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ABSTRACT

This dissertation is motivated by an intersection of changes occurring in mod-

ern software and hardware; driven by increasing application performance and en-

ergy requirements while Moore’s Law and Dennard Scaling are facing challenges 

of diminishing returns. To address these challenging requirements, new features 

are increasingly being packed into hardware to support new offloading capabili-

ties, as well as more complex software policies to manage these features. This is 

leading to an exponential explosion in the number of possible configurations of 

both software and hardware to meet these requirements.

For network-based applications, this thesis demonstrates how these complexi-

ties can be tamed by identifying and exploiting the characteristics of the underly-

ing system through a rigorous and novel experimental study. This thesis demon-

strates how one can simplify this control strategy problem in practical settings by 

cutting across the complexity through the use of mechanisms that exploit two fun-

damental properties of network processing.

Using the common request-response network processing model, this thesis finds 

that controlling 1) the speed of network interrupts and 2) the speed at which the re-

iv



quest is then executed, enables the characterization of the software and hardware

in a stable and well-structured manner. Specifically, a network device’s interrupt

delay feature is used to control the rate of incoming and outgoing network requests

and a processor’s frequency setting was used to control the speed of instruction

execution. This experimental study, conducted using 340 unique combinations of

the two mechanisms, across 2 OSes and 4 applications, finds that optimizing these

settings in an application-specific way can result in characteristic performance im-

provements over 2X while improving energy efficiency by over 2X.

This thesis also discovers that both the model and characterization results are

generic enough that an off-the-shelf sample efficient machine learning technique,

Bayesian optimization, can be used to tackle the seemingly intractable problem

of configuration space explosion. This thesis demonstrates how a Linux server

can lower overall energy use while supporting a real-world in-memory key-value

store workload over the course of 24 hours by using Bayesian optimization to auto-

matically adapt to different request rates and performance and energy goals. This

technique was able to search through a space of over 2 million possible configu-

rations to yield operating points in Linux that resulted in energy savings of over

50%.

v



CONTENTS

Abstract iv

List of Tables xiii

List of Figures xv

List of Symbols and Abbreviations xx

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Engineering Contributions . . . . . . . . . . . . . . . . . . . . 13

1.4.1.1 In-situ data collection infrastructure . . . . . . . . . . 13

1.4.2 Experimental Study Contributions . . . . . . . . . . . . . . . . 14

1.4.2.1 Combining ITR and DVFS for performance and en-

ergy gains. . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2.2 Energy study of baremetal Library OS . . . . . . . . 15

1.4.2.3 Data-driven OS Specialization . . . . . . . . . . . . . 16

1.4.3 Experimental Analysis Contributions . . . . . . . . . . . . . . 17

vi



1.4.3.1 Developing a model to capture complex systems

interactions . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.4 Applying with Machine Learning . . . . . . . . . . . . . . . . 18

1.4.4.1 Machine learning technique to automatically tune

ITR and DVFS. . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 itrLog: in-situ data collection infrastructure 20

2.1 Attributes of data collection infrastructure . . . . . . . . . . . . . . . . 21

2.1.1 Agnostic Infrastructure . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Epoch-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Data Logging Statistics . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4 Efficient Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 itrLog Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Linux Implementation . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1.1 Agnostic Infrastructure: . . . . . . . . . . . . . . . . . 26

2.2.1.2 Epoch-based . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1.3 Data Logging Statistics . . . . . . . . . . . . . . . . . 30

2.2.1.4 Efficient Data Retrieval . . . . . . . . . . . . . . . . . 34

2.2.2 EbbRT Implementation . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2.1 Agnostic Infrastructure . . . . . . . . . . . . . . . . . 35

2.2.2.2 Epoch-based . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2.3 Data Logging Statistics . . . . . . . . . . . . . . . . . 36

2.2.2.4 Efficient Data Retrieval . . . . . . . . . . . . . . . . . 37

2.3 Enabling Static Hardware Settings . . . . . . . . . . . . . . . . . . . . 37

2.3.1 ITR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



2.3.2 DVFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Booting Baremetal OSes . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Data Collection Overview . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Visualization Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Experimental Setup 45

3.1 MOC Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Systems Software Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Linux Appliance . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 EbbRT Library OS . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Application Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Closed Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1.1 NetPIPE . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1.2 NodeJS HTTP Web Server . . . . . . . . . . . . . . . 52

3.3.2 Open Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2.1 Memcached . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2.2 Memcached-Silo . . . . . . . . . . . . . . . . . . . . . 55

4 Break Down of Network Processing in lieu of Analysis and Models 57

4.1 Quiescent Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Idle Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1.1 Linux Idle Policy . . . . . . . . . . . . . . . . . . . . . 59

4.1.1.2 EbbRT Idle Policy . . . . . . . . . . . . . . . . . . . . 60

4.2 OS Request Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Interrupt driven IO . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Poll driven IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



4.2.3 Linux NAPI Policy . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4 EbbRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4.1 Interrupt-driven . . . . . . . . . . . . . . . . . . . . . 62

4.2.4.2 Poll-based . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Request Servicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Linux Network Processing . . . . . . . . . . . . . . . . . . . . 64

4.3.2 EbbRT Network Processing . . . . . . . . . . . . . . . . . . . . 64

4.4 Potential Performance-Energy Trade-offs In Different Applications . 65

4.4.1 Open-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Closed-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3 OS-centric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.4 Application-centric . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Experimental Findings 68

5.1 Closed-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 OS Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.2 ITR Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.2.1 Detailed Finding 1: ITR can be used to induce

packet processing stability in order to greatly im-

prove performance. . . . . . . . . . . . . . . . . . . . 74

5.1.3 Offered Load, ITR, and DVFS Changes . . . . . . . . . . . . . 78

5.1.3.1 Detailed Finding 2: Combining batching with DVFS

to enable energy efficient pacing of packet pro-

cessing. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Open-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 OS, Offered Load Changes . . . . . . . . . . . . . . . . . . . . 81

ix



5.2.2 ITR Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2.1 Detailed Finding 3: Using ITR to stabilize tail la-

tency in open loop applications. . . . . . . . . . . . 83

5.2.3 DVFS Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.3.1 Detailed Finding 4: Combining DVFS and ITR to

lower total energy use. . . . . . . . . . . . . . . . . . 87

5.3 OS-centric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 OS, ITR, DVFS Changes . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1.1 Detailed Finding 5: A specialized system has more

headroom with DVFS to further reduce energy with-

out sacrificing performance. . . . . . . . . . . . . . . 90

5.3.2 DVFS Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2.1 Detailed Finding 6: Polling can be energy efficient. 93

5.4 Application-centric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 OS Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1.1 Detailed Finding 7: Energy-aware-slow-poll strat-

egy in a run-to-completion OS. . . . . . . . . . . . . 95

5.4.2 Offered load, ITR, DVFS Changes . . . . . . . . . . . . . . . . 96

5.4.2.1 Detailed Finding 8: IPC Benefits Even in Compu-

tationally Heavy Applications. . . . . . . . . . . . . 97

5.5 Summary of Experimental Findings Towards Building a Model . . . 99

6 Modeling the Experimental Data 101

6.1 Open Loop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Closed Loop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Model Fitting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



6.3.1 Open Loop Discussion . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1.1 Memcached . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1.2 Memcached-silo . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Closed Loop Discussion . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Model Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Tuning with Machine Learning Techniques 115

7.1 Summary of Bayesian Optimization . . . . . . . . . . . . . . . . . . . 116

7.2 Bayesian Optimization Applied to Experimental Study . . . . . . . . 117

7.3 Bayesian Optimization Applied to Real-world Trace Data . . . . . . . 121

7.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.3 System Configurations . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.4 Memcached Results . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.5 Memcached-silo Results . . . . . . . . . . . . . . . . . . . . . . 127

7.3.6 Bayesian Optimization Implications . . . . . . . . . . . . . . . 129

7.3.6.1 Deployment in Datacenters . . . . . . . . . . . . . . . 129

7.3.6.2 Reward Function . . . . . . . . . . . . . . . . . . . . . 130

7.3.6.3 SLA Objectives . . . . . . . . . . . . . . . . . . . . . . 130

7.3.6.4 Learning Implicit Hardware Encoding . . . . . . . . 130

8 Related Work 132

9 Future Work 142

9.1 Performance and energy study . . . . . . . . . . . . . . . . . . . . . . 142

9.2 Energy reporting in systems research . . . . . . . . . . . . . . . . . . . 142

9.3 Specialized OSes and Network Path Optimizations . . . . . . . . . . 143

xi



9.4 NIC polling without sleep in specialized OS paths . . . . . . . . . . . 144

9.5 Configuring NICs for Performance . . . . . . . . . . . . . . . . . . . . 145

9.6 Expanding on ITR-Delay mechanism . . . . . . . . . . . . . . . . . . . 146

9.7 Model Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10 Conclusion 148

Bibliography 151

Curriculum Vitae 173

xii



LIST OF TABLES

1.1 Some widely citepd historical research operating systems. . . . . . . 1

3.1 Workload configurations. The column Nature indicates open (OL) -

versus-closed (CL) loop nature and CPU indicates application work

demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Best static setting of ITR and DVFS across all applications and offered

loads. For each cell the (ITR, DVFS) numbers represents the physical val-

ues used to find Perf (Highest performance) and Energy (Lowest energy)

and the number below each ITR, DVFS setting is its corresponding per-

formance (seconds for closed-loop applications and microseconds 99% tail

latency measurement in open-loop applications) or energy in Joules. ITR

units are in µs and DVFS units are in GHz. . . . . . . . . . . . . . . . . . . 71

6.1 Values for free parameters in memcached at different QPSes from doing fit

with Adam optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Values for free parameters in memcached-silo at different QPSes from do-

ing fit with Adam optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Values for free parameters in NetPIPE fromdoing fit with Adam optimizer. 114

8.1 List of related systems and the hardware parameters explored. WOL

– Wake-On-Lan capability on certain NICs and an experimental fea-

ture. CAT – Cache Allocation Technology hardware feature on cer-

tain Intel CPUs. TB – Turbo-Boost. CS – C-states. . . . . . . . . . . . . 133

xiii



8.2 List of related works of applying ML to automatically configure var-

ious configurations. However, all these works were run in a simula-

tor only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3 List of related works of applying ML to automatically configure

various configurations for datacenter scale applications. However,

most of these works only on software settings only and do not have

publicly available datasets. Lastly, they have applied to Linux only. . 141

9.1 Measured performance of each NIC feature configuration when run-

ning EbbRT memcached. TSO is separated into single and multiple

categories, and for the rest of the hardware features (DCA, RSC),

this table lists the peak QPS achieved for every combination while

maintaining SLA of 99% tail latency < 500 µs. . . . . . . . . . . . . . . 146

xiv



LIST OF FIGURES

2.1 Example figures that showcase the fidelity of fine-grained data collection

of energy consumed (Joules) at a per interrupt level. . . . . . . . . . . . . 22

5.2 Pareto-optimal curves of closed loop applications. . . . . . . . . . . . 73

5.3 Throughput measurements for NetPIPE across different message sizes

in the three systems studied. The inset zooms in on message sizes

between 64 B to 8 KB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Three figures showing the bytes received per interrupt for Linux

with dynamic ITR algorithm enabled when running NetPIPE @ 65536

Bytes. Each figure shows a distinct run of NetPIPE and demon-

strates the dynamic behavior of Linux’s ITR algorithm on the way

packets are being processed (Y-axis) and overall time it takes to run

a single experiment (X-axis). Out of the total of 10 different runs, we

illustrate these three figures as after examining all 10 collected log

datasets, we find performance of Linux with dynamic ITR mainly

fluctuates between these three distinct behaviors. . . . . . . . . . . . 75

5.5 ITR values set by Linux’s dynamic ITR algorithm for a single experimental

run of NetPIPE at 64 KB message size. . . . . . . . . . . . . . . . . . . . . 76

5.6 Three figures showing the bytes received per interrupt for Linux-

static with ITR value at 10 µs for a message size of 65536 Bytes in

NetPIPE. The three figures each illustrate a distinct run of NetPIPE. . 77

xv



5.7 Three figures showing the changes for energy (J) with different static

ITR values used in both EbbRT and Linux across three different

DVFS values from slowest (1.2 Ghz) to fastest (2.9 Ghz). Further-

more, the X markers indicate configurations that yielded best perfor-

mance in order to illustrate the performance-energy trade-offs that

exist in this application. Note: Y-Axis is not scaled to show structure

of the two OSes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 The X-axis plots the static ITR values explored in both OSes and

the Y-axis shows the measured 99%, 90%, and 50% latency in Mem-

cached for the different QPS rates. The range of points along the

vertical is indicative of different DVFS explored for each static ITR.

This figure illustrates how ITR can be used to induce stability in

tail latency measurements even at 99% for a dynamic Memcached

workload and the stability is more pronounced in a specialized OS

such as EbbRT in comparison to Linux where at fast ITR values, the

different DVFS values used causes a larger difference in tail latency

measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xvi



5.10 Using Linux-static as an example, the three figures show C-state

counts in Memcached for different QPSes while running at a fixed

DVFS of 2.5 Ghz. The X-axis shows for each C-state from C1 to C7

where C1 is the lightest and C7 is heaviest sleep state where archi-

tectural state such as caches are completely flushed. We show the

count of how many times Linux’s idle policy went into each sleep

state given two different ITR values at a fast rate of 2 us and a slow

rate of 300 us. The Y-axis are normalized against the counts of ITR

at 2 us. These figures show that across the QPSes, a fast ITR rate of

2 us typically uses only C1 sleep state as it is the lightest and will be

constantly woken up, as ITR increases to 300 us, the heavier sleep

states begin to be used more to take advantage of the prolonged idle

periods induced by the ITR mechanism. . . . . . . . . . . . . . . . . . 85

5.11 Static ITR setting impact on total number of interrupts in Memcached. 86

5.13 The X-axis shows for each static DVFS setting and the Y-axis shows

the measured total energy use across the two OSes. The vertical

span of each DVFS setting is indicative of how different static ITR

values impact energy use. The bold lines show the fastest ITR ex-

plored and the dotted line show the slowest ITR explored. These

lines indicate how within a DVFS value that changing ITR also im-

pacts energy consumption. . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.15 ITR impact on instruction count in memcached. Not drawn to scale

in order to shown structure in data. . . . . . . . . . . . . . . . . . . . . 91

xvii



5.16 Timeline plot of non-idle ratio at per-interrupt basis for Linux-static

and EbbRT-static that resulted in min energy for memcached @ 600K

QPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.17 DVFS impact on number of interrupts in NodeJS and Netpipe 64B. . . . . . 95

5.18 All memcached-silo results. Note we don’t have Linux results for 300K as

the Linux could not support that offered load without violating the SLA

objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.19 The figures show collected hardware statistics for Memcached-silo

across three QPS values. For consistency, we plot the data from the

perspective of different fixed DVFS values. In (a), the Y-axis shows

the count of total number of last-level cache misses between the two

OSes. In (b), we illustrate that the total number of instructions exe-

cuted is roughly the same even though the application runs on two

different OSes. In (c), our results show that the EbbRT is executing

instructions more efficiently than Linux even in a computationally

heavy application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Prediction of energy and performance using model for Netpipe at

different message sizes. The Y-Axis consist of measured values (ei-

ther performance or energy) and the X-AXis consists of predicted

values using the constructed models. We draw diagonal lines and

show if the dots (which are measured values) lie on the diagonal

line, then it is an accurate fit of the model onto the data. . . . . . . . . 106

6.2 Prediction of energy and performance using model for Memcached. 107

6.3 Prediction of energy and performance using model for Memcached-

silo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xviii



7.1 Bayesian optimization for Memcached for 99% tail latency and energy. The

X and Y axis represent unique ITR, DVFS pairs in a single experimen-

tal run and is also illustrated by every O. We show the samples that the

Bayesian process undertook via the X. The + indicates the best case (per-

formance/energy) ITR, DVFS configuration found by Bayesian optimiza-

tion and the * is the best case found so far by the exhaustive experimental

study search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Bayesian optimization for 99% tail latency and energy in Memcached-

silo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Bayesian optimization for NetPIPE for performance and energy. . . . 120

7.4 Bayesian optimization for NodeJS for performance and energy. . . . 120

7.5 Raw requests-per-second log from Twitter cache-trace. . . . . . . . . . . . 122

7.6 Bayesian optimization applied to Twitter cache-trace request rates

over a 24 hour period. Each row represents a single SLA objective

we are targeting and we display the change in energy (Joules) as

QPS changes Next to each energy (Joules) figure, we also show the

change in measured tail latency as QPS changes. . . . . . . . . . . . . 125

7.7 Bayesian optimization applied to Twitter cache-trace request rates where

it used to optimize only for minimizing 99% tail latency. We show show

the energy (Joules) consumption for this mode of operation. . . . . . . . . 125

7.8 Bayesian optimization applied to memcached-silo over a 24 hour

period. Each row represents a single SLA objective we are targeting

and we display the change in energy (Joules) as QPS changes Next

to each energy (Joules) figure, we also show the change in measured

tail latency as QPS changes. . . . . . . . . . . . . . . . . . . . . . . . . 128

xix



xx 

LIST OF ABBREVIATIONS 

CC Cache Coherent 

CPU Central Processing Unit 

DVFS Dynamic Voltage/Frequency Scaling 

EbbRT Elastic building block Runtime 

EDP Energy Delay Product 

GB GigaBytes 

IO Input Output 

IP Internet Protocol 

ITR Delay Interrupt delay 

J Joules 

MSR Model Specific Registers 

MTU Maximum Transmission Unite 

NIC Network Interface Card 

NUMA Non Uniform Memory Access 

OS Operating System 

PMU Performance Monitor Unit 

RAPL Running Average Power Limit 

RSC Receive Side Coalescing 

RX Receive 

TB TeraBytes 

TCP Transmission Control Protocol 

TX Transmit 

UDP User Datagram Protocol 



1

CHAPTER 1

Introduction

1.1 PROBLEM STATEMENT

The design and use of operating systems (OSes) go hand-in-hand with the hard-

ware on which it is deployed. One can trace this co-design through the first re-

search OSes built in the 1960s up till the dawn of modern multiprocessors in the

early 2000s (see Table 1.1). The evolution of computer hardware, in particular the

decreasing cost of processors, memory and networking, compelled researchers to

investigate the best way to structure a distributed OS around a set of networked

workstations/processors. As part of this evolution, the microkernel model was

developed by breaking from traditional monolithic designs and popularizing the

restructuring of basic system resources such as memory, disks, networking, secu-

rity, etc to be managed by a set of resource servers that typically use a message

passing protocol to communicate these resources between different applications.

These servers enabled a form of system specialization where these resources can be

built with custom protocols and/or policies towards application specific require-

OS Target Hardware Year
Multics GE-635 1964
UNIX PDP-11 1964

HYDRA C.mmp 1974
Mach heterogeneous workstations 1986

V VMP Multiprocessor 1988
Sprite SPUR Multiprocessor Workstation 1988

Amoeba heterogeneous workstations (SPARC, x86, Sun3) 1990
Cache Kernel ParaDiGM 1994

Tornado NUMAchine Multiprocessor 1999

Table 1.1: Some widely citepd historical research operating systems.
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ments. The exokernel model further eliminated most OS abstractions in order to

create a set of base components to directly manage the physical resources of a com-

puter, this further improved application performance by enabling applications to

also specialize hardware resources toward a single use-case.

However since the late 1990s, a variety of industry, application, and hardware

trends (popularity of x86 ISAs that provide virtualization support) have moved

away from this systems specialization goal and resulted in OS research (Pike, 2000)

more focused on efficiently multiplexing multiple applications on similar hard-

ware profiles. The advent of large shared memory CC-NUMA multiprocessors

(Kuskin et al., 1994; Grindley et al., 2000; Laudon & Lenoski, 1997; Brewer & Ast-

falk, 1997; Lovett & Clapp, 1996) led to industry efforts on trying to scale traditional

Unix-based OSes on these new architectures (Verghese et al., 1996; Perez, M., 1995).

Part of this was due to the ubiquitous and successful development environments

provided by Unix (i.e. X, Emacs, Tex, C/C++, gcc), which meant a common goal

of OS research was to provide a compatible Unix emulation layer (Young et al.,

1987; Ousterhout et al., 1988; Cheriton, 1988; Cheriton & Duda, 1994; Gamsa et al.,

1999). In addition, the increasing role of computers in all manners of modern life

meant an ever abundant set of standards, ranging from TCP/IP to various com-

puter peripherals, that an OS must support. For example, in Plan9 (Pike et al.,

1990) around 90% of the development work was invested to be compatible with

various standards (Pike, 2000). In this period, monolithic kernels largely went

unchanged primarily due to the performance and energy "free lunch" provided

by improvements in computer silicon technology. As stated by Moore’s law and

Dennard scaling: as transistor counts doubled, processor power density stayed

roughly the same, which means an effective doubling of performance per watt
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every two years. During this period, the combination of kernel virtualization soft-

ware maturity and processor hardware advances meant that it was cheaper and

easier to meet computing demands by simply scaling up the commodity hardware

used in data centers, i.e. economies-of-scale.

However, due to the effective end of Dennard scaling and Moore’s Law (Es-

maeilzadeh et al., 2011), traditional approaches of scaling up commodity soft-

ware and hardware in data centers is no longer a feasible method to meet mod-

ern application performance demands (Mark Silberstein, 2017). Specifically, as

we can no longer reliably rely on faster clock speeds nor the ability to power

large caches, there is greater pressure to exploit alternatives such as hardware

function-offloading. For example, there has been a proliferation of new smart

hardware such as NICs (businesswire, 2016; Mellanox Innova SmartNIC, 2016),

SSDs (Gu et al., 2016), memory (Agrawal, Sandeep R and Idicula, Sam and Ragha-

van, Arun and Vlachos, Evangelos and Govindaraju, Venkatraman and Varadara-

jan, Venkatanathan and Balkesen, Cagri and Giannikis, Georgios and Roth, Charlie

and Agarwal, Nipun and Sedlar, Eric, 2017) in order to bring computation closer to

the data (Barbalace, Antonio and Iliopoulos, Anthony and Rauchfuss, Holm and

Brasche, Goetz, 2017; R. Balasubramonian and J. Chang and T. Manning and J. H.

Moreno and R. Murphy and R. Nair and S. Swanson, 2014), and programmable ac-

celerators (Putnam et al., 2014; ?) in modern data centers that expose mechanisms

for applications to better cater the hardware towards their specific use cases.

Regardless, as computing demand continues to grow, so does its energy con-

sumption (Strubell et al., 2019; Fan et al., 2007; Nicola Jones, 2020); thereby pro-

viding another set of challenges for computing systems to be competitive in both

performance and energy. To meet these challenges, new systems design insights
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are needed. Below, we first begin by providing more context for these changes

and challenges; next, we provide a high level overview of the contributions in this

dissertation that try to meet these challenges, lastly, we summarize a few key ex-

perimental results and their implications on future systems research.

1.2 CHALLENGES

1.2.1 Energy

Global datacenter energy is continuing to rise (Gupta et al., 2020; Strubell et al.,

2019; Fan et al., 2007; Nicola Jones, 2020) as data-intensive and interactive appli-

cations continue to grow alongside new workloads driven by Internet-of-Things

(IoT) and various other edge computing devices. Further, a recent study shows

that the environmental footprint of hardware manufacturing is also increasing con-

currently (Gupta et al., 2020), which indicates the importance of being able to ex-

tract more value out of existing software and hardware.

While there have been a tremendous amount of previous research in under-

standing and reducing application energy use (Wu et al., 2016; Hsu et al., 2018;

Lo et al., 2014; Hsu et al., 2015; Kasture et al., 2015; Leverich & Kozyrakis, 2014;

Prekas et al., 2017; Asyabi et al., 2020; Zhan et al., 2017; Vamanan et al., 2015; Meis-

ner & Wenisch, 2012; Chou et al., 2016, 2019; Sasaki et al., 2013; Flautner et al., 2001;

Dominik Brodowski, Nico Golde, Rafael J. Wysocki, Viresh Kumar, 2022; Lefurgy

et al., 2007; Cochran et al., 2011; Isci et al., 2006; Li & Martinez, 2006; Lee & Kim,

2009; Kim et al., 2008; Ge et al., 2007; Spiliopoulos et al., 2011; Kondo et al., 2007;

Le Sueur & Heiser, 2011; Freeh et al., 2007; Elnozahy et al., 2003; Guliani & Swift,

2019; Tolia et al., 2008a; Hwang & Pedram, 2016), the role that the OS plays in ap-

plication energy use and whether opportunities exist to achieve even better energy
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efficiency is unfortunately not as well understood. We believe there are two main

factors to this:

1. The popularity of using general purpose OSes such as Linux to deploy ap-

plications. The structure of a general purpose OS is typically complex, and

is often treated as a black-box as it was designed to support diverse applica-

tions and is packed with many kinds of policies that dynamically adjust sys-

tem policies (Intel, 2021; Mellanox, 2022; ARM, 2023; Dominik Brodowski,

Nico Golde, Rafael J. Wysocki, Viresh Kumar, 2022; Rafael J. Wysocki, 2018),

therefore making it difficult to reason about overall system energy efficiency

given the interplay between systems policies and how it interacts with the

hardware.

2. Modern systems software also often contain complex stacks of both syn-

chronous and asynchronous software layers which include device drivers,

OS-level policies, and application level work. This makes it a challenge to

gather fine-grained experimental measurements of both software and hard-

ware components during application runtime to understand the role that the

OS plays.

1.2.2 Hardware

Traditional hardware techniques for shrinking transistors on a processor die have

already hit physical limits as the era of Moore’s law and Dennard scaling is effec-

tively over (Esmaeilzadeh et al., 2011; Semiconductor Industry Association, 2015;

Krste Asanovi). In data centers, this means that scaling up commodity hardware

and running applications in virtualized instances of OSes is no longer a compet-

itive method to meet compute demands with respect to monetary cost, perfor-
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Figure 1.1: Growth in complexity of Linux kernel and device drivers.

mance, and energy (Mark Silberstein, 2017). To meet these demands, hardware

manufacturers have mainly pursued two approaches: 1) function-offloading into

various hardware devices, and 2) packing more functionality into existing devices.

• Hardware Function-Offloading: Modern data centers are beginning to di-

versify its hardware makeup by introducing new programmable hardware

such as NICs (Mellanox Innova SmartNIC, 2016; businesswire, 2016), SSDs (Gu

Figure 1.2: Growth in complexity of NIC device drivers.
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et al., 2016), and memory (Agrawal, Sandeep R and Idicula, Sam and Ragha-

van, Arun and Vlachos, Evangelos and Govindaraju, Venkatraman and Varadara-

jan, Venkatanathan and Balkesen, Cagri and Giannikis, Georgios and Roth,

Charlie and Agarwal, Nipun and Sedlar, Eric, 2017). This move away from

the traditional CPU-centric view of programming is motivated by factors

such as faster network bandwidth approaching DRAM access time (Barbalace,

Antonio and Iliopoulos, Anthony and Rauchfuss, Holm and Brasche, Goetz,

2017) and processing bottlenecks induced by current processor speeds (Es-

maeilzadeh et al., 2011), this problem is also worsened by increasingly con-

strained energy budgets (Hsu et al., 2018; Wu et al., 2016). Further, bring-

ing computation closer to the data (R. Balasubramonian and J. Chang and T.

Manning and J. H. Moreno and R. Murphy and R. Nair and S. Swanson, 2014)

also has the potential to improve overall application efficiency such as re-

ducing the need to transfer data back and forth from the CPU. Subsequently,

these devices are expected to join an existing plethora of programmable ac-

celerators (Graphics Processing Units, 2022; Field Programmable Gate Ar-

rays (FPGAs), 2022; ?) already within modern datacenters (Mark Silberstein,

2017). These mechanisms also represent new opportunities to address the

role that the OS can play in application performance and energy such as

identifying which portions of functionality can be offloaded and how to best

program and manage diverse sets of hardware concurrently.

• Diverse Hardware Features: There has been a large body of work document-

ing and understanding the complexity of modern device drivers (Kadav &

Swift, 2012) and various aspects of their reliability (Ball et al., 2006; LeVasseur

et al., 2004; Ryzhyk et al., 2009), configuration (Renzelmann & Swift, 2009;
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Ryzhyk et al., 2014; Schüpbach et al., 2011), and performance (Ganapathy

et al., 2008; Ryzhyk et al., 2010). This complexity can be seen in figure 1.1

which shows the growing code size of device drivers relative to the rest of

the kernel between 2012 and 2018. In figure 1.2, one can also see this growth

even in a common hardware device such as the NIC. Between kernel ver-

sions 1.3.0 and 5.0.1, there has been a increase in the complexity of NIC de-

vice driver from a few hundred thousand lines of code up to 2.5 million. Part

of this is due to the variety of hardware vendors releasing NICs, figure 1.2

shows over 80 different companies releasing device drivers for their respec-

tive NICs in the latest 5.0.1 kernel version. Another contributing factor to

this complexity is the ever increasing amount of features that are packed into

modern hardware. Figure 1.3 shows a breakdown of the various features in

device driver code for one a popular network device such as the Intel 82599

family of NICs. We found there were a total of 5630 32-Bit hardware registers

that can be configured in this device and at the moment, Linux device driver

setup code only use around 1360 of them to bring the NIC to a working state.

Both of the approaches described above also illustrate challenges that future

systems must address. In contrast to hardware designs from Table 1.1, which were

mainly based on the von Neumann architecture; modern hardware is more com-

plex with different features that may or not may be exposed to applications. More-

over, relying on device drivers to act as an abstraction over existing hardware func-

tionality is not sufficient to meet the performance and energy goals of datacenter

scale workloads as 1) they typically come prepackaged with "one-size-fits-all" al-

gorithms to manage the hardware features and this 2) can prevent software from

fully understanding and utilizing these feature towards application specific goals.
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Figure 1.3: Complexity of Intel 82599 NIC device driver.

Lastly, the vast amount of configuration combinations exposed by these devices

poses the challenges of whether an application or user can successfully explore

this space without the help of more guided optimization techniques. Recent ad-

vances in machine learning may offer a path to enabling such guidance in a feasible

way.

1.2.3 Software

As latency-critical tasks become ubiquitous across data centers, deploying them

on dedicated nodes is becoming a well studied and favored decision (Prekas et al.,

2015; Lo et al., 2015; Guliani & Swift, 2019; Tang et al., 2020) as this dedication

prevents latency violations that might be triggered by the co-location of best-effort

batch tasks. From an OS research perspective, specializing applications for a sin-

gle system led to a revival in exploring previous micro-kernel and exokernel de-

signs in the context of modern hardware and language techniques such as kernel
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bypass (Belay et al., 2014; Dragojević et al., 2014; Intel Corporation, 2022) and re-

cently proposed library OSes (Schatzberg et al., 2016; Madhavapeddy et al., 2013;

Antti Kantee, Justin Cormack, 2014; Peter et al., 2015). While these techniques

have demonstrated tremendous performance gains, they are typically deployed

in virtualized instances and time-share the hardware with other system compo-

nents. Further, we lack knowledge regarding the performance and energy benefits

of running these library OSes baremetal.

Service oriented applications are typically I/O driven, and frequently exercise

OS components such as the device driver and protocol processing stacks. Various

OS policies and mechanisms are needed to detect requests, dispatch the work to

service a request and to determine when and how long to idle the processor for

potential energy savings. As such, the OS can have important impacts on both

performance and energy of a workload even if there is a user level component at

the end of the request. Further, the challenges posed in §1.2.1 and §1.2.2 means

that there is a need to understand the role of the OS in affecting overall system en-

ergy efficiency both in its software policies and the possibilities to further improve

both performance and energy when the hardware itself can also be optimized for

a single application.

Recent studies of widely deployed services, such as in-memory key-value stores,

from companies such as Facebook (Rajesh Nishtala and Hans Fugal and Steven

Grimm and Marc Kwiatkowski and Herman Lee and Harry C. Li and Ryan McEl-

roy and Mike Paleczny and Daniel Peek and Paul Saab and David Stafford and

Tony Tung and Venkateshwaran Venkataramani, 2013), Twitter (Yang et al., 2020),

Netflix (Shashi Madappa, 2012), and Reddit (Daniel Ellis, 2017) reveal that these

services often maintain a mean demand curve that change slowly over the course
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of hours and up to days, which suggests that specialization of a single application

at a specific offered load could be a realistic form of optimization by exploiting the

stable regions of these demand curves.

1.3 MOTIVATION

In context of the challenges above, this dissertation is motivated by changes occur-

ring in both software and hardware, and the performance and energy requirements

of datacenter applications. In §1.2.3, the growing popularity of unikernels (Antti

Kantee, Justin Cormack, 2014; Madhavapeddy et al., 2013; Raza et al., 2019) and

the popularity of dedicating nodes for specific applications (Tang et al., 2020) in

data centers implies that an eventual deployment model to achieve highest per-

formance would be to run application specific unikernel binaries on dedicated

baremetal hardware. However, the diverse nature and inherent complexity of

modern hardware as shown in §1.2.2 poses a set of challenges as to how an OS

should manage its features and how it can exploit these features to customize to-

wards a specific use case. Section 1.2.1 shows that energy is also an important con-

sideration for many applications and the energy efficiency benefits of specialized

OS’ and what further improvements can be achieved through hardware special-

ization is a largely unexplored area of research. Given the importance of reducing

energy consumption and the attendant challenges (§1.2.1), this thesis is motivated

to consider the combined impacts of both OS and hardware specialization.

1.4 CONTRIBUTIONS

This dissertation establishes that optimizing performance-energy simultaneously,

despite complex OS structure, can be made a well-defined task using existing hard-
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ware mechanisms. A summary of the novel contributions of this thesis is as fol-

lows:

1. We design and construct a reproducible experimental methodology that en-

ables the impact of different OS designs and implementations on application

performance and energy to be studied in a controlled fashion.

2. Using our methodology, we find that application performance and energy

can be significantly optimized by externally controlling (independent of the

OS) request batching and processor frequency settings using standard hard-

ware mechanisms.

3. We find that specialized OS structure enables new and important interplay

with energy consumption: i) our work is the first to show that specialization

has a dramatic impact not only on performance but also energy, ii) and yields

even more advantages from using the two hardware mechanisms.

4. We find that the results of our experimental study are sufficiently structured,

which led us to develop a novel mathematical model that can accurately

characterize the complex layers of systems software and their interactions.

Moreover, we show how our model can accurately predict application per-

formance and energy independent of the OS.

5. The results of our modeling work motivated us to explore learning systems

in order to exploit these structures. We demonstrate how an off-the-shelf

platform, Ax Ax:Adaptive Experimentation Platform (2022); Bakshy et al.

(2018) can be used to use the dataset from our experimental study to au-

tomatically adapt the two hardware mechanisms towards performance and

energy targets that are agnostic to different types of OSes and applications.



13

6. Lastly, we demonstrate the practicality of our learning system by applying it

to on a real world in-memory key-value store trace from Twitter Juncheng Yang

(2020) and demonstrate its ability to dynamically adapt to changing request

rates while satisfying performance and energy goals.

Below, we first segment our contributions and findings into the following broad

categories: 1) Engineering, 2) Experimental Study, 3) Experimental Analysis, 4)

Applying Machine Learning and then expand on our contributions individually.

1.4.1 Engineering Contributions

1.4.1.1 In-situ data collection infrastructure

Given the complexity of the modern systems software layers Kadav & Swift (2012);

Renzelmann & Swift (2009); Ryzhyk et al. (2014); Schüpbach et al. (2011); Ball et al.

(2006); LeVasseur et al. (2004); Ryzhyk et al. (2009); Lim et al. (2014); Jeong et al.

(2014); Marinos et al. (2014); BeifuSS et al. (2015); Hanford et al. (2018); Cai et al.

(2021) and an application’s inter-dependency on external request rates Schroeder

et al. (2006), it can be a difficult task to measure how changing an OS, its policies,

and the way hardware is used, can affect an application’s performance and energy

profile.

In this thesis, we tackle this problem by constructing a novel logging mecha-

nism, itrLog, that captures the behavior of an entire software stack by using epochs

based timestamp counters to conduct lossless in-situ fine-grained time series data

which can reflect all packet and software interactions. These timestamps enable

us to achieve precise delineation of system behavior down into the detailed packet

receives and transmits at the NIC’s interrupt handling logic. Furthermore in each

epoch, we log additional software statistics and hardware statistics from the per-
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formance monitor units (PMUs) in order to gain deeper insights into these fine-

grained interactions on an application’s performance and energy.

As a mechanism to induce hardware and policy changes, itrLog uses a NIC’s

hardware feature to set a periodic timer for handling interrupts, this interrupt de-

lay (ITR) setting Intel (2021); Mellanox (2022) is used to induce batched handling

of requests. Further, a processor’s dynamic voltage frequency scaling (DVFS) set-

ting ARM (2023); Dominik Brodowski, Nico Golde, Rafael J. Wysocki, Viresh Ku-

mar (2022) is used to to modify CPU energy settings to explore application per-

formance and energy trade-offs. Using itrLog, this thesis presents results from an

in-depth and first-of-a-kind performance and energy study of four network appli-

cations on two different OSes through the controlled use of ITR and DVFS mecha-

nisms.

Implications: itrLog is both application and OS agnostic as it captures system

behavior at the device driver level, our approach can be easily extended to other

application domains and document their performance and energy profiles.

1.4.2 Experimental Study Contributions

1.4.2.1 Combining ITR and DVFS for performance and energy gains.

Although DVFS has been extensively studied in energy proportional computing in

Linux Sasaki et al. (2013); Flautner et al. (2001); Dominik Brodowski, Nico Golde,

Rafael J. Wysocki, Viresh Kumar (2022); Lefurgy et al. (2007); Cochran et al. (2011);

Isci et al. (2006); Li & Martinez (2006); Lee & Kim (2009); Kim et al. (2008); Ge

et al. (2007); Spiliopoulos et al. (2011); Kondo et al. (2007); Le Sueur & Heiser

(2011); Freeh et al. (2007); Elnozahy et al. (2003), this thesis presents novel results

from its use with a baremetal library OS, EbbRT Schatzberg et al. (2016). Further,
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while prior work have only used a static setting of a single ITR value for experi-

mental stability Yasukata et al. (2016); Peter et al. (2015); Ousterhout et al. (2019)

and demonstrated value of batching in software Chou et al. (2019); Elnozahy et al.

(2003), this thesis presents finds how one can exploit this network device feature

on a per-application basis to induce stability and predictability in incoming re-

quest processing in order to magnify the benefits of processor energy settings to

improve performance and reduce energy use. For example in Linux, we find the

right static setting of ITR and DVFS can result in 1.33X performance improvement

while reducing energy consumption by 1.76X.

Implications: ITR and DVFS can be used to further improve application per-

formance and energy by exploiting the stable regions of the demand curves of

applications such as widely deployed in-memory key-value stores Rajesh Nishtala

and Hans Fugal and Steven Grimm and Marc Kwiatkowski and Herman Lee and

Harry C. Li and Ryan McElroy and Mike Paleczny and Daniel Peek and Paul Saab

and David Stafford and Tony Tung and Venkateshwaran Venkataramani (2013);

Yang et al. (2020); Shashi Madappa (2012); Daniel Ellis (2017).

1.4.2.2 Energy study of baremetal Library OS

In academia, there is a huge interest in building per-application systems Belay et al.

(2014); Lim et al. (2014); Prekas et al. (2017); Ousterhout et al. (2019); Ghigoff et al.

(2021); Chou et al. (2016); Jin et al. (2017); Han et al. (2012); Yang et al. (2021); Ya-

sukata et al. (2016); Cadden et al. (2020); Peter et al. (2015); Antti Kantee, Justin Cor-

mack (2014); Madhavapeddy et al. (2013); Raza et al. (2019), such as library OSes,

unikernels, kernel-bypass techniques, etc., however, they have typically only fo-

cused on performance and the energy efficiency of such systems are not as clearly



16

understood. We demonstrate the value of such systems in both performance and

energy by porting EbbRT Schatzberg et al. (2016), a library OS written in a high-

level C++ language, to run on baremetal hardware by developing a network de-

vice driver from scratch for the Intel 82599 family of NICs. EbbRT has common

optimization attributes such as such as run-to-completion, event-driven execution

model, single execution domain, and compile-time optimization. EbbRT running

in baremetal was able to achieve up to 10X throughput improvements over Linux

in a NetPIPE workload and over 2.5X improvements energy efficiency in a Mem-

cached server.

Implications: Many of these previous research systems should exhibit the same

energy efficiency findings as demonstrated through our EbbRT results. Further,

our findings demonstrate the value of OS specialization techniques to reduce en-

ergy consumption.

1.4.2.3 Data-driven OS Specialization

This dissertation also demonstrates the use of our novel itrLog test bed to per-

form data driven driven OS exploration to discover new insights for alternate OS

design and policy changes. As an example, based off our findings of using fast

ITR values in Linux which enabled the best performance and energy savings; we

were then motivated to explore the use of "slow" polling in EbbRT and as a result

demonstrated up to 1.8X better performance while using 2X lower energy - this

is in contrast to the normative assumption of OS poll whe (2012); Golestani et al.

(2019) where it trades performance for higher energy use.

Implications: Library OSs are strong candidates to serve as tools for aggres-

sive optimization of energy where the design and implementation space of opti-
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mizations can be guided through a data driven process given the right points of

introspection. Furthermore, this opens the space of new policies designs, such as

switching from interrupt to poll based processing given the workload type. Our

findings of OS path specialization techniques and their benefits can also be adapted

in general purpose OSes.

1.4.3 Experimental Analysis Contributions

1.4.3.1 Developing a model to capture complex systems interactions

Using insights from our analysis of the dataset, this thesis develops a simplified

request processing timeline that can be expressed mathematically and constructs

a model to reflect the important interactions that the OS can have on the realized

application performance and energy. Specifically, our model lets us evaluate how

ITR and DVFS interacts with OS and application request processing and how this

changes when the OS or offered load changes.

As an example of our model’s accuracy, we can use it to predict the per-request

tail latency of memcached at 600K QPS: our experimental data shows a mean tail

latency of 270.91 µs ± 132.80 µs and our model’s predicted
√
MSE latency of 0.18

µs is much smaller than any latency measurements, indicating an accurate fit. To

the best of our knowledge, this is the first type of study where hardware level

metrics are collected, analyzed and subsequent model built to correctly capture

behavior of real world applications Atikoglu, Berk and Xu, Yuehai and Frachten-

berg, Eitan and Jiang, Song and Paleczny, Mike (2012); Prekas (2017); Joyent (2013).

Implications: Our results demonstrate that not only is it possible to do in-

situ fine-grained data gathering and analysis of a complete full software stacks,

but also correlate the fine-grained packet by packet behavior to its impacts on an
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application’s performance and energy profile. Furthermore, the modeling work

suggests reinforcement learning approaches can be used to build control of ITR,

DVFS settings.

1.4.4 Applying with Machine Learning

1.4.4.1 Machine learning technique to automatically tune ITR and DVFS.

While the analytical models demonstrate that one can pre-compute ideal batching

and processor energy settings for some software stacks; it is not a practical ap-

proach in all but highly constrained static environments. However, the existence

and accuracy of the analytic model’s equations suggests the viability of using a

black-box learner to exploit these structures. We present an example of this in

our use of Bayesian optimization Frazier (2018); Garnett (2022) to efficiently find

batching and energy settings that target performance and energy goals across the

applications and OSes. Such a technique can compensate for inaccuracies in our

analytical model and the need for exhaustively searched experimental data.

We then built an experiment to run a full 24 hour in-memory key-value store

trace from Twitter Juncheng Yang (2020) and demonstrate Bayesian optimization’s

ability to adapt to changing requests rates. We find this technique was able to

automatically configure Linux such that it further reduced its energy use by 50%

while meeting performance goals.

Implications: Despite different OS and application stacks, the results in this

dissertation present novel techniques for data gathering, analysis and subsequent

model and automated learner that demonstrate the ability to tame these complex-

ities in order to build smarter policies that can better adapt to changing perfor-

mance and energy targets.
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1.5 OUTLINE

The rest of the dissertation is organized as follows,

Chapter 2: details the design and architecture of itrLog and provides additional

information on our experimental infrastructure.

Chapter 3: details the Linux and EbbRT software stacks along with the four ap-

plications used in our experimental study.

Chapter 4: presents an abstract network processing timeline in order to prepare

for discussions of experimental results.

Chapter 5: lists our major experimental findings from the study.

Chapter 6: presents intuition for the mathematical model and results from ap-

plying it our experimental data.

Chapter 7: demonstrates our Bayesian optimization approach to automatically

find optimal parameters for ITR and DVFS to minimize energy use.

Chapter 8: presents the related work section and Chapter 9: lists possible future

work from this thesis and Chapter 10: concludes this thesis.
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CHAPTER 2

itrLog: in-situ data collection infrastructure

This dissertation carefully examines the interactions of the OS software and hard-

ware when considering both energy and performance in the context of network

driven applications. To this end, we conducted a comprehensive study by creat-

ing a novel data collection infrastructure to collect a body of data that documents

these relationships. Through this study, one goal is to reveal the fine-grained re-

lationships between the different applications as they run on different OSes and

the impact on their runtime behavior as request batching and processor speeds are

externally controlled through two common hardware mechanisms. Towards this,

this chapter presents the details of our data collection infrastructure, itrLog. This

infrastructure not only contain OS independent ways to collect experimental data,

but also the mechanisms required to set batching and processor frequency rates as

well as the visualization tools needed for subsequent data analysis.

To begin, we summarize the following attributes that we believe to be impor-

tant for an experimental data collection infrastructure:

1. Agnostic infrastructure that can gather data regardless of the OS and appli-

cations running on top.

2. Epoch-based data collection to collect fine-grained system measurements

partitioned by time at the per-core granularity.

3. Data logging statistics that capture both important network processing data

as well as system usage data (i.e. energy, instructions, cycles, etc.) while not

drastically perturbing overall application performance.

4. Efficient data retrieval method for subsequent storage and analysis.
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In the sections below, we first discuss the details of implementing these four

attributes and expand on possible challenges. We then present itrLog, which is our

data collection infrastructure whose construction is informed by these attributes.

We also discuss the similarities and differences of our implementations of itrLog in

both a general purpose Linux and a specialized OS, EbbRT.

2.1 ATTRIBUTES OF DATA COLLECTION INFRASTRUCTURE

The broader implications of our design choices for the data collection infrastruc-

ture is discussed below; along with prospective implementation details that one

should manage.

2.1.1 Agnostic Infrastructure

As our infrastructure should collect data transparently regardless of the OS and ap-

plication running on top, it then becomes key to place the data collection logic as

close to the underlying hardware as possible such that it can be applied generically.

As this thesis targets network oriented applications, it was intuitive to place our

logic at the device driver for managing the NIC as this code is often the first piece

of logic that runs after packets are received. As the NIC’s device driver logic com-

municates with higher level network stacks to pass on the received data, this also

enables the infrastructure to gather baseline network statistics such as number of

physical bytes processed; therefore providing greater context around application

runtime behavior.
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Figure 2.1: Example figures that showcase the fidelity of fine-grained data
collection of energy consumed (Joules) at a per interrupt level.

2.1.2 Epoch-based

We were motivated to pursue an epoch-based approach for data collection as this

approach creates a time series that partitions and records critical system events;

primarily because OS interrupt and polling behavior partitions time into busy and

idle periods. The OS directly controls energy consumption behavior during idle

time and its design and implementation can have a significant impact on the in-

structions that compose busy time and their efficiency. As such, we found that local

behavior of the OS, during interrupts, combines to significantly influence global

system behavior and performance. Interrupt-centric energy-performance logs en-

able us to locate and analyze relevant power events in the span of execution of a

workload. The behavior of the events can be attributed to either the involvement

of OS policies, such as using just enough processor energy to satisfy a particular

request or keeping the processor busy due to changes in offered loads. Typical log-

ging approaches such as periodic PC sampling can often overlook these critical OS

episodes, that while short in duration, can fundamentally dictate the net energy
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Figure 2.2: Snippet of raw log data

efficiency achieved.

Further, as real world applications such as in-memory key-value stores are typ-

ically deployed on entire nodes (Atikoglu, Berk and Xu, Yuehai and Frachtenberg,

Eitan and Jiang, Song and Paleczny, Mike, 2012) and span multiple physical cores,

it is also important to conduct this epoch-based data collection across these cores.

In most systems, there is typically a fixed mapping between a network queue and

a physical core. By taking advantage of this fixed mapping, one can create pre-

allocated per-core data structures that are sized appropriately for the upcoming

application and its offered load. This initial pre-allocation also eliminates addi-

tional overhead from dynamically allocating and freeing memory in the OS.

An example of the benefits of this epoch-based data collection approach is

shown in fig. 2.1 (a sample of the raw log data is also shown in fig. 2.2); the dis-

tinct banding in energy consumed characterizes the behaviors of three different

systems studied. In this figure, each point represents a single measurement of en-

ergy at a distinct point in time during the entire experimental run of Memcached

which serves an offered load at 600K QPS for a total of 20 seconds.
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2.1.3 Data Logging Statistics

The types of data logged can include hardware statistics such as performance mon-

itoring units (PMUs), which are often provided on modern processors, and soft-

ware statistics that are system wide and other packet processing metrics. The pe-

riodicity of the data logged can also be specified with the epoch-based approach.

For example in the NIC’s device driver, it is possible to instrument this periodic-

ity at the per-interrupt level such that hardware and software statistics relevant to

the performance and energy profile of a particular application and system can be

logged. Further, one should also ensure that the collected metrics are OS indepen-

dent enough such that they are not embedded with system specific semantics.

As this level of data collection can result in very detailed sets of data, care must

be taken to ensure that it does not drastically impact the performance of the ap-

plication by evicting performance sensitive cache lines. Here are a few methods to

address the performance sensitivity of massive data collection: 1) simply decrease

the variety and total amount of the data collected, 2) decrease the frequency of data

collection, and 3) use special instructions (if available on your system) that allow

for write-once-read-later mechanisms in order to avoid evicting crucial cache lines.

Depending on the application work and the performance degradation observed;

all three methods can be adjusted for the application specific use cases. In the case

of 1), it might not always be necessary to gather all possible system and hardware

metrics and some modulation may needed to only capture the metrics that are

important for the specific application. For 2), one can set specific epochs such as

doing data collection after X number of interrupts or after X amount of time has

passed – though care should be taken with the time counter such that its frequency

is also not impacted by processor frequency changes. For 3), it largely depends on
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the ISA of the system to provide such mechanisms; for example on x86_64, such

capabilities are provided via non-temporal store instructions.

2.1.4 Efficient Data Retrieval

Suppose a large amount of in-memory data has been gathered; here are a few

methods to efficiently retrieve the data for storage and analysis: 1) the data struc-

tures can be mapped into the filesystem such that basic filesystem commands can

then be used to read and save the results locally and remotely, 2) the data can also

be mapped to userspace memory where it is then the application’s responsibility

to handle storage, and 3) using TCP protocols such that a specific incoming packet

request results in the data being sent over the network to a storage server; this pro-

cess can be made even more efficient if the data can be immediately transmitted

from the NIC with custom network protocols without needing to go up through

the entire network stack again. For 1) and 2), care should be taken to pace this

memory copying as to not throttle the rest of the system while 3) should ensure

the protocol is simple enough and only used after the application has finished run-

ning in order to not perturb the performance of a running application.

2.2 ITRLOG DETAILS

Motivated by the attributes described above, we created itrLog in order to conduct

an experimental study on a x86_64 platform that consists of an Intel(R) Xeon(R)

CPU E5-2690 @ 2.90GHz processor with an Intel 82599ES 10-Gigabit SFI/SFP+

NIC. Figure 2.3 illustrates the key features of itrLog and the sections below will

provide further implementation details in both Linux and EbbRT.
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2 long long data[13];

3 struct {

4 long long tsc; // time stamp counter

5 long long ninstructions; // nstructions counter

6 long long ncycles; // cycles counter

7 long long nllc_miss; // last-level cache miss counter

8 long long joules; // energy counter

9 long long c0; // c0 sleep state counter

10 long long c1; // c1 sleep state counter

11 long long c1e; // c1e sleep state counter

12 long long c3; // c3 sleep state counter

13 long long c6; // c6 sleep state counter

14 long long c7; // c7 sleep state counter

15 unsigned int rx_desc; // number of receive descriptors

16 unsigned int rx_bytes; // number of received bytes

17 unsigned int tx_desc; // number of transmit descriptors

18 unsigned int tx_bytes; // number of transmit bytes

19 } __attribute((packed)) Fields;

20 } __attribute((packed));

Listing 2.1: struct IxgbeLogEntry data structure

Both the device initialization and main functions for operating the NIC is found

in the file: ixgbe_main.c. Inside this function, ixgbe_open() is the main func-

tion that first brings the NIC to a working state; at the top of this function is where

we instrumented code to pre-allocate arrays of struct IxgbeLogEntry using

a Linux specific allocator such as vmalloc(). These arrays represent a log of the

entire performance and energy data for an application under some offered load.

Correspondingly, inside the function ixgbe_close(), vfree() is used to free

this memory – this is to ensure proper memory management behavior every time

the modified NIC kernel module is loaded and unloaded. We confine our modi-
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fications to device driver specific changes as these loadable modules enable ease

of (re)deployment and giving us the capability to quickly swap out the modified

device drivers with different types of data collection methodology.

2.2.1.2 Epoch-based

To enable epoch-based data collection, itrLog gathers fine-grained logs of hard-

ware statistics relevant to the performance and energy profile of a particular work-

load and of the system overall. We instrument code to collect data using MSI-

X interrupts; which notify the device driver that new events such as packets re-

ceived or transmission completion have occured. This MSI-X initialization code is

found in ixgbe_main.c with function ixgbe_request_msix_irqs() and in-

side this function, the request_irq() call is used to map an available hardware

interrupt vector number to the device driver’s generic interrupt handler function:

ixgbe_msix_clean_rings(). Typically, this occurs on a per-core basis where

every core has its own interrupt handler function called depending if there are

packets to be processed for that core. Inside ixgbe_msix_clean_rings(), the

logging code is added right before the call to ixgbe_poll() (which is Linux’s

NAPI function for processing received packets) in order store the accumulated

data statistics. As stated, we log this data into a single struct IxgbeLogEntry

entry by using a per-core counter to index into one of the pre-allocated arrays. A

sample of this logging process is provided below:

1 static irqreturn_t ixgbe_msix_clean_rings(int irq, void *data) {

2 struct ixgbe_q_vector *q_vector = data;

3

4 // index is unique to each core

5 int index = q_vector->v_idx;
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6

7 // there is an ixgbe_logs[] array for each core

8 il = &ixgbe_logs[index];

9

10 // icnt is used to index into each IxgbeLogEntry

11 icnt = il->itr_cnt;

12

13 // ensure log entries stay within pre-allocated memory bounds

14 if (icnt < IXGBE_LOG_SIZE) {

15 // access each IxgbeLogEntry

16 ile = &il->log[icnt];

17

18 // update receive and transmit bytes and descriptors

19 ile->Fields.rx_desc = q_vector->rx.per_itr_desc;

20 ile->Fields.rx_bytes = q_vector->rx.per_itr_bytes;

21 ile->Fields.tx_desc = q_vector->rx.per_itr_desc;

22 ile->Fields.tx_bytes = q_vector->rx.per_itr_bytes;

23 ......

24 }

25 /* EIAM disabled interrupts (on this vector) for us */

26 if (q_vector->rx.ring || q_vector->tx.ring)

27 napi_schedule_irqoff(&q_vector->napi);

28 return IRQ_HANDLED;

29 }

Listing 2.2: ixgbe_msix_clean_rings psuedocode

Each struct IxgbeLogEntry contains both transmit and receive descriptors in-

formation, where a descriptor is a NIC specific data structure that describes a trans-

mit or receive network packet. In the case of receive descriptors, it contains a

memory address pointing to where the received packet lives along with various

other information such as checksums, bytes received, etc. Similar fields exist for
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transmit descriptors but the key difference is that the address instead points to a

packet that has already been sent and the NIC devices driver should then decide

how to reclaim the memory. The ixgbe_poll() function processes both receive

and transmit packets, it achieves this by calling both ixgbe_clean_tx_irq()

and ixgbe_clean_rx_irq() functions in succession before returning back to

the NAPI scheduler.

In order to log this descriptor data on a per-core basis, we take advantage of

the multi-core nature of ixgbe_msix_clean_rings() as shown in listing 2.1.

MSI-X maps a single interrupt vector number to its interrupt handler for each in-

dividual core. Therefore, accessing Linux data structures inside its handler is al-

ready akin to accessing per-core and per-queue local variables. In listing 2.1, we

use q_vector->v_idx to index into our global multi-core data structure and up-

date the corresponding log entry for the different queues.

Due to the performance implications of dynamically allocating and freeing

large arrays of struct IxgbeLogEntry data structure inside the Linux kernel,

itrLog pre-allocates a large chunk of memory in the device driver initialization code

instead. We size the arrays appropriately to hold all data for the applications listed

in table 3.1 by running initial sniff-tests on a variety of applications at different

offered loads.

2.2.1.3 Data Logging Statistics

We collect the following bits of information at every interrupt: received and trans-

mitted bytes, the current timestamp (via the rdtsc instruction), and various sleep

state statistics. We also collect a set of hardware statistics from per-core perfor-

mance monitoring units (PMUs) at a larger granularity of every millisecond: in-
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structions, cycles, last-level-cache misses, and the energy consumed. All of the

hardware data is collected by reading specific MSR registers by calling rdmsrl

function in Linux.

The energy register is read from MSR_PKG_ENERGY_STATUS from Intel’s

Software Developer Manual (Intel, 2022c,b). This register has been experimentally

validated for accuracy in previous works (David et al., 2010; Zhang & Hoffman,

2015; Khan et al., 2018; Desrochers et al., 2016). While we have validated results

against rack-level energy measures where we see per-application energy savings

reflected in global rack energy measurements, we chose to use

MSR_PKG_ENERGY_STATUS instead as the granularity of the rack level mea-

surements (on the order of seconds) made it difficult to attribute detailed energy

use to specific system events.

For hardware PMUs such as cycles, instructions, and last-level cache misses,

we use processor specific Intel Performance Monitor Events as described in Chap-

ters 18 and 19 of the Intel manual (Intel, 2022c). In particular, we use Unhalted

References Cycles as it counts at a fixed frequency regardless of the proces-

sor’s operating frequency – which is adversely impacted by mechanisms such as

DVFS which slows down a processor’s frequency for decreased energy consump-

tion. As these hardware counters need to be initialized on each core before they

can be used, a single per-core variable was added to start the setup code for each

counter and then on the next interrupt after a millisecond has passed will the first

data entry be logged. The millisecond gap for collecting logs is due to the sampling

granularity of MSR_PKG_ENERGY_STATUS register. Details of this log collection

in ixgbe_msix_clean_rings() is shown listing 2.3.

1 static irqreturn_t ixgbe_msix_clean_rings(int irq, void *data) {

2 struct ixgbe_q_vector *q_vector = data;
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3

4 // index is unique to each core

5 int index = q_vector->v_idx;

6

7 // there is an ixgbe_logs[] array for each core

8 il = &ixgbe_logs[index];

9

10 // icnt is used to index into each IxgbeLogEntry

11 icnt = il->itr_cnt;

12

13 // ensure log entries stay within pre-allocated memory bounds

14 if (icnt < IXGBE_LOG_SIZE) {

15 // access each IxgbeLogEntry

16 ile = &il->log[icnt];

17

18 // save timestamp

19 now = ixgbe_rdtsc();

20 write_nti64(&ile->Fields.tsc, now);

21

22 // get last saved timestamp

23 last = il->itr_joules_last_tsc;

24

25 // capture after ~1 ms has passed

26 if ((now - last) > ixgbe_tsc_per_milli) {

27 // update new saved timestamp

28 il->itr_joules_last_tsc = now;

29

30 // save joule counter

31 rdmsrl(0x611, res);

32 write_nti64(&ile->Fields.joules, res);

33
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34 // save instructions counter

35 rdmsrl(0x309, tmp);

36 write_nti64(&ile->Fields.ninstructions, tmp);

37 ......

38 }

39 }

40

41 /* EIAM disabled interrupts (on this vector) for us */

42 if (q_vector->rx.ring || q_vector->tx.ring)

43 napi_schedule_irqoff(&q_vector->napi);

44

45 return IRQ_HANDLED;

46 }

Listing 2.3: ixgbe_msix_clean_rings data collection

psuedocode

In order to correctly isolate these millisecond timing differences, a ixgbe_rdtsc()

function was added which calls the rdtsc instruction to return a 64 bit value that

records how many CPU ticks took place since the processor was reset. This rdtsc

instruction is key in ensuring stability of measurements under impact of DVFS on

application performance as it counts at a fixed rate regardless of different proces-

sor frequencies. This tick count can then be easily converted to microseconds by a

simple division with that fixed processor frequency rate. Furthermore, the rdtsc

instruction exists on each individual core and simplifies the multi-core data gath-

ering approach by avoiding the use of global clock sources and synchronization.

To lessen the impact of the data collection on application performance, we use

non-temporal store instructions to write collected data. As these data are not ex-

pected to be read again soon (usually only read after the experiments are over),
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the non-temporal instructions ensure they do not need to follow cache-coherency

rules and therefore can have less of an impact on performance. We instrumented

two new functions: write_nti64 and write_nti32 which wrap around the

movnti non-temporal instruction to store 64-bit and 32-bit data respectively, their

use is also shown in listing 2.3.

2.2.1.4 Efficient Data Retrieval

Having integrated the logging facilities into the device driver, one must come up

with a strategy for exposing the data for transport off the system. Our logging im-

plementation in Linux exploits the seq_file interface (Corbet, 2003) so that file

commands, such as cat, can be used to both save the output in a formatted way

and also automatically reset values in struct IxgbeLogEntry for reuse. To en-

able this, we create a set of files for each core in order to easily retrieve the contents

of the logged data. Upon initial loading of our custom NIC device driver mod-

ule, we create the directories /proc/ixgbe_stats/core/N, where N is the spe-

cific core number. Next, we defined a set of file operations: ct_open, ct_start,

ct_next, ct_show, ct_close for seq_file interface to work. While (Corbet,

2003) provides general examples of how to create and use custom file operations,

the specific implementation in the 82599 NIC driver is summarized below:

1. ct_open is a function that enables opening of the specific file and we also

use its unique inode identifier as a private member data to represent a per-

core variable.

2. ct_start starts the inital reading of data and passes in a generic iterator,

however we overload it and simply start a numeral counter that begins at

0 and return that counter. We also cannibalize this function to reset the log
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data variable after we find it has printed all lines of data by simply checking

the position counter against the number of logged data entries.

3. ct_show is the main function that prints the log data in a formatted manner

and we use the function seq_printf for this use case. The position counter

from ct_start is passed to this function and it is used to index a specific

log entry that is then printed.

4. ct_next is then used to simply increment the position counter for the next

line to be printed.

5. ct_close does some cleanup to free the allocated position counter pointer

variable.

As we are moving data from kernel memory into a file in userspace, Linux does

impose memory bandwidth limits for this data copying. Luckily, the seq_file

implementation already contain internal mechanisms to pace this memory copying

without additional modifications on our part.

2.2.2 EbbRT Implementation

As itrLog is designed to be agnostic to both the OS and applications, EbbRT’s im-

plementation reuses the exact same data structures and data collection logic as

described above in Linux. In the paragraphs below, we will summarize a few key

points of how EbbRT’s implementation differs from Linux.

2.2.2.1 Agnostic Infrastructure

The modifications to EbbRT’s 82599 device driver can be found at https://github.

com/handong32/EbbRT/tree/baremetalNIC. Given that EbbRT has a much sim-
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pler code base, we only needed to add data collection code in the main 82599 de-

vice driver source at src/native/IxgbeDriver.cc and

src/native/IxgbeDriver.h. Similar to Linux, we initialize the exact same

data structures as shown in listing 2.1 in EbbRT’s device driver init function. As

EbbRT is used to create a single application and system binary, it does not have the

same loadable module support as Linux.

2.2.2.2 Epoch-based

EbbRT has two main functions, Send() and ReceivePoll(), for network com-

munication. Send contains the main functionality for packet transmission as well

as clean up logic to free transmitted resources back for reuse, we also instrumented

counters in this function to keep track of bytes and descriptors transmitted.

ReceivePoll() contains the main logic for handling packet reception; as it is

the main interrupt handler for the NIC; our log collection functionality is instru-

mented at the beginning of this function. We use the same data collection code

as listing 2.2 in ReceivePoll() function instead. EbbRT also takes advantage of

MSI-X interrupt handlers to access per-core data for logging.

2.2.2.3 Data Logging Statistics

As EbbRT runs on the exact same hardware as Linux, we use the same Intel PMU

counters, RAPL energy counters, and rdtsc counters in order to log the same

data. EbbRT maintains its own set of software statistics such as bytes received

and transmitted and we also store that into the struct IxgbeLogEntry. We

also copied the same write_nti64 and write_nti32 temporal store functions

introduced in Linux in order to lessen application performance impacts.
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2.2.2.4 Efficient Data Retrieval

Given that EbbRT does not have a file system with which to store the collected

log data; we built a custom server that responds to queries from a Linux client

by packaging the raw log data as a byte stream and transmits over TCP protocol.

On the Linux client machines, we use the socat application to create the initial

TCP connection in order to receive the log data, next, we built a custom applica-

tion to parse the byte stream into the original stored format for local storage. The

details of these scripts can be found at https://github.com/handong32/energy_

trace_experiment_scripts/.

2.3 ENABLING STATIC HARDWARE SETTINGS

Having created the requisite data collection infrastructure above in Linux and

EbbRT, this section details the two hardware mechanisms studied in this disser-

tation to enact batching and processor frequency changes, namely through the use

of interrupt delay (ITR) and dynamic voltage frequency scaling (DVFS) mecha-

nisms. Below, we discuss these mechanisms in detail as well as how they can be

toggled in both OSes.

2.3.1 ITR

A common feature of modern high speed NICs is the ability to delay the deliv-

ery of interrupt when an event such as packet arrival or transmission completion

occurs (Intel, 2021; Mellanox, 2022). By manipulating this setting, software can

limit the minimum time between interrupts or in other words the maximum rate

at which the NIC events can interrupt the processor. In this work, we use this

mechanism on a Intel 82599 10GbE NIC (Intel 82599 10 Gigabit Ethernet Controller:
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impact on application latency (Elnozahy et al., 2003; Chou et al., 2019). Our goal

is to expose if this type of batching, induced by ITR, has a measureable impact on

application performance and energy at a offered load.

Linux’s network device driver uses a dynamic algorithm that seeks to tune the

ITR value such that it better reflects the current workload (Kan Liang, Andi Kleen,

and Jesse Brandenburg, 2010). It is possible to disable this dynamic algorithm

through the flip of a bit inside the device driver. After flipping this bit, we use

ethtool (Tom Herbert, Willem de Bruijn, 2022) to then statically set ITR values

such that interrupts can now be fired at some fixed rate and we also explore its

performance and energy impacts.

One difference between EbbRT and Linux is that EbbRT inherently does not

have a dynamic policy for adjusting ITR values since its implementation in Linux

relies on other systemic assumptions such as jiffies and NAPI polling budgets. We

enable the static setting of the ITR register in EbbRT via a simple function that is

callable by any application or system code.

2.3.2 DVFS

DVFS is well-known hardware control knob for setting a CPU core’s frequency

and has been extensively studied (Sasaki et al., 2013; Flautner et al., 2001; Dominik

Brodowski, Nico Golde, Rafael J. Wysocki, Viresh Kumar, 2022; Lefurgy et al., 2007;

Cochran et al., 2011; Isci et al., 2006; Li & Martinez, 2006; Lee & Kim, 2009; Kim

et al., 2008; Ge et al., 2007; Spiliopoulos et al., 2011; Kondo et al., 2007; Le Sueur &

Heiser, 2011; Freeh et al., 2007; Elnozahy et al., 2003). DVFS states are composed

of a combination of a core’s clock frequency and voltage; it is often reflected by the
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following equation (Le Sueur & Heiser, 2011):

P = CfV 2 + Pstatic (2.1)

where P is processor’s power usage, C is its switching capacitance, f is processor

frequency, V is operational voltage and Pstatic is the circuit leakage costs.

The use of DVFS in a processor allows software to adjust the energy consump-

tion of CMOS based logic while trading off instruction execution speed. As noted

in (Le Sueur & Heiser, 2011; Brooks et al., 2000; Kim et al., 2015b; Chou et al.,

2019), static or leakage energy consumption (i.e. caches, TLBs) is not particularly

affected by DVFS but induces a base cost for keeping a fixed core architecture ac-

tive – as opposed to big-little or re-configurable core architectures. This implies

that workloads which primarily use memory operations will suffer fewer perfor-

mance penalties induced by a slowed processor frequency while continuing to at-

tain energy saving benefits. We view DVFS as a speed control setting that can

dilate CPU processing components of the network request timeline in exchange

for reduction in energy.

This mechanism in Linux is typically set dynamically according to current pro-

cessor load by a policy governor (Dominik Brodowski, Nico Golde, Rafael J. Wysocki,

Viresh Kumar, 2022). This dynamic setting can be disabled through Linux boot

options and static values can be written instead using the IA32_PERF_CTL regis-

ter (Intel, 2022c) on our Intel processors via MSR tools (msr, 2022). In this disserta-

tion, we explore static DVFS settings from 1.3 GHz to 2.9 GHz as they are existing

limits supported by Linux’s policy governor.

Similarly as before, since EbbRT does not have a dynamic policy to update

DVFS due to dependence on Linux system semantics, therefore we expose a func-
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tion that is callable by any application or system code in order to write to the same

IA32_PERF_CTL register with the same static DVFS settings as Linux. We use

EbbRT’s own MSR tools library to write to this register.

2.4 BOOTING BAREMETAL OSES

In order to conduct a study of this scale, it is critical to control and automate large

numbers of hardware experiments. Each experiment typically involves power cy-

cling a hardware node, configuring and booting it with a carefully controlled soft-

ware stack, conducting a series of network benchmarks, and finally retrieving and

archiving the collected data. To enable this level of automation, we describe below

the setup of our experimental test-bed.

We use the Mass Open Cloud (MOC) platform (Mass Open Cloud, 2022) to

both run Linux (§3.2.1) and EbbRT (§3.2.2) experiments. On the MOC, we allocate

a single server node to be the testing node for all the experiments by configuring it

to boot into both our Linux appliance a EbbRT instance. We use a single bootstrap-

ping node to orchestra the benchmarks and have also set up a preboot execution

environment (PXE) infrastructure for booting Linux and EbbRT kernel images. On

the bootstrap node, we use the package manager to install the following packages:

tftp-server, dhcpd, and xinetd.

The Extended Internet Services Daemon (xinetd) is configured to listen for

incoming tftp protocol traffic and subsequently start the tftp-server services.

We use grub2-mknetdir and grub2-mkimage programs to seed the initial tftp-

server boot directory with a default grub files for booting Linux and a custom boot

directory that contains files for booting EbbRT. The only difference between the

two is that EbbRT’s boot directory requires a custom grub.cfg file which uses
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multiboot command that points to an EbbRT ELF32 binary instead of a Linux

vmlinux file. The tftp-server protocol requires a pxelinux.cfg folder to

organize grub boot menu’s based on the server’s MAC address; we place both

EbbRT and Linux grub boot menu’s in this folder.

Next, we set up dhcpd server to statically set the server’s IP address in the

file /etc/dhcp/dhcpd.conf. This step is important because there is a special

filename parameter for dhcp configurations in order to point the tftpboot pro-

tocol to retrieve the correct grub boot files created earlier; this changes depending

on whether Linux or EbbRT is being booted. Details of this setup can be found at

https://handong32.github.io/guides/.

2.5 DATA COLLECTION OVERVIEW

Overall, we’ve conducted an extensive experimental study over the two OSes by

statically sweeping up to 340 unique combinations of ITR-DVFS pairs for the four

applications in table 3.1 and at different offered loads. Our study resulted in a

dataset over 5 TB, and is currently open sourced at https://github.com/sesa/

intlog. Given this large data set, we also developed a methodology and visual-

ization tool to help us identify the performance-energy trade-offs in a fine-grained

manner and to understand the causal relations between the hardware mechanisms

and its impact on different OS structures. The layout of this dataset is in four

folders: mcd, mcdsilo, node, netpipe, which reflect the four workloads. In-

side each folder, there are sets of Linux and EbbRT log files, which contain the

raw log data and each row contains the following set of data: log_identifier,

receive_bytes, receive_descriptors, transmit_bytes,

transmit_descriptors, instructions, reference_cycles, last-level
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cache miss, C1_counter, C3_counter, C6_counter, C7_counter, joules,

and rdtsc_timestamp. Each filename is also specially formatted in the follow-

ing way: *.i_Core_ITR_DVFS_RAPL, where i is the experimental run number,

Core is the processor core that the data is collected from, ITR is the actual inter-

rupt delay value used, DVFS is the actual DVFS value that the processor core is set

to, and RAPL is the RAPL power limiting value this package is set to. Other than

the files that contain raw log values, there is also an output file that is generated

by the client workload generators; this typically shows the overall performance of

the server. There are also the rdtsc files that get generated, the rdtsc file con-

tains two timestamps, the beginning of the actual experiment and the end, this is

in order to clean up the log files such that they discard bogus logs that get created

during the initialization and clean up the server such that the log data accurately

reflects only the actual work itself.

2.6 VISUALIZATION TOOL

Given these collected log traces, we built a web visualization tool using Dash (ploty,

2022) that enables a user to dynamically examine system behaviour across a wide

range of configurable settings, for example, figure 2.5 shows how one can view

the data at different dimensions (via dropdown boxes) of ITR, DVFS, instructions,

cycles, time, etc. With a fine-grained log trace, we also used the tool to zoom in

on specific events that transpired in-between hardware interrupts to 1) gain better

insights at a fine-grained manner, and 2) to generalize these insights into broader

findings as will be discussed in chapter 5. Having this tool gave us the ability

compare and contrast different OS behaviors and was also immeasurably helpful

to visually understand the structure in the data.
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CHAPTER 3

Experimental Setup

In this chapter, we first present the hardware configuration setup of the MOC clus-

ter used in the study. Next, the detailed system specific settings of Linux and

EbbRT are discussed to provide greater context around their systems software

stack. Lastly, we present how all four applications in table 3.1 are benchmarked

for our experimental study.

3.1 MOC HARDWARE CONFIGURATION

Our MOC experimental cluster consists of seven nodes, each having 16-core pro-

cessors of either Intel(R) Xeon(R) CPU E5-2690 @2.90GHz or Intel(R) Xeon(R) CPU

E5-2650 @2.60GHz type. All processors have Intel 82599ES 10-Gigabit SFI/SFP+

NICs, and are configured with a mix of 126 GB and 250 GB RAM. The node used to

boot into the baremetal library OS, EbbRT, and Linux uses a Intel(R) Xeon(R) CPU

E5-2690 @2.90GHz processor with 126 GB of RAM. While the hardware used in

this study are not as modern, the two mechanisms used, DVFS and ITR delay, are

still commonly supported across a range of hardware manufacturers (Mellanox,

2022; ARM, 2023; Hanford et al., 2018).

We ensured the server node hosting both Linux and EbbRT kernel images are

setup in a similar way by carefully configuring IA-32 Architectural MSRs and pro-

cessor specific MSRs (see Tables 35-2 and 35-18 in (Intel, 2022c)) as well as NIC

features: direct-cache injection (DCA) disabled, receive-side scaling (RSS) enabled

(to distribute packets for multi-core processing), and hardware checksum offload-

ing enabled. We also match the values of the number of NIC transmit and receive

descriptors and write-back thresholds for packet transmissions. Additionally, to
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minimize system noise, hyperthreads and TurboBoost are disabled on all proces-

sors. While prior work have included TurboBoost in performance-energy stud-

ies (Chou et al., 2019; Kim et al., 2015b; Guliani & Swift, 2019; Prekas et al., 2015),

there have also been reports of energy use anomalies when used with different

sleep states (Le Sueur & Heiser, 2011).

3.2 SYSTEMS SOFTWARE STACKS

As with all experimental efforts, one important step is to control as many external

and non-deterministic perturbations as possible. This allows one to gather base

line results and gain confidence that measured values are causally related to the

change itself and not simply the result of system noise. To address this in Linux, we

constructed a set of application specific appliances (Shaffer, 2000). For EbbRT, we

take advantage of its library OS framework to construct a set of application specific

binaries that links the application code with the OS stack in a single domain of

execution.

3.2.1 Linux Appliance

Appliances (Shaffer, 2000) are a relatively old idea, often understood as a self-

contained system image containing just enough software and operating systems

support to run a single application, thereby avoiding running the long list of stan-

dard processes that can perturb systems experiments.

We built a set of these Linux appliances for the four workloads listed in ta-

ble 3.1. These appliances are specially constructed to run a RAM-based filesystem

and contain only a small set of system libraries and kernel modules required to run

their constituent applications. We construct these appliances from a custom 5.5.17
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kernel which we built using a modified configuration file created for supporting

high performance; following suggestions from previous work that studied Linux

core operation costs (Ren et al., 2019). To avoid scheduling overheads and noise,

we pin all applications to physical cores. In addition, we disable Linux irqbalance

and affinitize packet receive interrupts to their respective cores.

3.2.2 EbbRT Library OS

EbbRT (Schatzberg et al., 2016) is used as a platform to investigate the performance

and energy impacts of a specialized OS. EbbRT provides a framework for building

per-application library OSes and originally only ran within a virtualized environ-

ment through its custom virtio device driver. For this experimental study, we

ported EbbRT to run baremetal by developing a device driver for the Intel 82599

family of NICs; this port can be found at https://github.com/handong32/EbbRT/

tree/baremetalNIC. EbbRT’s NIC device driver is written in C++ and totals over

3000 lines of code. It interfaces with a multicore TCP/IP network stack. The de-

vice driver programs the NIC using per-core queues and interrupts, maintaining

the affinity of TCP connections to their respective cores.

EbbRT consists of specialized library OS components written in C++; all com-

ponents are multi-core functional and optimized to aggressively use per-core mem-

ory and fine grain locking. This also includes its 82599 NIC driver, custom TCP/IP

stack, virtual and physical memory allocators which make aggressive use of large

pages and pinned memory to avoid page-faults, and generic I/O buffers designed

to enable zero-copy application data processing. It is packaged as a library of con-

figurable modules and gcc-5.3.0-based tool-chain targeting the base components of

the OS.
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Name Scenarios Nature CPU
NetPIPE 64B,8KB,64KB,512KB CL Low
NodeJS na CL High
Memcached 200K, 400K, 600K OL Low
Memcached-Silo 50K, 100K, 200K OL High

Table 3.1: Workload configurations. The column Nature indicates
open (OL) -versus-closed (CL) loop nature and CPU indicates appli-
cation work demand.

Applications are ported to it by configuring the necessary OS components and

compiling the application source along with any dependent libraries using this

tool-chain. This generates a single application-specific binary that is compile and

link-time optimized with the OS code. Our port enables application-specific bi-

naries to boot directly on a MOC node. Once booted, OS and application code is

executed under a single supervisor privilege domain. Prior work in EbbRT have

also demonstrated the benefits of both compile-time and link-time optimization

on library OS function dispatching (Schatzberg et al., 2016). Compared to general

purpose OSes, non-preemptive processing via a specialized OS and application

binary enables library OS components to avoid many checks and streamline exe-

cution, this ranges from interrupt dispatch to application logic.

3.3 APPLICATION WORKLOADS

In our study, we break the space of network oriented applications down along

Closed-versus-Open Loop (Schroeder et al., 2006) and level of complexity in CPU

usage. We select a representative benchmark for each quadrant (see fig. 3.1). Be-

low, we expand on the importance of each quadrant and the benchmarks we used.

Table 3.1 lists the four network-driven applications that we target and their respec-

tive attributes.
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Figure 3.1: Graphical breakdown of the workloads and in which quad-
rant they lie in. CPU processing represents the ratio of application work
versus systems work i.e. CPU processing high means more time is spent
in application work on a per request basis. Closed loop workloads are all
single connection workloads between a single client and server while open
loop workloads consists of multiple clients with thousands of connection
and performance is typically measured as tail latency at some percentile of
requests.
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NetPIPE and NodeJS Webservers are single core and TCP connection closed-

loop applications due to the fact that their performance (throughput) is dependent

on the responsiveness of the constituent server and client components to conduct

the synchronous packet request transmit and receive work. In contrast, Mem-

cached and Memcached-silo are open-loop experiments, as their performance boils

down to the ability of the server node, running on all physical cores and thousands

of TCP connections, to maintain a 99% response tail latency under 500 µs under an

offered load that is generated by external client nodes. NetPIPE and Memcached

are OS-centric workloads by virtue of their computationally light application logic

and is heavily dominated by the OS stack work for packet transmissions. In con-

trast, the NodeJS Webserver and Memcached-silo are application-centric work-

loads as their runtime and application logic are more computationally intensive

in comparison to the OS stack work. Details of the workloads, their deployment

and other benchmark information is elaborated below.

3.3.1 Closed Loop

3.3.1.1 NetPIPE

Netpipe (Snell et al., 1996) involves sending messages of identical size between

two identically configured systems in both HW and SW for a fixed number of

iterations. Given our goal of studying and explaining the implications of the OS

on network driven processing our analysis framework, and evaluation, includes

closed loop settings.

Figure 3.2 illustrates the deployment of the application between a client and

server machine where the same binary is executed on both machines. The bench-

mark consists of the two machines sending and replying with a payload of the
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Figure 3.2: NetPIPE benchmark.

same bytes back and forth for a fixed number of iterations; the resulting time to do

this communication results in a throughput value as a measure of performance. We

run NetPIPE in a symmetric configuration where the same interrupt delay value is

controlled on both client and server node, this is primarily due to the closed-loop

nature of the workload and to explore the tighter integration of interrupt delay

values in affecting performance and energy use. On the server side, we further

run additional experiments where the processor frequency knob is manually con-

trolled to see if it impacts the performance and energy. NetPIPE is a non processing

intensive application as the user level’s work only consists of responding back to

each payload with a response payload of the same data. NetPIPE allows us to also

change the message size, therefore opening up the scope of how the interrupt de-

lay and processor frequency affects different message sizes. The data generated

from running this workload is akin to middle-ware and video streaming services

commonly found in data centers where payloads of varying sizes are frequently

are communicated between different machines.
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Figure 3.3: NodeJS HTTP Web Server benchmark with wrk workload gen-
erator.

In the Linux experiments, we run NetPIPE-3.7.1 while EbbRT uses a custom

version of NetPIPE’s protocol that is ported to its networking interfaces. In our ex-

perimental results below, we fix the iteration count at 5000 and show results for a

range of message sizes. We found that the 10 GB link is close to saturation when a

message of size greater 700 KB is exchanged and both Linux and EbbRT’s through-

put begin to hit the same plateau. As message size increases in the NetPIPE bench-

mark, the workload becomes more network bound; therefore a system’s network

path specialization has less of an impact on performance.

3.3.1.2 NodeJS HTTP Web Server

Figure 3.3 shows the NodeJS benchmark (Joyent, 2013), which consists of a JavaScript

HTTP Webserver running inside a NodeJS runtime. In contrast to NetPIPE, this

workload is more CPU intensive as it runs a NodeJS runtime below the HTTP

Web Server. The runtime is involved in receiving the HTTP Request packet, which
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contains a JavaScript body and must parse it and then pass that packet up into the

webserver for processing. The same application flow also happens for every HTTP

Reply packet as well. Given that this is not as a symmetric setup as NetPIPE, we

controlled interrupt delay and processor frequency only on the server node run-

ning the webserver. On the client side, the default policies of interrupt delay and

processor frequency was left as is and a single core runs the wrk-4.0.2 (Glozer, 2014)

benchmark to send web requests to the NodeJS server for a fixed period of time.

We modified wrk-4.0.2 to place a fixed request load of 100K. The server responds

to each request with a small static payload of size 148 bytes. Linux runs nodejs-

0.10.46, and EbbRT runs the same version ported to support bare-metal NodeJS by

providing OS interfaces that link with the V8 (Google, 2022) JavaScript engine and

libuv (libuv, 2022).

3.3.2 Open Loop

3.3.2.1 Memcached

Figure 3.4 illustrates the deployment of memcached (https://memcached.org, 2020),

it is a multi-threaded workload that runs on all 16 cores of one server node. It con-

sists of an unloaded client node running mutilate (J. Leverich, 2022). This client (1)

coordinates with five other mutilate agent nodes in order to generate requests to

the server and (2) measures tail latency of all requests made. All five agent nodes

are 16-core machines, whereby each core creates 16 connections, for a total of 1280

connections. This setup is able to saturate the single 16-core server. Mutilate (J.

Leverich, 2022) is used to generate three different requests-per-second (QPS) rates

of 200K, 400K, 600K, etc., for a fixed period of 20 seconds each on a single mem-

cached server, we also pipeline up to four connections to further increase process-



54

Figure 3.4: Memcached benchmark with mutilate workload generator.

ing load. For each experimental run, we manually fix the server’s interrupt delay

and processor frequency values and use the mutilate clients to generate request

loads at specific QPS rates. EbbRT uses a re-implemented version of memcached,

written to its interfaces, which supports the standard memcached binary protocol.

To alleviate lock contention, an RCU hashtable is used to store key-value pairs.

We run a representative load from Facebook (Atikoglu, Berk and Xu, Yuehai and

Frachtenberg, Eitan and Jiang, Song and Paleczny, Mike, 2012) (ETC) which repre-

sents the highest capacity deployment. It uses 20 - 70 byte keys and 1 byte to 1 KB

values and contains 75% GET requests.

For an open-loop workload, we consider it as non processing intensive as 75%

of requests are GET which entails reading a in-memory data structure and re-

sponding to the request with that payload. Furthermore, memcached protocol is

not processing intensive as it mainly deals with maintaining a in-memory lookup
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table, so most transactions on the table involve memory copies. In contrast to the

workloads in sections §3.3.1, the client machines running mutilate generates floods

of requests, typically pipelined up to four per thread, to the memcached server. A

single client machine that is not loaded is used to periodically sample tail latency

values from the memcached server and the metric of performance used in this case

is maintaining 99% tail latency under a specific threshold as the loads that muti-

late clients generate increases. Memcached is an application that is often deployed

in datacenters as it is very effective at supporting high fan-out requests from mil-

lions of end users requesting similar resources and as a result, is often a research

topic in optimization (Rajesh Nishtala and Hans Fugal and Steven Grimm and

Marc Kwiatkowski and Herman Lee and Harry C. Li and Ryan McElroy and Mike

Paleczny and Daniel Peek and Paul Saab and David Stafford and Tony Tung and

Venkateshwaran Venkataramani, 2013; Schatzberg et al., 2016; Belay et al., 2014;

Prekas et al., 2017).

3.3.2.2 Memcached-Silo

Memcached-silo (Prekas, 2017; Prekas et al., 2017) is a workload built on top of

the normal memcached protocol. It is more computationally complex as it in-

corporates both latency-sensitive network compute and memory-intensive TPC-C

style transaction processing via the Silo database (Tu et al., 2013). The modified

memcached-silo server supports memcached binary protocol and as we use mu-

tilate to generate requests, it will travel the same network paths as memcached

application. However, a modification was added such that for every request, an

extra transaction was initiated on the Silo database and this transaction is more

computationally intensive. After the database transaction has been completely,
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Figure 3.5: Memcached-silo benchmark with mutilate workload genera-
tor.

then the memcached reply will be sent. We ported the same memcached-silo im-

plementation to EbbRT. The configuration and SLA constraints of memcached-silo

follow from those of memcached and as figure 3.5 shows, it is mostly similar to

memcached in deployment except the extra Silo database running on the server.

Given its computationally heavier nature, we only needed two 16-core nodes at 16

connections per core to saturate our memcached-silo server. This also meant we

use lowered QPS rates of 50K, 100K, 200K, etc. to account for increased computa-

tional load per request.
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CHAPTER 4

Break Down of Network Processing in lieu of Analysis and Models

Before delving into the detailed findings and analysis from our experimental data

in chapter 5, it is important to establish a baseline understanding of network pro-

cessing such that one can better reason about the collected data. This chapter

tackles this by providing an abstract model in order to decompose the different

components of network processing and discusses how they can be implemented

in different OS stacks.

Fig. 4.1 illustrates a simple request processing timeline. Although this is drawn

and discussed from the perspective of a single core, our analysis and evaluation

assumes that multiple cores can be used concurrently to shorten servicing times.

From an OS perspective, we break down network driven processing into stages

that allows us to organize and reflect the OS and application performance-energy

interactions with different offered loads. This model drives the quantitative study

and helps in the construction of our analytical models in chapter 6; which can then

be used to explain and explore alternatives in both software and hardware.

We decompose the timeline in fig. 4.1 into three main components in the fol-

lowing sections and discuss their opportunities for different performance-energy

trade-offs. The quiescent periods section expands on OS idling policies when no re-

quests are coming in to be processed and how the implementation of these idling

policies differ between Linux and EbbRT. OS request detection reveals how inter-

rupts, polling, and hybrid interrupt-polling strategies are implemented in the two

OSes and its subsequent impacts on processing efficiency. The request servicing

section discusses the potential performance and energy benefits of OS path spe-

cialization techniques.
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4.1.1 Idle Policies

If all processing is complete, no traffic is pending and aggressive polling is not in

use, the OS has a policy that selects a hardware sleep state (i.e. Intel c-states (Intel,

2022a)) to halt the core. Various optimizations have been studied (Chou et al., 2016;

Meisner & Wenisch, 2012; Le Sueur & Heiser, 2011). These sleep states typically

have an associated reduction in static power consumption (Meisner & Wenisch,

2012), where in the extreme, the deepest sleep state can flush micro-architectural

state such as caches and power down these hardware structures. However, each

sleep state also imposes a progressively larger wake-up latency, which subsequently

impacts the execution speed given possible flushing of these performance sensitive

states (Zhan et al., 2017). Below, we discuss how these policies can differ between

a general purpose and a specialized OS.

4.1.1.1 Linux Idle Policy

General purpose OSes such as Linux use a dynamic scheduler and idle policy to

decide if a core should be halted and to what sleep state (Rafael J. Wysocki, 2018).

This policy exploits various system statistics to predict how long the core is likely

to be idle. Linux’s idle policy is set up such that a high-level algorithm decides

which level of sleep state a specific core should go into; this is dependent upon

the operating history of the core such as how long did it idle previously and how

busy the core currently is. As we run on a Intel x86_64 architecture, once a specific

sleep state has been identified, the policy uses Intel specific architecture code to

physically halt the core. The specific sleep state is selected to save energy while

minimizing wake-up latency costs. Overall, this algorithm is a subtle implementa-

tion that interacts across many layers of the OS software and device drivers.
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4.1.1.2 EbbRT Idle Policy

In contrast, we use the specialized nature of EbbRT to explore a simple race-to-halt

policy where the processor is always put into the deepest sleep state, thus ignor-

ing any performance and energy trade-offs with using other sleep states. Origi-

nally, EbbRT’s run-to-completion processing meant that if there were no further

work, pending interrupts or packets dequeued from prior interrupts to process,

the event manager would invoke the halt instruction to stop the core until an-

other interrupt wakes the core for new work to do. We modify EbbRT to enable

the use of sleep states as follows: the event-loop of EbbRT infers that the system is

idle and halts the core to enter the deepest sleep state supported by our hardware

(Intel C7). This is achieved by adding custom monitor and mwait instructions in

the event loop code prior to calling halt. Also, upon waking up from a NIC in-

terrupt, such as receiving a packet, the device driver management code, protocol

processing code, and application code are dispatched and run-to-completion on

a single event. EbbRT’s simple implementation is similar to previous race-to-halt

strategies that have been implemented in Linux as external policies (Meisner &

Wenisch, 2012; Chou et al., 2016). EbbRT’s sleep algorithm provide an alternative

to examine the performance and energy differences between the two different OS

stacks and their interactions with a complex versus simple idle strategy.

4.2 OS REQUEST DETECTION

Fundamental to any operating system is how it detects and schedules request pro-

cessing in response to IO device activity such as packet reception or transmission

completion. At the two extremes are interrupt and poll driven IO detection.
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4.2.1 Interrupt driven IO

Using interrupts has three important implications: 1) it can be used to wake a pro-

cessor from a halted state, which the OS entered to sleep the processor previously,

in response to external activity, 2) it allows an OS to arbitrate processing across

competitive devices in a multi-programmed/multi-device setting, 3) interrupts

have inherent performance costs associated with them – latency in starting to han-

dle a request, either because of the costs associated with preempting work (whe,

2012) or sleep state exit penalties(Rafael J. Wysocki, 2018). Interrupts can also have

a negative impact on the instruction efficiency. Induced micro-architecture hazards

such as the inability to pre-fetch or speculatively execute across an interrupt can

increase the number of cycles required.

4.2.2 Poll driven IO

Most modern NICs expose a cache-friendly interface that permits the processors to

read a per-core memory address to determine if the device has received data that

requires processing by the core. This allows software to efficiently poll the device

and initiate software handling without an interrupt. This approach reduces latency

and other performance penalties associated with interrupt driven IO but requires

a busy CPU, and subsequently higher energy consumption. There has been a large

body of work to improve the performance of latency sensitive applications through

the judicious use of polling (Belay et al., 2014; Peter et al., 2015; Prekas et al., 2017;

Ousterhout et al., 2019; Schatzberg et al., 2016; Cadden et al., 2020; Qin et al., 2018;

Jeong et al., 2014; whe, 2012; Marinos et al., 2014).
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4.2.3 Linux NAPI Policy

Linux uses a hybrid policy where its New API (NAPI)(The Linux Foundation,

2022) framework uses interrupts when the load is low and switches to polling

when load is high and back to interrupts when load reduces; this poll phase is

bounded to avoid starving other devices and software. NAPI is a complicated al-

gorithm as it bounds packet processing through dynamic budgets that are set by

Linux’s scheduler and is also influenced by the NIC driver’s current processing

efficiency.

4.2.4 EbbRT

When an IO device activity event first occurs in EbbRT, it processes the interrupt in

a run-to-completion model. From this, EbbRT implements two different types of

request processing for future IO activities: interrupt-driven and poll-based. Sim-

ilar to EbbRT’s idling policy, the interrupt-driven and poll-based approaches de-

tailed below are much simpler compared to Linux’s dynamic policies. By imple-

menting these different policies, another goal of this study is to help reveal the

contrast between the two OS stacks by presenting a detailed quantification of exe-

cution trends and power events in order to uncover how OS functionality impacts

overall system execution and what are the possible OS-level adaptations that can

achieve even better performance and energy trade-offs.

4.2.4.1 Interrupt-driven

In this mode, EbbRT uses a configurable constant, set to 64, for all our experi-

ments at the moment, that is used to control how many packet descriptors1 can be
1A descriptor is a data structure that holds the memory location of the packet data along with

packet processing information such as checksums, length, etc.
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processed in a single interrupt invocation before returning to the event-loop of the

core on which the interrupt was processed. If a total of 64 descriptors are processed

or if there are less than 64 descriptors to process then EbbRT will simply halt the

processor to the deepest sleep state until the next IO activity wakes the core. We

borrowed this value, 64, from default NIC settings in Linux’s device driver and

this constant also helps to induce a simple and bounded per-cpu device-level poll.

In contrast to Linux’s dynamic NAPI budgets, our design is much simpler as the

constant is fixed at compile time and does not need additional logic to dynamically

adjust its value during runtime.

4.2.4.2 Poll-based

The simple run-to-completion, and lightweight event-driven execution model of

EbbRT also allowed us to also explore the performance-energy trade-offs of us-

ing DVFS in the context of a polling loop for packet processing. We use standard

techniques to auto clear hardware interrupts and enable a tight polling loop. The

loop checks a in-memory data structure in which the NIC updates whenever new

packet descriptors are to ready be processed. Due to this tight loop, EbbRT will

never halt the processor and thus will not use any sleep states.

4.3 REQUEST SERVICING

Once the OS detection mechanism identifies the NIC has data to process, several

components of the software must be run in accordance with the execution model

of the OS. Typically, a network stack parses the packet header and eventually en-

queues the payload to the application for processing. OS request servicing dis-

tinguishes general purpose systems from specialized systems as general purpose



64

OSes are designed to support multiple applications, NICs, and different dynamic

policies. In contrast, specialized OS’s can be compile and runtime specialized for

a single request optimized servicing path. Below, we expand on these differences

for the request servicing component.

4.3.1 Linux Network Processing

Network processing on a general purpose OS, such as Linux, is typically split be-

tween two levels of scheduling; 1) interrupt level in which minimal work is done

but at highest critical priority and runs-to-completion (typically called the top-

half processing), 2) the so-called bottom-half uses kernel facilities to execute both

device driver logic and protocol processing in a manner that can be preempted

and rate limited. Regardless, all this work is done at the OS privilege level and

ultimately prepares data for application processing (pre-emptable), and is inde-

pendently scheduled at lower privilege and priority. During application process-

ing, OS logic may be interleaved. This work roughly falls into two categories,

synchronous work done in service of this application request (page-faults, system

calls, etc) and asynchronous work not having to do with this request (OS back-

ground work, processing of other requests or processes).

4.3.2 EbbRT Network Processing

In contrast to Linux, a specialized OS such as EbbRT sheds much of the above

complexity. As it consists of a single application-specific binary that is compile

and link-time optimized with the OS code, both OS and application code is exe-

cuted under a single supervisor privilege domain. This enables the potential for

improved performance and energy efficiency through OS specialization that can
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void software overheads associated with general purpose OSes.

4.4 POTENTIAL PERFORMANCE-ENERGY TRADE-OFFS IN DIFFERENT AP-

PLICATIONS

As discussed in §3.3, network applications tends to fall into two main categories

dependent on the nature of the application and its processing. The nature of the

application, i.e. Open or Closed-loop, drives the length of the quiescent periods

and different offered loads impacts the time required for OS request detection and

request servicing. The degree of processing, i.e. application or OS-centric, is mainly

impacted by request servicing component as the efficiency of the OS stacks often

influences overall performance and energy consumption when servicing network

requests. Below, we discuss the broader implications in these interactions between

OS stacks and the different application types.

4.4.1 Open-Loop

In an open loop scenario, such as Memcached (https://memcached.org, 2020), an

external request rate, such as requests-per-second (QPS), induces an inter-arrival

gap that will drive the length of the quiescent periods – longer at lighter loads (low

QPS) and shorter at heavier loads (high QPS). This external arrival rate can be con-

sidered independent of the time required to service a request and will impact the

ability of idle policies to save energy. Providers will often set a Service-level Agree-

ment (SLA) target, such as some percentage of requests to be completed under a

stringent time budget (i.e. 99% tail latency < 500 µs), for these open-loop appli-

cations. There has been a wealth of research in using these SLA budgets to save

datacenter energy by using different processor frequency settings (Wu et al., 2016;
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Hsu et al., 2018; Lo et al., 2014; Hsu et al., 2015; Lo et al., 2015; Barroso, Luiz André

and Hölzle, Urs, 2007; Fan et al., 2007). The performance and energy profiles of

open-loop applications can be impacted by the efficiency of the OS stacks to pro-

cess request detection and request servicing within these SLA budgets. Our goal is to

reveal and quantify these OS effects.

4.4.2 Closed-Loop

Examples of closed loop workloads are snapshotting a database to a remote server,

video streaming or a middle tier service within a data center (Barroso & Hoelzle,

2009; Meisner et al., 2011; Lo et al., 2014; Fan et al., 2007; Barroso, Luiz André

and Hölzle, Urs, 2007; Barroso et al., 2003). The work to be done is a sequence of

requests that have an inter-dependency on each other. Specifically, the arrival of

the next request depends on how fast it takes to service the current request. From

a server’s perspective, the quiescent period will be bounded by time to transmit

both the request and the reply, as well as the time on the client to generate the next

request. In the closed loop scenario, one would like the server to complete every

request quickly so that the overall time to complete a task is minimized and ideally

use less energy in the process. However, depending on the nature of the workload

and the quiescent periods, composed of the network transmission times and client

servicing time, there can still exist opportunities exploit new energy-performance

trade-offs. For example, the use of a dedicated polling loop in request detection

can be used to eliminate most of the cost of interrupts and OS path specializations

can also improve performance and reduce energy during request servicing in these

synchronous processing loops.
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4.4.3 OS-centric

Applications such as NetPIPE and Memcached are considered to be OS-centric as

the compute portion of the work is minimal compared to the OS work needed to

service each request through its network stack. For any given OS, there will be

a hot-path instruction sequence that will be commonly exercised to process each

request packet. The OS implementation will determine the type of instructions

that will comprise of this path for a particular workload. Specialized OS paths can

reduce the time spent in request servicing due to reduction in architectural hazards

associated with interrupts, protection domain crossing, etc. This time reduction

potentially increase the utility of using processor energy settings to find optimal

settings for different applications.

4.4.4 Application-centric

In the case of a service oriented workload that has significant application work

such as NodeJS and Memcached-silo, where the fraction of the instructions com-

posed by OS network processing is small in comparison, there is also potential

for both improved performance and energy by taking advantage of optimized net-

work paths in a specialized OS. As the system no longer needs to support other

processes and multiplex different devices, the entire software stack can be dedi-

cated towards one use-case, therefore more application work can thus be done per

instruction during request servicing compared to a general purpose OS.



68

CHAPTER 5

Experimental Findings

Below, we present findings and analysis of our static sweep over the space of ITR

and DVFS in Linux and EbbRT. Figures 5.2, 5.8, and 5.12 illustrates a summary of

the performance and energy trade-off space studied in this thesis; the X and Y axis

are not drawn to scale in order to highlight the structures in the data. In these fig-

ures, each point plotted on the graphs represent an optimal ITR and DVFS setting

that resulted in the lowest energy for the particular observed performance – all

other settings resulted in higher energy consumption for the same performance.

These points also represent static settings that yield optimal efficiency and rep-

resent the Pareto-optimal (Pareto efficiency, 2022) trade-off space in performance

and energy. Our analysis reveals that the points composing the Pareto-optimal

curves only correspond to 0.04% of all configurations explored.

For each experiment with an ITR and DVFS combination, we repeat it up to

10 times for stability and our gathered statistics show a standard deviation error

less than 0.01%. Every marker in the figures shown below represents a single ex-

perimental run which is associated with a corresponding per-epoch log containing

various statistics collected using our infrastructure. We will use the terms slowing

or slow down of ITR and DVFS as indicators to when we artificially induce packet

batching by increasing ITR values and lowering a processor’s frequency by decreas-

ing DVFS values. In the case of closed loop applications, the performance metric

is defined as the total time (in seconds) to finish the work where lower is better.

For open loop applications, performance is the defined as the 99% tail latency (in

µs) where lower is also better. Energy is measured in Joules (J) from the energy

counters in our data collection infrastructure to run a single experiment.



69

Figure 5.1: Break down of OS, ITR, DVFS, and offered load changes
across the applications studied.

In order to provide a structured global understanding of our findings, we will

decompose the following sections using the same application format as §4.4 (Open

vs Closed-loop, application vs OS-centric). Moreover for each section, we expand

on its details as a function of when the OS, ITR, DVFS, and offered load changes

by using detailed plots shown in fig. 5.14, and fig. 5.18 – these figures use all avail-

able data in order to demonstrate its fidelity as well as the intrinsic structures

within each OS stack. This break down is illustrated in fig. 5.1 and we note that

in the sections below, there are often overlaps in these changes of OS, ITR, DVFS,

and offered load as the energy and performance trade-offs are typically affected

through coordination of multiple of these functions.

We introduce the concept of an OS’s efficiency profile, which represents its char-
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acteristic performance and energy measure, to discuss and highlight their similari-

ties and differences. These profiles are a function of the impact of packet batching,

via ITR, and processor energy settings, via DVFS, on its overall behavior, they

identify optimal operating points that can be exploited to minimize energy con-

sumption for a given performance target.

In all the figures shown below, we differentiate between Linux and Linux-static,

where Linux has its dynamic algorithms enabled and Linux-static where they are

disabled, and we use our support for static settings instead. We use Linux-static as

a proxy to reveal underlying performance and energy behavior that is unique to

Linux and EbbRT-static as a proxy for alternate system structures with optimized

network paths.
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5.1 CLOSED-LOOP

5.1.1 OS Changes

In fig. 5.2, we can see that different OSes respond uniquely to each closed-loop

application. For example in NetPIPE @ 64 KB and NodeJS, EbbRT-static can use

the same hardware mechanisms as Linux-static but conduct the same application

workload using 2X lower energy while improving overall performance by 2X at

the same time.

Though these OS stacks have different absolute values in performance and en-

ergy and these values are clearly separate from each other, fig. 5.2 also illustrates

that the overall trade-off space is similar and that the intrinsic structure of the OSes

response to ITR and DVFS are consistent across these applications even when the

offered load varies. In particular, there is a characteristic "V" shape where at the

bottom of the "V" shape is a point closest to origin where its configuration of ITR

and DVFS yields most of the points with minimal energy used while finishing the

work fastest. This shape is unique to closed-loop style applications due to the syn-

chronous nature of its application behavior.

5.1.2 ITR Changes

For closed-loop applications, one would ideally like to minimize the amount of

batching by artificially setting ITR values to be fast in order to quickly process the

requests. This is intrinsic to closed-loop style applications as it is a synchronous

process whereby the client depends on the server to respond to its request before

issuing the next one. Therefore, we find an opportunity to both improve perfor-

mance and energy efficiency by purposely lowering the degree of batching via fast
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Figure 5.2: Pareto-optimal curves of closed loop applications.
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interrupt rates. For example in NodeJS, table 5.1 shows that the optimal perfor-

mance and energy profiles (set of points closest to origin in both OSes) used the

lowest possible ITR values between 2-4 µs. In §5.1.2.1 below, we illustrate details

of how ITR can be used to optimize performance of closed-loop applications.

5.1.2.1 Detailed Finding 1: ITR can be used to induce packet processing sta-

bility in order to greatly improve performance.

Figure 5.3: Throughput measurements for NetPIPE across differ-
ent message sizes in the three systems studied. The inset zooms
in on message sizes between 64 B to 8 KB.

In fig. 5.3, we show the mean throughput generated by the three systems along

with its standard deviations for each data point plotted along its error-bars.

Linux-static and EbbRT-static both used a fixed ITR value of 10 µs in this sce-

nario as an example of its impact on NetPIPE performance as we perform a

sweep of 29 different message sizes from 64 Bytes up to 1,000,000 Bytes. At a
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message size of 65536 Bytes, we find that Linux-static can improve its through-

put over Linux by 1.74X and using an efficient OS such as EbbRT achieved up

to 2.1X performance improvements.

Figure 5.4: Three figures showing the bytes received per inter-
rupt for Linux with dynamic ITR algorithm enabled when run-
ning NetPIPE @ 65536 Bytes. Each figure shows a distinct run of
NetPIPE and demonstrates the dynamic behavior of Linux’s ITR
algorithm on the way packets are being processed (Y-axis) and
overall time it takes to run a single experiment (X-axis). Out of
the total of 10 different runs, we illustrate these three figures as
after examining all 10 collected log datasets, we find performance
of Linux with dynamic ITR mainly fluctuates between these three
distinct behaviors.

Surprisingly, we find one reason for these performance differences is that

Linux’s dynamic ITR algorithm induces instability despite a very predictable

and static workload where fixed sized message are transmitted between two

nodes in a single connection. Examining the results for base Linux running at

a message size of 65536 Bytes, we find standard deviations by up to 63% for its

throughput measurements. While prior works (Belay et al., 2014; Schatzberg
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et al., 2016) have illustrated this behavior in NetPIPE, the novel use of ITR

mechanism in this work demonstrates how one can tame these dynamic be-

haviors in order to maximize performance.

Figure 5.5: ITR values set by Linux’s dynamic ITR algorithm for a
single experimental run of NetPIPE at 64 KB message size.

As an example of the unstable nature induced by Linux’s dynamic ITR al-

gorithm, we examined three distinct runs of NetPIPE at 65536 Byte message

sizes and plotted the different impacts of the algorithm on bytes processed per

interrupt. The three figures shown above illustrate the inherent noise that ex-

ist within these dynamic algorithms that can result in dramatically different

processing behaviors that and performance differences by 2X between runs

of the same application. Furthermore, this can also be seen in fig. 5.5 that il-

lustrates the "noise" created by Linux’s dynamic algorithm to tune ITR. This

figure demonstrates that this default algorithm is inherently working at the

wrong timescale for NetPIPE and it may be better to operate with less dynamic

changes.
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Figure 5.6: Three figures showing the bytes received per inter-
rupt for Linux-static with ITR value at 10 µs for a message size
of 65536 Bytes in NetPIPE. The three figures each illustrate a dis-
tinct run of NetPIPE.

We illustrate a more stable environment by using a static ITR value and

we find it can help to greatly stabilize and improve performance of NetPIPE.

Fig. 5.6 above illustrates results from Linux-static and demonstrate how a static

ITR mechanism can induce stable and lockstep behavior in packet processing

such that closed-loop style workloads, that often have synchronous nature to

their processing, can greatly take advantage of such predictability in incoming

interrupts for packet processing. Furthermore, having this predictable behav-

ior at a fast ITR value means that per interrupt, smaller portions of the payload

are processed as can be seen in Linux-static where the max bytes received per

interrupt is at around 2000 bytes while for Linux with dynamic ITR it can fluc-

tuate up to 7000 bytes.
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Contribution: While prior work have only used a static setting of a single ITR

value for experimental stability (Yasukata et al., 2016; Peter et al., 2015; Ouster-

hout et al., 2019); our work demonstrates how this stability can be specialized and

exploited for performance improvements.

5.1.3 Offered Load, ITR, and DVFS Changes

However, we also find that as the message size increases in NetPIPE, the overlap

between transmission and processing time presents surprising performance im-

provements and energy efficiency opportunities through the different uses of ITR

and DVFS where table 5.1 shows that there exists unique values for NetPIPE across

the message sizes. In §5.1.3.1 below, we provide concrete details of the nature of

these opportunities to optimize for energy.

5.1.3.1 Detailed Finding 2: Combining batching with DVFS to enable energy

efficient pacing of packet processing.

We find that as NetPIPE message sizes increased to 8KB, 64KB, and 512KB,

the static ITR values that yielded best energy efficiency also began to increase

(up to 28µs at 512 KB) as shown in table 5.1. A 10 GbE NIC, assuming no net-

work jitter and switching cost, can transmit at an optimal rate of 1250 bytes/µs.

Therefore, we find the ITR value is used to effectively modulate how much pay-

load the OS should process in a fixed quantum. The ITR values which yield best

energy efficiency profile is indicating a sweet spot in which the OS should pace
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packet processing and save energy by sleeping during the its idle periods, and

combine with a processor’s DVFS setting to lower its overall energy use during

these packet processing periods.

We illustrate this behavior in detail in fig. 5.7 below for each NetPIPE mes-

sage size. We plot the energy consumption on the Y-axis against the static ITR

values in our study. We also show three broad regimes that indicate how DVFS

impacts the energy use as well. We use DVFS values 1.2 Ghz, 2.2 Ghz, and

2.9 Ghz to represent the slowest processor speeds up to max. In these figures,

though one can see similar trends across the message sizes, distinct ITR and

DVFS values yields distinct energy trade-offs for both OSes. As shown, the

overall lowest energy use in NetPIPE are configurations that used the slowest

processor speed setting with specific ITR values.

While one can see the configurations of lowest energy through the lowest

points on the Y-axis, we also instrumented X markers to indicate the points

that resulted in best performance to display the trade-offs between sacrificing

performance for energy across the two OSes and as the message size changes

which also impacts network processing.
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Figure 5.7: Three figures showing the changes for energy (J) with
different static ITR values used in both EbbRT and Linux across
three different DVFS values from slowest (1.2 Ghz) to fastest (2.9
Ghz). Furthermore, the X markers indicate configurations that
yielded best performance in order to illustrate the performance-
energy trade-offs that exist in this application. Note: Y-Axis is
not scaled to show structure of the two OSes.
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Contribution: For applications that have a predictable and constant data

stream, our results suggest that ITR and DVFS can be used to both improve per-

formance and energy for different payload sizes such as video streaming or middle

tier services within a data center that exhibit these properties (Barroso & Hoelzle,

2009; Meisner et al., 2011; Lo et al., 2014; Fan et al., 2007; Barroso, Luiz André

and Hölzle, Urs, 2007; Barroso et al., 2003).

5.2 OPEN-LOOP

5.2.1 OS, Offered Load Changes

For open-loop applications, fig. 5.8 and fig. 5.12 show that: 1) the different OSes

also respond uniquely and 2) there are clear performance and energy benefits with

using different ITR and DVFS values. As the offered QPS load increases from 200K

to 600K, these figures show that the overall energy required to service the load

also increases as expected. These performance and energy profiles also behave in

a consistent way for the different OS stacks across the offered loads, which suggest

using ITR mechanism induces stability such that it can be combined with DVFS to

explore new policies that can exploit these trade-offs.

As pointed out by previous works (Wu et al., 2016; Hsu et al., 2018; Lo et al.,

2014; Hsu et al., 2015; Kasture et al., 2015; Leverich & Kozyrakis, 2014; Prekas et al.,

2017; Asyabi et al., 2020; Zhan et al., 2017; Vamanan et al., 2015; Meisner & Wenisch,

2012; Chou et al., 2016, 2019), in open-loop applications the SLA budgets act as a

threshold with which the OS can satisfy requests but still save overall energy use;

for example, these works typically use DVFS to slow the processor in order to
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slowly process incoming requests in an energy efficient way while still satisfying

the SLA.

Instead of the characteristic "V" shape observed in close-loop applications, it

has the "L" shape which is unique to open-loop applications. For example in Mem-

cached @ 400K QPS, there are negligible increases in 99% tail latency while using

2X lower energy in EbbRT-static. However for Linux, we can see that its OS stacks

does not result in the same level of improvements as a specialized OS and there is

a clear horizontal nature to its trade-off space where performance is clearly sacri-

ficed for energy savings.

5.2.2 ITR Changes

For these applications, we find controlled batching via ITR can stabilize the tail

latency, which results in two effects: 1) enables the server to control per-request

response latency at a granularity of µs and has the added effect of maximizing

energy savings from idle states, and 2) induced batched packet processing can be

combined with energy saving benefits of processor energy settings. We elaborate

more on this finding in §5.2.2.1. In the extreme of Memcached @ 400K QPS, Linux-

static can sacrifice all of its 99% tail latency to be as close to the SLA budget of

500 µs as possible in order to save up over 2X in energy over normal Linux. As

table 5.1 shows, the optimal energy configurations often used ITR values in the

range between 300 - 400 µs in order to artificially batch as much as possible without

violating the SLA. Furthermore table 5.1 illustrates that a specialized OS can also

increase the degree of batching via ITR because its optimized code paths gives

more leeway to take advantage of these SLA budgets.
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Figure 5.8: Pareto-optimal curves of Memcached application. We
find that Linux cannot support QPS rates at 1000K and 1500K so
therefore the data is not shown.

5.2.2.1 Detailed Finding 3: Using ITR to stabilize tail latency in open loop

applications.

Fig. 5.9 below shows the effect of batching on 99% latency by illustrating how

different static ITR values (on X-Axis) affect the resulting measured latency

value (Y-Axis). This figure illustrates that static ITR values stabilizes tail la-

tency of requests in memcached by artificially placing it within certain regimes

(i.e. an ITR value of 200 us results in measured 99% tail latency starting at

the 200 us range) and the headroom between that stable tail latency and overall

SLA objective can then be exploited for energy efficiency; this is also dependent

on other factors such as an OS’s packet processing efficiency, processor energy

settings, and policies that govern the use of sleep states. This figure also il-

lustrates when less stringent latency values are considered, i.e. 90% and 50%,

there is even more headroom to trade off SLA objective for energy efficiency.

One can also see that having an efficient OS such as EbbRT also causes the

latency distribution to be more stable in comparison to Linux in terms of the
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vertical spread of measured values. At a light QPS load of 200K, one can see

that the datapoints for both OSes are packed together such that ITR largely

determines the overall tail latency. As QPS increases, the combined effect of

DVFS and ITR on tail latency is magnified such that the vertical spread is more

pronounced.

Figure 5.9: The X-axis plots the static ITR values explored in both
OSes and the Y-axis shows the measured 99%, 90%, and 50% la-
tency in Memcached for the different QPS rates. The range of
points along the vertical is indicative of different DVFS explored
for each static ITR. This figure illustrates how ITR can be used
to induce stability in tail latency measurements even at 99% for
a dynamic Memcached workload and the stability is more pro-
nounced in a specialized OS such as EbbRT in comparison to
Linux where at fast ITR values, the different DVFS values used
causes a larger difference in tail latency measures.
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As shown in the figures below, the benefit of slowing down ITR by increas-

ing its value consists of 1) lowering the number of interrupts fired (fig. 5.11),

which can help lower overall instruction use and promotes better coalescing of

incoming requests, and 2) ensuring a guaranteed period of idle such that the

processor can take advantage of with sleep states (fig. 5.10). We find that the

total number of interrupts fired across different QPS loads can be lowered by

over 90% in Memcached through the use of ITR mechanism.

Figure 5.10: Using Linux-static as an example, the three figures
show C-state counts in Memcached for different QPSes while
running at a fixed DVFS of 2.5 Ghz. The X-axis shows for each
C-state from C1 to C7 where C1 is the lightest and C7 is heaviest
sleep state where architectural state such as caches are completely
flushed. We show the count of how many times Linux’s idle pol-
icy went into each sleep state given two different ITR values at a
fast rate of 2 us and a slow rate of 300 us. The Y-axis are normal-
ized against the counts of ITR at 2 us. These figures show that
across the QPSes, a fast ITR rate of 2 us typically uses only C1
sleep state as it is the lightest and will be constantly woken up, as
ITR increases to 300 us, the heavier sleep states begin to be used
more to take advantage of the prolonged idle periods induced by
the ITR mechanism.
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Figure 5.11: Static ITR setting impact on total number of inter-
rupts in Memcached.

5.2.3 DVFS Changes

In open-loop applications, we find processor energy settings can be combined with

batching to take advantage of the prolonged periods between interrupt processing

to drastically lower energy use by processing applications slowly; this is in con-

trast to typical techniques such as run-to-halt where the goal is to finish the work

quickly to maximize idle energy states. In table 5.1, one can see DVFS values at

a minimum of 1.3 Ghz can be used with a large ITR value of 300-400 µs to en-

able greatest energy savings while maintaining SLA budgets for both Memcached

and Memcached-silo in both OSes. Details of this trade-off is discussed in §5.2.3.1

below.
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Figure 5.12: Pareto-optimal curves of Memcached-silo application.

5.2.3.1 Detailed Finding 4: Combining DVFS and ITR to lower total energy

use.

In fig. 5.13 below, the X-axis lists the DVFS values used and the Y-axis is the

measured energy use of memcached with that DVFS and a range of ITR val-

ues. Moreover, to understand the impact of ITR on energy use, the bold lines

indicate the mean energy use at fastest ITR value, while dotted lines indicate

mean energy use at the slowest ITR value. We see that in both systems, as DVFS

is set lower, the impact of ITR on saving energy diminishes (gap between bold

and dotted lines shrink as DVFS slows). The effect of slowing down with DVFS

results in the lengthening of the time to do application and OS work, therefore

reducing opportunities to use ITR to save energy from idle sleep states. Sur-

prisingly, we find this method of slowing application processing with DVFS

yielded configurations with minimum energy consumption in contrast to run-

to-halt configurations that typically use a fast DVFS to speed up processing

in order to maximize idle states. Furthermore, such slow-down is further im-

pacted by SLA requirements as it has stringent time budgets that almost all
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requests must adhere to.

Figure 5.13: The X-axis shows for each static DVFS setting and
the Y-axis shows the measured total energy use across the two
OSes. The vertical span of each DVFS setting is indicative of
how different static ITR values impact energy use. The bold lines
show the fastest ITR explored and the dotted line show the slow-
est ITR explored. These lines indicate how within a DVFS value
that changing ITR also impacts energy consumption.

However, figure 5.13 also shows that actually combining the effects of both

statuc ITR and DVFS together results in overall lowest energy use across both

Linux and EbbRT. By using a static ITR setting, this induces stability in applica-

tion processing as incoming requests arrive in a predictable manner; therefore

DVFS can be be finely tuned to find "sweet spots" such that energy is mini-

mized.

Contribution: While previous work have focused on exploring energy benefits

in SLA headroom with DVFS (Wu et al., 2016; Hsu et al., 2018; Lo et al., 2014;

Hsu et al., 2015; Lo et al., 2015; Barroso, Luiz André and Hölzle, Urs, 2007; Fan

et al., 2007) only, our findings demonstrate even further energy savings by up to

76% with the novel combined use of ITR and DVFS.
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5.3 OS-CENTRIC

5.3.1 OS, ITR, DVFS Changes

As fig. 5.2 and fig. 5.8 show, OS-centric applications such as NetPIPE and Mem-

cached exhibit a unique performance and energy trade-off even though they dis-

play different ITR and DVFS efficiency responses in the shapes of "V" and "L".

In particular, we find that in both applications, there is a optimal region on the

leftmost side of these figures where performance is best such that it is possible to

drastically reduce energy usage with a negligible performance penalty. This find-

ing can be partly attributed to eq. (2.1) where applications that use more memory

operations, such as NetPIPE and memcached, are less impacted by performance

penalties of DVFS while still attaining its energy savings benefits.

For example in NetPIPE, slowing down DVFS for Linux-static @ 512 KB low-

ered performance by 16% but used 2X lower energy and EbbRT-static suffered

no negligible performance degradation and still managed to lower its energy by

up to 2X. Further, table 5.1 also illustrates that both OSes use different combina-

tions ITR and DVFS values to achieve their respective performance and energy

improvements; therefore demonstrating the importance that OS software plays in

optimizing these goals with ITR and DVFS mechanisms.

For example in Memcached @ 200K for both OSes, the vertical dots on the left in

fig. 5.8 indicate a single fast ITR value (around 2 µs) and the lowest point along that

vertical line is caused by the use of DVFS to drastically lower energy by over 2X

with negligible performance penalties. As discussed earlier, we find ITR places the
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Figure 5.14: Each point represents a single experimental run of mem-
cached. Note we don’t have Linux results for 1000K and 1500K QPS
as the Linux could not support that offered load without violating
the SLA objective.

vertical bands by influencing its overall tail latency and DVFS affects the energy

consumption within these bands. Moreover, we see this behavior replicated as the

QPS loads increase for both OSes. We detail this observation further in §5.3.1.1

below.

5.3.1.1 Detailed Finding 5: A specialized system has more headroom with

DVFS to further reduce energy without sacrificing performance.

Fig. 5.14 expands on the distinct behaviors from Linux-static and EbbRT-static

as ITR and DVFS are statically searched. This figure shows that as QPS in-

creases, EbbRT maintains a relatively vertical structure regardless of ITR and

DVFS, which implies that its optimized OS structure enables lowering energy

use without compromising performance. In contrast, we observe that Linux be-

gins to exhibit more trade-offs between performance and energy as it reached
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higher QPSes at 400K and 600K (dots starts curving horizontally). We find that

Linux can support a peak QPS load of 800K QPS while EbbRT’s more special-

ized OS paths result in a peak QPS of 2000K; at 1500K QPS, which is around

75% of EbbRT’s peak, we begin to see small horizontal curves in its data.

Figure 5.15: ITR impact on instruction count in memcached. Not
drawn to scale in order to shown structure in data.

To delve more deeply into these observations, fig. 5.15 shows the impact

of ITR on the total amount of instructions needed to run a single memcached

experiment. First, this figure shows how a slow ITR value can reduce overall

instruction usage from batched packet handling by up to 30% in Linux. Next,

this figure shows the drastic differences in instruction count between the two

OSes as EbbRT uses up to 2.5X fewer instructions to support the same load

as Linux. As memcached is not compute heavy as most of its work consists

of memory operations, this means that EbbRT with its optimized OS paths that

uses less overall instructions can greatly take advantage of energy saving prop-

erties of DVFS without sacrificing as much performance.
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Figure 5.16: Timeline plot of non-idle ratio at per-interrupt basis
for Linux-static and EbbRT-static that resulted in min energy for
memcached @ 600K QPS.

Further, EbbRT’s optimized memcached implementation also results in

greater opportunities to use idle sleep states and save additional energy. This

is shown in fig. 5.16 where each point is computed as the non-idling ratio at

the per-epoch rate: we use the difference between the busy cycle count and

rdtsc (which counts total cycles). This timeline figure demonstrates that a

more specialized OS paths can be used to further maximize run-to-halt energy

benefits (Meisner & Wenisch, 2012; Chou et al., 2016).

Contribution: These observations demonstrate that a more specialized system

contains more headroom with which to exploit performance and energy more ag-

gressively and suggest that different OS designs can result in drastically different

displacements for their efficiency profiles.
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5.3.2 DVFS Changes

Further, we explore an alternate extension of the observation on DVFS perfor-

mance and energy efficiency benefits in OS-centric applications by implementing a

run-to-completion polling loop on each core of EbbRT. Due to this tight-loop, this

alternate configuration of EbbRT will never halt and use idle states. We elaborate

on this implementation in §5.3.2.1 below.

5.3.2.1 Detailed Finding 6: Polling can be energy efficient.

As indicated earlier, the use of a single fast ITR value resulted in both best per-

formance and subsequent combining with DVFS also resulted in lowest energy

use as well. This prompted us to explore the effects of eliminating interrupts al-

together and use a dedicated poll loop. In fig. 5.2 and fig. 5.8, we illustrate that

EbbRT-poll was able to achieve both best case latency and competitive lowest

energy. We found that by modulating DVFS, EbbRT-poll can be made energy

efficient for small payloads under its specialized OS paths - this is in contrast to

the normative assumptions of OS poll (whe, 2012; Golestani et al., 2019) where

it often trades performance for higher energy use. For example, EbbRT was

able to improve tail latency by 27% while using 35% less energy in Memcached.

In NetPIPE (Snell et al., 1996), polling can achieve up to 3X better performance

while using 4X lower energy as compared to baseline Linux. However, polling

with DVFS must be used judiciously as in other application-centric workloads

such as Memcached-silo often results in both worst performance and energy

use as compared to their interrupt-driven counterparts.
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Contribution: This finding suggests the importance for energy aware OS-level

optimizations that can switch between poll and interrupt-driven IO in response to

changes in demand. Therefore, OS path specialization techniques can explore the

use of polling to achieve both low-latency and energy efficiency with careful use of

DVFS in new hybrid policies.

5.4 APPLICATION-CENTRIC

5.4.1 OS Changes

Fig. 5.2 and fig. 5.12 demonstrate that in both OSes that as the application work is

more processing heavy compared to the OS portion, there is a more horizontal na-

ture to the trend of these efficiency profiles where performance is clearly sacrificed

for energy and vice versa. To our surprise, we find that even in application-centric

workloads, the specialized OS paths of EbbRT can still induce new performance

and energy benefits via new optimizations strategies. We discuss two of these de-

tailed findings below and also discuss their implications on both system design

and applicability towards other types of applications. To begin, §5.4.1.1 discusses

a new slow-to-stay-busy strategy that we’ve uncovered in EbbRT that can be ap-

plied to fine-tune when interrupts are handled.



95

5.4.1.1 Detailed Finding 7: Energy-aware-slow-poll strategy in a run-to-

completion OS.

Previous works have coined terms such as race-to-idle/pace-to-idle Hoffmann

(2013) for alternative energy saving strategies. In both NodeJS and NetPIPE

with only a small message of 64 B, we find a new strategy which we call the

energy-aware-slow-poll effect; whose behavior is different from previous works

as the system is always kept busy by processing in a slow manner such that

new requests are always in the pipeline after the current request is finished.

Fig. 5.17 illustrates that for EbbRT, a slow DVFS can lower the total number

of interrupts by up to 90%. The reason for this is that the physical transmission

of the OS reply packets by the device driver can occur asynchronously with

the unwinding of the stack back to the application and then back down to the

network receive function to check for new packets. A slow DVFS causes this

unwind path to lengthen, potentially increasing the probability that new pack-

ets have already arrived ready to be processed by the time it reaches the net-

work receive function. Therefore, the software is able to skip many hardware

interrupts (fired on packet receive) in order to effectively energy-aware-slow-poll

and process this new reply packet that has already arrived.

Figure 5.17: DVFS impact on number of interrupts in NodeJS and Net-
pipe 64B.
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Figure 5.18: All memcached-silo results. Note we don’t have Linux results
for 300K as the Linux could not support that offered load without violating
the SLA objective.

Contribution: We find energy-aware-slow-poll only occurs in EbbRT due to

its run-to-completion nature and suggests that for a structurally different OS, new

energy saving strategies can be uncovered.

5.4.2 Offered load, ITR, DVFS Changes

In contrast to memcached results, fig. 5.18 shows that as the application work gets

larger for each request, the trade-offs of latency and energy become more dis-

cernible in both Linux and EbbRT as indicated by the curvature and horizontal

pattern of markers. Surprisingly even in a computationally heavy workload un-

der a stringent SLA, it is still possible to use DVFS and ITR to further save energy;

in fig. 5.18 at 200K QPS, Linux-tuned improved its tail latency by 21% and energy

by 20% over Linux-default, further EbbRT-tuned improved its tail latency by 34%
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and energy by 44% over Linux-tuned. In §5.4.2.1 below, we detail how EbbRT’s OS

path specializations can enable these efficiency gains.

5.4.2.1 Detailed Finding 8: IPC Benefits Even in Computationally Heavy Ap-

plications.

In fig. 5.19 below, we validate that in a computationally heavy applications

such as Memcached-silo, where most of the work is in the application, both

Linux and EbbRT used roughly the same number of instructions across all the

ITR, DVFS settings. Surprisingly, fig. 5.19 shows that even in a computation-

ally heavy workload, a more specialized system such as EbbRT was able to

execute those instructions more efficiently by having higher instructions-per-

cycle (IPC) than Linux. We believe this can be attributed to its optimized OS

paths and as fig. 5.19 (a) shows that it suffered fewer cache misses than Linux.

This IPC benefit further corroborates §5.2.3.1 that a more efficient system can

more aggressively slow a processor to save energy; note that for 100K and 200K

QPS, EbbRT can use lower DVFS values while not violating SLA compared to

Linux whose DVFS value range is more limited.
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Figure 5.19: The figures show collected hardware statistics for
Memcached-silo across three QPS values. For consistency, we
plot the data from the perspective of different fixed DVFS values.
In (a), the Y-axis shows the count of total number of last-level
cache misses between the two OSes. In (b), we illustrate that the
total number of instructions executed is roughly the same even
though the application runs on two different OSes. In (c), our
results show that the EbbRT is executing instructions more effi-
ciently than Linux even in a computationally heavy application.

Contribution: OS path specialization can enable dramatic performance and

energy benefits even in application-centric workloads and suggest these adaptions

can exhibit similar performance-energy trade-offs even when implemented in gen-

eral purpose systems.
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5.5 SUMMARY OF EXPERIMENTAL FINDINGS TOWARDS BUILDING A

MODEL

This chapter began with the the hypothesis that a network service software stack

has a characteristic performance and energy efficiency profile that is a function of

packet batching (ITR) and processor energy settings (DVFS). This profile identifies

optimal operating points that can be exploited to minimize energy consumption

for a given performance target. Using itrLog, this chapter presented a detailed

experimental study of how ITR, DVFS, and OS logic and paths interact together

to impact performance and energy trade-offs given different application types and

offered loads.

First, the detailed findings described can help pave the way towards new poli-

cies that address the importance of energy efficient system designs. For exam-

ple, the slow-to-stay-busy effect and EbbRT-poll findings reveal how decisions in

EbbRT’s OS path specialization, such as run-to-completion, can enable novel forms

of packet processing that can help achieve even further performance and energy

benefits. Moreover, our novel findings on the use of ITR combined with DVFS

reveal unique opportunities in performance and energy trade-offs that are depen-

dent on the type of application and particular offered loads that it services.

Second, figures 5.2, 5.8, and 5.12 illustrate that for each of the OS stacks that

use a static configuration of ITR and DVFS, there exists unique OS efficiency pro-

files. While there is a clearly separation between overall performance and energy

between the two OSes, it also reveals characteristic shapes that are independent

of the OS, and are functions of batching and processor energy settings given a

particular application and offered load; further, they share a common and stable

structure.
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Lastly, this suggests one can treat performance-energy behavior in a general

way independent of the choice of OS. This can be done by considering the

performance-energy behavior as a parametric family of curves with one parameter

set choice denoting EbbRT and another Linux. As the figures show, when OS code

paths and other OS characteristics are changed, the underlying parameters also

smoothly change. The implication is that the underlying OS response is stable and

structured such that one can capture OS agnostic performance and energy profiles

using an analytical model in a formal way, which further suggests that controlled

learning of policies for OSes can be made feasible.

In chapter 6 below, this thesis details how simplified request processing time-

line (fig. 4.1) can be expressed mathematically in order to construct a set of analyt-

ical models that can accurately capture the efficiency profiles we measured. These

types of models let us evaluate how batching and processor energy settings inter-

act with OS and application request processing, and how this evaluation changes

when the OS or offered load changes. Specifically, our models use ITR and and

DVFS values as inputs in order to accurately fit the experimental data across the

OSes, applications, and offered loads, despite dramatic differences in system struc-

ture.
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CHAPTER 6

Modeling the Experimental Data

The structure revealed by our exhaustive experimental search illustrates the fi-

delity of our data. This, in turn, suggests that our data can be exploited to create

a formal model for analyzing and exploring energy and performance impacts as a

function of OS behavior.

We use the timeline in fig. 4.1 as a guide for constructing our model. To sum-

marize, a quiescent period in which no requests are present at the server precedes

activity. In response to OS request detection, the OS detects and schedules process-

ing typically with a combination of interrupt and/or poll-based mechanisms. With

new data to process, several components of OS functionality must be run in accor-

dance with the execution model of the OS during request servicing. This execution

stage can be interleaved between synchronous and asynchronous stages, depend-

ing on OS logic (i.e. event-driven or context switching) until a reply message is

sent. If all processing is complete, the OS can then use an idle policy that selects a

hardware sleep state to halt the core and save energy.

Guided by this timeline, we then adapt and modify the model’s applicability

to accurately fit the experimental data. Below, we detail how the applications, the

OSes, the different offered loads and the insights gained in chapter 5 all helped

to inform the construction of our models that can accurately predict both perfor-

mance and energy.

6.1 OPEN LOOP MODEL

In the open loop applications, we assume a simple model where the offered load is

light enough that requests don’t batch up in the receive queue and can be treated
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independently. We use the SLA objective as 99% of all requests to have a tail la-

tency under 500 us, therefore, we filter out ITR and DVFS settings which violate

the SLA in our data set. Below, we model performance as the per-request 99% tail

latency value and the energy as the per-request energy consumption. While not

detailed in this thesis, we have also validated other tail latency values (i.e. 50%,

75%, 90%, and 95%) and find our models can accurately fit them as well.

Performance: The per-request 99% tail latency value can be decomposed into

two constituent parts: 1) tinterrupt, which is the time spent waiting for the NIC inter-

rupt to fire and cost to wake up the processor, and then 2) twork, which is the time

spent actually processing the request and eventually sending a response. There-

fore, we define △t as the time it takes to handle a single request as the following:

△t = twork + tinterrupt

We parameterize twork as a function of DVFS values used in our experiments:

twork =
Z

DV FS1+α
(6.1)

Z and α are parameters that change with respect to both the OS and application

request load. In this model, Z acts as a maximum time limit that each request

can take (under some SLA target). Influenced by detailed findings in §5.1.2.1 and

§5.2.3.1, α represents a system’s dependence on DVFS to trade-off performance for

energy and how its impact is different dependent on which OS, application, and

offered load is used. For example, if α = −1.0, then that particular system has

no dependence on DVFS and can largely use DVFS to lower energy use without

sacrificing performance.
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We parameterize tinterrupt as a function of ITR values:

tinterrupt = ϕ ∗ ITR (6.2)

Influenced by detailed finding in §5.1.3.1, where ITR is a mechanism that di-

rectly influences and stabilizes the measured tail latency value, ϕ represents the

location in the receive queue where a packet is placed before being processed. For

example, if an unlucky packet arrives just as the NIC’s ITR value starts count-

ing down, then it will have to artificially wait a full ITR before being processed,

thereby delaying overall request processing time.

The predicted performance per request is thus defined as follows:

△t =
Z

DV FS1+α
+ (ϕ ∗ ITR) (6.3)

Energy: The total energy consumed is affected by the various power values which

in turn depends on the way DVFS is set, and the degree with which ITR is used

to induce both prolonged idle periods and the resulting benefits of batched packet

handling. Further, we posit that this energy use has a power dependence on DVFS

as motivated by eq. (2.1) where DV FS values impacts both a processor’s voltage

and frequency, therefore, we define △J as the amount of energy it takes to process

a single request as:

△J = γ ∗ (ϕ ∗ ITR) ∗DV FSβ (6.4)

Note that ϕ used here is the same variable from eq. (6.2). γ (units of watts) acts

to convert the interactions of ITR and DV FS and into energy used. The variable

β acts as a dependence factor on DVFS in a simlar way to α in eq. (6.1). Note, in
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our figures we show results after doing a log transformation to eq. (6.4) on both

sides to enable linear regressions analysis where β and γ are free parameters that

change dependent on the OS and workload

6.2 CLOSED LOOP MODEL

In the closed loop applications, we develop a model that captures its inter-dependency

behavior, where the arrival of the next request depends on how fast it takes to

service the current request. From a server’s perspective, the idle period will be

bounded by time to transmit both the request and the reply, as well as the time on

the client to generate the next request. In the closed loop scenario, one would like

the server to complete every request quickly so that the overall time to complete a

task is minimized and ideally use less energy in the process.

In this model, we define the predictions on a per-request basis to capture both

energy used and total time spent. Broadly, we view a single request in closed loop

applications as composing of both a client and server node, which begins from 1)

the client sending a request packet to the server, 2) to the time spent to transmit

packet to server, 3) and then the server waking the processor up to process the

request and sends a response back to the client, and finally 4) the response being

transmitted over the wire to the client. We construct two models below, one for

predicting performance and another for energy use.

Performance: We break the time to process each request, △t, into three parts: 1)

twork – time spent processing the request and eventually sending a response, 2)

ttransmit – the transmission time given the request message size and the network

link speed, and 3) tinterrupt – the effect that ITR and DVFS interactions have on
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overall processing time. The value 2 is used to encode the client-server tight-loop

nature of closed-loop style applications.

△t = 2 ∗ (tinterrupt + ttransmit + twork) (6.5)

We use the same twork variable as defined in eq. (6.1). We compute ttransmit using

speed of the network (i.e. 10 GbE) and the size of the message sent in the request.

Next, we parameterize tinterrupt as a function that captures the complex interactions

between ITR and DVFS, as informed by §5.1.2.1 where ITR can be used to batch

different sized payloads of NetPIPE and for each batching, there is a unique DVFS

value that minimizes overall energy use:

tinterrupt = ITRγ∗DV FS+δ

Energy: We model per request energy as a simple expansion upon the derivation

in eq. (6.5) by adding a set of conversion factors (CFa, CFb, CFc) for each of the

three components above in order to convert a measure of time to a measure of

energy use. All the conversion factors are in units of Watts (joules/secs). Therefore,

we define △J as the amount of energy it takes to process a single request as:

△J = 2 ∗ (CFa ∗ tinterrupt + CFb ∗ ttransmit + CFc ∗ twork) (6.6)

6.3 MODEL FITTING RESULTS

We inferred the parameters above by minimizing the mean squared error (MSE)

loss between the model’s calculations and the collected data. Since we wanted

to try complex ITR and DVFS dependencies in our equations, we used PyTorch’s
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Figure 6.1: Prediction of energy and performance using model for
Netpipe at different message sizes. The Y-Axis consist of measured
values (either performance or energy) and the X-AXis consists of pre-
dicted values using the constructed models. We draw diagonal lines
and show if the dots (which are measured values) lie on the diagonal
line, then it is an accurate fit of the model onto the data.
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Figure 6.2: Prediction of energy and performance using model for
Memcached.
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Figure 6.3: Prediction of energy and performance using model for
Memcached-silo.
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Memcached
200K 400K 600K

Linux EbbRT Linux EbbRT Linux EbbRT

Tail Latency
Z 86.3 55.88 251.67 55.63 687.97 51.72
α -0.48 -0.96 0.71 -1.00 1.34 -1.04
ϕ 1.09 0.98 1.08 0.98 1.02 1.03

Energy log(γ) -12.82 -12.89 -12.79 -12.85 -12.75 -12.85
β 0.71 0.68 0.76 0.66 0.89 0.68

Table 6.1: Values for free parameters in memcached at different QPSes
from doing fit with Adam optimizer.

auto-differentiation engine to perform gradient descent on the non-convex loss.

In particular, the Adam optimizer (pytorch, 2022) was used. Each fitting process

was run several times to check the stability of the inferred parameters to not get

stuck in local minima. Overall, we find that our models are expressive enough to

accurately fit both performance and energy data for both OSes at different offered

loads across the set of applications studied.

In fig. 6.1, fig. 6.2, and fig. 6.3 shown above, we demonstrate results of our

fitting by plotting the set of energy and performance predictions (X-axis) against

their measured values (Y-axis). We plot diagonal lines in the figures below to show

where ideal points would lie if our model’s calculations are exact. We use two

additional visual cues to identify the effects of ITR and DVFS on performance and

energy: 1) slowing down DVFS is reflected in the color of each marker as going from

lighter to darker, and 2) slowing down ITR is reflected in size of each marker as going

from small to large. Note that the range of ITR and DVFS values are not consistent

across applications as they each have particular static settings that produce the

best results. Moreover, table 6.3, table 6.1, and table 6.2 detail the values of the free

parameters that our model fitting approach eventually settled on, we discuss some

of the meanings behind their respective values as well in the sections below.
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Memcached-silo
50K 100K 200K

Linux EbbRT Linux EbbRT Linux EbbRT

Latency Predict
Z 403.60 225.39 324.52 245.85 429.30 364.65
α -0.06 -0.66 -0.45 -0.70 -0.77 -0.62
ϕ 0.94 0.89 0.91 0.86 0.61 0.74

Energy Predict
log(γ) -12.58 -10.31 -12.71 -11.38 -11.52 -12.23
β 1.15 -1.11 1.15 -0.16 0.38 0.83

Table 6.2: Values for free parameters in memcached-silo at different QPSes
from doing fit with Adam optimizer.

6.3.1 Open Loop Discussion

Fig. 6.2 illustrates one of our open loop model fittings with memcached at 600K

QPS. As an example of the accuracy of our fits, the measured mean latency for 600K

QPS is 265.5 µs with standard deviation of 125.2 µs, and our
√
MSE on latency is

0.009 µs. We also do a log transformation for our per-request energy prediction in

eq. (6.4) to enable linear regression analysis where β and γ are free parameters that

change dependent on the OS and workload.

6.3.1.1 Memcached

In our parameter fitting approach, the conversion factor parameter γ is consistent

in both OSes, indicative of some base cost of running the hardware, and translates

to roughly 2.7 Watts from back of the envelope calculations. Surprisingly, we find

that the value of ϕ is consistently ∼1.0 across both OSes, which implies our model

is correctly adapting to the 99% tail. We examined other tail latencies such as 50%

and found ϕ also consistently adapted to a value of ∼0.5. Moreover, fig. 6.2 shows

the greater effect that DVFS has on energy while ITR has a greater effect on tail

latency. Below, we provide more details of the values in the fitted parameters in

the context of an OS and its application.



111

• Z: We see that EbbRT’s value stays roughly the same while Linux’s increases

as QPS increases. This value represents some mean time that the system

needs to process a request for memcached under the SLA. EbbRT’s stability

is largely a result of being a more efficient system and the importance of this

observation will be tied to the α parameter.

• α: This value stays roughly the same at -1.0 for EbbRT while increasing for

Linux as QPS increases. The -1 value means that DVFS settings in eq. (6.1)

will largely not increase the time to process the request as QPS increases,

which demonstrates the ability of a more efficient system to exploit DVFS to

save energy without sacrificing performance. However, we see in Linux that

as QPS increases, there is a greater dependence on DVFS and its impacts on

reducing energy use while maintaining SLA.

• ϕ: We find that this value is closely correlated with the SLA, which is 99% tail

in this case; we explored other tail latencies and saw similar behavior (i.e. 0.5

for 50% tail latency). This implies that given a twork that is stable, then most

of the variation in latency is driven by the position of a request in the NIC’s

receive queue.

• log(γ): Our fitting shows that this parameter is a conversation factor that is

consistent in both OSes, indicative of some base cost of running the hardware

and translates to roughly 2.7 Watts from back of the envelope calculations.

• β: Scales similarly as α where in Linux as QPS increases, so does β, while

in EbbRT it stays roughly stable. Its used in a similar manner to scale an OS

sensitivity to DVFS but with respect to energy instead of time, the results in

this table show that at the lowest offered load, a more efficient system will
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use less overall energy and will also scale better as load increases.

6.3.1.2 Memcached-silo

Fig. 6.3 illustrates an example result of our fitting with Memcached-silo at 200K

QPS and table 6.2 lists the values of the free parameters. Given the compute heav-

ier nature of this workload, one can see that the interactions of ITR and DVFS is

complex in both Linux and EbbRT. Below, we discuss the values of the free param-

eters listed in table 6.2.

• Z: In contrast to memcached, we see this parameter increasing in both OSes

as the QPS increases due to the extra set of application work per request.

However, a more efficient system can still maintain a lower Z value as it is

faster at processing each request.

• α: As mentioned, both OSes will be dependent on DVFS to finish each re-

quest while maintaining the SLA objective. Recall that the dependence is

defined by DV FS1+α, where if α = −1 then there no DVFS dependence to

affect latency. The table shows that EbbRT has a consistent DVFS dependence

regardless of QPS while Linux’s fluctuates across the board. This is perhaps

indicative of some inherent noise within Linux’s data.

• ϕ: In contrast to memcached, ϕ begins to decrease as QPS load increases. We

suspect this is due to the SLA objectives where each request is now required

to arrive earlier in the receive queue so that there is enough buffer time to

process the request and send a response without violating the objective.

• log(γ): Similar to memcached, our fitting shows a similar conversion factor

for γ in both OSes, but the physical value seems to indicate that the base cost
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has changed relative to the application.

• β: In contrast to α, β is now showing difference behaviors with respect to

energy than time, possibly due to the complex interactions of ITR and DVFS

to save energy while maintaining SLA.

6.3.2 Closed Loop Discussion

Fig. 6.1 illustrates an example result of our model fitting with NetPIPE for mes-

sages sized at 8 KB. We find that our model can accurately fit message sizes where

there is a discernible trade-off for performance and energy when using ITR and

DVFS. For example, fig. 6.1 shows that though our model has a correct fit for

Linux, it did not work as well for EbbRT at 8 KB message sizes. This is due to

OS path efficiencies of EbbRT where the use of a single fast ITR in EbbRT was able

to achieve both best case performance and energy, therefore there is no discernible

performance and energy trade-off with using ITR to induce batching behavior.

• Z: For a light workload such as NetPIPE, we expect the time to process each

request as negligible given it is mainly network driven.

• α: Similar to memcached, when the application work is light, the perfor-

mance of a more efficient OS is largely not affected by a slow DVFS.

• γ ∗DV FS + δ: These two parameters are intertwined in how ITR is affected

by DVFS. The δ is a base cost that is consistent and a smaller γ is indicative

that the system isn’t as affected by DVFS.

• CFa, CFb, CFc: These constant factors are relatively stable across both OSes

to convert the time to energy.
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NetPIPE
65536 524288

Linux EbbRT Linux EbbRT

Performance

Z 0.000058 0.000019 0.00003 0.000022
α -0.23 -0.85 -0.10 -0.66
γ 0.11 0.09 0.13 -0.13
δ 0.69 0.60 0.66 0.68

Energy

CFa 16.52 16.69 19.22 14.92
CFb 4.16 5.7 3.19 3.60
CFc 15.27 13.4 13.38 15.41

Table 6.3: Values for free parameters in NetPIPE fromdoing fit with Adam
optimizer.

6.4 MODEL LIMITATIONS

Using the experimental data alongside our detailed systems’ analysis, we show

how properties of the OS and applications induce trade-offs for batching and pro-

cessor energy settings under different loads. As these two underlying parameters

change, the result is a response behavior that is both stable and structured enough

to allow us to develop analytical models that capture performance and energy pro-

files in an OS agnostic way. While our models demonstrate an accurate fit for our

data. It is not practical for all but highly constrained static settings. To replicate

this approach one needs to exhaustively tune parameters and gather data. How-

ever, the accuracy of our model’s suggest the viability in statistical approaches to

efficiently find ITR and DVFS settings that improve the behavior of a network ap-

plication. Building on these results, the next chapter describes a framework known

as Bayesian optimization that can be used to automatically control batching and

processor energy settings for real applications.
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CHAPTER 7

Tuning with Machine Learning Techniques

While the analytical models discussed in chapter 6 demonstrate that one can pre-

compute ideal batching and processor energy settings for some software stacks; it

was only only applied in highly constrained static environments. However, the

existence and accuracy of the analytic model’s equations suggests the viability of

using a black-box learner to exploit these structures. In this chapter, we present an

example of this in our use of such a black-box learner to efficiently find batching

and energy settings that target performance and energy goals across the applica-

tions and OSes. Such a technique can compensate for inaccuracies in our analytical

model and the need for exhaustively searched experimental data.

At a high level, given a target metric to optimize (performance, energy or a

combination of them), we can treat the problem as that of optimizing a function of

two variables:

itr∗,DVFS∗ = metric(itr,DVFS) (7.1)

There is a large body of work on optimizing numerical functions using iterative

techniques, however, in our use case there are some additional requirements:

• The domain consists of two quantities that are ordered but not continuous.

• The only accessible information about the metric is its value evaluated at a

fixed ITR and DVFS. This function is considered as black-box as we don’t

know anything about its derivatives given the non-continuous nature of the

domain.
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• The process of evaluating this metric at a given ITR and DVFS, is potentially

expensive, i.e. time-consuming. Ideally, we would like to find the optimum

with as few evaluations as possible.

Given these requirements, we find Bayesian optimization (Frazier, 2018; Gar-

nett, 2022) is a class of techniques that directly addresses these requirements. While

Bayesian optimization has a long history, it has also seen a resurgence in interest

in the last decade owing to its applications to hyper-parameter tuning for deep

neural networks (Turner et al., 2021; Snoek et al., 2012). Below, we briefly describe

the core elements of Bayesian optimization.

7.1 SUMMARY OF BAYESIAN OPTIMIZATION

To summarize, there is a true function y = f(x⃗) that maps points in the domain to

the objective metric of interest. The core idea of Bayesian optimization is to search

for a proxy, fθ to this true function f and use it to suggest points that are likely to

be optimal.

The process starts by randomly sampling the domain to get a fixed small num-

ber of measurements (x⃗i, yi) where yi is the true objective corresponding to the

input x⃗i. This data is used to then fit the proxy, fθ. The key point is that while

the proxy will only be an approximation to the true function, it is very cheap to

evaluate at any x⃗. The proxy is most often a Gaussian process that provides well-

principled mean and uncertainty estimates. The proxy is then used to identify

points that are most likely to lead to an objective value better than the current

best observed objective. Once a measurement is made at this new point, it is used

to update the parametric fit, fθ and the process is repeated till a fixed budget of

evaluations is exhausted. In practice, Bayesian optimization leads to very effective
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solutions in a small fraction of evaluations.

To evaluate the feasibility of such a search on our problem, we first use the

gathered dataset from the experimental study as a hash table to do look-ups for

the optimization process. We use an off-the-shelf platform, Ax (Ax:Adaptive Ex-

perimentation Platform, 2022; Bakshy et al., 2018), to demonstrate Bayesian opti-

mization’s ability to find optimal ITR, DVFS configurations that resulted in lowest

energy and best performance across the OSes and applications presented in this

thesis. Next, we demonstrate a real-world application by applying it to a dynamic

in-memory key-value store application over a 24 hour period.

7.2 BAYESIAN OPTIMIZATION APPLIED TO EXPERIMENTAL STUDY

We begin by applying Bayesian optimization to the existing dataset we have col-

lected from our experimental study in chapter 2. The motivation was to verify

and demonstrate its feasibility to dynamically exploit structures in the dual use of

ITR, DVFS to optimize towards energy and performance in an OS and application

agnostic way. In this process, each sample conducted by the Bayesian process re-

sults in a look-up of the ITR, DVFS combination from our study and the resultant

energy or performance metric. This metric is the reward with which the Bayesian

process uses to guide its optimization until all evaluation steps are exhausted.

An example of our results is shown in fig. 7.1 where the optimization process

requires very few (compared to the total number of points) samples, to find the

optimum or a point close to the optimal of lowest energy. Moreover, we find this

framework is generic enough to be applicable in two fundamentally different OSes

and across all the applications studied as shown in fig. 7.3, fig. 7.4, fig. 7.2. These

results also demonstrate that Bayesian optimization can be used to target minimiz-
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Figure 7.1: Bayesian optimization for Memcached for 99% tail latency and
energy. The X and Y axis represent unique ITR, DVFS pairs in a single ex-
perimental run and is also illustrated by every O. We show the samples that
the Bayesian process undertook via the X. The + indicates the best case (per-
formance/energy) ITR, DVFS configuration found by Bayesian optimiza-
tion and the * is the best case found so far by the exhaustive experimental
study search.
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Figure 7.2: Bayesian optimization for 99% tail latency and energy in
Memcached-silo.
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Figure 7.3: Bayesian optimization for NetPIPE for performance and
energy.

Figure 7.4: Bayesian optimization for NodeJS for performance and
energy.
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ing energy use and also improving performance. Motivated by these results, the

next section describes our application in a real-world scenario.

7.3 BAYESIAN OPTIMIZATION APPLIED TO REAL-WORLD TRACE DATA

In order to probe the effectiveness of ITR and DVFS; our experimental study, mod-

eling work, and black-box learner approach were applied in highly constrained

static environments with only up to 340 combinations of ITR, DVFS values. In

these circumstances, it is unrealistic and expensive to conduct such a study on new

applications or different request rates to generate a dataset, and then guess, fit and

refine the equations, which would then be used to identify a more precise value of

ITR and DVFS to minimize latency or energy or some combination of both.

Therefore, to demonstrate the practicality of the black-box learner, this section

presents results from applying Bayesian optimization to a publicly available in-

memory key-value store workload trace from Twitter called

cache-trace (Juncheng Yang, 2020). We were motivated to explore this avenue as

recent utilization studies of widely deployed services of in-memory key-value

stores (Rajesh Nishtala and Hans Fugal and Steven Grimm and Marc Kwiatkowski

and Herman Lee and Harry C. Li and Ryan McElroy and Mike Paleczny and

Daniel Peek and Paul Saab and David Stafford and Tony Tung and Venkatesh-

waran Venkataramani, 2013; Yang et al., 2020; Shashi Madappa, 2012; Daniel Ellis,

2017) reveal that these services often maintain a mean demand curve that changes

over the course of hours and up to days in a repetitive way, which suggests that

specialization of a single application at a specific offered load can be a realistic

form of optimization to exploit the stable regions of these demand curves.



122

Figure 7.5: Raw requests-per-second log from Twitter cache-trace.

7.3.1 Experimental Setup

To conduct this experiment, we utilize the same itrLog infrastructure but mod-

ified the mutilate workload generator to generate requests from cache-trace in-

stead. From cache-trace, first we selected a single trace log from one of Twitters

servers that contained data from seven days and extracted a full 24 hour set of re-

quests rates from that log. The raw request-per-second rate of this 24 hour trace

log is shown in fig. 7.5. Next, we clustered the data from this 24 hour trace into 24

bins in order to capture the mean request rate which changes at an hourly basis.

We then use the same infrastructure as chapter 3 to generate these mean request

rates to our Linux appliance which runs a memcached server and capture its Watt

(Joules/second) usage over an entire 24 hour period.

During this period, we trigger the Bayesian optimization process (on a separate

machine) at a hourly rate. During this, the optimization process will run for a
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number of trials1 where each trial consists of: 1) setting a specific ITR, DVFS pair, 2)

and measuring the resultant energy and latency of the server at the current request

rate, and 3) using that measure to refine its optimization criteria.

At the end of the trial runs, we set the memcached server to use the specific

ITR, DVFS pair which was determined by Bayesian optimization to be optimal to

support the current request rate. This process is then triggered again on an hourly

basis2. In contrast to our study, which was limited to only using up to 340 ITR,

DVFS pairs due to experimental scope, we were able to let Bayesian optimization

use all possible ITR, DVFS values instead; which consists of a total of 2 million

possible combinations.

7.3.2 Reward Function

In each trial of Bayesian optimization, we compute a reward function that is a com-

bination of the resultant energy and latency measure of the memcached server.

This reward function is used by the Bayesian process to optimize towards its ob-

jective. In this work, we use a simple function that penalizes the reward by the

amount of measured Joules that violate the SLA objective in a linear fashion:

R = measured_joules ∗ (measured_latency − SLA+ 1) (7.2)

This reward function has the additional benefit of enabling one to target differ-

ent performance goals, for example, we show results where we changed the SLA

objective from 500 µs to 200 µs below. In addition, it is also possible to change the

measured_latency from 99% to other percentiles such as 90%, which is also shown

1Default of 30
2This process runs on a single thread and takes around 5 minutes total, we did not explore

additional optimizations and leave that as future work.
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below. In both cases, we demonstrate how Bayesian optimization can be used to

automatically adapt to these changing requirements.

7.3.3 System Configurations

We compare result of applying Bayesian optimization across five different system

configurations to get a better sense of its broad applicability.

Linux: Operating in its default state where the dynamic ITR and DVFS algorithms

are enabled. DVFS algorithm is enabled to use the power governor

(Dominik Brodowski, Nico Golde, Rafael J. Wysocki, Viresh Kumar, 2022) in which

the CPU is typically set into the lowest operating frequency while idle and dynam-

ically adjusts as workload changes.

Linux-BayOp and EbbRT-BayOp: In these configurations, we run a separate

Bayesian process on another machine whose job is to tune ITR, DVFS statically

towards a performance or energy goal. Given that the application is a memcached

server, our initial target is to minimize overall energy use of the machine while

maintaining the SLA objective such that 99% tail latency values are under 500 µs.

Linux-DVFS-BayOp: We only apply Bayesian optimization to optimize for DVFS

while running with the dynamic ITR algorithm enabled.

Linux-ITR-BayOp: We only apply Bayesian optimization to optimize for ITR

while running with the dynamic DVFS powersave algorithm enabled.
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Figure 7.6: Bayesian optimization applied to Twitter cache-trace re-
quest rates over a 24 hour period. Each row represents a single
SLA objective we are targeting and we display the change in energy
(Joules) as QPS changes Next to each energy (Joules) figure, we also
show the change in measured tail latency as QPS changes.

Figure 7.7: Bayesian optimization applied to Twitter cache-trace request
rates where it used to optimize only for minimizing 99% tail latency. We
show show the energy (Joules) consumption for this mode of operation.
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7.3.4 Memcached Results

Fig. 7.6 illustrates examples of how one can utilize Bayesian optimization for the

cache-trace data to minimize energy while satisfying the SLA objective. We demon-

strate three different SLA objectives: 99% < 500 µs, 90% < 500 µs, 99% < 200 µs. The

three figures on the left of fig. 7.6 show the overall energy use; in this figure, we

show the change in QPS at an hourly basis on right side and the measured Watt

(Joule/sec) use of the memcached server over the 24 hour period. The three fig-

ures on the right of fig. 7.6 shows the measured tail latency value during those QPS

periods.

The spikes in energy use of Linux-BayOp, EbbRT-BayOp, Linux-DVFS-BayOp,

Linux-ITR-BayOp in this figure illustrates the process by which Bayesian optimiza-

tion is running and is dynamically changing ITR, DVFS settings on the server. Af-

ter this initial energy spike, the system settles to a steady energy consumption state

until the next hourly trigger.

In the case of an SLA objective of 99% latency < 500 µs, we find that Linux-

BayOp can result in energy savings of up to 50% and by relaxing the SLA objective

to 90% < 500 µs enabled Bayesian optimization to find ITR, DVFS configurations

that yielded even more energy savings. To enable these energy savings, one can

also see that in fig. 7.6 that while Linux-BayOp had higher tail latencies than Linux,

it stayed within the specified SLA objective.

Fig. 7.6 also demonstrates another capability of our approach by allowing the

changing of the SLA objective to be more stringent at 99% < 200 µs and this figure

shows that Bayesian optimization can adapt to this lower tail latency requirement

was still being able to save up to 30% more energy. Further, one can also observe

that Linux’s dynamic algorithms inherently cannot adapt to these changing re-
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quirements due to its initial design.

One can also see that comparing Linux-DVFS-BayOp and Linux-ITR-BayOp, Linux-

DVFS-BayOp typically results in much larger energy savings than purely modu-

lating ITR. This is evident from the prior finding where DVFS drastically lowers

energy use. However, we still see that it is the combined ITR-DVFS (Linux-BayOp)

approach that yielded most energy savings in comparison. It should also be noted

that while for the SLA @ 99% < 200 µs it seemed that Linux-DVFS-BayOp often

resulted in lower energy use than Linux-BayOp, one can see that these scenarios

often results in tail latencies that violate the SLA objective of 200 µs.

In fig. 7.7 we demonstrate another example of this optimization by changing

reward function in eq. (7.2) to focus on minimizing tail latency instead. We find

that in almost all cases the Bayesian process was able to find ITR, DVFS regimes

that lowered the measured tail latency value by up to 30% but at a higher energy

cost of up to 40%. Lastly, fig. 7.6 and fig. 7.7 demonstrate that Bayesian optimiza-

tion can be applied to two fundamentally different OSes and still find ITR, DVFS

settings that minimize latency and energy for both.

7.3.5 Memcached-silo Results

We also applied Bayesian optimization to memcached-silo as it is intensive both

in computation and memory-use as it is structured such that every request trig-

gers a corresponding set of TPC-C transaction processing logic on a in-memory

database Tu et al. (2013).

Likewise, we selected another QPS trace from cache-trace that was akin to a

more computationally intense behavior. Compared to fig. 7.6, fig. 7.8 shows a

lower QPS rate overall. Even in this situation, we still find that for different SLA
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Figure 7.8: Bayesian optimization applied to memcached-silo over
a 24 hour period. Each row represents a single SLA objective we
are targeting and we display the change in energy (Joules) as QPS
changes Next to each energy (Joules) figure, we also show the change
in measured tail latency as QPS changes.
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objectives, applying Bayesian optimization could reduce a server’s energy con-

sumption by over 50%. However, we do see that given a more computationally

heavy application, the Linux-ITR-BayOp optimization did not result in as much

benefits compared to memcached as it is no longer network driven. Subsequently,

we find that only modulating DVFS via Linux-DVFS-BayOp also typically resulted

in configurations that yielded best energy savings. Fig. 7.8 also shows in some

cases the SLA objective was violated by the settings from Bayesian optimization,

which suggest the difficulty in applying this technique in computationally heav-

ier applications. However, this may be redeemed through more trials of Bayesian

optimization as well.

7.3.6 Bayesian Optimization Implications

Below, we summarize a set of implications of the results of our work in applying

Bayesian optimization to support a real world workload trace.

7.3.6.1 Deployment in Datacenters

Though our experiments were only configured for a single server, the benefits of

Bayesian optimization approach suggests one can utilize this implementation on

a single server and then build a simple load balancing mechanisms that drives

requests at specific QPS rates to subsets of server machines where they have been

specially configured with the correct hardware and OS settings to fully exploit the

range of its performance and energy possibilities.

Moreover, we also did not optimize the Bayesian process in Ax so it only used

a single thread for its work, this process can also be potentially sped up to further

maximize its benefits. Overall, this task can also be improved by utilizing the rich
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history of datacenter usage data that allows one to simulate and pre-configure sets

of nodes with this previously known request rate changes.

7.3.6.2 Reward Function

Though in this thesis we only illustrate the reward metric of best performance or

lowest energy, we believe this metric can be customized and expanded to new

combinations of performance and energy or known metrics such as energy-delay-

product (Horowitz et al., 1994; Brooks et al., 2000) as proposed by the architecture

community.

7.3.6.3 SLA Objectives

As shown in fig. 7.6, our experimental setup enables one to change the SLA objec-

tives to target different use cases. In these scenarios, a user can select the degree

with which they are willing to trade-off performance for energy and vice versa.

While previous works in taking advantage of SLA for lower energy have all fo-

cused on minizing energy at all costs (Wu et al., 2016; Hsu et al., 2018; Lo et al.,

2014; Hsu et al., 2015; Kasture et al., 2015; Leverich & Kozyrakis, 2014; Prekas

et al., 2017; Asyabi et al., 2020; Zhan et al., 2017; Vamanan et al., 2015; Meisner

& Wenisch, 2012; Chou et al., 2016, 2019), our results demonstrate that this process

can be automated and more wide ranging than previously shown.

7.3.6.4 Learning Implicit Hardware Encoding

We find that to change static DVFS values ultimately resulted in a write to the Intel

processor’s IA32_PERF_CTL MSR register. The exact meaning behind this register

in terms of processor frequency and voltage is unfortunately not documented and
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changes depending on the architecture of the CPU. The register itself contain a 16-

bit encoding which reflects some current performance state and Intel provides no

guarantee on what this architecture actually is.

Despite this, we found that Bayesian optimization was still able to adapt to

changing request rates for different performance and energy goals. This implies

that during its sampling stages it was able to discover some structure behind these

hidden encodings. This implies that this process can be generic enough to also be

applicable to new architectures that support the same mechanism but may have

different meanings encoded behind those mechanisms.
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CHAPTER 8

Related Work

Table 8.1 lists major research results in the area of using hardware features to con-

trol performance and/or energy. As shown in the table, most research in this area

have solely focused on either DVFS or combining it with the power limiting capa-

bilities of RAPL to modulate energy consumption while still meeting performance

goals. Other than these two main hardware knobs, systems such as NapSAC (Kri-

oukov et al., 2011), Heracles (Lo et al., 2015), and PowerNap (Meisner et al., 2009)

also began to explore more experimental features such as Intel’s Cache Allocation

Technology (CAT) to explore how cache isolation can improve energy efficiency.

These systems also tend to focus on the processing component of their respective

applications, in contrast, this thesis presents the novel use of controlling network

batching in conjunction with processor energy settings to enact even better per-

formance and energy improvements. Further, these works have all focused on

adapting their techniques for a particular set of applications by developing heuris-

tics and systems that carefully control these hardware mechanisms. This thesis

presents the novel use of an off-the-shelf machine learning library (Ax:Adaptive

Experimentation Platform, 2022) to dynamically tune these mechanisms and adapt

to both a diverse of applications and their respective loads.
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Table 8.1: List of related systems and the hardware parameters ex-
plored. WOL – Wake-On-Lan capability on certain NICs and an ex-
perimental feature. CAT – Cache Allocation Technology hardware
feature on certain Intel CPUs. TB – Turbo-Boost. CS – C-states.

System DVFS RAPL TB CS WOL CAT DRAM

Heracles (Lo et al., 2015) ✓ ✓ ✓

NapSac (Krioukov et al., 2011) ✓ ✓

(Fan et al., 2007) ✓ ✓

(Tolia et al., 2008b) ✓

Adrenaline (Hsu et al., 2015) ✓ ✓

SmoothOperator (Hsu et al.,

2018)

✓ ✓

PowerNap (Meisner et al., 2009) ✓ ✓ ✓

Rubik (Kasture et al., 2015) ✓

Pegasus (Lo et al., 2014) ✓

IXCP (Prekas et al., 2015) ✓ ✓

Dynamo (Wu et al., 2016) ✓

(Guliani & Swift, 2019) ✓ ✓

(Meisner et al., 2011) ✓ ✓

Power Capping (Petoumenos

et al., 2015)

✓ ✓ ✓

(Khan et al., 2018) ✓

(Zhang & Hoffman, 2015) ✓

(Lefurgy et al., 2007) ✓

Continued on next page
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Table 8.1 – continued from previous page

System DVFS RAPL TB CS WOL CAT DRAM

Pack & Cap (Cochran et al.,

2011)

✓

(Isci et al., 2006) ✓

(Li & Martinez, 2006) ✓

(Sasaki et al., 2013) ✓

(Kanev et al., 2014) ✓ ✓

TURBO (Wamhoff et al., 2014) ✓

DreamWeaver (Meisner &

Wenisch, 2012)

✓

(Kim et al., 2008) ✓

CPU MISER (Ge et al., 2007) ✓

Green Governors (Spiliopoulos

et al., 2011)

✓

(Kondo et al., 2007) ✓

(Lee & Kim, 2009) ✓ ✓

This dissertation also falls within a wider space of research on energy propor-

tional computation in datacenters (Barroso, Luiz André and Hölzle, Urs, 2007; Fan

et al., 2007; Tolia et al., 2008b). Much of this research stems from the challenges of

improving the performance of network-bound datacenter workloads like MapRe-

duce (Chen et al., 2012) and in-memory key-value stores (Lim et al., 2014; Prekas

et al., 2017) while keeping energy consumption at bay. These challenges can be

attributed to the complex diurnal trends that are characteristic of datacenter-level



135

utilization, whereby idle time is common and must be optimized for (Tolia et al.,

2008a; Meisner et al., 2009; Krioukov et al., 2011) while simultaneously maintain-

ing the ability to support high-utilization peaks and strict latency constraints (Wu

et al., 2016; Hsu et al., 2018; Lo et al., 2014; Hsu et al., 2015; Kasture et al., 2015;

Leverich & Kozyrakis, 2014; Prekas et al., 2017; Asyabi et al., 2020; Zhan et al.,

2017; Vamanan et al., 2015; Meisner & Wenisch, 2012; Chou et al., 2016, 2019). Our

work examines both in-memory key-value stores and its modified version with a

heavier processing component as well as closed loop applications. Our goal was

to gain better insight into the systemic impacts of performance and energy when

slowing down network workloads using the two hardware mechanisms of DVFS

and ITR delay together. Furthermore, we demonstrate that is not only possible

to do in-situ fine-grained data gathering and analysis of a complete full software

stack, but also correlate the fine-grained packet by packet behavior to its impacts

on an application’s performance and energy profile.

There is a wide range of work that targets energy proportionality with a fo-

cus on designing OS policies and mechanisms for power management. Most of

this work presents hardware level optimizations that manipulate processor speed

mechanisms such as DVFS (Sasaki et al., 2013; Flautner et al., 2001; Dominik

Brodowski, Nico Golde, Rafael J. Wysocki, Viresh Kumar, 2022; Lefurgy et al., 2007;

Cochran et al., 2011; Isci et al., 2006; Li & Martinez, 2006; Lee & Kim, 2009; Kim

et al., 2008; Ge et al., 2007; Spiliopoulos et al., 2011; Kondo et al., 2007; Le Sueur

& Heiser, 2011; Freeh et al., 2007; Elnozahy et al., 2003), processor power limiting

mechanisms such as RAPL (Intel, 2022b; Lo et al., 2015; Hsu et al., 2018; Lo et al.,

2014; Wu et al., 2016; Guliani & Swift, 2019; Petoumenos et al., 2015), and idle

power states (Rafael J. Wysocki, 2018; Asyabi et al., 2020; Chou et al., 2019; Kanev
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et al., 2014; Meisner & Wenisch, 2012; Kim et al., 2015b) (c-states) by applying feed-

back control mechanisms and relying on activity models. The authors of (Lo et al.,

2015) and (Guliani & Swift, 2019) go a step further, exploring and characterizing

the interference of co-located latency-critical versus best-effort tasks and high ver-

sus low CPU demand tasks when subject to energy tuning via DVFS and RAPL.

In doing so, they highlight limitations in using hardware features alone for power

management. Similarly, the authors of (Tolia et al., 2008a; Hwang & Pedram, 2016)

identify a need to step away from relying entirely on hardware solutions and fo-

cusing instead on software optimizations, such as VM migration controllers for

power management of an ensemble of nodes. Previous works have advocated

for full-system and hardware optimizations for energy (Le Sueur & Heiser, 2011;

Meisner et al., 2009), our work builds on their observations and assert that the OS

itself plays a big role as well.

The previous research efforts present significant energy savings from well de-

signed dynamic policies and carefully chosen static configurations, however, we

are driven to explore the space beyond current findings with a focus on unveil-

ing the role of the OS in exploiting activity and idleness and also by introducing

interrupt delay as an additional knob in this exploration. We find that this explo-

ration is timely given the range of work on optimizing OS paths for performance,

from NIC driver mechanisms (Kaufmann et al., 2016; Pesterev et al., 2012; BeifuSS

et al., 2015) to the network stack (Jeong et al., 2014; Marinos et al., 2014; BeifuSS

et al., 2015) and the dataplane (Peter et al., 2015; Schatzberg et al., 2016; Ousterhout

et al., 2019; Prekas et al., 2017; Belay et al., 2014). Our work was also influenced

by previous work in energy efficiency by slowing down both the networking and

processor: µDPM (Chou et al., 2019) is a application-level policy for memcached to
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delay request processing and maximize idle periods where deep sleep states can

then be utilized, in (Laros et al., 2012) the authors combined bandwidth limiting

in Cray clusters and scaling processor frequency to reduce energy use of HPC ap-

plications. In contrast to µDPM, we use a hardware register on the NIC to induce

batching as this can be commonly found in commercial NICs. Lastly, we are the

first to conduct such an in-depth study with a baremetal specialized OS.

There is a synergistic relationship between the kind of system software used

to support modern applications, the use of specialized features on modern hard-

ware to support these applications, and the performance and energy trade-offs that

exist within this space. Part of this has been explored with recent works on spe-

cializing systems towards a single application by using techniques such as library

OSes (Belay et al., 2014; Peter et al., 2015; Ousterhout et al., 2019; Schatzberg et al.,

2016; Prekas et al., 2017), kernel-bypass (Dragojević et al., 2014; Intel Corporation,

2022; Jeong et al., 2014; Lim et al., 2014; Yang et al., 2021; Yasukata et al., 2016), and

unikernels (Madhavapeddy et al., 2013; Antti Kantee, Justin Cormack, 2014; Raza

et al., 2019). However, they have typically only focused on performance. One as-

pect of our work is begin to document energy impact of these alternate system

designs as the insights from the EbbRT results are also applicable to other applica-

tion specific systems developed for accelerating network workloads (Belay et al.,

2014; Peter et al., 2015; Prekas et al., 2017; Ousterhout et al., 2019; Antti Kantee,

Justin Cormack, 2014; Raza et al., 2019; Madhavapeddy et al., 2013; Rajesh Nishtala

and Hans Fugal and Steven Grimm and Marc Kwiatkowski and Herman Lee and

Harry C. Li and Ryan McElroy and Mike Paleczny and Daniel Peek and Paul Saab

and David Stafford and Tony Tung and Venkateshwaran Venkataramani, 2013; Qin

et al., 2018; Jeong et al., 2014; Marinos et al., 2014; Pesterev et al., 2012; Kaufmann
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et al., 2016; Lim et al., 2014; Welsh et al., 2001) as they share similar structural prop-

erties such as run-to-completion, event-driven execution model, single execution

domain, and compile-time optimization, etc.

Previous work has advocated for full-system and hardware optimizations for

energy efficiency (Le Sueur & Heiser, 2011; Meisner et al., 2009). Our work builds

on that and asserts that OS path specialization itself plays a critical role in attain-

ing energy efficiency. Furthermore, we take a more holistic view of performance

and energy by reasoning about the fine-grained interactions between software and

hardware at the per-interrupt level.

Modern hardware components and software stacks expose a large number of

parameters that govern internal system operations and interactions. There is a lot

of work on defining heuristics to control these parameters (Carroll & Heiser, 2014;

Imes et al., 2015; Mishra et al., 2018, 2015; Dong et al., 2021; Kim et al., 2015a). In

recent years, there has been an explosion in using ML-based techniques (Wu &

Xie, 2023; Ding et al., 2019) to uncover more subtle system heuristics for resource

management (Ganapathi et al., 2009; Bitirgen et al., 2008; Chen & John, 2011; De-

limitrou & Kozyrakis, 2013, 2014; Dubach et al., 2010; Hoffmann, 2015; Ipek et al.,

2008; Mishra et al., 2018, 2015; Oliner et al., 2013; Petrica et al., 2013; Snowdon

et al., 2009; Zhu & Reddi, 2013), hardware and system configuration (Ansel et al.,

2012; Chen et al., 2015; Deng et al., 2017; Dubach et al., 2010; Ganapathi et al.,

2009; Lee & Brooks, 2006; Li & Martinez, 2006; Tomusk et al., 2015; Van Aken et al.,

2017; Wu & Lee, 2012; Yigitbasi et al., 2013; Zhou et al., 2016; Zhu et al., 2017),

high-performance computing (Lee et al., 2007; Mishra et al., 2015; Ipek et al., 2008;

Zhang & Hoffmann, 2016; Ansel et al., 2012; Li & Martinez, 2006; Roy et al., 2021),

and data-center-scale applications (Delimitrou & Kozyrakis, 2013, 2014; Yigitbasi
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System Configurations Application
(Bitirgen et al., 2008) CPU, Cache Coherence SPEC
(Chen & John, 2011) SMT SPEC CPU 2006
(Dubach et al., 2010) LLC SPEC
(Ipek et al., 2008) DRAM Load/Store SPEC OpenMP
(Choi & Yeung, 2006) CPU SPEC
(Deng et al., 2017) NVM SPEC
(Li & Martinez, 2006) DVFS HPC
(Lee & Brooks, 2010) Instructions SPEC
(Wu & Lee, 2012) Instructions SPEC CPU
(Winter et al., 2010) Branch Predictor, L1 SPEC
NURD (Ding et al., 2022a) CPU, Memory Traces

Table 8.2: List of related works of applying ML to automatically con-
figure various configurations. However, all these works were run in
a simulator only.

et al., 2013; Chen et al., 2015; Van Aken et al., 2017; Zhu et al., 2017; Tesauro, 2007;

Ding et al., 2022a, 2021; Li et al., 2020; Wang et al., 2018; Ding et al., 2022b).

Though ML is a natural solution for domains like image, video, and audio pro-

cessing, the complexity of computer systems often requires extensive expertise to

map systems problems to ML tasks. For example table 8.2 lists recent works of

applying ML to problems in the micro-architecture community, however all these

works are demonstrated in simulators only. In table 8.3, there have been tremen-

dous amounts of research to apply ML to tune data-center scale applications such

as Hadoop, MapReduce, etc, and in many of these cases they target software level

configurations only. Furthermore, in all of these works they only demonstrate fea-

sibility on Linux whereas our work demonstrates how fundamental behaviors of

these hardware mechanisms are applicable across OSes.

To our knowledge, there have been few publicly available systems datasets for

ML (Joseph L. Hellerstein, 2010; Juncheng Yang, 2020; Atikoglu, Berk and Xu,

Yuehai and Frachtenberg, Eitan and Jiang, Song and Paleczny, Mike, 2012; Cortez
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et al., 2017; Ding et al., 2021). Further, our approach to conducting an experimen-

tal study, performing data analysis, and building a model which reflects the ap-

plicability of a black-box learner was motivated by the work of (Ding et al., 2019),

who advocated that learning for systems should "incorporate the system problem’s

structure into the learner".



141

System Configurations Application
Paragon (Delimitrou &
Kozyrakis, 2013)

CPU, Cache, DRAM Hadoop

Quasar Delimitrou &
Kozyrakis (2014)

CPU Hadoop, Memcached,
Cassandra

CALOREE (Mishra
et al., 2018)

CPU Mobile

Carat (Oliner et al.,
2013)

App. Energy Mobile/Embedded

(Zhu & Reddi, 2013) Big/LIttle Cores Mobile
Pack & Cap (Cochran
et al., 2011)

DVFS, Threads PARSEC

(Lee et al., 2007) Working Sets HPC
(Yigitbasi et al., 2013) Map/Reduce Tasks MapReduce
(Zhang & Hoffmann,

2016)
Thread Migration HPC

TEMM (Zhang et al.,
2012)

DVFS SPEC CPU

Siblingrivalry (Ansel
et al., 2012)

Cores HPC

(Chen et al., 2015) Hadoop Config Hadoop
(Van Aken et al., 2017) DBMS Configs TPC-C
BestConfig (Zhu et al.,
2017)

Software Configs Tomcat, Cassandra, Hive

(Ding et al., 2021) Spark Configs Spark
ALERT (Wan et al.,
2020)

RAPL Speech/Image

(Li et al., 2020) Software Configs HDFS, Cassandra, MapRe-
duce

Cello (Ding et al.,
2022b)

Spark Configs Spark

(Wang et al., 2018) Configs HDFS, Cassandra, MapRe-
duce

Table 8.3: List of related works of applying ML to automatically con-
figure various configurations for datacenter scale applications. How-
ever, most of these works only on software settings only and do not
have publicly available datasets. Lastly, they have applied to Linux
only.
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CHAPTER 9

Future Work

In this chapter, we will discuss the details of implications and possible future di-

rections of research that this thesis entails.

9.1 PERFORMANCE AND ENERGY STUDY

Linux contains many dynamic policies that have their own objectives and are full

of implicit and/or hidden heuristics. Our exhaustive approach to conducting this

study creates a methodology that lets us reveal and (re)define the real objectives

of the parameters we tackle. We find that careful coordination among different

hardware features has substantial benefits and should be used towards common

performance and energy objectives in order to explore new trade-offs that achieve

even further efficiencies over today’s policies; which are often too narrowly fo-

cused. We believe that our method and subsequent data analysis approach can be

reapplied towards different objectives in any system or domain. In turn, this can

better enable developers to target what these built-in policies should be optimal

for.

9.2 ENERGY REPORTING IN SYSTEMS RESEARCH

Although there have been many recent OS research topics focused on specializa-

tion techniques to accelerate network applications (Belay et al., 2014; Peter et al.,

2015; Prekas et al., 2017; Ousterhout et al., 2019; Antti Kantee, Justin Cormack,

2014; Raza et al., 2019; Madhavapeddy et al., 2013; Rajesh Nishtala and Hans Fu-

gal and Steven Grimm and Marc Kwiatkowski and Herman Lee and Harry C. Li
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and Ryan McElroy and Mike Paleczny and Daniel Peek and Paul Saab and David

Stafford and Tony Tung and Venkateshwaran Venkataramani, 2013; Qin et al., 2018;

Jeong et al., 2014; Marinos et al., 2014; Pesterev et al., 2012; Kaufmann et al., 2016;

Lim et al., 2014; Welsh et al., 2001), we find that their impact on energy is not

as clearly understood. By integrating our logging approach at the NIC’s device

driver level, we demonstrate the feasibility of such a test bed to perform the data

driven driven exploration needed for our statically searched results. We believe

that the set of tools, itrLog, is a step in the right direction to better understanding

the complex interactions of modern systems software and its applications. As this

tool contains a system and application agnostic way to log fine-grained measure-

ment data, we believe it can be easily expanded upon by other researchers in other

domains to better understand and report the performance and energy profiles of

their systems and to discover new fine-grained interactions in order to enact simi-

lar performance-energy trade-offs.

9.3 SPECIALIZED OSES AND NETWORK PATH OPTIMIZATIONS

We demonstrate that there is significant benefit to dedicating OS stack and the

hardware not only for workload, but also for specific offered loads. The per-

formance and energy gains by the static configurations opens new opportunities

for these optimizing widely deployed cloud services with mean demand curves

that are stable across hours and days. While there is an enormous body of work

demonstrating the performance advantages of application-specific OSes, our work

demonstrate that these systems also offer enormous value in energy efficiency.

Moreover, we see that the with simplified OS paths offer more opportunities for

load-specific optimizations than general purpose operating systems. As our find-
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ings for specialized OSes are generalizable due to observations of efficiency in net-

work and application processing at a more fundamental level, such as IPC, we ex-

pect that many other application specific OSes such as unikernels and/or library

OSes (Madhavapeddy et al., 2013) should contain similar energy efficiency bene-

fits.

9.4 NIC POLLING WITHOUT SLEEP IN SPECIALIZED OS PATHS

The preliminary polling results reveals that there is enormous value to adopting

specialized OS paths even in general purpose OSes for both performance and en-

ergy efficiency. Specialized systems that use polling to achieving low-latency (Mari-

nos et al., 2014; Belay et al., 2014; Peter et al., 2015; Prekas et al., 2017; Ousterhout

et al., 2019; Schatzberg et al., 2016; Cadden et al., 2020; Qin et al., 2018; Jeong et al.,

2014; whe, 2012) can be made energy-efficient with careful use of DVFS, further,

these results suggests the importance for energy aware OS-level optimizations that

can switch between poll and interrupt-driven IO in response to changes in demand

and workload behavior. This also suggest optimizations such as OS path special-

ization and OS polling can be integrated into existing systems to enable these sys-

tems for both high performance and energy efficiency.

Modern processors provide a Monitor Wait (or MWAIT) instruction and it is

typically used for power management by allowing a processor to select a specific

C-state to enter after a call to HALT. However, a dual use of MWAIT is that can

be used to monitor an address. A write to this address will automatically induce

a processor wakeup from its halted state. With this capability, it becomes possible

to explore an alternative system design where polling can be used in conjunction

with sleep states for both performance and energy.
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9.5 CONFIGURING NICS FOR PERFORMANCE

As an addendum to the work on development of 82599 NIC driver for baremetal

EbbRT, it provided us an opportunity to explore how different combinations of

NIC settings affected the performance or a real work application such as Mem-

cached. We isolate and focus on the NIC features in EbbRT as its smaller codebase

enabled us to experimentally validate the advantages of these features without

requiring systemic modifications that impact various subsystems, potentially per-

turbing experimental conclusions.

Table 9.1 lists such a result and shows the overall peak QPSes achieved while

maintaining SLA objectives of 99% tail latency of requests under 500 µs. We used

the same experimental setup and software for running Memcached in EbbRT and

we fixed ITR, DVFS to a single value that yield best performance. These results are

separated between TSO single and multiple and for each TSO, the combinations

of DCA and RSC is toggled and shown. TSO is a common feature and allows the

device driver to give the NIC a large payload so that the NIC can automatically

break the payload into multiple MTU sized frames with the appropriate Ethernet,

TCP/IP header information. To explore impacts of TSO, we modified EbbRT’s

82599 device driver to investigate TSO in two manners: 1) always use a single

descriptor by copying payload to a single buffer, and 2) use multiple descriptors

(up to max of 40). The motivation behind this is to better understand performance

extremities of this feature. DCA is a mechanism where incoming packet data can

be written directly into CPU caches via a hardware pre-fetch (Huggahalli et al.,

2005; Farshin et al., 2020; Cai et al., 2021). RSC is the NIC’s implementation of the

large receive offload (Jonathan Corbet, 2007) in hardware.

Table 9.1 demonstrates that toggling these NIC configuration settings has dra-
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TSO DCA RSC Peak QPS (K)
single 7 7 2200

7 3 2400
3 7 2400
3 3 2400

multiple 7 7 1400
7 3 1200
3 7 1200
3 3 1200

Table 9.1: Measured performance of each NIC feature configuration
when running EbbRT memcached. TSO is separated into single and
multiple categories, and for the rest of the hardware features (DCA,
RSC), this table lists the peak QPS achieved for every combination
while maintaining SLA of 99% tail latency < 500 µs.

matic impact on peak throughput in Memcached by up to 1.71X without mod-

ifications to the application or system code. This result suggests that previous

work in optimizing memcached (Belay et al., 2014; Lim et al., 2014; Prekas et al.,

2017; Ousterhout et al., 2019; Ghigoff et al., 2021; Chou et al., 2016; Jin et al., 2017;

Han et al., 2012; Yang et al., 2021; Yasukata et al., 2016) can benefit from adopt-

ing these hardware features as they share similar system design qualities such as

kernel-bypass, no domain-crossings, run-to-completion of every request, etc. Fur-

thermore as fig. 1.3 shows, there are over 5000 possible configurations of the NIC

and our results also suggest there is enormous value to exploring how hardware

can be configurable dependent on the application and OS for enormous benefits.

9.6 EXPANDING ON ITR-DELAY MECHANISM

There are a few advantages and disadvantages to the ITR mechanism. As it can

only be set to a maximum of 1024 µs, it remains to be seen how its benefits fare

in open loop workloads that use SLAs in the milliseconds range. Further, as it
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interacts with re-transmit timeout policies in the TCP/IP stack; if one delays the

interrupt mechanism too long, it could cause redundant retransmissions and de-

crease overall throughput while increase energy use. An opportunity with ITR

is that it can also be modified on a per receive queue basis, which are typically

affinitized to each distinct core. Potentially, if different workloads with different

SLA objectives are consolidated on a single server node, it could be possible to

customize interrupt receive delays on a per application basis while maintaining

different SLAs across diverse set of applications.

9.7 MODEL EXTENSION

Our modeling work can also be expanded to a full probabilistic analysis using

graphical models and an inference engine like Pyro (pyr, 2022). Further, it is also

possible to generalize the open loop model across QPS values and/or combine the

different models into a central model that captures all the workloads.



148

CHAPTER 10

Conclusion

This dissertation establishes that optimizing performance-energy simultaneously,

despite complex OS structure, can be made a well-defined task using existing hard-

ware mechanisms:

1. We design and construct a reproducible and new experimental methodology

that enables the impact of different OS designs and implementations on ap-

plication performance and energy to be studied in a controlled fashion. This

methodology captures lossless in-situ fine-grained time series data, reflecting

all packet and software interactions.

2. We plan to open source both the experimental infrastructure and the over 5

TB of collected data for existing researchers to study performance and energy

impact in OSes.

3. Using our methodology, we are the first to demonstrate that application per-

formance and energy can be significantly optimized by externally controlling

(independent of the OS) request batching and processor speed using stan-

dard hardware mechanisms. We find one can achieve over 2X performance

improvement for existing general purpose systems while using 2X lower en-

ergy and can be readily applied to other application domains.

4. We find specialized OS structure enables new and important interplay with

energy consumption. Our work is the first to show that OS specialization

has a dramatic impact not only on performance but also energy: over 2.5X

energy savings in workloads such as Memcached and can sustain over 2X
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higher throughput. There are even greater advantages from interactions with

external controls as discussed in (2), such as new optimization opportunities

using efficient polling leading to over 4X lower energy while improving per-

formance by 3X.

5. We demonstrate results of our experimental study are sufficiently structured

such that complex layers of systems software and their interactions in (2) can

be characterized with a analytical model to accurately predict application

performance and energy.

6. Lastly, we use an off-the-shelf black-box learner to demonstrate how this ap-

proach can be applied to save energy in Linux by up to 60% while supporting

a real-world in-memory key-value store workload from Twitter by automat-

ically adapting to different request rates and performance and energy goals.

The implications of this dissertation impacts not only OS design and implemen-

tation for energy efficiency but also data center orchestration in light of changing

traffic patterns:

1. The experimental methodology is open sourced and empowers other devel-

opers to experimentally report energy implications on their system, and can

also be extended to other domains.

2. Our results suggest that data center applications can significantly lower en-

ergy use by introducing simple load balancers that direct traffic to nodes

with the correct static configuration. This design is amenable both to open

loop applications that have a stable mean demand curve and closed loop

applications with periodic packet transactions.



150

3. We demonstrate that library OSs are strong candidates to serve as tools for

aggressive optimization of energy by both simplifying system policies for

managing hardware features and enabling new forms of optimizations such

as coupling processor frequencies with an OS poll.

4. Our discoveries suggest optimizations such as OS path specialization and OS

polling can be integrated into existing systems to enable these systems to not

only be performant but also energy efficient.

5. The analytical model results suggests an opportunity to combine low level

system metrics with statistical learning techniques such as reinforcement learn-

ing to begin building smarter hardware policies within the OS.

6. The results with Bayesian optimization suggest it is practical way to deploy

and target application performance and energy goals.
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