphs from the Weather & 

Mice model. The blue ribbon is the 95% predictive interval with the median (black line). 

Orange dots are tick observations at each plot within the HARV site.  

 

 

This reflects the data assimilations' ability to update parameters as needed, which 

is particularly relevant for the process error terms as noted above. Interestingly, other 

demographic parameters did not change with as much magnitude as the process error 

terms. See supplementary Figures S3.10 & S3.11 for survival and S3.12 & S3.13 for 

transition terms.  
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Interestingly, coefficients responsible for the effect of mouse abundance on the 

transition from nymph-to-adult also updated substantially. For the Ixodes, this seems to 

match with other studies showing that nymph abundance can be constrained by mouse 

abundance (Dobson et al., 2011; Ginsberg et al., 2020; Ostfeld, Levi, et al., 2018). The 

same shift for A. americanum is interesting, and is at odds with others that have shown 

that mouse density is not predictive of A. americanum populations (Hertz et al., 2017). 

This could be due the tradeoff between the rise in this effect and the drop in A. 

americanum adult survival (Figure S3.11). However, the model with weather, but did not 

include mice, was on average the best process model for A. americanum, which would 

support the current literature.   

We attempted to transfer in space a stage-structured model that has been proven 

to work in a forecasting context, and failed to do so, confirming that transferring models 

in space is difficult (Yates et al., 2018; Kleiven et al., 2018; Johnson‐Bice et al., 2021) . 

However, we have shown that our data assimilation scheme updates model parameters in 

a way that makes the forecasts more skillful over time.  

The prevalence of process error and overprediction would suggest that the model 

is not structurally sound for these populations. However, this won’t truly be known 

without calibration such a model to these specific data. To that end future research should 

focus on calibrating this type of model, along with others, to the NEON data.  
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CHAPTER FOUR 

A data-fusion framework to describe the change in parasitism status of mice at 

several sites in the National Ecological Observatory Network 

 

Introduction 

 

Tick-borne diseases are complex systems where ticks, hosts, and pathogens 

interact. The prior chapters have focused primarily on the ecology of Ixodes scapularis, 

the vector for Lyme disease (LD) in the northeastern United States. However, the ecology 

of their hosts is equally as important to understanding how tick-borne disease (TBD) risk 

may change in space and time (Goodwin et al., 2001; Ostfeld et al., 2001; Linske et al., 

2018).  

The primary hosts for I. scapularis larvae and nymphs are small vertebrates, such 

as mice, chipmunks, squirrels, birds, and in the southeast lizards and skinks (Ginsberg et 

al., 2021). Hosts are a critical component within the life cycle of ticks, which require a 

blood meal to survive and reproduce, it also where pathogens reside (Gray et al., 2002; 

Stanek et al., 2012). With respect to TBDs, some hosts are more important than others 

(Barbour et al., 2015; Levi et al., 2016). Mice (Peromyscus leucopus) are an important 

blood-meal host for early life stage ticks (Ostfeld et al., 2018), and are unaffected by tick 

burden by tick burden (Brunner & Ostfeld, 2008; Hersh et al., 2014; Dhawan et al., 

2018), and they are competent reservoirs for the etiological agent of Lyme disease, 

Borrelia burgdorferi (LoGiudice et al., 2003).  
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I have shown that mouse abundance is useful to predict the density of questing I. 

scapularis ticks, especially nymphs, which has been demonstrated via model selection in 

Chapter 1and for short and intermediate forecasts in Chapter 2. The models developed in 

prior chapters included information flow from mice as a driver to tick juvenile transition. 

The mechanism underlying this impact on transition rate is that mice remove individuals 

from the questing nymph pool, thereby constraining nymph forecasts. In the current 

model we leverage paired sampling of off- and on-host ticks at NEON sites to estimate 

both tick demographic rates and presence on mouse hosts. Further, we specifically 

examine frequency of state changes in mouse hosts, which itself has important 

implications for tick-borne diseases. 

The current model estimates parasitism state as the presence/absence of ticks on 

mice. Quantifying how this state changes intra- and inter-seasonally has important 

implications for TBDs (Brunner & Ostfeld, 2008). It is a measure of successful tick 

questing, which will further our understanding of tick phenology and the risk of humans 

encountering ticks (and potentially contracting a TBD).  

To describe the parasitism states of mice, we employ the use of multi-event 

models (MEM) (Pradel, 2005), which are an extension of multistate models. A multistate 

model keeps track of the state of an individual (disease status, site found). The multi-

event approach adds the step (event) of parametrizing the identification the individual to 

a certain state. This approach allows us to use censored, or “unknown” state observations, 

rather than discarding them, which leads to less biased and more precise parameter 

estimates (Conn & Cooch, 2009; Desprez et al., 2013). Additionally, MEM allows for the 
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ability to distinguish detection probabilities by ecological state (i.e., presence/absence); 

i.e. partitioning observation probability from state assignment probability. This has 

shown to an important modeling technique to identify and constrain breeding status 

(Couet et al., 2019) and disease prevalence (Jennelle et al., 2007). For example, using this 

approach (Murray et al., 2009) found that chytrid fungus (Batrachochytrium 

dendrobatidis) infection did not affect detection rates of the rainforest treefrog (Litoria 

pearsoniana).  

MEMs have been used in ecology for over a decade to estimate demographic 

parameters such as survival and reproduction (Couet et al., 2019; Lebreton et al., 2009). 

These models have also been used in disease ecology to estimate disease status 

(Buzdugan et al., 2017), cause-specific mortality (Ruette et al., 2015), and sex uncertainty 

(Genovart et al., 2012). And while these models are useful for classifying individuals to a 

certain state, a key feature is their ability to estimate the rate of transition between states. 

For example, the transition to a disease-positive state (seronegative to seropositive) was 

more likely than the reverse in rabbits with respect to myxoma virus and Rabbit 

Hemorrhagic Disease Virus (Santoro et al., 2014). Likewise, (Choquet et al., 2013) 

showed found the same likelihood in a seabird (Black-legged Kittiwake, Rissa tridactyla) 

with respect to Borrelia burgdorferi/. (Conn & Cooch, 2009) used MEM approach   show 

that being able to include individuals marked as unknown reduced parameter error in a 

MEM of conjunctivitis in house finches (Carpodacus mexicanus Müller).  

MEM models can also be used in a data-fusion framework, combining multiple 

sources of information to estimate the state of interest. For example, (Ruette et al., 2015) 
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used radio-tracking and recoveries of dead martens (Martes foina) to estimate sex- and 

age-specific survival rates. Furthermore, (Buzdugan et al., 2017) were able to identify a 

temporal trend in infection status for wild badger (Meles meles) populations by blending 

ecological and epidemiological data.  

The objective of this chapter is to quantify temporal trends in host use by ticks 

using the MEM approach. Specifically, we make use of data from the National 

Ecological Observatory Network (NEON). NEON data should be representative of data 

quality and types more generally available, include missing data, capture & detection 

challenges, and also represent more unique pairing of drags with tick on mice 

observations.  

We use a data fusion approach, that begins by estimating tick density through 

time, and then uses this to constrain the presence/absence of ticks on mice. Ticks 

collected by NEON include multiple species which are recovered in multiple land cover 

types. Here, we focus on the two most abundant tick species collected by NEON; Ixodes 

scapularis (Ixodidae) and Amblyomma americanum (Ixodidae). I. scapularis has a broad 

geographic range in the eastern and midwestern United States (Sonenshine, 2018), which 

overlaps with the geographic extent of A. americanum and is also found throughout the 

eastern U.S. (Monzón et al., 2016; Springer et al., 2015). This means there is a substantial 

overlap in geographic extent between these two medically important tick species. Both 

species have three post-egg life stages (larvae, nymph, and adult), and they are both 

generalist host feeders. 

In both species, the ability to find a suitable host affects molting success and 
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fecundity (Brunner et al., 2011; Labruna et al., 2000; Wilson et al., 1990).Where they 

differ is in their host-seeking behavior and phenology (Kollars et al., 1999, 2000; Schulze 

et al., 2005; Hroobi et al., 2021). In general, I. scapularis has a “wait-and-see” questing 

strategy, where they quest vertically along the vegetation column, but in general do not 

actively seek hosts (Mathisson et al., 2021). Meanwhile, A. americanum has a more 

aggressive host-finding strategy, actively searching for hosts and moving more 

horizontally through the vegetation (Mays et al., 2016; Schulze et al., 2005).This 

behavioral difference has implications for off-host survival, and potentially reproduction. 

For example, I. scapularis seems to be more susceptible to desiccation than A. 

americanum, presumably because they spend less time exposed, and/or quest at different 

times of day (Bacon et al., 2021; Schulze et al., 2001, 2002). This may be because, in 

terms of habitat, both species can be found in a variety of vegetation types but A. 

americanum tends to be more habitat generalists, and I. scapularis tend to be found in 

more covered (i.e. forested) landscapes (Mathisson et al., 2021).  

To explain tick population dynamics across NEON sites for two species of ticks, 

we use the same four-stage matrix modeling approach described in Chapter 1, which 

employs a generalized mixed-effects model framework to parameterize demographic 

rates for each species. Specifically, we use fixed effects of species (A. americanum and I. 

scapularis) and forest type (forest and non-forest) to describe demographic parameters 

and ultimately estimate tick density. We also hypothesize that A. americanum will have 

higher survival rates in non-forested plots compared to I. scapularis because of the 

habitat preferences of I. scapularis. 
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We hypothesize that estimated tick density will have a positive effect on mice 

acquiring ticks; the more ticks are on the landscape, the chances of a mouse having just a 

single tick on it will go up, as tick burden is positively associated with tick density 

(Brunner et al., 2011). We hypothesis, then, that as tick density increases the probability 

of a mouse switching from ticks present to ticks absent will go down. 

Furthermore, due to differences in questing strategy we expect this relationship to 

be stronger at NEON sites that are predominantly I. scapularis dominated because of the 

stronger predictive relationship they have with their hosts (Brunner & Ostfeld, 2008).  

 

Methods 

 All data intake and cleaning, and statistical and graphical analysis were done in R 

v4.0.2 (R Core Team, 2020). NEON data was downloaded from NEON’s API using the 

neonstore package (Boettiger et al., 2021), Daymet meteorological data was downloaded 

with the daymetr package (Hufkens et al., 2018), and Bayesian modeling was 

implemented in NIMBLE (de Valpine et al., 2017, 2022). 

Tick Data 

 The tick data used here is the same for Chapter 3, which has a complete 

explanation of the data, data cleaning, and NEON sampling design. Briefly, we used data 

from the product DP1.10093.001 Ticks sampled using drag cloths (National Ecological 

Observatory Network (NEON), 2022b; Paull et al., 2022). We used Amblyomma 

americanum and Ixodes scapularis identified to species, and larvae records identified to 

family (Ixodidae).  
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Table 4.1 NEON site descriptions 

 

Table 4.1: Overview of the NEON sites included in the analysis. Tick species shows 

which tick species are modelled at each site (AA: Amblyomma americanum; IX: Ixodes 

scapularis). # plots is the number of plots at each site for each organism. 

 

 

 

One characteristic recorded for each NEON plot is land cover classification, 

which includes cultivated crops, deciduous forest, emergent herbaceous wetlands, 

evergreen forest, grassland herbaceous, mixed forest, and pasture-hay, and woody 

wetlands. Ticks collected by drag cloths are not equally distributed among the land cover 

classifications and most ticks are found in the forested (deciduous, evergreen, mixed 

forest) plots. To increase the number of non-forest plots to use, we grouped plots into 

forest and non-forest groups.  
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Small Mammal Data 

 
 The small mammal data product used was DP1.10072.001 Small mammal box 

trapping (National Ecological Observatory Network (NEON), 2022a). Like the ticks, the 

small mammals are identified to taxonomic rank, and we kept all individuals identified to 

the genus Peromyscus, which included P. leucopus and P. maniculatus. A trapping bout 

could include anywhere from one to three nights of trapping, however as our model 

works daily, we created the capture history matrix so that every capture day is 

represented as a column, and individuals as rows.  

 The small mammal data keeps track of the status of each mouse (captured alive or 

found dead), and whether or not the individual mouse has ticks attached, does not have 

ticks attached, or the presence/absence of ticks is unknown. Therefore, our capture 

history matrix includes the following four observed states: mouse alive with ticks 

attached, mouse alive without ticks attached, mouse alive with unknown tick status, and 

recovered dead.  

 The mouse analysis was conducted at the same 10 NEON sites as the ticks. 

Furthermore, trapping grids, and therefore individual trap nights, were observed at the 

same NEON plot level. However, because some animals were caught across plots capture 

matrices were constructed at the site level.  

Cumulative growing degree days 

 
 Daily weather variables were extracted from the Daymet data product (Thornton 

et al., 2020) using the latitude and longitude for each site Table 4.1. Specifically, we used 
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daily maximum temperature at each NEON site to calculate daily cumulative growing 

degree days (CGDD) within each year with a threshold temperature of 0°C. We then used 

the CGDD to determine the phenological periods that each life stage of each species 

should be questing at each site. The determination of start and end of the questing period 

was determined by sorting the counts (of each species-life stage-site group) by CGDD 

and removing observations that were less than one percent of the maximum observed 

count. This not only removes zeros but also removes small counts before the onset and 

behind the tail of the questing period. This done at the site level because some plots’ time 

series were not variable enough to calculate thresholds. We confirmed these thresholds 

by graphical analysis and adjusted as necessary. Thresholds were adjusted for adults at 

LENO and TREE because the start and end of the questing period were calculated to be 

the same because the adult data was not variable enough at these sites.  

Statistical frameworks 

 
 Species were kept separate but were in the same model, which was a stage-

structure matrix model with four stages: questing larvae, dormant nymphs, questing 

nymphs, and questing adults. This is a similar structure to the “static” models used in 

previous chapters (no time-varying covariates on survival or transition), except now we 

extend across species and forest and non-forest groups. 

 Daily demographic parameters were modeled as 

 

𝑙𝑜𝑔𝑖𝑡(𝜃𝑗,𝑘)  =  𝛽0  +  𝛽1𝑆𝑗 + 𝛽2𝐹𝑘              [1] 
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𝑙𝑜𝑔(𝜆𝑗,𝑘)  =  𝛽0  +  𝛽1𝑆𝑗 + 𝛽2𝐹𝑘          [2] 

 

 where Θ is our daily (non-reproductive) demographic parameter of interest (larvae 

survival, nymph survival, adult survival, larvae-to-nymph transition, nymph-to-adult 

transition), and λ is fecundity, for species j in land cover type k, β0 is the mean 

demographic rate for I. scapularis at forested sites, S as the indicator variable for A. 

americanum, and F as the indicator variable for non-forest. 

 To aggregate across observation days, we permuted the matrices as follows: 

 

𝑷𝒊,𝒋,𝒕 = 𝐴𝒊,𝒋,𝒕𝑨𝒊,𝒋,𝒕−𝟏𝑨𝒊,𝒋,𝒕−𝟐. . . 𝑨𝒊,𝒋,𝟏     [3] 

 

𝑥𝒊,𝒋,𝒕+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∼ 𝑀𝑉𝑁(𝑷𝒊,𝒋,𝒕 𝑥𝒊,𝒋,𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝛴𝑗)      [4] 

 

Where A is the transition matrix (Table S4.1) at plot i for species j, on day t. P is 

the permuted transition matrix that is used to calculate the expected demographic 

transitions between sampling occasions. Then, the predicted latent density of ticks 

(ticks/m^2), x i, j, t+1, was drawn from the multivariate normal distribution based on the 

expected number of ticks, 𝑷𝑖,𝑗,𝑡𝑥𝑖,𝑗,𝑡⃗⃗⃗⃗ ⃗⃗⃗⃗  , and a process error covariance matrix 𝞢j, which was 

parameterized as a diagonal matrix of variances, where there is a different covariance 

matrix for each species j. 𝞢j does not permute.   
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The data model for nymph and adult ticks is: 

 

𝑦𝑙,𝑗,𝑖,𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑥𝑙,𝑗,𝑖,𝑡 ∗ 𝑎𝑖,𝑡)      [5] 

 

 Where x is the estimated latent density of life stage l of species j, at plot i, at time 

t, a is the area sampled (effort), and sampling error is modeled with a Poisson distribution 

using the observed counts y.  

 At sites where only one species is present, larvae were modeled using the same 

data model as nymphs and adult ticks. For sites where we cannot assume what species 

that larvae belong to, we modeled the proportion of the larval pool that belongs to each 

species as follows: 

 

𝜓𝑖,𝑡  = 
𝑑∗𝑎𝑖,𝑡

1 + 𝑑 ∗𝑎𝑖,𝑡+ 𝑥2,𝑖,𝑡∗𝑎𝑖,𝑡
      [6] 

 

𝐿𝑖,𝑡 ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜓𝑖,𝑡 , 𝑦𝑖,𝑡 )        [7] 

 

 Where Ѱk, t is the probability that larvae in plot i at time t are A. americanum, 

which is given by the estimated larval count of A. americanum at plot i, at time t over the 

sum of both species. We add one to the denominator so that we don’t divide by zero 

when the estimated count is zero for both species. The count of A. americanum larvae 

observed in each plot at time t, L is then estimated using Ѱk, t constrained by the total 

number of larvae observed, y in plot i at time t.  
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Mouse parasitism 

 
 We fit the multistate model below using a marginalized distribution implemented 

in NIMBLE, which drastically reduces computation time, especially over a large capture 

history matrix (in this case 4950 mice by 364 trapping occasions). The marginalization 

was conditional on the first capture. 

Mouse status was modeled under a multievent Jolly-Seber framework. In the 

transition matrix (Table xx) rows represent the true state of a mouse at time t, and the 

columns represent the true state of a mouse at time t+1, where t marks capture events, 

and the probability of moving from one state to another from t to t+1 is within the matrix. 

The four latent states are: the mouse is alive with ticks present (AP), mouse alive with 

ticks absent (AA), a mouse recently died (RD), and the absorbing dead state (D).  

 

 Transition matrix of mouse states from t (rows) to t+1 (columns) 

 [8] 

  

 Within the transition matrix ɸp, s is the survival probability of mice with ticks 

present at site s, and ɸa, s the survival of mice without ticks attached. Ѱpa, s is the 
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probability a mouse switches from having ticks attached to not having ticks attached (p-

to-a), and Ѱap, s is the probability a mouse switches from not having ticks attached to 

having ticks attached (a-to-p). r, the probability of recovering a mouse that has recently 

died (does not vary by site), is in the state transition matrix (instead of the observation 

matrix) to allow for better MCMC mixing (Kéry & Schaub, 2011). The parameters inside 

the transition matrix varied by site. 

 Survival was modeled hierarchically by mouse state: 

𝛼𝑝 ~ 𝑁(𝜇, 𝜎)      [9] 

𝑙𝑜𝑔𝑖𝑡(𝜙𝑝,𝑠) ∼ 𝑁(𝛼𝑝, 𝜎𝑝)     [10] 

 Where 𝛼𝑝 is the base daily survival rate of mice with ticks present. This was 

given a semi-informative prior where 𝜇 = 5 and 𝜎 =  1/√0.1. This is semi-informative 

because the mean reflects our prior knowledge from Chapter one that the daily mouse 

survival rate is high, but the prior standard deviation is still relatively wide. The base 

survival rate, 𝛼𝑝, was then used as the mean for site-specific survival rates of mice with 

ticks present. The same formulation was used for estimating the daily survival rate of 

mice with ticks absent, 𝜙𝑎,𝑠. 

 Our data fusion framework uses tick densities from the models above to constrain 

the daily transition parameters Ѱpa, s and Ѱap, s following a simple linear model:  

 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑘,𝑠,𝑡)  =  𝛽1,𝑠  +  𝛽2,𝑠 ∗ 𝑡𝑖𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠,𝑡   [11] 

Where Ѱk, s, t is the transition parameter k at site s at time t, which is a function of 

site-specific slopes and intercepts and estimated site-specific tick density accounting for 
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error following a Gaussian errors-in-variables model. As ticks were estimated at the plot 

level, and mice at the site level, we summed the mean site densities across plots to get the 

total tick density at each site. Site-level variance was estimated as: 

 

𝑉𝑎𝑟(𝑦)  =  ∑ 𝑣𝑎𝑟(𝑥𝑖)
𝑛
𝑖=1  +  2∑ 𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗)𝑖<𝑗       [12] 

  

where y is the total site-level variance across x plots from 1…j. Tick densities were 

centered and scaled by site-specific tick density standard deviations. 

 To estimate survival and transition probabilities across trapping occasions, which 

are heterogeneous in time, we used the following: 

 

𝑙𝑜𝑔 (𝜃𝑡) = ∑ (𝑙𝑜𝑔 (𝜃𝑑))
𝑡
𝑑=𝛥𝑡      [13] 

 

Where Θ is our parameter of interest in the transition matrix (ɸ or Ѱ), d indexes 

the daily estimate of that parameter over the number of days between trapping occasions 

(Δ𝑡). t is then the aggregated rate from trapping occasion t-1 to t. 

 The observation matrix ties the true state of the mouse at trapping occasion t to 

the observed state of the mouse at trapping occasion t. There are five types of 

observations; mouse alive with ticks present (AP), mouse alive with ticks absent (AA), 

mouse alive with unknown tick status (AU), a mouse recovered dead (RD), and a mouse 

not captured, or unobserved (U). Note that the row title RD stands for a mouse that 

recently died (the mouse state), and the column heading RD is for a mouse recovered 



 

 

110 

dead (the observation made).  

 

 Observation matrix: the probability of observing mice (columns) in state t 

(rows) at time t 

    [14] 

  

Within the observation matrix define Θp, s and Θa,s as the probabilities of capturing 

a mouse with ticks present (p) or absent (a), respectively, at site s. 𝜃s represent the 

observation event, and is why the unobserved (column U) probabilities are 1 − 𝜃. The 

identification events are defined as 𝛤p, s and 𝛤a, s. 𝛤p, s is the probability of identifying a 

mouse as having ticks attached given that its latent state is that it is alive with ticks 

present and it was captured. 𝛤a, s is the probability of identifying a mouse as not having 

attached given that its latent state is that it is alive without ticks attached and it was 

captured. 
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Results 

Mouse observation model 

 
 The probability of capturing a mouse was variable across sites and tick status 

(Figure 4.1, Table S4.2). At the southern sites, the probability of capturing a mouse with 

ticks attached was low. For example, at OSBS the median capture rate of mice with ticks 

attached was 0.02 (95% CI 0.0 – 0.06). The site with the highest capture probability for 

mice with ticks attached was SERC, with a median rate of 0.52 (95% CI 0.46 – 0.59). 

The probability of capturing mice without ticks attached was less variable across sites. 

The lowest estimate was at SCBI with a median capture rate of 0.19 (95% CI 0.17 – 

0.23), and the highest capture rate of mice without ticks attached was at BLAN with a 

median capture rate of 0.62 (95% CI 0.57 – 0.68).  

The estimated rate of correctly identifying whether mice had ticks attached (Γ) or 

not was high (Table S4.2). The median rate of correctly identifying that a mouse has ticks 

attached when ticks were truly attached was 0.76 (95% CI 0.74 – 0.78). Correctly 

identifying a mouse without ticks when ticks were truly absent was 0.97 (95% CI 0.96 – 

0.98). The probability of recovering a mouse dead was very low, with a median of 0.005 

(95% CI 0.008 – 0.011).  
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Figure 4.1 - Capture probability by site 

 

Figure 4.1 - Site-specific capture probabilities (𝜽) estimated from models fit to data at 

each of the 10 NEON sites (state), which are ordered on x axis by latitude. The capture 

rates for mice with ticks present are in blue, and mice without ticks in red. Points are the 

median estimate, thin whiskers are the 95% CI, and wide whiskers are the 75% CI. These 

rates are very precise, which is why some whiskers are not shown (covered by the point).  

 

 

Process (state-transition) model 

 Mean mouse survival (𝛼) was higher for mice with ticks absent than for mice with 

ticks present (Figure 4.2). Mice with ticks absent had a mean monthly survival rate of 

0.68 (95% CI 0.57 – 0.77), while mice with ticks present survived at a monthly rate of 

0.61 (95% CI 0.47 – 0.72).  
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Figure 4.2 – Base monthly mouse survival rate 

 
 
Figure 4.2 – Mean monthly survival rate or mice (𝜶, eqn. 9) for each mouse state. 

Survival of mice with ticks absent is in blue, those with ticks present in red. 

 

Monthly survival rates varied across mouse status and site (Figure S4.1). On the 

low end, mice with ticks absent survived at a monthly rate of 0.46 (95% CI 0.4 – 0.49) at 

SCBI. Mice with ticks absent had the highest monthly rate of survival at TALL of 0.76 

(95% CI 0.72 – 0.78). Mice with ticks present generally survived at a lower rate at each 

site compared to mice without ticks present, except at SERC, SCBI, and BLAN. The 

highest monthly survival rate for mice with ticks present was at SCBI of 0.73 (95% CI 

0.66 – 0.8), and lowest was at TREE with a median of 0.47 (95% CI 0.38 – 0.56). 
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The daily rate of changing states (intercept, eq. 11) for the present to absent (p-to-

a) or absent to present (a-to-p) transition was variable across sites, and generally 

increased from south to north (Figure S4.2). At the most southern site, OSBS, the p-to-a 

transition was estimated at a daily rate of 0.74 (95% CI 0.36 – 0.94). At the most northern 

site, the daily p-to-a transition was estimated at 0.86 (95% CI 0.82 – 0.91). The a-to-p 

transition at OSBS was estimated at 0.38 (95% CI 0.15 – 0.63), and at TREE it was a 

daily rate of 0.94 (95% CI 0.92 – 0.95). 

The effects of tick density on mouse state transitions (either direction) were 

inconsistent across sites, or effects were generally small (Figure 4.3). For the sites that 

are dominated by Ixodes scapularis (HARV and TREE), there was little effect of tick 

density on the a-to-p transition, and a small but negative effect of tick density on the p-to-

a transition; at HARV the effect of tick density on the p-to-a transition was -0.12 (95% CI 

-0.3 – 0.08), at TREE the effect was -0.23 (95% CI -0.57 – 0.13). The median effect of 

tick density at sites dominated by Amblyomma americanum (UKFS, TALL, OSBS, 

KONZ) varied across sites, but in general the effect was not different than zero except at 

TALL. At TALL the effect of tick density was negative for both transitions; -0.67 (95%   

-1.93 – -0.09) for the a-to-p transition and -0.28 (95% -0.72 – 0.04) for the p-to-a 

transition.  

The sites were both tick species are found (SERC, SCBI, LENO, BLAN) had 

similar estimates of the effect of tick density within each site, and the effects decreased 

from south to north. For example, the effect of ticks on the p-to-a transition at LENO 

(located in Alabama) was 2.17 (95% CI 1.11 – 3.38) and at BLAN (located in Virginia) 
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Figure 4.3 - Slope estimates for the effect of tick density on mouse state transitions 

 

Figure 4.3 - Site-specific slope estimates, mouse transitions arranged on the x-axis by 

latitude (south to north) - The effect of modeled tick density on the state transition of 

mice. Effect of tick density on the mice transition rate from ticks present to absent are in 

blue, the other direction (absent to present) in red. Points are the median estimate, thin 

whiskers are the 95% CI, wide whiskers are the 75% CI. The dotted horizontal line at 

zero is plotted to show the limit of no effect. 

 

 

the effect was -0.56 (95% CI -0.75 – -0.39). For completeness, the effect of tick density 

on the a-to-p transition at LENO was 0.69 (95% CI -0.22 – 1.56) and at BLAN the effect 

was -0.41 (95% CI -0.58 – -0.24). 
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Tick-stage structured model 

 
 Here we present the posterior estimates for demographic parameters, which 

includes the influence of the fixed effects, that are in Figure 4.4. Larvae A. americanum 

had a median monthly survival rate of 0.71 compared to < 0.01 of I. scapularis. Nymph 

survival was similar for both species, where A. americanum survived at a rate of 

0.37/month and I. scapularis at a rate of 0.29/month. Like the larvae, the non-forest effect 

was centered on zero with a wide interval estimate. Median monthly adult survival varied 

considerably across species, where I. scapularis survived at a rate of < 0.01, A. 

americanum had a median monthly survival rate of 0.22.  

 The daily transition rate from larvae to nymph was the same within species. A. 

americanum had daily larvae to nymph transition rate of 8.80E-06 (3.02E-06 – 2.07E-05 

95%CI) and 8.62E-06 (8.13E-07 – 9.68E-05) in forest and non-forest plots, respectively. 

I. scapularis had a slightly higher daily larva to nymph transition rate of 2.20E-03 

(6.03E-04 – 0.01) and 2.12E-03 (1.86E-04 – 0.03) in forest and non-forest plots, 

respectively.  

Median nymph to adult transition rates was slightly higher than from larvae to 

nymph, and similar for both species. A. americanum had a median nymph to adult 

transition rate of 3.41E-03 and 3.10E-03 in forest vs non-forest plots, whereas I. 

scapularis had a rate of 4.41E-03 and 4.08E-03 in forest vs non-forest plots. Precision 

was higher in forested groups (Table 4.2).  
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Table 4.2 Summary of tick demographic parameters 

 

Table 4.2 – Posterior estimates of tick demographic parameters for A. americanum (AA) 

and I. scapularis (IS) in forest and non-forest plots. 

 

Reproduction differed between species but not between forest and non-forest 

sites. A. americanum had a median reproduction rate (number of larvae produced from a 

single adult per day) of 3.17 (0.74 - 8.56 95%CI) and 2.98 (0.22 - 34.03) in forest and 

non-forest habitats. I. scapularis had a median reproduction rate of 39.12 (8.67 - 119.75) 

and 36.96 (2.93 - 426.4) in forest and non-forest habitats. Despite the difference in data 

source type, the current model’s estimate for I. scapularis reproductive rate was 
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consistent with the median reproductive estimate from the Cary data (Chapter 1). For all 

demographic parameters, and their comparison to the Cary fits from Chapter 1, see 

supplementary Figures S4.3 (survival) and S4.4 (transition). 

 

Discussion 

 

 In this study, we used a multievent capture-recapture model to explore the role 

that tick densities have on the parasitism status, and the rate of change in parasitism 

status, of mice across several NEON sites. We also quantified how demographic 

parameters differ across habitat (forest vs. non-forest), and species (I. scapularis vs A. 

americanum). Generally, the temporal change in tick density drives the temporal 

variation of parasitism status in mice as an inverse relationship (Figure 4.5), most notably 

on the transition from ticks present to ticks absent. On the first pass, it would seem like 

this relationship is different than that of (Brunner & Ostfeld, 2008). They found a positive 

relationship between the densities of larval and nymphal ticks and actual tick burden (the 

number of ticks attached), while our study focuses on the presence/absence transition 

rates of ticks on mice. 
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Figure 4.4 - Tick model fixed effects 

 

 

Figure 4.4 - Fixed effects on demographic parameters for ticks - The effects for a tick 

being A. americanum are in yellow and being in a non-forest habitat are in green. Fixed 

effects were placed on each demographic parameter, which is on the y-axis. Points are the 

median estimate, thin whiskers are the 95% CI, and wide whiskers are the 75% CI. Note 

the log scale on the y-axis.  

 

 

 Our results estimated a small effect of tick parasitism on mouse survival and are 

in line with other studies (Brunner & Ostfeld, 2008; Hersh et al., 2014; Dhawan et al., 

2018), suggesting that mouse mortality is largely due to other factors, such as predation 

(Collins & Kays, 2014). We also showed that monthly mouse survival differed across 
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NEON sites and parasitism status (Figure S4.2). Moreover, monthly survival rates were 

often above 0.5, confirming that mice are capable of surviving in a wide range of habitats 

(Geier & Best, 1980; Nupp & Swihart, 1996, 2000; Linske et al., 2018).  

The inverse relationship between tick density and the presence/absence transition 

rates of ticks on mice also means that as tick density increases, the probability of 

remaining in the same state increases. The NEON sites used in this analysis were chosen, 

in part, because consistent tick observations were available. Therefore, we know that 

ticks are consistently present at these sites. Ticks require a blood meal to survive (Childs 

& Paddock, 2003; Anderson & Magnarelli, 2008), which means we know that ticks are 

feeding on hosts at these sites. This would suggest that our results are in agreement with 

(Brunner & Ostfeld, 2008) that most ticks aggregate on a subset of mice, and that a small 

percentage of ticks find hosts (Ginsberg et al., 2020).  

Furthermore, we extend this relationship to show that the degree of aggregation 

appears to be of the same magnitude at both southern and northern sites, where I. 

scapularis and A. americanum are found, respectively (Figure 4.2). Interestingly, this 

result also supports the literature that ticks aggregate on mice less in southern sites, 

particularly during peak tick density (Ginsberg et al., 2021) (Figure 4.6). This is most 

likely due to the differences in questing behavior between northern and southern I. 

scapularis ticks, and between I. scapularis and A. americanum. 
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Figure 4.5 The relationship between tick density and mouse state transition 

 

 

Figure 4.5 - Time series showing the relationship between estimated tick density (top 

row) and mouse state transitions (bottom row), for the northern TREE (located in 

Wisconsin, I. scapularis dominated) site. The yellow envelope around the tick densities is 

the 95% CI for estimated tick density. The red and blue envelopes are the 95% CI around 

estimated mouse state transition rates, red being the transition from ticks absent to ticks 

present, and blue the other direction. 

 

For A. americanum, their primary host is white-tailed deer, meaning their 

aggregation on mice is reduced overall (Kollars et al., 2000; Paddock & Yabsley, 2007; 

Hertz et al., 2017), as their ability to find hosts, such as white-tailed deer, is far higher 

than small mammals (Mount et al., 1993). 
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With respect to I. scapularis, host aggregation on mice in southern environments 

is less because there is a more diverse community of hosts used by ticks (I. Arsnoe et al., 

2019; I. M. Arsnoe et al., 2015) (Hertz et al., 2017; Ginsberg et al., 2021). However, even 

in northern environments (NEON sites HARV, TREE) where I. scapularis is the primary 

tick species, there was a total of 1344 individual mice captured, of which 35.7% (n = 

480) never had ticks attached. Additionally, during periods of above average tick density 

at these two northern sites, roughly the same proportion, 34.6%, of mice never have ticks 

attached (299 mice never captured with ticks over 865 individual mice captured during 

peak tick density).   

For ticks, demographic parameters that describe their populations vary by species 

and not by forest cover (Figure 4.4). Our result that forests vs non-forest habitats have no 

effect on demographic parameters should be viewed with some caution. To reach 

convergence in the stage-structured tick model, we had to remove NEON plots with less-

than-ideal time-series data, and these removed plots were mostly classified as non-forest. 

Therefore, the absence of a clear habitat type effect is most likely due to sample size.  

When we compare tick demographic parameters, there is an apparent trade-off 

between survival and reproduction exhibited by A. americanum ticks. Relative to I. 

scapularis, the daily reproduction estimated for A. americanum was reduced, and the 

daily survival rate of all life stages was higher. The survival reproduction trade-off could 

be viewed through the lens of individual heterogeneity, where individuals are competing 

for resources, i.e. hosts, which translates to fat and energy allocation (Alasmari & Wall, 
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2021). Essentially, energy expended on reproduction compromises survival (Cox et al., 

2010).  

 

Figure 4.6 Relative mouse parasitism status with respect to average tick density 

 

 

 

Figure 4.6 – The relative proportion of mice captured in each parasitism state, broken 

into the time of year during above average tick density and below average tick density at 

each site. Red are mice with ticks absent, blue with ticks present, and green are mice 

captured with unknown tick status. Each facet is a NEON site, and they are arranged by 

latitude with the most southern site (OSBS) in the top left, to the most northern site 

(TREE) on the bottom right.  

 

Another explanation is that this trade-off could be happening because, for A. 

americanum, the environment is more favorable for survival than reproduction (Robert et 

al., 2015). This falls in line with (Marshall & Sinclair, 2010) who showed that repeated 
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stress exposure reduced reproduction in Drosophila. Furthermore, given extra resources 

so that individuals don’t have to choose between survival and reproduction, reproduction 

increases in mosquitoes (Stone et al., 2011). The survival-reproduction trade-off could be 

due to A. americanum’s active questing strategy, which would lead to higher fecundity 

(Brunner et al., 2011; Labruna et al., 2000; Wilson et al., 1990).    

 As of 2019, NEON collection protocols changed to record the number of ticks 

attached to mice in discrete categories. A multievent modeling approach with a likelihood 

that includes mouse states for each tick-attachment category, and transitions parameters 

for movement into and out of each category, would shed more light on how ticks use 

mice across the NEON domain.  

More extensions for the model include parameterizing mouse survival with 

weather covariates, and another constraint on parasitism status using total mice observed. 

Furthermore, the observation matrix (eqn. 14) could be reparametrized without the 

recovered dead (r) parameter because the estimate for r was essentially zero. All other 

demographic parameters describing the mouse population were precise, meaning 

removing the small number of mice recovered dead (n = 59) from the data should have 

little impact on posterior parameter precisions.  

The outputs from the mouse model could be information used to further constrain 

transition parameters in stage-structured population models, such as those presented in 

earlier chapters. Specifically, if we know the onset and decline of host-use, the stage-

structured tick models could use this information to inform either the process model (by 

way of questing activity) or the data model (observers, and therefore people, are less 
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likely to encounter ticks on drag cloth because they are attached to mice (Ostfeld, Levi, et 

al., 2018). 

 Furthermore, quantifying host-use has direct implications for the management of 

tick-borne diseases. Host-targeted mitigation efforts are often used to deliver acaracides 

to ticks (Tsao et al., 2021), meaning if we know when most mice will have ticks attached, 

these vehicle delivery systems would be more effective. Finally, this work represents an 

effort to fill a knowledge gaps outlined by Kilpatrick et al., (2017) in that we attempt to 

describe how hosts for larval ticks change through time, and by (Tsao et al., 2021) to 

describe biotic and abiotic factors affecting ticks through time and space.  
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CONCLUSION 

 

 This dissertation has been an exploration in building mechanistic forecasts for the 

main vector of Lyme disease. The first chapter started this process by building stage-

structured models calibrated on daily basis for the populations at Cary. I found that 

including the dormant stage between questing larvae and questing nymph to be an 

important addition to the model, which also has biological and ecological significance. I 

also found that larval survival is most influenced by precipitation, and that nymphs were 

most influenced by mouse abundance. It also appears that the interplay between weather 

and mouse abundance improved model predictions. Adults were harder to predict than 

the other stages. 

 Chapter two was proof-of-concept for iteratively forecasting this population and is 

essentially a transfer-in-time experiment. I also showed the effectiveness of forward only 

data assimilation technique. This chapter showed that larval data are not necessary to 

forecast populations at year horizon, the caveat being larval data were used for model 

calibration. This has important implications for tick monitoring programs, where efforts 

could be moved to sample nymphs and/or adults.  

 Chapter three was an attempt to transfer the model in space to NEON sites along 

the east coast. The model calibrated at Cary overpredicted in every scenario, and models 

were dominated by process error. The overprediction was attributed to the spatio-

temporal difference in data collection between Cary and NEON. The phenology that was 

built into the Cary model was evident when the model transferred, but hard to tell if this 
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parameterization was appropriate for the NEON sites given the magnitude of error. 

Encouragingly, the data assimilation updated parameters, attempting to correct for the 

mismatch in sampling design. Perhaps more time is needed for the model to adapt.   

 Lastly, in chapter four I modeled the mouse population across NEON to describe 

the temporal change in parasitism status in mice. This involved modeling calibrating a 

model to estimate the tick population, so that tick density could drive parasitism change. I 

found that tick density drives this change in an inverse relationship, and that most ticks 

use a subset of mice. 

 Future directions, and one thing I regret not having the opportunity to accomplish 

in this work, is that dissemination of forecasts to people who might use them. At the 

current point this would only include people at the Cary Institute, nevertheless it would 

have been interesting to see how folks might have used the information. Similarly, 

calibrating a reasonably predictive model at NEON, and transferring that information to 

the scientific team there is an immediate next step. These forecasts, paired with 

uncertainty partition, could help NEON make decisions about their sampling designs in 

the light of finite funding.  

 However, a loftier goal is to get land managers and tick-borne disease scientists to 

recognize the value of ecological forecasting. Almost none of the papers I’ve cited that 

relate to the management and mitigation of tick-borne disease mention predictive 

modeling as an avenue to increase the effectiveness of management. A paradigm shift is 

required before the knowledge gained from this dissertation can be productively used. 
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APPENDIX 1: Chapter 1 Supplementary Material 

Methods 

Mouse population model 

 

𝑧𝑖,1~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛾1)                                                          [S1.1] 

𝑧𝑖,𝑡+1 | 𝑧𝑖,𝑡 . . . , 𝑧𝑖,1 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖,𝑡𝜙𝑡 + 𝛾𝑡+1 ∏ (1 − 𝑧𝑖,𝑘))
𝑡
𝑘=1                     [S1.2] 

𝑦𝑖,𝑡 | 𝑧𝑖,𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖,𝑡𝜃)                                                     [S1.3] 

 

Where z is the state (alive or dead) of an individual i at time t. Equation four 

describes the state of individuals at the first observation. Then, all other states are drawn 

from equation five, which is governed by the survival probability between capture 

occasions (𝜙t) for mice already in the population (left side of the plus sign), or by a 

mouse entering the population (right side of the plus sign). 𝛾t is the probability a mouse 

transitions into the population and is a nuisance parameter needed in this 

parameterization. The observation model, conditional on the state at time t, is given by 

equation six, where 𝛳 is the capture probability. 

Tick population model 

 

 Parameters in the daily transition matrix were modelled as follows: 

𝜑1, 𝜑2, and 𝜑3, are the daily survival rates of larvae, nymph, and adult ticks, 

respectively. Survival rates for life stage j at time t were modeled as: 
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𝜙𝑗,𝑡  =  𝑙𝑜𝑔𝑖𝑡(𝛽𝑋𝑡)                                                     [S1.4] 

 

Where Xt are time-varying covariates (daily weather), and β is a vector of 

coefficients. We used a regularizing prior on slope parameters β. The transition 

probabilities are 𝜽1, 𝜽2, and 𝜽3, which are the daily transition rates from questing larvae 

to dormant nymph, dormant nymph to questing nymphs, and questing nymph to questing 

adult, respectively. Transition probabilities 𝜽1, and 𝜽3 are modeled as 

 

                                    [S1.5] 

𝑋𝑡 ∼ 𝑁(𝑚𝑖𝑐𝑒𝑡̂ ,𝑠𝑑𝑡)                                                        [S1.6] 

 

Which is to say that if the cumulative growing degrees are within the correct 

window (𝝆), then the transition is a logit-link generalized linear model. Outside this 

phenological window, the transition does not occur. We considered three linear models 

each for 𝜃1and 𝜃3; intercept only, one where 𝜃 is driven by the minimum number of mice 

alive (MNA, i.e. mouse data without uncertainty), and one with the mean daily estimated 

mouse population (𝑚𝑖𝑐𝑒𝑡̂ ) with uncertainty (𝑠𝑑𝑡) from the level two model (described 

above) using an errors-in-variables approach (eq. S1.6).  

Likewise, fecundity was modeled as: 
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                                         [S1.7] 

 

The cumulative growing degree day thresholds for all transition parameters, 𝜌 , 

were not estimated as part of the model but were set manually to match the phenology of 

the questing life stage being transitioned into. These thresholds were based on tick 

observations. The cumulative growing degree windows were set to [400, 2500], [0, 1000] 

or [2500, ] and [1000, 2500] for the larvae-to-nymph transition,  nymph-to-adult 

transition, and fecundity, respectively. 
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Supplementary Figures 

 

 
Figure S1.1 Across-site larvae one-step-ahead predictions 

 

 
 

 

Figure S1.1: Demographic and observation parameter posterior for the mouse mark-

recapture sub model. Top left: intercept for mouse survival, presented as monthly 

survival rate. Top right: observation probability. Bottom left: the effect of temperature on 

daily mouse survival. Bottom right: the effect of precipitation on daily mouse survival.  
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Figure S1.2 Across-site larvae one-step-ahead predictions 

 
 

Figure S1.2: One-step ahead predictions from an across-site simulation for larvae. The 

model was calibrated at Henry, and run at Tea. Showing 1996 - 2000 because 1996 and 

2000 were years with the peak nymph counts. Displaying output from for models: Static 

(3) (top left), Mice Est. (4) (top right), Weather (4) (bottom left), and Weather and Mice 

(4) (bottom right). Models not displayed (Static (4) and Mice MNA (4)) were excluded 

because they have very similar predictions to the Mice Est. (4) model.  
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Figure S1.3 Across-site adult one-step-ahead predictions 

 
 

Figure S1.3: One-step ahead predictions from an across-site simulation for adults. The 

model was calibrated at Henry, and run at Tea. Showing 1996 - 2000 because 1996 and 

2000 were years with the peak nymph counts. Displaying output from for models: Static 

(3) (top left), Mice Est. (4) (top right), Weather (4) (bottom left), and Weather and Mice 

(4) (bottom right). Models not displayed (Static (4) and Mice MNA (4)) were excluded 

because they have very similar predictions to the Mice Est. (4) model.  
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Figure S1.4 The effect of mice on tick transition rates 

 

Figure S1.4: The effect the mouse population has on larvae-to-nymph transition (top 

row) and the nymph-to-adult transition (bottom row). The models that use mice are on 

the x-axis, showing the 90% CI for all posteriors. The Mice MNA (4) model uses the 

minimum number alive of mice (mouse data), while the Weather and Mice (4) and Mice 

Est. (4) use the estimated abundance from the level 2 mouse population model. 
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Figure S1.5 Reproduction parameter posteriors  

 

 
 

Figure S1.5: 90% CI for the reproduction parameter. Model is on the y-axis, colors 

correspond to the site the model was fit. Points are the median value.  
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Figure S1.6 Larval prediction skill 

 
 

Figure S1.6: Prediction skill (CRPS, lower is better) for larvae with respect to the 

number of larvae observed. Each facet shows the scores for each model. Blue dots 

represent scores from the within-site simulations, red dots represent scores from the 

across-site simulations. Lines are linear trends. 
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Figure S1.7 Adult prediction skill 

 
Figure S1.7: Prediction skill (CRPS, lower is better) for adults with respect to the 

number of adults observed. Each facet shows the scores for each model. Blue dots 

represent scores from the within-site simulations, red dots represent scores from the 

across-site simulations. Lines are linear trends. 
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Figure S1.8 Larval predication variance partitioning

 

Figure S1.8: Variance partitioning for larval predictions at Tea in 1999. The top row 

shows the relative proportion of the total variance that is made up of either process error 

(model structural uncertainty), driver error (from level 2 mouse population model, only 

present in Mice Est. (4) and Weather and Mice (4) models), parameter uncertainty (from 

parameter distributions), and initial condition uncertainty (errors in the latent state). The 

bottom row shows the total amount of variance in the prediction. 
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Figure S1.9 Adult predication variance partitioning 

 
 

Figure S1.9: Variance partitioning for adult predictions at Tea in 1999. The top row 

shows the relative proportion of the total variance that is made up of either process error 

(model structural uncertainty), driver error (from level 2 mouse population model, only 

present in Mice Est. (4) and Weather and Mice (4) models), parameter uncertainty (from 

parameter distributions), and initial condition uncertainty (errors in the latent state). The 

bottom row shows the total amount of variance in the prediction. 
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Supplementary Tables 

 

Table S1.1 Survival intercepts as monthly rates 
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Appendix 2: Chapter 2 

 
Supplementary Figures 

 
Figure S2.1 NMME bias correction 

 
 
 

Figure S2.1 – Example of the downscaling performed to match the gridded NMME 

ensembles (grey), to match the observed weather at Cary (red). The NMME ensembles 

drawn are the downscaled product. 
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Figure S2.2 Larvae phenology scores 

 

 
 

 

Figure S2.2 - Loess curves over the root mean square error (RMSE) for larval forecasts. 

The left panel shows the models that used the Cary meteorological data as weather 

covariates, the right showing the models that used NMME. The black dot-dash line is the 

RMSE from the null model. Red shows RMSE for models that used mice to constrain 

transition rates, blue is those without mice. Solid lines show the RMSE of models that 

assimilates the larvae data, dashed lines those that did not assimilated larval data. The 

shaded region is the expected questing period for nymphs, and when peak counts are 

observed.   
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Figure S2.3 Adult phenology scores 

 
 

 
 
 

Figure S2.3 - Loess curves over the root mean square error (RMSE) for larval forecasts. 

The left panel shows the models that used the Cary meteorological data as weather 

covariates, the right showing the models that used NMME. The black dot-dash line is the 

RMSE from the null model. Red shows RMSE for models that used mice to constrain 

transition rates, blue is those without mice. Solid lines show the RMSE of models that 

assimilates the larvae data, dashed lines those that did not assimilated larval data. The 

shaded region is the expected questing period for nymphs, and when peak counts are 

observed.  
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Appendix 3: Chapter 3 

 
Supplementary Figures 

 
Figure S3.1 Average difference in CRPS for larval Ixodes scapularis forecasts relative to the 

null model  

 

 
 
Figure S3.1 - The distribution of the difference in CRPS over the entire forecasting 

period for I. scapularis larvae. For each forecast, the difference between the null model 

score and the process model score was calculated, values are the average of these 

differences with 95% CI. Colors represent forecasts as uncertainty is added, starting with 

initial condition uncertainty (IC, red), then parameter uncertainty was added (blue), 

followed by adding driver uncertainty (green), and the forecast with all uncertainty 

included (Process, yellow). Models are shown on the x-axis as the Static model (S), 

Mouse model (M), Weather model (W), and the model with both weather and mice 

(WM). Negative values indicate the process model was worse than the null, positive 

values when the process model was better. The null model is a GAM smoothed over day 

of year for each life stage at each site.  



 

 

145 

Figure S3.2 Average difference in CRPS for larval Amblyomma americanum forecasts 

relative to the null model  

 

Figure S3.2 - The distribution of the difference in CRPS over the entire forecasting 

period for A. americanum larvae. For each forecast, the difference between the null 

model score and the process model score was calculated, values are the average of these 

differences with 95% CI. Colors represent forecasts as uncertainty is added, starting with 

initial condition uncertainty (IC, red), then parameter uncertainty was added (blue), 

followed by adding driver uncertainty (green), and the forecast with all uncertainty 

included (Process, yellow). Models are shown on the x-axis as the Static model (S), 

Mouse model (M), Weather model (W), and the model with both weather and mice 

(WM). Negative values indicate the process model was worse than the null, positive 

values when the process model was better. The null model is a GAM smoothed over day 

of year for each life stage at each site.  
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Figure S3.3 Average difference in CRPS for nymphal Amblyomma americanum forecasts 

relative to the null model  

 

 
Figure S3.3 - The distribution of the difference in CRPS over the entire forecasting 

period for A. americanum nymphs. For each forecast, the difference between the null 

model score and the process model score was calculated, values are the average of these 

differences with 95% CI. Colors represent forecasts as uncertainty is added, starting with 

initial condition uncertainty (IC, red), then parameter uncertainty was added (blue), 

followed by adding driver uncertainty (green), and the forecast with all uncertainty 

included (Process, yellow). Models are shown on the x-axis as the Static model (S), 

Mouse model (M), Weather model (W), and the model with both weather and mice 

(WM). Negative values indicate the process model was worse than the null, positive 

values when the process model was better. The null model is a GAM smoothed over day 

of year for each life stage at each site.  
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Figure S3.4 Average difference in CRPS for adult Ixodes scapularis forecasts relative to the 

null model  

 

 

Figure S3.4 - The distribution of the difference in CRPS over the entire forecasting 

period for I. scapularis adults. For each forecast, the difference between the null model 

score and the process model score was calculated, values are the average of these 

differences with 95% CI. Colors represent forecasts as uncertainty is added, starting with 

initial condition uncertainty (IC, red), then parameter uncertainty was added (blue), 

followed by adding driver uncertainty (green), and the forecast with all uncertainty 

included (Process, yellow). Models are shown on the x-axis as the Static model (S), 

Mouse model (M), Weather model (W), and the model with both weather and mice 

(WM). Negative values indicate the process model was worse than the null, positive 

values when the process model was better. The null model is a GAM smoothed over day 

of year for each life stage at each site.  
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Figure S3.5 Average difference in CRPS for adult Amblyomma americanum forecasts 

relative to the null model 

 

  

Figure S3.5 - The distribution of the difference in CRPS over the entire forecasting 

period for A. americanum adults. For each forecast, the difference between the null 

model score and the process model score was calculated, values are the average of these 

differences with 95% CI. Colors represent forecasts as uncertainty is added, starting with 

initial condition uncertainty (IC, red), then parameter uncertainty was added (blue), 

followed by adding driver uncertainty (green), and the forecast with all uncertainty 

included (Process, yellow). Models are shown on the x-axis as the Static model (S), 

Mouse model (M), Weather model (W), and the model with both weather and mice 

(WM). Negative values indicate the process model was worse than the null, positive 

values when the process model was better. The null model is a GAM smoothed over day 

of year for each life stage at each site.  
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Figure S3.6 Relative Variance

 

Figure 3.6 Relative variance from a forecast issued on August 15, 2018, at SERC with 

the Weather and Mice model. The relative variance for each observation date in the 

“future” is plotted on the x-axis. In general, forecasts are dominated by process 

uncertainty.  
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Figure S3.7 Larval forecast bias across land cover types 

 

Figure S3.7 – Forecast bias (each point from a single forecast) for each model and 

species in each land cover type for larvae. Models are Mice (M), Static (S), Weather (W), 

and Weather and Mice (WM).  
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Figure S3.8 Nymphal forecast bias across land cover types 

 
 

Figure S3.8 – Forecast bias (each point from a single forecast) for each model and 

species in each land cover type for nymphs. Models are Mice (M), Static (S), Weather 

(W), and Weather and Mice (WM).  
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Figure S3.9 Adult forecast bias across land cover types 

 

Figure S3.9 – Forecast bias (each point from a single forecast) for each model and 

species in each land cover type for adults. Models are Mice (M), Static (S), Weather (W), 

and Weather and Mice (WM).  
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Figure S3.10 Survival parameter updates I. scapularis 

 

 
 
 
Figure S3.10 - The change survival I. scapularis. The forecasts started with informative 

priors for each effect, represented by the blue dashed 95% interval. The red intervals are 

posterior widths for each effect after the last forecast of 2019 at NEON sites (transfer-in-

space). For comparison, the solid blue interval is the posterior after the last forecast from 

chapter 2 (transfer-in-time) experiments. Rates are untransformed. 
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Figure S3.11 Survival parameter updates I. scapularis 

 

 
 
Figure S3.11 - The change survival A. americanum. The forecasts started with 

informative priors for each effect, represented by the blue dashed 95% interval. The red 

intervals are posterior widths for each effect after the last forecast of 2019 at NEON sites 

(transfer-in-space). For comparison, the solid blue interval is the posterior after the last 

forecast from chapter 2 (transfer-in-time) experiments. Rates are untransformed. 
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Figure S3.12 Transition parameter updates A. americanum

 

 
Figure S3.12 - The change transition A. americanum. The forecasts started with 

informative priors for each effect, represented by the blue dashed 95% interval. The red 

intervals are posterior widths for each effect after the last forecast of 2019 at NEON sites 

(transfer-in-space). For comparison, the solid blue interval is the posterior after the last 

forecast from chapter 2 (transfer-in-time) experiments. Rates are untransformed. 
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Figure S3.13 Transition parameter updates I. scapularis 

 
 
Figure S3.13 - The change survival I. scapularis. The forecasts started with informative 

priors for each effect, represented by the blue dashed 95% interval. The red intervals are 

posterior widths for each effect after the last forecast of 2019 at NEON sites (transfer-in-

space). For comparison, the solid blue interval is the posterior after the last forecast from 

chapter 2 (transfer-in-time) experiments. Rates are untransformed. 
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Appendix 4: Chapter 4 

 
 

Supplementary Figures 

 
 
Figure S4.1 Monthly mouse survival estimates at each NEON site 

 

 
 
 
Figure S4.1 – 95% posterior credible interval (narrow lines) and 75% posterior credible 

interval for monthly mouse survival rate at each NEON site for each mouse state; mice 

with ticks attached in blue, those without ticks attached in red. 

  



 

 

158 

Figure S4.2 Base rate of state change for mice at NEON sites 

 
 

 
 
 
Figure S4.1 – 95% posterior credible interval (narrow lines) and 75% posterior credible 

interval (wide lines) for daily mouse state change at each NEON site. Transitioning from 

mice with ticks present to tick absent in blue, the reverse direction in red. 
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Figure S4.3 Survival estimates comparison to calibration 

 

 
 
 

 

Figure S4.3 – 95% posterior credible interval (narrow lines) and 75% posterior credible 

interval (wide lines) for daily tick survival for both species (columns) in forest and non-

forest plots (x-axis) and by data source. 
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Figure S4.4 Transition estimates comparison to calibration 

 

 
 
 
Figure S4.4 – 95% posterior credible interval (narrow lines) and 75% posterior credible 

interval (wide lines) for daily tick transition (rows) for each species (columns) in forest 

and non-forest plots (x-axis) and by data source. 
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Supplementary Tables 

 
 
Table S4.1. Non-zero elements of the daily projection matrix A used for ticks at NEON. 

Transition name (day t to t + 1) Position Value 

Questing larvae to questing larvae A 1, 1 𝜙𝟏,𝒋,𝒌(𝟏 − 𝜽𝟏,𝒋,𝒌) 

Questing adults to questing larvae A1, 4 𝜆𝒋,𝒌 

Questing larvae to dormant nymphs A 2, 1 𝜙𝟏,𝒋,𝒌𝜽𝟏,𝒋,𝒌 

Dormant nymphs to dormant nymphs A 2, 2 𝟏 − 𝜽𝟐,𝒋,𝒌 

Dormant nymphs to questing nymphs A 3, 2 𝜃𝟐,𝒋,𝒌 

Questing nymphs to questing nymph A 3, 3 𝜙𝟐,𝒋,𝒌(𝟏 − 𝜽𝟑,𝒋,𝒌) 

Questing nymphs to questing adults A 4, 3 𝜙𝟐,𝒋,𝒌𝜽𝟑,𝒋,𝒌 

Questing adults to questing adults A 4, 4 𝜙𝟑,𝒋,𝒌 

 

Table S4.1: The non-zero elements of the daily transition matrix for the four-stage 

model. Indexes for position represent row and column.  
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Table S4.2 Observation parameter probabilities 
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Table S4.3 Demographic parameter rates 
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